dc.contributor.author | Pérez Gutiérrez, Rosa Martha | |
dc.contributor.author | Rodríguez Clavel, Isis Sherazada | |
dc.contributor.author | Paredes Carrera, Silvia Patricia | |
dc.contributor.author | Sánchez Ochoa, Jesus Carlos | |
dc.contributor.author | Muñiz Ramirez, Alethia | |
dc.contributor.author | Medellín Garibay, Susanna Edith | |
dc.contributor.author | Paz García, Eri Joel | |
dc.date.accessioned | 2022-03-10T19:33:33Z | |
dc.date.available | 2022-03-10T19:33:33Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Rosa Martha Pérez-Gutierrez, Isis Sherazada Rodríguez-Clavel, Silvia Patricia Paredes-Carrera, Jesus Carlos Sánchez-Ochoa, Alethia Muñiz-Ramirez, Susanna Medellin Garibay, Eri Joel Paz-García, Synthesis of keratine, silver, and flavonols nanocomposites to inhibit oxidative stress in pancreatic beta-cell (INS-1) and reduce intracellular reactive oxygen species production, Arabian Journal of Chemistry, Volume 14, Issue 2, 2021, 102917,
https://doi.org/10.1016/j.arabjc.2020.102917. | |
dc.identifier.uri | http://hdl.handle.net/11627/5753 | |
dc.description.abstract | "Flavonols (FLA) from Vaccinium macrocarpon (V. macrocarpon) were identified using high-performance liquid chromatography coupled with mass spectrometry detection. Nanoparticles were prepared using highly crosslinked keratin (KER) from human hair and silver and entrapped with flavonols [KER + FLA + AgNPs]. Nanocomposites were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction, zeta potential, and dynamic light scattering, and release profiles. The interactions between the capping agent and the silver core have been investigated using FTIR spectroscopy H2O2 is a source of Reactive Oxygen Species (ROS) and acts as an activator of oxidative stress affecting NS-1 cells, and the protective effect of the nanocomposites were evaluated against H2O2-induced pancreatic beta-cell damage. LC-MS/MS and HPLC analyses revealed the presence of 12 flavonols in V. macrocarpon plant extract. The cell apoptosis and proliferation, were evaluated by Hoechst 33342 staining, flow cytometry and Cell Counting Kit-8 respectively. Preincubation of the NS-1 cells with 250 mu g/mL of H2O2 induced oxidative stress conditions that show pancreatic beta-cell dysfunction, including ROS, cell death, mitochondrial function, antioxidant enzymes, and lipid peroxidation. Nevertheless, pretreatment with FLA and [KER + FLA + AgNPs] prevented mitochondria disruption, maintained cellular ATP levels, inhibited LDH release, intracellular ROS production, decreased lipid peroxidation, increased expression of antioxidant enzymes (CAT, SOD, and GPx) and GSH levels. These results indicate that nanocomposites could protect rat INS-1 pancreatic beta-cell from H2O2-induced oxidative damage, apoptosis and proliferation by reducing the production of intracellular reactive oxygen species." | |
dc.publisher | Elsevier | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Vaccinium macrocarpon | |
dc.subject | Oxidative stress | |
dc.subject | Flavonols | |
dc.subject | Antioxidant enzymes | |
dc.subject | Pancreatic ?-cell | |
dc.subject.classification | QUÍMICA | |
dc.title | Synthesis of keratine, silver, and flavonols nanocomposites to inhibit oxidative stress in pancreatic beta-cell (INS-1) and reduce intracellular reactive oxygen species production | |
dc.type | article | |
dc.identifier.doi | https://doi.org/10.1016/j.arabjc.2020.102917 | |
dc.rights.access | Acceso Abierto | |