Título
Effect of Cathodic Protection on Reinforced Concrete with Fly Ash Using Electrochemical Noise
11627/576611627/5766
Autor
García Contreras, Jorge Pedro
Gaona Tiburcio, Citlalli
López Cázares, María Irene
Sánchez Díaz, Guillermo
Ibarra Castillo, Juan Carlos
Jáquez Muñoz, Jesús M.
Nieves Mendoza, Demetrio
Maldonado Bandala, Erick Edgar
Olguín Coca, Francisco Javier
López León, Luis Daimir
Almeraya Calderón, Facundo
Resumen
"Corrosion of steel reinforcement is the major factor that limits the durability and serviceability performance of reinforced concrete structures. Impressed current cathodic protection (ICCP) is a widely used method to protect steel reinforcements against corrosion. This research aimed to study the effect of cathodic protection on reinforced concrete with fly ash using electrochemical noise (EN). Two types of reinforced concrete mixtures were manufactured; 100% Ordinary Portland Cement (OCP) and replacing 15% of cement using fly ash (OCPFA). The specimens were under-designed protected conditions (?1000 ? E ? ?850 mV vs. Ag/AgCl) and cathodic overprotection (E < ?1000 mV vs. Ag/AgCl) by impressed current, and specimens concrete were immersed in a 3.5 wt.% sodium chloride (NaCl) Solution. The analysis of electrochemical noise-time series showed that the mixtures microstructure influenced the corrosion process. Transients of uniform corrosion were observed in the specimens elaborated with (OPC), unlike those elaborated with (OPCFA). This phenomenon marked the difference in the concrete matrix’s hydration products, preventing Cl? ions flow and showing passive current and potential transients in most specimens."
Fecha de publicación
2021Tipo de publicación
articleDOI
https://doi.org/10.3390/ma14092438Área de conocimiento
METALURGIAColecciones
Editor
MDPIPalabras clave
Electrochemical noiseFly ash
Concrete
Cathodic protection
Microstructure