Show simple item record

Title

Riccati equations of opposite torsions from the Lie-Darboux method for spatial curves and possible applications

dc.contributor.authorLemus Basilio, Paola
dc.contributor.authorRosu Barbus, Haret-Codratian
dc.date.accessioned2024-05-30T21:28:38Z
dc.date.available2024-05-30T21:28:38Z
dc.date.issued2024
dc.identifier.citationPaola Lemus-Basilio and Haret C Rosu 2023 Phys. Scr. 98 105230
dc.identifier.urihttp://hdl.handle.net/11627/6576
dc.description.abstractA novel formulation of the Lie-Darboux method of obtaining the Riccati equations for the spatial curves in Euclidean three-dimensional space is presented. It leads to two Riccati equations that differ by the sign of torsion. The case of cylindrical helices is used as an illustrative example. Possible applications in Physics are suggested.
dc.publisherIOP
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectRiccati equation
dc.subjectFrenet-Serret system
dc.subjectLie-Darboux method
dc.subjectCylindrical helix
dc.subject.classificationFISÍCA
dc.titleRiccati equations of opposite torsions from the Lie-Darboux method for spatial curves and possible applications
dc.typearticle
dc.identifier.doihttps://doi.org/10.1088/1402-4896/acf896
dc.rights.accessAcceso Abierto


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional