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Resumen 
 

Modeling and control of a three–level neutral point clamped converter by 
transient distortion of reference signal 
 

PALABRAS CLAVE: Calidad de la Energía, Corrección del factor de potencia, 

Convertidores de potencia multinivel, Conversión de potencia AC–DC, Electrónica 

de potencia, sistemas no lineales. 

 

 

Utilizando la formulación de Euler–Lagrange, se desarrolla un modelo completo 

para el convertidor NPC–3 adecuado para efectos de diseño de control. Para 

introducir una entrada de control adicional, y utilizarla para alcanzar el objetivo de 

balanceo, una perturbación transitoria es añadida a la señal de referencia de 

corriente. Se propone un controlador y se estudia la estabilidad del sistema en el 

sentido de Lyapunov. Para probar el buen desempeño del controlador se llevaron 

a cabo simulaciones numéricas en las que se observaron resultados satisfactorios 

para el seguimiento y la regulación. Sin embargo, a partir de estas pruebas, se 

encontró un compromiso entre el balanceo y la distorsión armónica total, grosso 

modo, no es posible alcanzar el primero sin alterar al segundo.  
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Abstract 
 

Modeling and control of a three–level neutral point clamped converter by 
transient distortion of reference signal 
 
 
 
KEY WORDS: Energy quality, Power factor correction, Multilevel power converters,  

AC–DC Power Conversion, PWM power converters, Power electronics, Nonlinear 

systems. 

 

 

 

Modeling via the Euler–Lagrange Formulation of the NPC–3 power converter is 

performed providing with a complete model suitable for control purposes. A 

transitory perturbation is added to the current reference signal to provide with an 

extra control input used to reach a balance objective. A controller is proposed and 

its stability in the sense of Lyapunov studied. To test the performance of the 

controller, numerical simulations are performed, obtaining satisfactory overall 

results for tracking and regulation. Nevertheless, a tradeoff between balance and 

the THD reduction of the inductor’s currents prevents from reaching full balance. 

 



Chapter 1 

 
 

Introduction 
 

 

1.1 Motivation 

 

Recent analysis about the global trends in electric power consumption, reveal an 

important rise of the power needs in the forthcoming years [1]. In particular, within 

general electronics, power electronics has become in the last years one of the 

most active and evolved fields. This originated, mainly by the reduction in the 

production costs and a more affordable price of most electronic devices, this drives 

to the rise in the use of electronic equipment. However, this rise in the number of 

electronic devices plugged into the power grid promotes a decrement in the power 

quality of the supplied energy due to harmonic contamination injection by the 

electronic equipment [2]. Several requirements in current international standards, 

such as IEEE-519, IEC-61000, IESNA-PQ-4, ABS-150 and CFE-L00045 among 

others have been established. Therefore, a very active field of study is the one 

dedicated to achieve a minimum harmonic injection by electronic equipment to the 

grid [3]-[7].  

 

Moreover, massive use of fossil combustibles leads to problems in the near future, 

such as, environmental contamination, resources limitation and subsequent cost 

increments. Consequently, the use of renewable energies and their efficient 

connection to the electric grid is a vast field of work, and very active these days. In 

addition, along with the technical evolution, a rising demand for converters rated at 

higher power, more and more efficient, also takes place. 
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As a consequence of the aforementioned issues, new and improved solutions 

within power electronics have been developed such as: new semiconductor 

devices (IGBTs and diodes) with high cosmic radiation withstand capability, new 

control and commutation strategies and new topologies such as multilevel 

converters. Due to their design, multilevel power converters portray suitable 

attributes to meet both power and quality requirements, especially in high power 

and renewable power sources applications. 

 

Multilevel power converters have consolidated in the last years as a very important 

option in electric energy processing in the medium–high power range, from the 

technical point of view to the economic one; given that a significant increment can 

be evidenced in the applications where energy conversion is performed using 

multilevel power converters. The term, “multilevel” is applied to an inverter of three 

or more levels and was initially introduced by Nabae et all in 1981 [7]. Ever since, 

power electronics community and industry have driven all efforts in research and 

development of these converters. Being a technology of continuous growth, 

multilevel power converters have been used for a wide range of applications [8]: 

 

• Power generation. 

• Power transmission and distribution. 

• Multiple industrial applications: rolling mills, fans, pumps and conveyors, 

marine appliances, mining and traction. 

• Active filtering for harmonic mitigation [9], [10]. 
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Figure 1.1 The three level NPC–3 topology.

 

 

1.2 Background  

 

Along with all aforesaid applications, the need for AC–DC conversion with low 

harmonic distortion and EMI has also relied in the multilevel converters [11]. It is 

desired for a AC–DC converter plugged into the grid to work with the highest 

possible power factor (closest to 1) in the AC link while a regulated output is 

needed in the DC link. During the last years, low and medium switching frequency 

devices, made the NPC–3 presented in Figure 1.1 a competitive and widely spread 

topology for a large variety of applications [12] including AC–DC conversion. 

Currently, high switching frequency devices such as the IGBT make it highly 

attractive for applications with a high number of operation hours per year, and 

specifically in countries with high energy costs [13]. A recent comparative study 

[12] outlines some of the longstanding advantages of the NPC–3 power converter 

such as a moderate expense in the input filter and the possible modular realization 

of common dc bus configuration, therefore, making it very competitive for a large 

variety of low and medium switching frequency applications despite the required 

high installed switch power. Although works, such as the one described in [23], 

present a mathematical model suitable for control purposes for the aforementioned 

NPC–3 topology, the lack of isomorphisms for control input transformations forces 

to a required balance for the capacitors voltages, in such a way that the model 

remains valid. Following all the previous arguments, it is evident the convenience 



 4

of having a complete and accurate mathematical model for the NPC–3 converter 

used as a synchronous rectifier. 

 

A recent work [19] shows a strategy for controlling the HB–5 converter by 

introducing transitory extra control inputs. It is believed that approaches based on 

similar ideas could lead to controllers for other multilevel converter topologies, 

where the number of levels make necessary the introduction of extra control inputs. 

Therefore, a constructive method for addition of extra control inputs by means of 

introducing transitory terms in the current reference will be investigated for the 

case of the NPC–3 converter. 

 

 

1.3 Contributions 

 

The present work shows the following main contributions: 

 

1. A model for the NPC–3 converter in a synchronous rectifier application is 

investigated. Emphasis is made upon the fact that only isomorphic relations 

are used for both coordinate and control input transformations. Therefore a 

complete model suitable for control purposes is generated. Also, use of a 

piecewise linear representation of the switching stage in the Euler–Lagrange 

Formulation leads to an uncomplicated model representation.  

 

2. Encouraged by a recent work [19], where extra degrees of freedom are 

introduced as perturbations, a constructive method to introduce extra control 

inputs by transient perturbation of the current reference signal is formulated. 

In this work, one of the introduced control inputs will be used to solve the 

balance objective. 
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1.4 Thesis outline 

 

In chapter 1 the motivation, background and main contributions of this work are 

presented. In chapter 2, the NPC–3 topology in a synchronous rectifier application 

is studied and modeled via the Euler–Lagrange formulation and control objectives 

are introduced. In chapter 3, a controller based on the previously proposed model 

is designed. Also Stability analysis is performed. Chapter 4 shows the results for 

numerical simulations. A steady state error prevents the capacitors voltages from 

achieving complete balance. Further investigation shows a tradeoff between the 

inductors’ currents THD and the balancing objective. Some concluding remarks 

and a brief scope of the future work is given Chapter 5. 
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Chapter 2 

 
 

Problem formulation: Euler–Lagrange modeling 
and control objectives 

 

 

2.0 Introduction 

 

In this chapter, the NPC–3 topology in a synchronous rectifier application is studied 

and modeled via the Euler–Lagrange formulation. For the conversion stage, the 

array of Insulated–Gate Bipolar Transistors (IGBTs) in combination with diodes are 

considered as being ideal switches. To work with a continuous control signal, a 

multicarrier phase–shifted modulation algorithm at a relatively high switching 

frequency is employed to reduce the harmonic content of the switched signal. 

Coordinate transformations are applied when necessary to express the natural 

states of the system with more clarity and to simplify the controller design. To take 

advantage of the fact that no fourth wire is considered, and assuming that the 

source voltages do not exhibit homopolar component, a 1 2 3 α β γ→  linear 

transformation is used. Finally, control objectives are introduced at the end of this 

chapter. 

 

2.1 The NPC–3 converter 

 
In the NPC–3 converter topology, under study here, three stages can be easily 

indentified: The AC or power input stage, the switching or conversion stage and the 

DC or power output stage. For this particular application, the converter is used as a 

synchronous rectifier; however other applications including active filtering or back–

to–back AC to AC power conversion can be derived from this scheme quite easily. 
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Here, ideal switches allow the current from each source (i1, i2 or i3) to take any 

desired path (idc1, idc2 or idc3) when driven by the proper modulation scheme and 

duty cycle. The classical NPC–3 converter is shown in Figure 2.1 where: 

 

vS1, vS2, vS3  :  source voltages referred to “n” 

i1, i2, i3  :  inductors currents 

1v , 2v , 3v  :  voltages referred to “0”  

v0n  :  voltage at “0” referred to “n” 

L  :  inductance of input inductors 

C  :  capacitance of output capacitors 

R  :  load resistance 

idc1,  idc2,  idc3  :  currents at top, middle and bottom connection points of capacitors 

iC1, iC2 :  capacitors currents 

 

 

            AC stage                            Switching stage                          DC stage 

Figure 2.1 The three level NPC–3 inverter used as a synchronous rectifier. The AC stage includes 

the power sources and inductors. The switching stage is composed by the IGBTs and diodes 

assembly. Finally, capacitors and resistors conform the DC stage. The “neutral point” is denoted by 

“0”, which is different of point “n”. 
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2.2 Switching stage modeling 

 
The IGBT works as an intermittent controlled diode. It allows electric current to flow 

in a single direction when the input signal is set to ON and prevents any flow to 

pass in any direction when its status is set to OFF. When connected in parallel with 

a diode, this construction can work as a controlled switch. 

 

To easily model the NPC–3 converter, the IGBT– diode assemblies are assumed 

to be equivalent to ideal switches as shown in Figure 2.2. For simplicity and without 

loss of generality, a numerical value is assigned for each different position of the 

switches: “1” when it is connected to the top of the second capacitor; “0” when it is 

connected to the middle point between the capacitors and “–1” when it is 

connected below the first capacitor.  

 

 

 

 
Figure 2.2 Simplification of switching stage for one of the phases. Each configuration 

of the IGBT states (S1, S2, S3 and S4) is simplified as the position of an ideal switch (u) 

with multiple positions. 
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The relation among the switch positions and the IGBT states can be directly 

determined from the circuit in Figure 2.2 as shown in Table 2.1. Notice the 

complementary IGBT pairs S1–S3 and S2–S4. The symmetry present in this 

converter will contribute in the model simplification and controller design as it will 

be seen in the next section. 

 

Switch 
position (u) 

IGBT state 

S1 S2 S3 S4 

1 On On Off Off 

0 Off On On Off 

–1 Off Off On On 

Table 2.1 Relation among the switch position (u) and the IGBT status. 

 

Figure 2.3 shows a simplified version of the overall circuit where ideal switches are 

assumed. The voltages 1v , 2v  and 3v  are referred to the “0” node. 

 

 
Figure 2.3 Simplified version of the circuit shown in Figure 2.1. Here, the IGBT–diode 

assemblies are considered as being ideal switches. 
 

It is important to notice that, although Table 2.1 suggests a direct map among the 

switch positions uk (k=1,2,3) and the IGBT’s states, such relation would not be 
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practical since the former uk would be restricted to take values in the discrete set 

{1,0, –1}. In order to consider a continuous range for the control signal uk to the 

closed interval [–1,1] a multicarrier phase–shifted modulation algorithm is 

employed at a relatively high switching frequency [14]. This modulation scheme is 

intended to reduce the harmonic content of the switched signal while mapping the 

control switching positions to the IGBTs. 

 

 

2.3 Euler–Lagrange Formulation 

 

Modeling of the NPC–3 converter topology is based on the following assumptions: 

• Voltage sources are assumed to be balanced, periodic sinusoidal signals of 

a known fundamental frequency. 

• Capacitors and inductances are assumed to be ideal, no parasitic resistive 

elements are considered. 

• The load is assumed to be linear. 

 

Following [15], a generalized coordinate kq  and its time derivative are assigned to 

each of the energy storage elements: 

{ }1 2 3 1 2, : , , , ,k kq q k L L L C C∈   

where each generalized coordinate refers to a generalized charge. For the 

capacitors, the actual charge is used; while for the inductors, it is the time integral 

of the current passing through, i.e., the electric flux. The latter can be seen as a 

simple auxiliary variable. In a similar way, the time derivative of the generalized 

coordinates refers to generalized currents. For the inductors, the actual current is 

used, while for the capacitors, it is used the time derivative of the stored charge. 

Again, this latter definition is just for auxiliary purposes. Therefore the following 

coordinate transformation can be established:  
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1

2

3

1

2

1

2

3

1

2

L

L

L

C

C

q i
q i
q i

CVcq
CVcq

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

  

It is important to notice that the Current Kirchhoff’s Law imposes a semi–holonomic 

constraint to the Euler–Lagrange formulation [16]. For this reason, and to properly 

express the dynamics, a secondary equation, including the aforementioned 

constraints, is used as described in [15]. Hence, with the previously defined 

generalized charges and currents, the complete Euler–Lagrange formulation for 

the NPC–3 is expressed as follows: 

 

d A
dt q q q

λ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂

− = − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
uL L D

F  (2.1) 

 

0TA q =  (2.2) 

where: 

 

 

 

 

 

 

Observe that, a feature of the Euler–Lagrange formulation is that the voltages 

0nv , 1v , 2v  and 3v  do not need to be explicitly handled as in the case of direct 

application of Kirchhoff’s laws. Instead, only generalized coordinates and control 

inputs along with the Lagrange multipliers are required to provide with a complete 

model. Thus, no particular assumption is made about the nature of the 

aforementioned voltages. In particular, the Euler-Lagrange approach does not 

Lagrangian of the system
: Generalized coordinates vector

: Rayleigh dissipation function
:   Restrictions matrix
:   Lagrange multipliers vector

  Generalized force

q

A
λ

u

L :

D

F :
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imply at any moment that voltage 0nv  is zero. Considering the kinetic energy as a 

function of the inductor’s currents, and the potential energy as a function of the 

charge in the capacitors, then the Lagrangian can be expressed as: 

( ) ( )1 2 3 1 2

2 2 2 2 21 1
2 2L L L C CL q q q q q

C
= + + − +L  (2.3) 

The Rayleigh’s dissipation function includes all energy losing components. In this 

case the load resistor only. Using the unit step function ( )·θ ,  this is expressed as: 

( )
2

2
3

1

1
2 jj j L C

j
R u u q qθ

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑uD  (2.4) 

where: 

( ) ( )
2 1

3 3

1 1
j jj j L C j j L C

j j
u u q q u u q qθ θ

= =

⎛ ⎞ ⎛ ⎞
− = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑   

is the current passing through the resistor. 

 

Figure 2.4 shows the NPC–3 topology with the state variables expressed as 

generalized charges and currents. The arrows point out the nodes where the semi–

holonomic constraints are established. The intermittent nodes at the switching 

stage will be assumed either closed or opened as a function of input uk (k=1,2,3). 

Therefore, constraint equations can be stated as follows: 

3

1
0

jL
j

q
=

=∑  (2.5) 

( ) 1 2

2

3

1
j

C C
j j L C

j

q q
u u q q

R C
θ

=

+
− =∑  (2.6) 

( ) 1 2

3

1
1 0

jj L C C
j

u q q q
=

− − + =∑  (2.7) 
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( ) 1 2

1

3

1
j

C C
j j L C

j

q q
u u q q

R C
θ

=

+
− − + = −∑  (2.8) 

 

Figure 2.4 NPC–3 inverter using generalized charges and currents. The thick arrows indicate the 

nodes where the semi–holonomic constraints are established. 

 

Using Ohm’s law, it can be easily noticed that equations (2.6) and (2.8) were 

already considered while constructing the Rayleigh dissipation function. So, only 

equations (2.5) and (2.7) will be taken into account in the constraints matrix. Also 

observe that subtracting equation (2.5) from equation (2.7) leads to a simpler 

expression: 

1 2

3

1
0

jj L C C
j

u q q q
=

+ − =∑  (2.9) 

Hence, the constraints matrix can be written as: 

1

2

3

1
1
1
0 1
0 1

u
u

A u

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (2.10) 

Based on the later simplification, the Lagrange multiplier vector will be: 
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1

2

λ
λ

λ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (2.11) 

Finally, the generalized forces term is: 

( )1 2 3 0 0 T
s s sv v vF =  (2.12) 

Here, voltages 1vs , 2vs  and 3vs  are assumed to be periodic sinusoidal signals of a 

known fundamental frequency denoted by ω  fulfilling the condition: 

1 2 3 0v v vs s s+ + =   

Substituting equations (2.3), (2.4), (2.10), (2.11) and (2.12) in equations (2.1) and 

(2.2), the Euler–Lagrange formulation of the system is presented as follows: 

( )

( )
( )
( )

1

2

23

1

2

11 1 21 1

21 2 22 23

31 3 23 3
1

2

2

0
0

1 0

000
010

j

L s

L s

L j j C sL
j

C

C

q vuu u
q vuu u

L R q u u q vuu uq
C q

q

λ λθ
λ λθ

θ λ λθ
λ
λ

=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ = − − + ++⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ −− ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

∑  (2.13) 

1 2 3

1 2 3 1 21 2 3

0
0

L L LT

L L L C C

q q q
A q

u q u q u q q q

+ +⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+ + + − ⎣ ⎦⎢ ⎥⎣ ⎦

 (2.14) 

Solving the vector equation (2.13) for λ2 yields: 

1
2

Cq
C

λ =  (2.15) 

In the same way, adding up the upper three relationships in equation (2.13), and 

solving for λ1, the following expression is obtained: 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 2
1 1 1 2 2 3 3 1 1 2 2 3 33 3

C Cq q
u u u u u u u u u u u u

C C
λ θ θ θ θ θ θ= − + − + − + + +  (2.16) 

Substituting the above expressions for λ1 and λ2 into equation (2.13), and after 

some simple manipulations, yields: 
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( )
( )
( )

( )
( )
( )

1

1 2

2

3

11 1 1 1

22 2 2 2

33 3 3 3

2 1 1
1 1 2 1
3

1 1 2

L s
C C

sL

sL

q vu u u u
q q

vL q u u u u
C C vu u u uq

θ θ
θ θ
θ θ

⎛ ⎞ ⎡ ⎤− −⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎛ ⎞⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥= − − + +⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟ − −⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

 (2.17) 

 

Also, with the last relationship of equation (2.13), and using expression for λ2 

(2.15), the dynamics for the charge in the second capacitor can be stated as: 

( ) 1 2

2

3

1
j

C C
C L j j

j

q q
q q u u

RC
θ

=

+
= −∑  (2.18) 

In the same way, substitution of equation (2.18) in the second relationship of 

equation (2.14) leads to the following expression, which describes the dynamics of 

the first capacitor: 

( ) 1 2

1

3

1
j

C C
C L j j

j

q q
q q u u

RC
θ

=

+
= − −∑  (2.19) 

Summarizing, equations (2.17) to (2.19) fully describe the dynamics of the NPC–3 

converter used as a rectifier, with u1, u2 and u3 acting as the control inputs.  

 

 

2.4 Coordinate transformations 

 
To describe the system in a more natural way and to simplify the controller design, 

coordinate transformations will be applied to the previously proposed model 

represented by equations (2.17) to (2.19).  

 
Notice from Figure 2.1 that the voltages 1v , 2v  and 3v  can be expressed as:  

( )
( )
( )

( )
( )
( )

1 2

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

C C

v u u u u
q q

v u u u u
C Cv u u u u

θ θ
θ θ
θ θ

−⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ = − +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (2.20) 
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Therefore, equation (2.17) could be expressed in a simpler form if 1v , 2v  and 3v  are 

used as control inputs instead of the expression on the right hand side of equation 

(2.20). 

 

Recalling some basic properties of the unit step function: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 1y y y y

y y y y y y

θ θ θ θ

θ θ θ θ θ θ

− = + − =

= − − = −   

And noticing, from Figure 2.5, that ( ) ( ) { }, ,i iv u i 1,2,3θ θ= ∈  then equation (2.20) 

can be solved for the control inputs 1u , 2u  and 3u  yielding: 

( )
( )
( )

( )
( )
( )1 2

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3
C C

u v v v v
C Cu v v v v
q qu v v v v

θ θ
θ θ
θ θ

−⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ = − +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (2.21) 

The i–th relationship in equation (2.20) is plot in Figure 2.5. Previous works [17] 

make use of quadratic polynomials to model such a switching stage, however, the 

authors assume that the voltage of the two capacitors are approximately equal at 

all times, therefore dropping the quadratic term. This provides a simpler, yet  

compromised, model. Here, no such assumption is necessary. It is also clear, that 

equations (2.20) and (2.21) are isomorphisms as long as 
1Cq , 

2Cq  and C  are 

different from zero. 

 

Although expressions (2.20) and (2.21) can be derived from other equivalent 

modeling approaches, they do appear naturally as a consequence of the piecewise 

linear representation of the switching stage and the further Euler–Lagrange 

Formulation. One of the primary contributions of this work is the use of the 

isomorphism (2.20)–(2.21) to simplify the controller design while providing with a 

complete model for the NPC–3 inverter. 
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Figure 2.5 Voltage across the switching stage referred to the neutral 

point (0) as a function of the i–th control input { },iu i 1,2,3∈ . This 

relationship fits all three allowable points (black dots). 

 

Substituting equation (2.20) in (2.17) gives the vector equation describing the 

dynamics of the currents in the inductors in a rather simpler form: 

1

2

3

1 1

2 2

3 3

2 1 1
1 1 2 1
3

1 1 2

L s

sL

sL

q v v
v vL q
v vq

⎛ ⎞ − −⎛ ⎞ ⎡ ⎤⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ − −⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠

 (2.22) 

As above, direct substitution of equation (2.20) in equations (2.18) and (2.19) leads 

to: 

( ) 1 2

2

2

3

1
j

C C
C L j j

jC

q qCq q v v
q RC

θ
=

+
= −∑  (2.23) 

and 

( ) 1 2

1

1

3

1
j

C C
C L j j

jC

q qCq q v v
q RC

θ
=

+
= − −∑  (2.24) 

Or alternatively, multiplying equations (2.23) and (2.24) by 
2Cq  and 

1Cq , 

respectively, and after factorization of the time derivatives yields: 

 
(2.25) ( ) ( ) 1 2

2 2

3
2

1

1
2 j

C C
C L j j C

j

q qd q C q v v q
dt RC

θ
=

+⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑
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and 

 
(2.26) 

Notice that: 

( ) ( ) ( ) ( )( )
3 3 3 3

1 1 1 1
j j j jL j j L j j L j j j L j

j j j j
q v v q v v q v v v q vθ θ θ θ

= = = =

+ − = + − =∑ ∑ ∑ ∑  (2.27) 

and 

( ) ( ) ( ) ( )( )
3 3 3 3

1 1 1 1
j j j jL j j L j j L j j j L j

j j j j
q v v q v v q v v v q vθ θ θ θ

= = = =

− − = − − = −∑ ∑ ∑ ∑  (2.28) 

 
Remark 2.2 Notice, from expressions (2.20) and (2.22) that, when the charge in 

both capacitors is zero, the inductor’s currents and the source voltages have a 90º 

phase shift difference and the right hand side of equations (2.25) and (2.26) 

vanishes.  

 

In order to reduce the complexity of the control inputs, equations (2.27)-(2.28) 

suggest as a natural selection for state variables the following non–isomorphic 

transformation: 

1

2

3

1 2

1 2

1

2

2 2
3

2
4

2 25

2

2

2

L

L

L

C C

C C

q

q

q

q q
C

q q
C

χ
χ
χ
χ
χ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = +
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ −⎢ ⎥
⎢ ⎥⎣ ⎦

  

This transformation has the drawback of allowing multiple undesired equilibria. To 

avoid such ambiguities the following similar, yet isomorphic, coordinate 

transformation is proposed: 

( ) ( ) 1 2

1 1

3
2

1

1
2 j

C C
C L j j C

j

q qd q C q v v q
dt RC

θ
=

+⎛ ⎞
= − − ⎜ ⎟

⎝ ⎠
∑
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1

2

3

1 1 2 2

1 1 2 2

1

2

3

2
4

5

2

2

2

L

L

L

C C C C

C C C C

q

qx
qx

x q q q q
x C
x q q q q

C

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ −⎢ ⎥
⎢ ⎥
⎣ ⎦

 (2.29) 

Given the fact that polarized electrolytic capacitors are the standard use in the dc 

link in power electronics systems, it is assumed that the voltages across them are 

nonnegative at all times. Restrictions 
1

0CV ≥  and 
2

0CV ≥ , or equivalently 
1

0Cq ≥  

and 
2

0Cq ≥ , can be expressed in the new coordinates as: 

2 2
4 5 40 0x x x− ≥ ∧ ≥  (2.30) 

Notice from figure 2.6 that restriction (2.30) is not artificially included in the 

transformation, but it is a consequence of a physical restriction. 

 
Figure 2.6 Graphical representation of the coordinate transformations. To provide 

with  a  clear  view  of  the  physical  meaning  of  the  transformation,  the  original 

coordinates have been used by means of the relationships 1
1

Cq
Vc

C
=  and 

2
2

Cq
Vc

C
= . The thin, dashed and thick lines indicate various locations where 

either 1Vc  or 2Vc  are constant. 
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Remark 2.1 Coordinate transformation (2.29) allows for a more natural 

representation of the system model, where 4x  is proportional to the potential 

energy in the system, and 5x  is a measure of its unbalance in the capacitors.  

 

Finally, the model represented by equations (2.22) to (2.24) can be expressed in 

these new coordinates as follows: 

( )123 123123
1

sv vx B
L

= −  (2.31) 

( )2 24
4 123 123 4 4 5

1 4 2T xx x v x x x
C RC RC

= − + − −  (2.32) 

5
5 123 123

21 T xx x
C RC

υ= − −    (2.33) 

where  
1

123 2

3

x
x x

x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

,  
1

123 2

3

s

s s

s

v
v v

v

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

,  
2 1 1

1 1 2 1
3

1 1 2
B

− −⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

,  
1

123 2

3

v
v v

v

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

  

and  123 1 2 3
Tv v vυ ⎡ ⎤⎣ ⎦  

 

Consequently, voltages 1v , 2v  and 3v  can now be used to design the controller in 

an easier way and the actual control inputs { },iu i 1,2,3∈  can be solved from 1v , 2v  

and 3v  using equation (2.21).  

 
 
 
 

2.5 Transformation to fixed frame or alpha–beta coordinates 

 
To take advantage of the fact that no fourth wire is considered, and that the source 

voltages are assumed to be equilibrated, i.e., their sum is zero, one last coordinate 
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transformation will be applied to equations (2.31)-(2.33) to further reduce the 

model. For this purpose, consider the following Clarke’s transformation: 

1 11
2 2

2 3 30
2 23

1 1 1
2 2 2

T

⎡ ⎤− −⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   (2.34) 

which represents a linear map, so that:  

123Tαβγζ ζ= ,   1
123 T αβγζ ζ−=   and   1 1

2
TT T− =  (2.35) 

Therefore the coordinates transformations 123 αβγζ ζ↔  for { }sx,v,vζ ∈  can be 

performed as follows: 

( )
( )

( )

1 2 3

2 3

1 2 3

2
1 3
3

2

α

β

γ

ζ ζ ζζ
ζ ζ ζ
ζ ζ ζ ζ

− −⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟ = −⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟ + +⎝ ⎠ ⎣ ⎦

   and   
1

2

3

2 2
1 3 2

2 3
3 2

α γ

α β γ

α β γ

ζ ζζ
ζ ζ ζ ζ
ζ ζ ζ ζ

⎡ ⎤+⎛ ⎞ ⎢ ⎥⎜ ⎟ = − + +⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟ − − +⎝ ⎠ ⎢ ⎥⎣ ⎦

 (2.36) 

Using these transformations, the following vectors are defined: 

α
αβ

β

ζ
ζ

ζ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,       and   
α

αβγ β

γ

ζ
ζ ζ

ζ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

  

Map (2.35) is of standard use in the power electronics literature and is commonly 

addressed as the conventional 1 2 3 α β γ→  transformation as well. Consequently, 

equation (2.31) can be rewritten as: 

1 0 0
0 1 0

0 0 0 0 0

s

s

v vx
v vxL

v

α αα

β ββ

γ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎡ ⎤
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥= − ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎝ ⎠

 (2.37) 
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It is observed that, even though vγ  can be non–zero for the time being, it makes no 

contribution to the dynamics described in equation (2.37), hence the latter can be 

rewritten in matrix form as: 

( )1
sv vx

L
αβ αβαβ = −  (2.38) 

where it has been taken the advantage of the fact that no fourth wire is considered 

( 0xγ = ) and that the source voltages are assumed to have no homopolar 

component ( 0sv γ = ). In the same manner, using the α β γ −coordinates, equations 

(2.32) and (2.33) are expressed as: 

( )2 24
4 4 4 5

1 4 2
2

T xx x v x x x
C RC RCαβ αβ= − + − −  (2.39) 

5
5

1 2
2

T xx x
C RCαβ αβυ= −  (2.40) 

where,     
( )

2 2 2 3 2 3 21
6 3 3 2 3 2

v v v v v v v v

v v v v v v

α γ α β γ α β γ

αβ

α β γ α β γ

υ
⎛ ⎞+ − + − − − −
⎜ ⎟= ⎜ ⎟− − − + −⎜ ⎟
⎝ ⎠

  

 

Note here that, although 0xγ = , no consideration is made about the nature of vγ  

yet. This will be used in the next chapter, where under certain considerations, the 

transformation 1 2 3 α β γ→  will actually map a 3 dimensional coordinate vector 

into a 2 dimensional one; becoming a 1 2 3 α β→  transformation.  

 

Summarizing, equations (2.38) through (2.40) fully describe the dynamics of the 

NPC–3 converter used as a synchronous rectifier and represent an adequate 

model suitable for control design purposes. 
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2.6 Control objectives 

 
To ensure the highest possible power factor (closest to 1), the first objective 

consists in forcing the inductors’ currents to follow references that are proportional 

to the corresponding source voltage signals, i.e., a tracking objective is established 

in the inductors’ currents. The second and third objectives involve driving the 

charge of each capacitor to a desired constant reference value. In this work, the 

reference value is the same for both capacitors. Following the previously defined 

coordinate transformations for the capacitors’ charges in equation (2.29), both 

objectives can be accomplished equivalently by driving the overall charge in the 

capacitors to a constant reference value, which is referred as the regulation 

objective; and then by zeroing their differences, which is referred as the balance 

objective.  

 

All along this work the asterisk superscript (*) will be used to indicate a reference 

value or signal. Based on the previously defined model, the control objectives are 

listed next in a more formal way: 

 

(i) Tracking: To force the inductors’ currents to be proportional to the source 

voltage, a reference signal *
123x  is built. Therefore, the control objective 

can be stated as: 

*
123 123x x→  

  where *
123123 1

vx g s→   and   ( )1 0d g
dt

→  as  t → ∞  
(2.41) 

here 1g  is a scalar yet to be defined representing an equivalent 

conductance observed by the source. Given that no fourth wire is being 

considered, the tracking objective can then be expressed in terms of 

alpha–beta coordinates as: 

*x xαβ αβ→  (2.42) 
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where *
1
vx g sαβαβ →   and   ( )1 0d g

dt
→  as  t → ∞  

 
Remark 2.3 As it will be noticed in the next chapter, the reference signal 

*xαβ  might not be proportional to the source voltages vsαβ  at all times; that 

is, it may have transitory perturbations which vanish relatively fast.  

 

(ii) Regulation: Consists in driving the overall charge of the capacitors towards 

a constant reference value, that is: 
*

4 4x x→   as  t → ∞ ,    where    * 2
4 dx Vc=  (2.43) 

here dVc  is the desired voltage level across the capacitors. 

(iii) Balance: Consists in zeroing the differences of the capacitors’ charges, that 

is: 

*
5 5x x→  as  t → ∞ ,    where    *

5 0x =  (2.44) 

 
Notice from equation (2.20) and Figure 2.5 that tracking can be performed if there 

is a minimum charge in the capacitors allowing a control action, even if the 

regulation or balance objectives have not been reached yet. 
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Chapter 3 

 

Controller Design 
 

 

 

3.0 Introduction 

 

In this chapter a controller for the NPC–3 converter is designed based on the 

model proposed in the previous chapter. First, the error dynamics model is used to 

locate the equilibrium point at the origin of the new coordinate system, and then a 

general overview of the strategy followed for the controller design is given. Later 

the Inner loop controller used to achieve the tracking objective is described. A 

constructive method is explained to introduce an extra control input in the form of a 

perturbation to the current reference signal which is one of the main contributions 

of the work. Amplitude modulation of the unperturbed reference signal is used to 

accomplish the regulation objective, whereas the introduced perturbation is 

employed as a control input to accomplish the balance objective. A stability 

analysis is performed, out of which, conditions involving system’s parameters are 

established to preserve stability. Finally, an estimate of the region of attraction is 

calculated as well. 

 

 

3.1 Error Dynamics 

 

For the control design and for further stability analysis purposes, it is convenient to 

express the system (2.38)-(2.40) in terms of the state error dynamics with the error 

variables defined as follows: 
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*

*

2
4 4

5 5 0
d

x x x
x x x
x x Vc
x x

α α α

β β β

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ − ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (3.1) 

Based on these definitions, equations (2.38)-(2.40) can be rewritten as: 

( ) *1
sv vx x

Lαβ αβ αβ αβ= − −  (3.2) 

( ) ( )
2

24 2 2 2
4 4 4 5

41 2
2

dT
d d

x Vc
x x v x Vc x Vc x

C RC RCαβ αβ

+ ⎛ ⎞= − + + − + −⎜ ⎟
⎝ ⎠  (3.3) 

5
5

21
2

T xx x
C RCαβ αβυ= −  (3.4) 

It easy to see that system (3.2)-(3.4) has its only equilibrium point located at the 

origin. Also, notice that the last term in equation (3.3) vanishes at the desired 

equilibrium point, this fact will be used for the stability analysis at the moment of 

proposing a candidate function following the Lyapunov approach. 

 

 

3.2  Main assumptions  

 

The control strategy will be constructed based upon the following 5 assumptions: 

 
A1. (Modulation) It will be assumed that the use of a multicarrier phase–shifted 

modulation algorithm at a relatively high switching frequency as described in 

[14] makes no significant contribution to the model represented by equations 

(3.2)-(3.4). This imposes a restriction to the overall dynamics of the system: 

all system dynamics should be bandwidth–limited to at least one decade 

below the switching frequency of the IGBT devices. 

 



 29

A2. (Decoupling assumption) It is assumed that the dynamics of xαβ  is much 

faster (at least one decade) than the dynamics of 4x . Also, the dynamics of 

4x  is assumed to be much faster (around one decade) than the dynamics of 

5x . Therefore control objectives can be scheduled to be reached accordingly 

following a time scale separation principle. 

 

  This assumption, on the one hand, facilitates de controller design, but on the 

other hand, it introduces certain limitations. Basically, time scale separation 

allows for a split controller design, that is, the controller can be designed to 

fulfill the control objectives separately and in cascade form. Evidently, 

perturbance rejection associated to the “fast” dynamics can be performed in 

an easier manner. However, regulation and balance controllers must be 

band limited; therefore, compromising the frequency response of the 

converter to load changes. 

 

A3. (Source voltages) To facilitate the controller design, it is assumed that the 

source voltage sv αβ  is a balanced sinusoidal signal of a known fundamental 

frequency ω . The signal amplitude is assumed to be constant or slowly 

varying. 

 

A4. (System parameters) It is intended to design a robust controller with 

respect to parameter uncertainties. For that purpose, unless otherwise 

stated, system parameters ,R L  and C  are assumed to be uncertain 

positive scalars, possibly changing in steps or that can be slowly varying. 

 

A5. (No homopolar component) Given that no fourth wire is connected, no 

homopolar component is considered. Therefore, it is assumed that 0xγ =  

and 0sv γ = , i.e. both voltages and currents are equilibrated. Moreover, the 

currents can still be unbalanced. 
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3.3 Overall description of the control strategy 

 

To achieve the control objectives depicted in section 2.6, the control design is 

based on a time scale separation principle. Hence, control can be designed 

individually for each of the following three loops: tracking, regulation and balance. 

For that purpose, a four steps strategy is proposed: 

 

1) The first objective — tracking — is intended to be completed quite rapidly. 

To fulfill this objective, a control vector vαβ  is designed using a passivity 

based control (PBC) and a bank of resonant filters tuned at the harmonics of 

interest (odd) for harmonic compensation as described in [18]. 

2) Assuming that the currents have already reached its reference value *xαβ  in 

a relatively short time, equations (3.3) and (3.4) are averaged in order to use 

its DC components only. It is assumed that the harmonic components cause 

a small ripple in the overall response of 4x  and 5x  only. 

3) A current reference signal *xαβ  is built in such a way that it includes extra 

terms that serve as control inputs. This is achieved by adding a transitory 

perturbation to the intended final reference signal. 

4) Finally, using the introduced extra control inputs in equations (3.3) and (3.4), 

the second and third objectives –regulation and balance– , respectively, can 

be soon after reached. 

 

 

3.4 Inner loop: current tracking 

 
To solve the tracking objective, the control input vαβ  is designed following a similar 

procedure to the one used in [19]. This control law is based in the energy shaping 

plus damping injection methodology of the PBC [20]. The process consists in, first, 

make a copy of the subsystem representing the current dynamics and evaluate it at 
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the desired current reference. Second, add the required damping term. Out of this, 

the following expression is obtained: 

( ) ( )*
1s

d dv vL x L x k x
dt dtαβ αβ αβ αβ αβ= − − +  (3.5) 

solving system (3.5) for vαβ  yields the following control law: 

1sv v k xαβ αβ αβ φ= + +   

where ( )dL x
dt

αβφ = −  represents an unknown periodic disturbance.  

To compensate the periodic disturbance φ , a method based in the Internal Model 

Principle [21] is followed. This technique consists in the introduction of a bank of 

resonant filters tuned at the harmonics under compensation (see [18] and the 

references therein for further details) to compensate for such a periodic 

disturbance. In this case the following controller for the current tracking loop is 

proposed: 

1 2 2 2

2 k

k H

sv vs k x x
s k w

αβαβ αβ αβ
γ

∈

= + +
+∑  (3.6) 

where , ,k k Hγ ∀ ∈  are positive design parameters, where { }H 1,3,= , i.e., the odd 

harmonics are compensated, and s  is the Laplace complex variable. Figure 3.1 

depicts a block diagram for the proposed controller in (3.6)  

Tracking

+

_

~

+

k1

+ +

1s
t h

ar
m

on
ic

3r
d 

ha
rm
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ic

+ +

+

vαβ

*

Sv αβ

0

2    s
s2+ω 2

γ1

0

2    sγ3

s2+9ω 2xαβ

xαβ xαβ

 
Figure 3.1 Block diagram of the proposed controller for the 

tracking loop. 
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3.5  Averaging of the charge dynamics equations 

 
Notice that the first term on the right hand side of equations (3.3) and (3.4) could 

contain, in general, products of periodic signals producing an unavoidable ripple in 

the overall response of 4x  and 5x . Consequently, control objectives (2.43) and 

(2.44) could only be accomplished in average. For that purpose, the following 

averaging operator is defined (also referred as moving average): 

[ ]· (·)
2DC

dt
πτ ω
πτ ω

ω
π

+

−
= ∫    

For a periodical signal of angular frequency ω , or its harmonics, the operator 
[ ]· DC

will calculate the constant term of its Fourier series expansion. Direct 
application of this operator to equations (3.3) and (3.4) yields: 

( ) ( )
2

24 2 2 2
4 4 4 5

41 2
2

dT
d d

DC

z Vc
z x v z Vc z Vc z

C RC RCαβ αβ

+⎡ ⎤ ⎛ ⎞= − + + − + −⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦  (3.7) 

5
5

21
2

T

DC

zz x
C R Cαβ αβυ

⎡ ⎤
= −⎢ ⎥

⎣ ⎦  (3.8) 

where for simplicity, the following new averaged coordinates are introduced: 

[ ]4 4 DC
z x=    and   [ ]5 5 DC

z x=   

 
 
 

3.6 Design of the current reference signal 

 

Following a similar ideas as the ones used in [19], a transitory perturbation 2g αβψ  

will be added to the intended final current reference signal 1
vg sαβ  as follows: 

*
1 2
vx g s gαβαβ αβψ= +  (3.9) 
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The idea behind this modification is to introduce an extra control input that will be 

used later on to solve the balance issue. In what follows A3 is appealed, and also it 

is assumed that the source voltages are balanced and, therefore, they can be 

expressed as: 

( )
( )

2 rms

sin tvs V
cos tαβ

ω
ω

⎛ ⎞
= ⎜ ⎟−⎝ ⎠  (3.10) 

where rmsV  is the line–to–line RMS voltage of the power sources. Also it is 

assumed that αβψ  is composed by periodic signals of the known fundamental 

frequency ω , and possibly by higher order harmonics. Therefore, the reference 

signal can be expressed as: 

( )
( )

1 1*
1 2

2 2

B sin m tvx g s g
B sin n tαβαβ

ω φ
ω φ

+⎛ ⎞
= + ⎜ ⎟+⎝ ⎠  (3.11) 

Following the time scale separation principle, it is assumed that the tracking 

objective has been reached at this point, i.e., *x xαβ αβ= . Therefore, making 0xαβ = , 

so the proposed controller in (3.6) becomes v vsαβαβ = . Choosing for simplicity 

0vγ = , the expressions inside the averaging operator in (3.7) and (3.8) can be 

calculated as follows: 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2
1 2

1 1

2
2 2

2
1 2

1 1 2 22 2

1
2 2

2

1 12

T rms rms

DC DC

rms

DC

rms rms

g V g Vx v B sin t sin m t
C C C

g V B cos t sin n t
C

sin m n sin ng V g V B cos B sin
C m nC

αβ αβ ω φ ω

ω φ ω

π π
φ φ

π

⎡ ⎤⎡ ⎤
= + + −⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤
+⎢ ⎥

⎣ ⎦

⎛ ⎞
= + +⎜ ⎟− −⎝ ⎠

 (3.12) 

and 
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( ) ( )(

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ))

( ) ( )(
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ))

2
1 1

1 1 2 2

1 1 2 2

2
1

1
2

2 4
12

3 3

3 3

4
6

3 3

3 3

T

DC

rms

rms

x
C

g V B sin t sin m t
C

cos t sin t B sin m t B sin n t

cos t sin t B sin m t B sin n t

g V sin t sin t
C

cos t sin t cos t sin t

cos t sin t cos t sin t

αβ αβυ

ω φ ω

ω ω φ ω φ ω

ω ω φ ω φ ω

ω ω

ω ω ω ω

ω ω ω ω

⎡ ⎤
=⎢ ⎥

⎣ ⎦

⎡
+ −⎢

⎣

+ + − + −

− + + + + +

−

− + − + −

⎤+ + ⎥⎦DC

  

 

applying the averaging operator the previous expression is expressed as: 

( )

( )

2

1 1 2

2

2 2 2

21
2 6

23 1 2 4
3 3 3 3

1

1 2
3 33

1

T rms

DC

g Vx
C C

m m m mm cos sin sin sin
B sin

m

n ncos sin
B cos

n

αβ αβυ
π

π π π π

φ

π π

φ

⎡ ⎤
=⎢ ⎥

⎣ ⎦

⎛ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − −⎜ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ +⎜ −
⎜⎜
⎝

⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎟
⎟−
⎟⎟
⎠

 
(3.13) 

Notice that both 1g  and 2g  appear in equation (3.12), whereas 2g  is present in 

(3.13) only. Consequently, careful selection of the involved parameters 1 2, , ,B B m  

1,n φ  and 2φ  is used to nullify the term containing 2g  on equation (3.12) without 

zeroing the right–hand side of equation (3.13). This can be achieved by choosing 

1 0B = , 2 1B = − , 2n =  and 2 0φ = . Using this selection of parameters, equation 

(3.11) becomes: 
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( )
*

1 2

0
2

vx g s g
sin tαβαβ ω

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 (3.14) 

Choosing 2g  to be a scalar variable yet to be defined such that 2 0g →  and 2 0g →  

as t → ∞ , expression 2g αβψ  in equation (3.9) can be considered as a vanishing 

perturbation. At the same time αβψ  is considered to be composed only by a second 

harmonic.  

 

Using (3.10), expression (3.14) can be rewritten as: 

* 2
1 2

0

s srms

gvx g s
v vVαβαβ

α β

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (3.15) 

Summarizing, equations (3.7) and (3.8) can be expressed as: 

( ) ( )
22 24 2 2 21

4 4 4 5

4 2drms
d d

z Vcg Vz z Vc z Vc z
C RC RC

+ ⎛ ⎞= − + + − + −⎜ ⎟
⎝ ⎠  (3.16) 

2 5
5

2 2
3

rmsg V zz
C RCπ

= − −  (3.17) 

For large resistive loads i.e. R → ∞ , equations (3.16) and (3.17) become: 

2
1

4
rmsg Vz

C
=   

2
5

2
3

rmsg Vz
C π

= −   
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Notice that the control inputs 1g  and 2g  provide the required damping so both 

objectives, regulation and balance, can be achieved even in case of no load 

presence. In section 3.8, detailed results are provided regarding the stability of the 

overall system, and conditions for particular circumstances can easily be derived 

from them.  

 
3.7 Outer loop: regulation and balance 

 
In what follows, 1g  and 2g  are designed to drive variables 4z  and 5z  to the origin. 
To avoid numerical errors, the following transformations on the control inputs are 
introduced: 

2
1

1
rmsg VG

C
=     and    2

2
2
3

rmsg VG
C π

=   

Substituting these expressions in equations (3.16) and (3.17) and evaluating at the 

equilibrium point, yields: 

2

4 0 1
4| dVcz G
RC

= −   

5 0 2|z G= −   

Therefore, 1G  can be calculated using a PI controller on 4z  so that the final value of 

24 dVc
RC

 is reached. Conversely, 2G  requires only a proportional controller on 5.z  

Therefore, the following controllers are proposed: 

1 1 4 1 6p iG k z k x= − −     and    2 2 5pG k z=   

where 6 4x z= ; and 1 1,p ik k  and 2pk  are positive constant scalar design parameters 

To be consistent with the previously defined coordinates, and to keep the 

equilibrium point at the origin of the z  coordinates, the following definition is made: 



 37

2

6 6
1

4 d

i

Vcz x
RC k

+   

As a result, the closed loop system is expressed as: 

( )22 2 2
4 1 4 1 6 4 4 5

4 2
p i d dz k z k z z Vc z Vc z

RC RC
⎛ ⎞ ⎛ ⎞= − + − + + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠  (3.18) 

5 2 5
2

pz k z
RC

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠  (3.19) 

6 4z z=  (3.20) 

where it is clear that the origin is the only equilibrium point of the averaged system. 

 

The block diagram of the overall controller is shown in Figure 3.2. Notice, from the 

Control inputs transformations block (bottom block), that the control inputs 

{ },iu i 1,2,3∈  require that both 1Vc  and 2Vc  be non zero to be well defined. Thus, 

before any control action can be applied, a preload operation must be performed in 

such a way that capacitors voltages are drawn away form zero. A numerical 

example in Chapter 4 will show further details on this issue. 

 

 



 38

+
_

Tracking

+
k1

s2+ω 2
+

+

1st harmonic

γ12    s

γ32    s
s2+9ω 2

3rd harmonic

+

+

0

0

+

vαβ

Regulation

+

_
G1

2
rms

C
V

ki1
skp1+

x4
*=  Vcd

2

+ *+

+
_

G2

kp2
3
2 rms

C
V

π

Sv αβ

Balance

( ) ( )
0 1

· ·
1 0

T ⎡ ⎤
⎢ ⎥
⎣ ⎦

•

•

1
2

*
5 0x =

Transformations

αβγ
123

vαβ 123v

αβγ
123 Sv αβ123Sv

x123 xαβ

αβγ
123

Transformations

+_

++

1Vc2Vc

4x5x

1
2

1
2

i123 x123

xαβ

~xαβ

xαβ

 

Co
nt

ro
l i

np
ut

s t
ra

ns
fo

rm
at

io
ns

M
O

D
U

LA
TI

O
N

u3

u2

u1

to gates

v1

+

+
1Vc

2Vc

( )·θ1−

( )·θ

•

+

+
1Vc

2Vc
v2

( )·θ1−

( )·θ

•

+

+
1Vc

2Vc
v3

( )·θ1−

( )·θ

•

•

•

•

 

Figure 3.2 Flow Diagram for the proposed controller including both inner and 

outer loops as well as the transformations used. 
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3.8 Stability Analysis 

 
Stability for the controllers proposed in section 3.4 and 3.7 can be studied in two 

stages following the aforementioned time scale separation principle. Stability of the 

current tracking loop can be found in [18]. On the other hand, stability in the sense 

of Lyapunov will be studied following a procedure described in [22] for the origin of 

the closed loop system (3.18) to (3.20).  

 

Notice that the averaged system (3.18) though (3.20) can be expressed as: 

( )1 1 22 2 2
4 4 54 4

5 2 5

6 6

4 0

2 20 0 0
0

1 0 0

p i

d d

p

k k
C R Vc z Vc z zz z

z k z
C R C R

z z

⎡ ⎤+⎢ ⎥ ⎡ ⎤+ − + −⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦−⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 (3.22) 

Thus, separating the linear and nonlinear contributions to the charge dynamics 

equations, where it has been defined: 

1 1

2

4 0

20 0

1 0 0

p i

p

k k
C R

A k
C R

⎡ ⎤⎛ ⎞
− + −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥− +⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

and       ( ) 0
0

h z
ϕ⎡ ⎤

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  with 

 ( )22 2 2
4 4 5

2
d dVc z Vc z z

C R
ϕ ⎛ ⎞+ − + −⎜ ⎟

⎝ ⎠
 

Equation (3.22) can be expressed in a much simpler way as: 

( )z A z h z= +  (3.23) 

 

Remark 3.1 Notice here that the matrix A  corresponds to the Jacobian matrix of 

system (3.22) evaluated at the origin. Also, note, that all eigenvalues of A  have 

negative real part: 
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( )1 2
2

peig A k
RC

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠  

( )
( )2 2 2

1 1 1
2

4 4 4

2
p p iRC k RC k R C k

eig A
RC

− − − + −
=  

( )
( ) ( )2 2 2

1 1 1
3

4 4 4

2
p p iRC k RC k R C k

eig A
RC

− + + + −
=  

Therefore, A  is Hurwitz. 
 

Remark 3.2 At this point it is convenient to notice that the physical restriction 

described in (2.30) can be expressed in the averaged coordinates z  as:  

( )22 2 2
4 5 40 0d dz Vc z z Vc+ − ≥ ∧ + ≥  (3.24) 

Then, system (3.23) is defined in ( ) ( ){ }22 2 2
4 5 6 4 5 4, , | 0d dD z z z z Vc z z Vc= + − > ∧ > − . 

Again, note that restriction (3.24) is not artificial but has a physical meaning due to 

the use of electrolytic capacitors. 

 

Remark 3.3 System (3.23) can be considered as a perturbation of a nominal 

unperturbed linear system: 

z A z=  (3.25) 

Also noticing that ( )0 0h = , ( )h z  can be considered as a vanishing perturbation. 

Therefore, following [22] a Lyapunov function for the unperturbed system (3.25) will 

be used as a candidate Lyapunov function for the perturbed system (3.23). 

 

Remark 3.4 Note from the above definition of ϕ  and from remark 3.2 that 0ϕ ≥  

z D∀ ∈ . Therefore the following relationship holds: 

( )
2

h z ϕ= , z D∀ ∈   

 
Considering remark 3.1, a Lyapunov function TV z P z=  for the unperturbed system 

(3.25) can be derived after solving the following Lyapunov equation for P:  
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3
TP A A P I+ = −    

where 3I  is the 3x3 identity matrix. This yields 

( )
( )

( )
( )

( )

1

11 1

2

2 2 2 2
1 1 1 1

1 1 1

1 10
22 4

0 0
2 2

16 81 0
2 2 4

i

ii p

p

p i i p

i i p

RC k
kk RC k

RCP
RC k

RC k R C k k k
k RC k RC k

⎛ ⎞
+⎜ ⎟

⎜ ⎟+
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
+⎜ ⎟

⎜ ⎟
+ + + +⎜ ⎟

⎜ ⎟+⎝ ⎠

  

 
Hence, following remark 3.3, the next Lyapunov candidate function is proposed for 

the perturbed system (3.23): 

TV z P z=   

( )
( )

( )( )
( )

2 2 22 2
1 1 1 1 61 4 5 4 6

2 11 1 1 1

16 81
4 22 4 2 4

p i i pi

p ii p i p

RC k RC k k k zR C k z RC z z zV
RC k kk RC k RC k RC k

+ + + ++
= + + +

++ +
 (3.26) 

Derivation of V along the system’s trajectories yields: 

( )
( ) ( )22 2 2 21 4 6

4 4 52
11 1

12
4

i
d d

ip i

RC k z zV z Vc z Vc z z
C R kRC k k

⎛ ⎞+ ⎛ ⎞⎜ ⎟=− + + + − + −⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
 (3.27)

Hence, parameters 1pk , 1ik  and 2pk  can now be chosen to grant 0V <  in some 

subdomain of D . Consequently, an upper bound for (3.27) can be obtained as: 

V  ( )2

2
2 Tz z P h z= − +   

 
( )

( )
2 1 4 6
2

11 1

1
4

i

ip i

RC k z zz
kRC k k

ϕ
⎛ ⎞+
⎜ ⎟= − + +
⎜ ⎟+⎝ ⎠

  

 
( )

( )
2 1 1

2 2
1 1

4 1

4
i p

i p

RC k k
z z

k RC k
ϕ

⎛ ⎞+ + +
⎜ ⎟≤ − +
⎜ ⎟+⎝ ⎠

 (3.28)
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Following remark 3.4, V  will be negative definite for some subdomain of D  where 

( )
2

h z  is bounded by the states, so that:  

( ) 22
h z zγ<   where  

( )
( )

1 1

1 1

4

4 1
i p

i p

k RC k

RC k k
γ

+
=

+ + +
  

To obtain a less conservative bound, it is pointed out that ( )h z  is a structured 

perturbation [22], in the sense that its second and third components are identically 

zero at all times. Therefore, taking into account the full structure of perturbation 

( )h z , expression (3.28) can be rewritten as: 

V  
( )

( ) ( )21 1 2 2 2
4 4 5 2 2

1 1

8 2 1

4
i p

d d
i p

RC k k
Vc z z Vc z z z

k RC RC k

⎛ ⎞⎛ ⎞+ + + ⎛ ⎞⎜ ⎟⎜ ⎟≤ + − + − −⎜ ⎟⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠⎝ ⎠
  

 
( )

( ) ( ) ( )2 21 1 2 2 2
4 4 5 2 2

1 1

8 2 1
4

i p
d d

i p

RC k k
z Vc z Vc z z z

k RC RC k

⎛ ⎞+ + + ⎛ ⎞⎜ ⎟≤ + − + − −⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
  

 
( )

( )
1 1 2

5 2 2
1 1

8 2 1
4

i p

i p

RC k k
z z z

k RC RC k

⎛ ⎞+ + +
⎜ ⎟≤ −
⎜ ⎟+⎝ ⎠

  

 
( )

( )
1 1

2 2 2
1 1

8 2 1
4

i p

i p

RC k k
z z z

k RC RC k

⎛ ⎞+ + +
⎜ ⎟≤ −
⎜ ⎟+⎝ ⎠

  

 
( )

( )
21 1

2
1 1

8 2 1
1

4
i p

i p

RC k k
z

k RC RC k

⎛ ⎞+ + +
⎜ ⎟≤ −
⎜ ⎟+⎝ ⎠

  

Hence, to assure negative definiteness of V , a sufficiency condition can be 

established on the parameters 1, , pR C k and 1ik  as: 

( )
( )

1 1

1 1

8 2 1
1

4
i p

i p

RC k k

k RC RC k

+ + +
<

+   

or alternatively: 
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( ) ( )2
1 1 1 12 1 8 0p i i pk k RC k k RC− − + − >  (3.29)

Finally, (3.26) represents a Lyapunov function for system (3.22) z D∀ ∈  as long as 

condition (3.29) is met. 

 

To obtain a maximal Lyapunov surface, the extrema of (3.26) are calculated on the 

boundary of D . A maximal Lyapunov function should be tangent to this boundary, 

so a minimum value for V  on D  is seek out. Calculation of the critical point of V on 

( )22 2
4 5 0dz Vc z+ − = , yields: 

( ) ( )( )2 2 2 2 2
1 1 1 1 1

4

4 16 8p p i i p d
c

C R k C R k C R k k k Vc
z

d

+ + + + +
=   and  

( )2 2
1

6

4 p d
c

C R C R k Vc
z

d
+

=   

where        
( ) ( )

( ) ( )( )
2 2 2 2

1 2 1 1 1 1 2

3 3 3 2 2
1 2 1 2 1 1 2 1 1 2

96 16 4 2 1 4 3 7 4

2

p p i i p p p

p p p p i p p i p p

d C R k k C R k k k k k

C R k k k k k k k k k k

= + + + + + + +

+ + + + + + +
  

Let 

( )
( )( )

( )

2 2 1

2 2 11 14 4 5

2 2 2 2
1 1 1 1

2
5 4 5

1 1 1

1 1 1
24

16 81
4

i

p ii p

p i i p

i i p

kV V RC
RC k kk RC kz z z

V V RC k R C k k k
z z z k R C k RC k

⎡ ⎤⎛ ⎞+⎡ ⎤∂ ∂ ⎢ ⎥⎜ ⎟+
⎢ ⎥ ⎜ ⎟++⎢ ⎥∂ ∂ ∂ ⎝ ⎠⎢ ⎥ ⎢ ⎥=
⎢ ⎥∂ ∂ ⎢ ⎥+ + + +⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎣ ⎦ +⎢ ⎥⎣ ⎦

be the Hessian matrix for V , and 
( ) ( )2

1 1 24 2i p p

d

k RC k RC k
Δ =

+ +
  its 

determinant. Since 
2

2
4

0V
z

∂
>

∂
  and  0Δ > , evaluating V  at its critical point gives the 

minimum value: 

( )( )4 2 2 2 2
1 1 1 116 8 1 2

2
d p i i pR CVc R C k R C k k k

V
d

+ + + + + +
=  (3.30)
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Therefore, choosing: 

( )( )4 2 2 2 2
1 1 1 116 8 1 2

2
d p i i pR CVc R C k R C k k k

c
d

+ + + + +
=   

0V c− =  is a maximal Lyapunov surface and following [22], it can be concluded 

that ( ){ }3
c z V z cΩ ∈ ≤  is bounded and contained in D . Hence, every trajectory 

starting in cΩ  remains in cΩ approaching the origin as t → ∞ , as long as condition 

(3.29) is met. 

 

It can be concluded that the origin of the averaged system (3.22) is an 

asymptotically stable equilibrium point, as long as condition (3.29) is met. 

 

Finally, it is interesting to point out that under the assumption that both capacitors 

have reached their reference values ( 4 0z =  and 5 0z = ) and setting the initial of the 

integrator 6x  to zero, solution of 0V c− =  for R , provides with the maximum load 

the converter can handle so that initial conditions still remain in the region of 

attraction. 

 

( )( )

( )( )
( )

4 2 2 2 2
1 1 1 1

22 2 2
1 1 1 1

11 1

16 8 1 2

2

16 8 4
2 4

d p i i p

p i i p d

ii p

RCVc RC k R C k k k

d

RC k RC k k k Vc
RC kRC k RC k

+ + + + +
=

+ + + + ⎛ ⎞
⎜ ⎟

+ ⎝ ⎠
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Chapter 4 

 

Numerical Results 
 

4.0 Introduction 

 

Simulations of the NPC–3 converter used as a synchronous rectifier along with the 

controller proposed in sections 3.4 and 3.7 were performed using the commercially 

available software PSCAD®/EMTDC™ 4.0. This is a widely spread engineering 

tool for the design and verification of power systems. The topology presented in 

Figure 2.1 was recreated using the parameters shown in table 4.1 

ω =  120 π  rad/sec ( )60f Hz=  

L =  3 mH  

C =  2200 Fμ  

R =  100Ω , 23Ω  

rmsV =  220V (RMS, line-to-line) 

conf =  20kHz (carrier frequency) 

Table 4.1 NPC–3 converter parameters

 

Assuming a nominal pulsated current amplitude value for the IGBT’s of 25 A, the 

nominal power of the converter was calculated to be 7 kW. Inductances were 

chosen following [12] to limit the maximum current ripple to be less than 2% of the 

amplitude of the phase with the following formula: 

,

/ 3
2 6

rms

con ripple peak

VL
f i

=   

In the same way, capacitances were chosen to limit the voltage ripple to 2% for a 

nominal power TQ , as follows:  
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6
T

d ripple

QC
Vc Vω

≥   

Linearized transfer functions were obtained for each loop of the controller. For 

better performance, and in accordance with the time scale separation principle, 

bandwidth for the controller loops was chosen as depicted in Table 4.2: 

LOOP Transfer function Intended 
bandwidth 

Parameter 
estimates 

tracking 
( )

1

1

1
tH s L s

k

=
+

 
< 5837 rad/s 1 17.5k ≈  

regulation ( ) 1 1

2
1 1

4
i p

r

p i

k k s
H s ss k s k

C R

+
=

+ + + < 271 rad/s 1 270pk ≈  

1 5500ik ≈  

balance ( ) 2

2
2

p
b

p

k
H s

k s
C R

=
+ +

 
< 13 rad/s 2 4pk ≈  

Table 4.2 Controller parameters estimated using the transfer function bandwidth. Notice that 
bandwidths are separated by 1.333 decades. 

 

Starting from these estimates, manual tuning was performed to improve the overall 

response of the controller and schedule all control objectives as depicted in section 

2.6. Finally, control parameter values were fixed to: 1 10,k =  1 136,pk =  1 4500,ik =  

2 2pk =  and 10000, ,k k Hγ = ∀ ∈  where { }21H 1,3, ,= . The desired voltage value 

dVc  for each capacitor was set to 200V . Notice that all involved parameters meet 

condition (3.29). Evaluation of expression (3.30), with V  as defined in (3.26) and 

the aforementioned parameters, yields the following Lyapunov surface:  

2 2 2 6
4 5 4 6 6

49 511 11 1 613 417 729 4.84 10
15 264 000 244 4 500 41 976 000

z z z z z+ + + = ×  (4.1) 
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4.1 Start up response for initial conditions 

 

Start up response for the system was evaluated using a resistive load of 100Ω . 

Recalling from the definition 
2

6 6
1

4 d

i

Vcz x
RC k

+  in section 3.7, and setting the initial 

value of the integrator 6x  to zero, it is straightforward to see that equation (4.1) can 

be expressed in the original coordinates as: 

( ) ( )22 2 4
1 1 2 2 1 1 2 21.13 10 1.80 10 8 10Vc Vc Vc Vc Vc Vc Vc Vc− −× − + × + − × +  

( )24 4 6
1 1 2 28.11 10 8 10 4.46 10Vc Vc Vc Vc−× + − × = ×  

(4.2) 

Now, equation (4.2) can be used to calculate a conservative estimate of a subset 

of the region of attraction [22] in the original coordinates, when initial conditions are 

zero for the integrator. This region is shown in Figure 4.2. 

 

 
Figure 4.2 (gray) Estimate of a subset of the region of attraction  
expressed in the original coordinates. The desired equilibrium point 
is indicated with the black dot inside. 

 

Hence, initial values for the capacitors’ voltages can be chosen anywhere inside 

the gray region. From Figure 4.2, it is important to point out that the origin of the 
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original coordinates ( 1 0Vc = , 2 0Vc = ) does not belong to the estimate of such a 

subset of the region of attraction. In fact, a preload process is carried out before 

the controller is set to work. 

 
Remark 4.1 Observe from equation (2.21) that a given minimum voltage in the 

capacitors is necessary so that control inputs { },iu i 1,2,3∈  do not saturate as 

{ }1 1,iu i 1,2,3− ≤ ≤ ∈ . This imposes a restriction on the equilibrium points allowed. 

Observe from equation (3.6) that the control input { }, ,iv i α β∈  must be able to 

compensate for the voltage source term. Therefore, capacitors’ desired voltage 

must be higher than the line’s voltage. 

 

To make the simulation more challenging, initial conditions were chosen at a point 

near the boundary of the Lyapunov surface and away from the line 1 2Vc Vc=  to 

emphasize the fact that, unlike other approaches as [17], the model and controller 

proposed in this work do not assume initial balance of the capacitors. Therefore, 

initial values were set to 1 150Vc V=  and 2 190Vc V= . Figure 4.3 shows the 

capacitors’ voltage response to the proposed initial conditions.  
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Figure 4.3 Transient response of capacitors’ voltages to initial conditions. 
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The expression for the current reference signal (3.15) can be rewritten in the 

original 123-coordinates as follows: 

* 1
123123 1 2 2

0 0 0
3 0 1 1

0 1 1

s

rms

v vx g g s
V

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

  

Therefore, the transient disturbance is introduced in the phases 2 and 3 only. As a 

consequence, it is expected that phases 2 and 3 will be more distorted compared 

to phase 1 as observed in Figure 4.4. 

 

Figure 4.5 shows the transient response to initial conditions for the control inputs 

{ },iu i 1,2,3∈  and { },iv i 1,2,3∈ . Also, the measured voltage across the ideal 

switches referred to point “0” is shown in the lower three graphs of Figure 4.5. As 

the measured voltages in the lower three graphs are modulated signals, switching 

within the values 2 ,Vc  0  and 1Vc−  a relatively high frequency, then they appear as 

a black stain composed of alternating squares. Notice that at the beginning the 

voltage level of such a square signal is lower than the expected value, and 

moreover, there is a clear unbalance between the positive and negative levels. 

This differences vanish as the time grows. Finally, notice that the white stripes in 

the measured voltages during the first cycle are due to transient saturation, which 

has not been considered in the present study. 
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Figure 4.4 Transient response to initial conditions of inductors’ currents along with their 
reference signals. 
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Figure 4.5 Transient response of all control inputs to initial conditions: (upper graph) 
original control inputs { },iu i 1,2,3∈ ; (lower 3 graphs in gray) control inputs 

{ },iv i 1,2,3∈ , (lower three graphs in black) the corresponding measured voltages. 
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Figure 4.4 shows that the tracking objective for the inductor’s currents is achieved 

by time 0.025s. Figure 4.6 shows the state variables 4x  and 5x . Here notice that 

regulation is achieved by time 0.15 s and although complete balance is not 

accomplished, a steady state error is reached by time 2.5 s. Notice that all results 

are in accordance with the time scale separation principle. 
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Figure 4.6 state variables x4 and x5 as defined in Chapter 4.

 
 

4.2 Steady state 

 
Steady state response of the system was evaluated using a resistive load of 23Ω . 

The steady state behavior of the capacitors’ voltages is shown in Figure 4.7. Note 

that the regulation objective is fulfilled, however, a relatively small steady state 

error prevents them to reach balance. However, a balancing capacity of 99% is 
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observed. Figure 4.8 shows the corresponding current steady state response. 

Notice the clean sinusoid shape of the currents, therefore illustrating a low THD. 

 

   

Figure 4.7 Steady state behavior of the capacitors’ voltages 

 

c 

Figure 4.8 Steady state behavior of the inductors’ currents 
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4.3 Load step change 

 

The behavior of the system was investigated for a load step change from 100Ω  to 

23Ω  at time 3t s=  and back to the original value of 100Ω  at time 5.5t s= . Figure 

4.9 shows the capacitors’ voltages transient response. Observe that the settling 

time of DC bus for this load change is about 0.3 s.  

Figure 4.10 shows the corresponding transient response of the inductors’ currents. 

Notice that both the inductor’s current and the reference signal overlap, showing 

excellent tracking. A signal proportional to the source voltage is shown as well to 

point out that the current remains in phase with the voltage even during a load step 

change. The Total Harmonic Distortion (THD) of the inductor’s currents was 

calculated during the step change showing average values of 3.5% and 1.2% for 

the 100Ω  and 23Ω  loads, respectively. Figure 4.11 shows the transient response 

for the THD of all three phases. 
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Figure 4.9 Transient response of the capacitors voltages during a load step change 
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Figure 4.10 Transient response of the inductor’s currents to a load step change. ( ) 
inductors’ currents, ( ) inductors’ currents reference signals, and (Δ) the 
corresponding source voltages scaled by 1/ 30 . 
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Figure 4.11 Transient response for the THD of the three inductors’ currents. 

 

4.4 Response to a voltage perturbation 

 
To investigate the converter response to a voltage perturbation in one capacitor, a 

20 V sudden drop is applied to capacitor 1, that is, an instant fall from 198 V to 178 

V is introduced. Figure 4.12 shows the response of the capacitor’s voltages to this 

perturbation. Notice that due to the regulation loop, the voltage of the capacitor 2 

rises to compensate the voltage drop in the DC link rapidly. A time response of less 

than 1s is observed for the balance. 
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Figure 4.12 DC voltages transient response to a 20 V perturbation in capacitor 1. 
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Finally, Figure 4.13 shows the response of the inductors’ currents to the 

aforementioned sudden voltage drop in capacitor 1. Notice that after a small 

transitory of about 0.025 s, currents recover their original sinusoid shape.  
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Figure 4.13 Currents transient response to a 20 V perturbation in capacitor 1. 

 

 

4.5 Balance steady state error and THD tradeoff 

 
Several numeric experiments were performed to try to reduce the steady state 

error in the balance of the capacitors’ voltages. A straightforward approach 

suggests increasing the value of 2pk , however, this proved to interfere with the time 

scale separation principle leading to a poor overall behavior of the system. Hence, 

a different approach was investigated. Notice that the inner loop controller in 

equation (3.6) injects higher order harmonics to accomplish the tracking objective. 

This harmonic injection could add, in general, small DC contributions to the 

averaged model described in section 3.5, which were neglected to facilitate the 

design. For that reason, simulations were performed using a smaller bank of 

resonant filters considering { }5 7H 1,3, ,= , that is, up to the 7-th harmonic. Figure 

4.14 compares the steady state response of the capacitors’ voltages along with the 

THD of their corresponding inductors’ currents. 
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Chapter 5 

 

Concluding remarks and future work 
 

 

 

5.1 Conclusions  

 
 

In this thesis work, the NPC–3 converter in a synchronous rectifier application was 

modeled via the Euler–Lagrange Formulation. It is Important to notice that the use 

of isomorphic transformations of both coordinate and control input allowed for a 

complete model suitable for control design purposes. Based on a time scale 

separation principle, control objectives –tracking, regulation and balance– were 

scheduled to be reached accordingly. For the control design purpose, a transitory 

perturbation was added to the current reference signal. Therefore, amplitude 

modulation of the unperturbed signal is used to accomplish the regulation 

objective, whereas the perturbation itself was employed as an extra control input to 

solve the balance objective. Based on the time scale separation principle, stability 

in the sense of Lyapunov was studied for the averaged capacitor’s voltage 

dynamics.  

 

To validate the proposed controller, simulations were performed using state of the 

art technical software. To emphasize the completeness of the proposed model, 

initial conditions for the capacitor’s voltages were chosen close to the Lyapunov 

surface, away from the equilibrium point and the balanced state. Both tracking and 

regulation objectives were met as expected, however, a relatively small steady 

state error prevented from reaching total balance, in fact, an error of about 1% was 

observed between the two voltage levels. Further study of this balance issue 
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showed that the increasing number of resonant filters injecting harmonics to lower 

the THD of the inductors’ currents was responsible for this behavior. Hence a 

tradeoff between THD reduction and capacitors’ voltage balancing was observed. 

At this point, given that the main objectives required to provide with low THD 

(tracking) and a regulated DC link (regulation) are achieved, the small error in the 

balance can be neglected. 

 

Finally, recall that although the time scale separation principle used, allowed for an 

easier controller design, bandwidth restrictions appeared, thus forcing the 

regulation and balance dynamics to have a slower response. 

 

 

5.2 Future work 

 

Other applications for the NPC–3 converter using the proposed controller such as 

shunt active filtering or back-to-back conversion are left for further research. As a 

constructive method for inserting transitory control inputs in the form of additional 

perturbing terms to the current reference signal was described, so, it is suggested 

that similar approaches could be used for other multilevel power converters, such 

as the NPC–5, three-level flying-capacitor or even the four-level flying-capacitor.  
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