Mostrar el registro sencillo del ítem

Título

Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics

dc.contributor.authorJiang, Tao
dc.contributor.authorMunguía López, Jose Gil
dc.contributor.authorGu, Kevin
dc.contributor.authorBavoux, Maeva M.
dc.contributor.authorFlores Torres, Salvador
dc.contributor.authorKort Mascort, Jacqueline
dc.contributor.authorGrant, Joel
dc.contributor.authorVijayakumar, Sanahan
dc.contributor.authorDe León Rodríguez, Antonio
dc.contributor.authorEhrlicher, Allen J.
dc.contributor.authorKinsella, Joseph M.
dc.date.accessioned2021-06-10T20:08:13Z
dc.date.available2021-06-10T20:08:13Z
dc.date.issued2020
dc.identifier.citationTao Jiang et al 2020 Biofabrication 12 015024
dc.identifier.urihttp://hdl.handle.net/11627/5630
dc.description.abstract"Tunable bioprinting materials are capable of creating a broad spectrum of physiological mimicking 3D models enabling in vitro studies that more accurately resemble in vivo conditions. Tailoring the material properties of the bioink such that it achieves both bioprintability and biomimicry remains a key challenge. Here we report the development of engineered composite hydrogels consisting of gelatin and alginate components. The composite gels are demonstrated as a cell-laden bioink to build 3D bioprinted in vitro breast tumor models. The initial mechanical characteristics of each composite hydrogel are correlated to cell proliferation rates and cell spheroid morphology spanning month long culture conditions. MDA-MB-231 breast cancer cells show gel formulation-dependency on the rates and frequency of self-assembly into multicellular tumor spheroids (MCTS). Hydrogel compositions comprised of decreasing alginate concentrations, and increasing gelatin concentrations, result in gels that are mechanically soft and contain a greater number of cell-adhesion moieties driving the development of large MCTS; conversely gels containing increasing alginate, and decreasing gelatin concentrations are mechanically stiffer, with fewer cell-adhesion moieties present in the composite gels yielding smaller and less viable MCTS. These composite hydrogels can be used in the biofabrication of tunable in vitro systems that mimic both the mechanical and biochemical properties of the native tumor stroma."
dc.publisherIOP Publishing
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectBioprinting
dc.subjectBiofabrication
dc.subject3D in vitro models
dc.subjectCancer spheroid
dc.subjectComposite hydrogel
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA
dc.titleEngineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics
dc.typearticle
dc.identifier.doihttps://doi.org/10.1088/1758-5090/ab3a5c
dc.rights.accessAcceso Abierto


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional