Show simple item record

Title

One-parameter Darboux-deformed Fibonacci numbers

dc.contributor.authorRosu Barbus, Haret-Codratian
dc.contributor.authorMancas, Stefan C
dc.date.accessioned2024-05-30T21:28:34Z
dc.date.available2024-05-30T21:28:34Z
dc.date.issued2023
dc.identifier.citationRosu, Haret & Mancas, Stefani. (2023). One-parameter Darboux-deformed Fibonacci numbers. Modern Physics Letters A. 38. 10.1142/S0217732323500220.
dc.identifier.urihttp://hdl.handle.net/11627/6569
dc.description.abstractOne-parameter Darboux deformations are established for the simple ordinary differential equation (ODE) satisfied by the continuous generalizations of the Fibonacci sequence recently discussed by Faraoni and Atieh [Symmetry 13, 200 (2021)], who promoted a formal analogy with the Friedmann equation in the FLRW homogeneous cosmology. The method allows the introduction of deformations of the continuous Fibonacci sequences, hence of Darboux-deformed Fibonacci (noninteger) numbers. Considering the same ODE as a parametric oscillator equation, the Ermakov–Lewis invariants for these sequences are also discussed.
dc.publisherWorld Scientific
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSupersymmetry
dc.subjectFibonacci number
dc.subjectBinet formula
dc.subjectDarboux deformation
dc.subjectErmakov–Lewis invariant
dc.subject.classificationFISÍCA
dc.titleOne-parameter Darboux-deformed Fibonacci numbers
dc.typearticle
dc.identifier.doihttps://doi.org/10.1142/S0217732323500220
dc.rights.accessAcceso Abierto


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional