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CIENTÍFICA Y TECNOLÓGICA, A.C.
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Resumen

PARA atacar el problema de distorsión armónica distintas técnicas de control han sido uti-
lizadas, entre las que destacan: el control por modos deslizantes, los controladores basados

en pasividad, el control adaptable, los controladores basados en modelo interno, etc. Como resul-
tado de estas técnicas diversos esquemas de control han sido generados, pudiendo clasificar a estos
en directos o indirectos, de naturaleza selectiva o no. Quizá los más comúnmente utilizados, son
los de control indirecto o también conocidos como controladores en modo corriente, esto debido
a las caracterı́sticas de desempeño que ofrecen. Normalmente estos esquemas contienen algunos
términos adicionales o de refinamiento para garantizar la compensación de la distorsión armónica.
Estos términos de refinamiento actúan sobre un conjunto determinado de componentes armónicos,
los cuales, corresponden con los componentes armónicos que se desea compensar. Debido a esta
caracterı́stica este tipo de controladores son denominados como selectivos. Un ejemplo de estos es-
quemas lo constituye el control basado en un banco filtros resonantes, siendo precisamente el banco
de filtros resonantes el término de refinamiento para garantizar la compensación armónica, donde
cada filtro resonante debe estar sintonizado a la frecuencia armónica que se desea compensar.

Entre las principales contribuciones del presente trabajo en el área de control aplicado a electrónica
de potencia se mencionan, el desarrollo de un par de nuevos esquemas de control repetitivo, ası́ como
la observación de que un banco infinito de filtros resonantes, bajo ciertas condiciones, es equiva-
lente uno a uno a los esquemas de control repetitivo propuestos. Esto último deriva del hecho de
que un banco infinito tiene una representación equivalente en términos de una función hiperbólica
en el dominio de la frecuencia, que a su vez puede ser expresada como un cociente de funciones de
términos exponenciales, esto es, retardos puros.

En particular el arreglo de control repetitivo propuesto en este trabajo consiste de un retardo en
retroalimentación, más una trayectoria de prealimentación ”feedforward”. Esta retroalimentación
puede ser positiva o negativa, asociándole a la prealimentación el mismo signo. Además se muestra
que el esquema con retroalimentación y prealimentación positiva es equivalente a una suma in-
finita de filtros resonantes centrados en todos los múltiplos enteros de la fundamental (incluyendo
al cero), mientras que el esquema con retroalimentación y prealimentación negativa es equivalente
a una suma infinita de filtros resonantes centrados en múltiplos impares enteros de la fundamental.
Es importante mencionar que la implementación de dichos esquemas repetitivos resulta relativa-
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xii Preface and acknowledgments

mente sencilla requiriendo solamente recrear un retardo puro, y realizar las operaciones de retroal-
imentación y prealimentacón. Por lo que la impementación de estos esquemas se puede hacer de
manera analógica o digital.

En la presente tesis se aplican técnicas de control basadas en los esquemas repetitivos menciona-
dos anteriormente para la reducción de distorsión armónica en diversos sistemas de electrónica de
potencia, a saber, convertidores DC-DC, PFC, filtro activo monofásico en dos topologı́as, de puente
completo y de medio puente.

En el convertidor DC-DC, el esquema de control presentado se enfoca a compensar el rizo
de voltaje a la salida del convertidor, debido a las perturbaciones en el voltaje de entrada. La
estructura de este controlador se conserva muy parecida a la del controlador convencional, que
incluye un lazo interno y un lazo externo. El esquema de control repetitivo, es utilizado para cancelar
casi cualquier remanente de contaminación armónica en el voltaje de salida mientras se mantiene
regulado a escalones de carga. En el PFC se tiene un objetivo diferente. En este sistema se busca
mantener un voltaje regulado a la salida del convertidor, manteniendo las caracterı́sticas ideales
de corriente en la red eléctrica, esto es, una corriente proporcional al voltaje y en fase con éste.
En el filtro activo, el objetivo es compensar la distorsión lineal distorsionante para mantener el
factor de potencia cercano a la unidad. La topologı́a seleccionada para este sistema es un VSI de
medio puente, el cual consiste en una rama de interruptores más una rama de dos capacitores. Dos
problemas adicionales surgen en este tipo de dispositivos: balance en los capacitores y regulación
de la suma de los voltajes en los capacitores a un valor de referencia deseado. Por último se presenta
un esquema de control repetitivo para la compensación de distorsión armónica y potencia reactiva
usando un filtro activo paralelo basado en un VSI monofásico de puente completo. El controlador
propuesto logra que el sistema compuesto por el filtro activo y carga se comporten como un elemento
resistivo ante la red eléctrica manteniendo un factor de potencia cercano a la unidad.

Los prototipos de cada uno de los sistemas electrónicos de potencia anteriormente mencionados,
fueron desarrollados en el Laboratorio de Procesamiento y Calidad de la Energı́a del IPICYT, de
los cuales fue posible extraer resultados experimentales, que se presentan para validar el compor-
tamiento práctico de los controladores propuestos.
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Frequent Acronyms
AC Alternating current.
BIBO bounded input bounded output.
BBD bucket brigade delay.
DC direct current.
DC-DC direct current to direct current.
EMI electro magnetic interference.
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FFT fast Fourier transform.
HPF High Pass Filter
HR harmonic Reducer.
IC integrated circuit.
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LPF low Pass Filter.
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MOSFET metal-oxide-semiconductor field-effect transistor.
PCC point of common connection.
PF power factor.
PFC power factor correctors or unit power factor converter.
PI proportional integral.
PIS synchronous Proportional integral.
PWM pulse width modulation.
SPWM sinusoidal pulse width modulation.
RHS right hand side.
RMS root mean square.
THD total harmonic distortion.
VSI Voltage source inverter.
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viii Notation

Most common mathematical symbols
IR field of real numbers.
C field of complex numbers.
IRn linear space of ordered n-tuples in IR.
∈ belong to.
4
= “defined as”.
(·)> transpose operator.
(·)−1 inverse operator.
σ̄(.) denotes the largest singular value of the matrix.
Re(α) The real part of α ∈ C.
L −1 The inverse Laplace transform.
‖A‖∞ Induced ∞-norm of a transfer matrix A.
L2 Space of square integral functions.
L∞ Space of bounded functions.
H∞ The set of L∞ analytic in Re(s) > 0.
prefix R real rational, e.g., RH∞, RH2.
t time, t ∈ IR≥0.
d
dt(·), ˙(·) differentiation operator.
(·)p

k, k-th harmonic coefficients for the positive sequence representation.
(·)n

k k-th harmonic coefficients for the negative sequence representation.
In The identity matrix of dimension n.

J the skew symmetric matrix

[
0 −1
1 0

]

e(·) exponential function
H The set of indexes of the considered harmonic components

ρ(·) The rotation vector defined as

[
cos(·)
sin(·)

]
.

(̂·) estimate of (·).
(̃·) error between a quantity and its reference.

(·)− (·)∗, (̂·)− (·).
(·)∗ desired external references.
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Chapter 1

Introduction

1.1 Overview of the harmonic phenomena in power systems

THE last few years have witnessed a tremendous growing in the connection of distorting nonlin-
ear loads to the electrical grid. As a result, several negative effects have been produced, which

have been in detriment of the quality of the supplied energy. For instance, it is well known that the
connection of nonlinear loads to the grid injects distorted currents into the mains, which indirectly
produces a harmonic distortion in the voltage at the point of common connection (PCC). Typical
examples of nonlinear loads are energy conversion equipments such as switched-mode power sup-
plies, dc arc furnaces, flexible ac transmission components, adjustable speed drives and electronic
fluorescent lamp ballast, among others. The non controlled rectifier with smoothing capacitor is
perhaps the device most commonly found in industrial, domestic and office electronic equipments,
which causes a considerable current distortion.

The introduction of new applications and advances in power electronics equipments have per-
mitted to provide clever solutions to alleviate most electrical conversion, transmission, distribution
and generation issues [1]. Active harmonic filters, dynamic voltage restorers, power factor com-
pensators, static and adaptive var compensators and uninterruptable power supplies are examples
of power electronic equipment aimed to improve the power quality. In most of these examples, the
common issue is the compensation of the harmonic pollution caused by nonlinear loads. Recall that
the harmonic description of signals is a tool that facilities the treatment of distorted though periodic
signals, based on the fact that a harmonic component is defined as a sinusoidal signal whose fre-
quency is a multiple of the fundamental frequency. Harmonic distortion is thus defined as a signal
composed of the sum of harmonic components at multiples of the fundamental frequency at which
the supply system is designed to operate [2].

It is well known that the presence of harmonic distortion in the line current produces losses
in the conductors and diminishes the power factor, which somehow limits the capacity to connect

1
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more loads, and makes an inefficient use of the energy. Moreover, it is important to remember that
any ac current, flowing through a circuit, produced by a non linear load could generate harmonic
voltage drops in the PCC, and thus, the voltage signal at this point may exhibit, at least, a similar
harmonic contents depending on the short circuit impedance. It is, however, not surprising that even
under the presence of harmonics, a lot of electronics equipments will exhibit a good performance
as far as the harmonics voltages do not exceed 5% [1]. Nevertheless, most delicate equipment may
suffer premature aging or damage caused by such distortion. Motivated by these issues, this work
represents an effort to provide control solutions based in repetitive schemes, for power electronics
systems to compensate harmonic distortion produced by nonlinear loads.

1.2 Existing solutions for harmonic compensation

This work gathers the study of several power electronics systems where the control solutions for
the harmonic distortion issue have been proposed. A first approach, that is revisited, consists on the
application of adaptive techniques aimed to reconstruct the harmonic disturbances allowing their
cancellation. The controllers obtained following this approach are of selective nature, that is, they
reduce specific harmonics, while maintaining an acceptable dynamical performance, and without
inclusion of additional hardware. It is important to remark that the harmonic compensation problem
can be recast as a tracking reference problem with disturbance rejection, where the reference signal
and the disturbances are both periodic signals. The derivation of these adaptive controllers uses the
Lyapunov approach to build the estimates for the harmonic components of the disturbances. This
process yields a series of adaptive laws which are quite difficult to implement due to presence of
rotations in the regressors. Fortunately, the adaptive expressions can be reduced considerably, by
means of rotations, into a bank of resonant filters tuned at the frequencies of the harmonics to be
compensated (see [3] and [4]).

To better understand these ideas, let us consider the very well known technique used in ac-
tive filters to compensate the `-th harmonic of the fundamental ω0. This technique consists of the
following three steps. First, the system variables are transformed to rotating frame quantities at
a rotating frequency `ω0 (` an integer). Second, once in this synchronous frame, the variables
are sent to a compensator, usually a PI. Third, the compensator outputs are converted back to the
stationary reference frame [5], [6]. A PI is usually considered as the compensator since it guaran-
tees zero steady state error of dc disturbances. Notice that, in the synchronous frame, rotating at
`ω0, the `-th harmonic of a disturbance becomes a dc quantity, therefore, the PI in such a rotating
frame guarantees zero steady state of such an `-th harmonic. This type of scheme is referred in
the literature as synchronous PI associated to a given rotating frame [7], [8], multiple rotating inte-
grator [9], synchronous-frame harmonic controller [6], multiple reference frame controller [5], and
multi-synchronous PI controllers [10]. The main drawback of this scheme is the cumbersome im-
plementation. Notice that two frame transformations (two rotations) are involved for each harmonic
component to be compensated.
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It has been shown, however, that this complexity, linked to the frame transformations, can be
considerably reduced by appealing to the modulation properties of the Laplace transform [11], [12],
[13], [14]. Application of such ideas to the above synchronous PI, yields the very well known
resonant plus proportional compensator referred in the literature as resonant regulator [13], [14],
PIS compensator [15], [16], stationary-frame generalized integrator [17], multi-resonant controller
[10]. As it will be shown later, all of the proposed controllers maintain a similar structure as the
conventional one, that is, they are composed by two control loops. This type of schemes is referred
as current control or indirect control in power electronics systems. In these schemes, the bank of
resonant filters appears as a refinement term to the final control signal. The resonant filters can
be implemented in analog or digital form. The inconvenience here appears whenever the number
of harmonics that is necessary to compensate increases. Basically, a resonant filter is required
for each harmonic under compensation, that is, a huge bank of resonant filters is required for the
compensation of several harmonics.

1.3 Repetitive control as a practical solution for the harmonic com-
pensation issue

The idea behind the bank of resonant filters is the generation of resonant peaks with extremely
high gains tuned at the harmonics under compensation, in addition and automatically, notches are
created between two consecutive resonant peaks. However, as pointed out before, this type of im-
plementation becomes cumbersome as the harmonics under consideration increase, which evidently
represents a bigger computational effort. To overcome this issue, it is proposed in this work to use
controllers based on repetitive schemes whose frequency response mimics the bank of resonant fil-
ters, and with a much simpler implementation. The repetitive control is aimed to generate an infinite
number of resonant peaks tuned at certain multiples of the fundamental frequency. In particular, the
type of repetitive schemes used here are conformed by a feedback array of a single delay line in
either, positive or negative feedback, and incorporates a feedforward path to create the notches in
between every two consecutive resonant peaks to improve the selective nature, which contrast with
respect the traditional structures.

The development of repetitive control was originally motivated by the design of a magnet power
supply for a proton synchrotron [18]. Actually, the first works aimed to repetitive controllers theory
were presented in [19] and [20], those papers were formally gathered in the seminal paper [21].
The stability study of the servo scheme proposed in [18] (see Fig 1.1) was complemented later by
[22]. Other interesting theoretical developments of repetitive control were also presented in [23],
[24] and the numerous references therein. It is important to remark that repetitive control has found
more applicability in the discrete time formulation (see for instance [25],[26] and [27]).

First applications of repetitive control were based on the positive feedback scheme. It is im-
portant to notice that a positive feedback structure may have the disadvantage of compensating for
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every single harmonic, odd, even and the dc component [3]. The use of repetitive schemes is not
new in the power electronics field, for instance, some interesting applications of conventional pos-
itive feedback repetitive schemes can be found in [28], [29], [30] and [31] where the advantages
of the feedback-feedforward structures respect to traditional structures will be described in the next
chapters. The positive repetitive schemes without feedforward path based on a negative feedback
approach were introduced in [3] [32], [33] and [34]. The negative based repetitive scheme, in con-
trast to the positive feedback approach, is aimed to compensate odd harmonics only, and thereby
reduces the possibility of reinjecting unnecessary distortion into the system, a feature very well
appreciated in the harmonic compensation in power electronics systems.

Repetitive Controller


R(s)
 E(s)


plant


U(s)
 Y(s)

+
 +
 e
-sd
 G(s)


Figure 1.1: Repetitive control system proposed in [18].

It is important to remark that both controllers, using a bank of resonant filters or using repetitive
schemes, are based on the well known internal model principle [35]. This principle states that a
controlled output can track or reject a class of reference signals without steady error if the model
(or generator) of the reference is included in the stable closed loop system.

Recall that the idea is to compensate periodic signals, which are the most commonly found
in electrical power systems which arise as harmonic perturbations. To facilitate the study of this
type of signals the infinite Fourier series representation is used. It is well known that a harmonic
component, i.e., a sinusoidal signal, can be generated by means of a harmonic oscillator, i.e., a
resonant filter. Therefore, as each harmonic component should be compensated, then it is necessary
a bank of resonant filters to compensate them. However, as pointed out before, as the harmonics to
compensate increase, this solution is not longer practical. Fortunately, in repetitive control approach,
a simple delay line in a feedback array can be used to produce an infinite number of harmonic
oscillators. Thereby, with an appropriate repetitive controller, it is possible to emulate a bank of a
large number of harmonic oscillators tuned at the harmonics of interest.

1.4 Repetitive control without feedforward path

This section describe two repetitive controllers which are referred as the positive and the negative
feedback schemes. The main interest of this section is to establish the bases for the develop of
repetitive compensators aimed to harmonic compensation in power electronics systems, as well as
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to establish the main difference between the traditional approach proposed by Hara, et. al. in [19]
and [20] and the approach proposed in this work. It has been observed that in the traditionally
schemes the delay line are located more frequently in the direct path, while, in this work it is
proposed to locate the delay line in the feedback path. It can be shown that by placing the delay
in the feedback path, the dynamic response of the phase is improved. therefore ,this work focuses
in this type of schemes only. It is important to remark that the positive scheme of the repetitive
controller is aimed to compensate all harmonics of the fundamental (like in traditional aproach),
while the negative scheme of repetitive controller consists of a negative feedback loop of the delay
line aimed to compensate odd harmonics of the fundamental only.

Consider the single-input single-output (SISO) continuous-time systems described by

y(t) = e(t) + y(t− d1)

y(t) = e(t)− y(t− d2) (1.1)

where d1 and d2 are two positive real numbers representing the period of the reference signal
(or perturbation) to be compensated. Notice that, the real numbers 1 and 2 have been used to
differentiate between the repetitive schemes (1 for positive scheme and 2 for negative scheme)

The corresponding transfer functions of the above systems, after application of the Laplace
transform, are given by the next expressions:

Rp (s; d1) =
1

1− e−sd1
(1.2)

Rn (s; d2) =
1

1 + e−sd2
(1.3)

and the corresponding block diagrams are shown in Fig.1.2, where E (s) and Y (s) are Laplace
transform of the input and the output signals.

For Rp (s; d1) the poles can be found from e−sd1 = 1, while for Rn (s; d2) the poles of the
system can be calculated from e−sd2 = −1. Notice that, the complex functions e−sd1 |s=jω = 1,
for ωd1 = 2πk (∀k ∈ {0,±1,±2, ...,±∞}). Therefore, if d1 = 2π/ω0 = 1/f0 (one period) is
proposed, then the transfer function of the positive feedback scheme has infinite many imaginary
poles located at every single multiple of the fundamental frequency ω0 (f0 = ω0/2π). On the other
hand, the complex function e−sd2 |s=jω = −1 for ωd2 = π (2k + 1) (∀k ∈ {0,±1,±2, ...,±∞}).
Therefore, if d2 = π/ω0 = 1/(2f0) (half a period) then the transfer function of the negative
feedback scheme has infinite many poles located at the odd multiples of ω0.
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Figure 1.2: Block diagram and poles location of: (a) positive feedback (all harmonics) compensator,
and (b) negative feedback (odd harmonics) compensator.

The corresponding transfers functions can also be written as

Rp (s; d1) =
1

1− e
− 2sπ

ω0

=
e

sπ
ω0

e
sπ
ω0 − e

− sπ
ω0

=
e

sπ
ω0

2 sinh( sπ
ω0

)
=

e
sπ
ω0

2sπ
ω0

∏∞
k=1(

s2

k2ω2
0

+ 1)
(1.4)

Rn (s; d2) =
1

1 + e
− sπ

ω0

=
e

sπ
2ω0

e
sπ
2ω0 + e

− sπ
2ω0

=
e

sπ
2ω0

2 cosh( sπ
2ω0

)
=

e
sπ
2ω0

2
∏∞

k=1(
s2

(2k−1)2ω2
0

+ 1)
(1.5)

where it is more evident that, for Rp (s; d1), the first pole lies at the origin and the rest of the poles
lie at every single multiple of ω0, while the poles for Rn (s; d2) lie at odd multiples of ω0, and there
is not a pole at the origin (see Fig. 1.2).

The Bode plots of the repetitive above repetitive compensators consist of a set of peaks cen-
tered at the harmonic frequencies. The gain at these resonant frequencies is, in theory, infinite and
thus, it may lead to asymptotic stability problems. To overcome this issue, it is proposed to add
damping to all the poles by slightly shifting them to the left of the imaginary axis. It has been
observed that, with the pole shifting process, the amplitude becomes limited. The shifting process
can be realized as follow Rp (s + a; d1) = Rp (s; d1, K) for the positive feedback scheme, and
Rn (s + a; d2) = Rn (s; d2, K) for the negative feedback scheme. In exponential terms the shifting
process is expressed as e−(s+a)d = e−ade−sd. Notice that, a gain factor of the form K = e−ad is
applied to the exponential function as shown in Fig.1.3. Conversely, if we propose a gain K>1 the
poles move to the right, but if 0<K<1 then they move to the left. Moreover, it is easy to show
that, after this modification, the peaks reach a maximum magnitude of 1/(1−K) and the valleys a
minimum magnitude of 1/(1 + K) for both schemes.

In what follows the sensitivity function is used to study the robustness of the proposed schemes
with respect to variations in the delay di (i ∈ 1, 2) and the gain K, which are the main parameters
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Figure 1.3: Block diagram of: (a) positive feedback (all harmonics) compensator, and (b) negative
feedback (odd harmonics) compensator whit K and LPF.

in these control schemes. For the negative feedback case the sensitivity function S with respect to
parameters di (i ∈ 1, 2) and K can be calculated, respectively, according to the following expres-
sions

SRn
di

=
∂Rn/Rn

∂di/di
, SRn

K =
∂Rn/Rn

∂K/K

For the negative feedback repetitive scheme the following expressions are obtained

SRn
d2

=
sd2Ke−sd2

1 + Ke−sd2
, SRn

K = − −Ke−sd2

1 + Ke−sd2

Notice that, the sensitivity function SRn
K is bounded by ‖SRn

K ‖ < K
1−K , with 0 < K < 1.

However, the sensitivity function SRn
d2

is unbounded, that is, SRn
d2
|jω → ∞ as ω → ∞. This

means that, for higher frequencies a slight error in the tuning of parameter d2 will cause a very
poor compensation. To alleviate this issue a low pass filter (LPF) can be introduced as shown in
Fig. 1.3. In fact in the physical implementation this filter is introduced necessarily to eliminate the
noise due to the sampling process involved. This would in principle restrict the bandwidth of the
controller. The proposed LPF is of the form 1/(τs + 1), i.e., a first order filter with pole located
at s = −1/τ . It is important to remark that the pole of the LPF should be located at frequencies
well above the fundamental frequency. After introduction of the LPF, the sensitivity function for
the negative repetitive scheme yields

SRn
d2

=
sd2Ke−sd2

τs + 1 + Ke−sd2
, SRn

K = − −Ke−sd2

τs + 1 + Ke−sd2

Notice that, after this practical modification, the sensitivity function is now bounded by ‖SRn
d ‖ <

d2K
τ(1−K) . Similar procedure to study the sensitivity of Rp (s; d1,K) can be performed, which yields
in principle similar results.

1.4.1 Numerical simulations of the repetitive schemes

Numerical simulations have been carried out to better visualize the response of the above controllers.
First the bode plots of the negative feedback scheme with the delay line in the direct path, as in most
traditional schemes, is shown in Fig 1.4 for different values of the gain K.
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Figure 1.4: Theoretical Bode plots of traditionally repetitive scheme for different values of K (x-
axis Hz, y-axis dB): (dotted line) K = 0.95, (dashed line) K = 0.75, and (solid line) K = 0.5.

Figures 1.5 and 1.6 show the theoretical Bode plots of Rp (s; d1,K) and Rn (s; d2,K) respec-
tively. For these simulations the compensation of harmonics of 120 Hz has been considered, that
is, f0 = 120 Hz (ω0 = 754 r/s). The corresponding delays are d1 = 8.3333 ms for the positive
feedback compensator and d2 = 4.1666 ms for the negative feedback compensator. Several plots
are presented for different values of K without the introduction of a LPF. It is observed that, for
K = 0.95 the resonant peaks reach a gain of 26.02 dB , while the valleys reach a minimum mag-
nitude of −5.8 dB. However, if the gain is reduced to K = 0.75 the corresponding maximum and
minimum magnitudes are 12.04 dB and −4.86 dB, respectively. A further reduction to K = 0.5
results in a maximum and minimum magnitudes of 6.02 dB and −3.52 dB, respectively. All these
values apply to both compensators. These plots show clearly that as gain K decreases, the peak am-
plitude is reduced while the bandwidth of each peak increases, thus increasing its robustness with
respect to frequency variations.

The bode plot for both repetitive schemes Rn (s; d2,K) and Rp (s; d1,K) considering a LPF
are shown in Figs. 1.7 and 1.8 where the corresponding delays are d1 = 8.3333 ms for the positive
feedback compensator and d2 = 4.1666 ms for the negative feedback compensator, and considering
in both cases a gain K = 0.95. These plots include the response without a LPF, and the responses
considering a LPF with two different cutoff frequencies: 1.2 KHz and 12 kHz. Notice that, the LPF
has a vanishing effect over the resonant peaks amplitude and phase shift. Moreover, the resonant
peaks are not kept at the expected resonant frequencies. That is, a considerable phase shift arise,
due to the introduction of the LPF.
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Figure 1.5: Theoretical Bode plots of Rp (s; d1,K) different values of K (x-axis Hz, y-axis dB):
(dotted line) K = 0.95, (dashed line) K = 0.75, and (solid line) K = 0.5.
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Figure 1.6: Theoretical Bode plots of Rn (s; d2,K) different values of K (x-axis Hz, y-axis dB):
(dotted line) K = 0.95, (dashed line) K = 0.75, and (solid line) K = 0.5.
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Figure 1.7: Theoretical Bode plot of Rp (s; d1,K) for different values of τ and K = 0.95 (x-axis
Hz, y-axis dB): (dotted line) without LPF, (solid line) τ = 1.3263×10−5 s (12 kHz) , and (dashed
line) τ = 1.3263× 10−4 s ( 1.2 kHz).
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Figure 1.8: Theoretical Bode Bode plot of Rn (s; d2,K) for different values of τ and K = 0.95
(x-axis Hz, y-axis dB): (dotted line) without LPF , (solid line) τ = 1.3263× 10−5 s (12 kHz), and
(dashed line) τ = 1.3263× 10−4 s ( 1.2 kHz).
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Figures 1.9 and 1.10 show the amplitude response of the sensitivity function with respect to K

and d2 for the negative feedback scheme, respectively. They have been evaluated at K = 0.95 and
d2 = 4.1666 ms, i.e., considering the compensation of harmonics of 120 Hz. The two solid lines
on each plot represent the responses considering a LPF at two different cutoff frequencies, that is,
at 1.2 kHz and 12 kHz. In these plots The dotted line represents the response without introduction
of the LPF.

Figure 1.9 shows that SRn
K in all three curves is bounded and that the maximum sensitivity peaks

are presented around the resonant frequencies. Notice that, the LPF has a vanishing effect over the
amplitude of SRn

K .
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Figure 1.9: Amplitude of SRn
K |s=jω for different values of τ and K = 0.95 (x-axis Hz, y-axis dB):

(dotted line) without LPF and with LPF for different values of τ : (solid line) τ = 1.3263× 10−5 s
(12 kHz), and (dashed line) τ = 1.3263× 10−4 s ( 1.2 kHz).
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Figure 1.10: Amplitude of SRn
d |s=jω for different values of τ and K = 0.95 (x-axis Hz, y-axis dB):

(dotted line) without LPF and with LPF for different values of τ : (From top to bottom in solid
line) τ = 1.3263× 10−5 s (12 kHz), and τ = 1.3263× 10−4 s ( 1.2 kHz).

Figure 1.10 shows that the effect of the LPF keeps the amplitude of SRn
d bounded. However,

if LPF is introduced, then the sensitivity grows indefinitely as ω → ∞, as shown by the dotted
line plot. Notice that, for τ = 1.3263 × 10−4 s/rad (equivalent to 1.2 kHz cut off frequency )
the maximum value of the function is ‖SRn

d ‖ = 39.54 dB, while for τ = 1.3263 × 10−5 s/rad
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(equivalent to 12 kHz cut off frequency ) the maximum value of the function is ‖SRn
d ‖ = 59.61 dB

1.5 Outline of the dissertation

The contents of the present dissertation has been divided into six chapters. It is important to men-
tion that the work related to the resonant filters scheme has not been capture in the chapters as an
independent study. Instead, the resonant filter controllers are presented as a previous step to the pro-
posal of repetitive schemes. Roughly speaking, controllers design is based on a frequency domain
description of the periodic disturbances. Adaptation is then introduced to cope with uncertainties in
the disturbance signals and system parameters. As explained before, the adaptations are reduced to
a bank of resonant filters by means of suitable rotations. These filters are tuned at the frequencies
of the harmonics under compensation, hence, providing precise selective harmonic compensation
despite the low control bandwidth. Finally, the repetitive schemes can replace the bank of resonant
filters under certain conditions.

. In chapter 2 two repetitive compensators are developed based on the feedback-feedforward
structure. The proposed repetitive feedback feedforward schemes are, in fact, modifications
to the schemes presented earlier in [18], [19], [20], [34] and [36]. Those schemes were con-
formed by a single feedback array of a delay line in either positive, or negative feedback.
The modification consist in the introduction of a feedforward path which is aimed to intro-
duce notches in between every two consecutive resonant peaks, thus enhancing the selectivity
of this type of controllers. The contribution of this chapter consists in the developed of the
repetitive feedback feedforward schemes and in the observation that, after the feedforward
modification, it is possible to establish an exact equivalence between the proposed repetitive
schemes and a bank of resonant filters. Moreover, sufficient conditions for BIBO stability
of the modified repetitive control system are derived. Finally, simple analog circuitry is pre-
sented to implement both positive and negative feedback repetitive schemes. the Main results
of this chapters were presented in [3] [34] and [36]. It is important to mention that a similar
structure for a discrete time passive systems was presented in [32].

. In Chapter 3, an application of the positive feedback feedforward repetitive scheme for the
compensation of harmonic distortion in a dc-to-dc boost converter is presented. The intro-
duction of the repetitive scheme is aimed to compensate the harmonic distortion in the output
voltage due to the harmonic pollution present in the input voltage. An analog implementation
of the repetitive based controller is proposed, which simplifies enormously the implemen-
tation. The repetitive strategy is able to cancel almost every remaining harmonic distortion
component while maintaining an acceptable dynamical performance. Some of the results
obtained in this chapter were presented in [37] and [38].

. A repetitive based control for a PFC is presented in Chapter 4. The control is aimed to
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cope with the harmonic distortion produced by the cascade connection of a non controlled
rectifier feeding a dc-dc converter, guaranteeing voltage regulation on the dc side. Itis shown
that the expression of the system model is represented in terms of the input current instead
of the inductor current as usually done is instrumental for the developments. The controller
presented here, is composed by the cascade interconnection of two loops referred as inner and
outer loops. This structure is very similar to the conventional one, with the difference that a
bank of resonant filters is included in the inner loop to fulfill the tracking objective. This
bank of oscillators is aimed to compensate odd harmonics of the fundamental, and thus it is
proposed to replace it by the negative feedback feedforward compensator. The BIBO stability
analysis of the system in closed loop with such an infinite dimensional system is presented.
Experimental results in a 400W prototype are shown. The mains results of this chapter were
appeared in [39].

. In Chapter 5, a repetitive scheme is proposed for a harmonic reducer. The later consists
of a non controlled rectifier to which an active filter is connected in parallel to compensate
harmonic distortion in the line current. The active filter is built using a half-bridge topol-
ogy consisting of a single branch of two switches plus a branch of two capacitors on the dc
side (split dc-capacitor), thus reducing the number of switching devices. The repetitive-based
controller proposed is aimed to compensate reactive power and current harmonic distortion
guaranteeing a power factor close to unity. Additionally, the controller guarantees the reg-
ulation and balance of the two capacitor voltages. The contents of this chapter is based on
[40]

. Chapter 6 presents a repetitive-based controller for an active filter to compensate for reactive
power and current harmonic distortion in a single phase system, i.e., to guarantee a power
factor close to unity. The topology selected for the active filter consists of a single phase
full-bridge VSI. Adaptive controller is then proposed which can be reduced to a bank of
resonant filter tuned at odd harmonics. As mentioned before, an equivalence between this
control scheme and the negative feedback plus feedforward scheme is established. The bank
of resonant filters is thus replaced by the repetitive scheme, which reduces considerably the
implementation of the proposed controller. The proposed control scheme has been imple-
mented in a 1.5 kVA prototype and the experimental results are presented here contents of
this chapter is based on in [41].
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Chapter 2

Repetitive schemes with feedforward
modification

Summary
In this chapter are proposed two repetitive schemes that include either positive or negative feedback plus a feed-

forward path, where, the delay line is placed in a common path. In these schemes, is showed that the introduction of a
feedforward path to a conventional repetitive scheme, either in positive or negative feedback, considerably improves the
frequency response and performance, thus providing higher gains with enhanced selectivity. In this chapter, is obcerved
that such repetitive schemes with the feedforward modification are equivalent, under certain conditions, to a bank of
resonant filters. Moreover, sufficient conditions are derived for the BIBO stability of an LTI system in closed loop with
a repetitive based controller. The latter is composed of an LTI block plus a repetitive scheme, as a refinement term to
guarantee harmonic distortion compensation. Finally, simple analog circuitry is presented to implement both positive and
negative feedback plus feedforward repetitive schemes.

2.1 Introduction

Based on the need of compensating higher harmonics of the fundamental frequency, repetitive
strategies have emerged in different engineering domains. In particular, there has been a good
acceptation of such schemes in power electronics applications [28], [29], [30] and [31]. Indeed, as
shown in these papers, the repetitive techniques offer some advantages over conventional solutions,
which is demonstrated by the industrial applications in recent equipment.

In most of these works, the authors used a positive feedback scheme to implement the repetitive
controller (see Fig. 1.1). Some of them place the delay line in the direct path and others in the
feedback path. It is important to notice that a positive feedback structure has the disadvantage of

15
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compensating for every single harmonic either odd or even, including the dc component. Moreover,
depending on the position of the delay line in the structure, it may even deteriorate the phase shift.

Although the positive feedback based scheme may apparently solve the harmonics compen-
sation problem, it may lead to more distortion in certain cases. Consider, for instance, a system
where even harmonics do not exist originally (like in many power electronic systems) in this case,
the positive feedback repetitive controller would try to amplify, and indeed reinject, any small noise
which has components on the even frequencies. This behavior evidently has the danger of producing
polluted responses with such harmonics which were not present before.

To alleviate this issue, it is proposed in [42], [33] and [34] a negative feedback scheme. It was
shown that this type of structure restricts the compensation to only odd harmonics of the fundamen-
tal, and it does not have a pole in the origin. This negative feedback repetitive compensator is thus
more appropriate for harmonic compensation in the power electronics field.

In this chapter are proposed two repetitive schemes with feedback and feedforward path for
positive and negative schemes. With the introduction of feedforward path the selectivity of both
negative and positive repetitive schemes are improved. The idea behind this modification is the
introduction of zeros lying in between every two consecutive poles, the zeros in their turn will
produce notches in between every two consecutive resonant peaks, therefore substituting the original
valleys in the conventional repetitive schemes presented in [19], [20], [21], [32], [33] and [34]. This
modification clearly improves the selective nature of the whole controller, which will in principle
allow higher gains and better performance.

This chapter presents the properties of such modified compensators. The input-output propri-
eties of each controller are studied. Basically, expressions are obtained for the pole-zero locations,
as well as, the Bode plot of the transfer function. As in the previous chapter, some practical modifi-
cations are also introduced, namely, a gain K and a LPF. An analog implementation of the controller
is also presented and some experimental results are given. For this implementation, the special pur-
pose IC MN3004 is used. Besides, the repetitive scheme is plugged in to a quite general closed loop
control system. And, sufficient conditions are obtained to guarantee stability of the overall closed
loop system.

The notation used in this chapter is the following. L −1[·] means the inverse Laplace transform.
A function g(t) is called an L2 denoted by g(t) ∈ L2, if

∫∞
0 g(t)2dt < ∞. A rational function

is said to be stable if it is analytic in the closed right-half complex plane, proper if it is finite at
s = ∞, and strictly proper if it is zero at s = ∞. The set of all proper and real rational stable
transfer functions are denoted byRH∞. The infinity norm of G(s) ∈ RH∞ is defined by ‖G‖∞ ,
supω σ̄ |G(jω)|.
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2.2 Repetitive schemes plus feedforward path

The block diagrams of the repetitive compensators, with either positive and negative feedback,
including the feedforward path and the pole-zero location, are shown in Fig. 2.1. In these diagrams
Y (s) represents the output, E (s) is the input, and d1 and d2 are real numbers representing the delay
times for the positive and negative feedback schemes, respectively1.
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Figure 2.1: Continuos-time model and zero-pole locations of: (a) positive feedback (all harmon-
ics) compensator with feedforward, and (b) negative feedback (odd harmonics) compensator with
feedforward.

The corresponding transfer functions for both positive and negative feedback plus feedforward
path repetitive compensators are given by

Rpf (s; d1) =
1 + e−sd1

1− e−sd1
(2.1)

Rnf (s; d2) =
1− e−sd2

1 + e−sd2
(2.2)

The poles for those representations can be found as follow, for the positive feedback plus feed-
forward repetitive scheme d1ω0 = 2πk for every k = 0,±1,±2, ...,±∞. For the negative feedback
plus feedforward repetitive scheme d2ω0 = π (2k + 1) for every k = 0,±1,±2, ...,±∞. That is,
for Rpf (s; d1), the poles can be found from e−sd1 = 1, while for Rnf (s; d2) from e−sd2 = −1.
According to this, for Rpf (s; d1) the first pole lies at the origin and the rest of the poles lie at the
integer multiples of ω0. Notice that, the poles for Rnf (s; d2) are located at odd harmonics of ω0 and
there is not pole at the origin. Notice also that, each zero of Rpf (s; d1) lies exactly in the middle
point between two consecutive poles. In a similar way, the zeros for Rnf (s; d2) are located in the
middle points between every two consecutive poles, that is, at even harmonics of ω0, including a
zero in the origin.

In many power electronics applications, compensation of harmonics of 120 Hz and 60 Hz are
1Subindex 1 and 2 have been used to differentiate between the positive and negative feedback feedforward schemes,

respectively.
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required, therefore, delays ranging from 4.166 ms to 16.666 ms should be implemented. The lower
bound corresponds to the compensation of harmonics of 120 Hz using the negative feedback com-
pensator, i.e., d2 = π/ω0 = 1/(2f0) = 1/240 = 4.166 ms, while the upper bound corresponds to
the compensation of 60 Hz using the positive feedback compensator, i.e., d1 = 2π/ω0 = 1/f0 =
1/60 = 16.666 ms.

Remark 2.1 As pointed out before, the delay times can be computed as d1 = 2π/ω0 = 1/f0

(ω0 = 2πf0) for the positive feedback to compensate for every single harmonic of the fundamental
frequency ω0, and d2 = π/ω0 = 1/(2f0) for the negative feedback to compensate odd harmonics of
ω0. For instance, if compensation of harmonics of f0 = 120 Hz is required, then the corresponding
delays are d1 = 8.333 ms for the positive feedback compensator and d2 = 4.166 ms for the negative
feedback compensator respectively. ¤

Since the time delays of the block diagrams in Fig. 2.1 are computed as d1 = 2π/ω0 and
d2 = π/ω0, then the transfer function for each compensator can also be written as follows

Rpf (s; d1) =
1 + e

− 2sπ
ω0

1− e
− 2sπ

ω0

=
e

sπ
ω0 + e

− sπ
ω0

e
sπ
ω0 − e

− sπ
ω0

=
cosh( sπ

ω0
)

sinh( sπ
ω0

)
=

∏∞
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(
s2

( 2k−1
2 )2

ω2
0

+ 1
)

sπ
ω0

∏∞
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(
s2

k2ω2
0

+ 1
) (2.3)

Rnf (s; d2) =
1− e

− sπ
ω0

1 + e
− sπ

ω0

=
e

sπ
2ω0 − e

− sπ
2ω0

e
sπ
2ω0 + e

− sπ
2ω0

=
sinh( sπ

2ω0
)

cosh( sπ
2ω0

)
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sπ
2ω0

∏∞
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(
s2

(2k)2ω2
0

+ 1
)

∏∞
k=1

(
s2

(2k−1)2ω2
0

+ 1
) (2.4)

where it is more evident that the above compensators provide an infinite set of resonant peaks
centered at given harmonic frequencies as it is observed in the pole-zero location shown in Fig. 2.1.
Notice also that, due to the presence of the zeros, notches appear between every two consecutive
poles.

A very interesting observation here is that the above schemes can also be expressed as infinite
sums of resonant compensators as follows [43],

Rpf (s; d1) = coth
(

sπ

ω0

)
=

2
s

+
ω0

π

∞∑

`=1

4s

s2 + (`ω0)2
(2.5)

Rnf (s; d2) = tanh
(

sπ

2ω0

)
=

ω0

π

∞∑

`=1

4s

s2 + (2`− 1)2ω2
0

(2.6)
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Remark 2.2 The expressions given in (2.5) and (2.6) show that these schemes reproduce exactly
the frequency response of an infinite bank of resonant filters tuned at selected harmonic frequencies.
The above is clearly in agreement with the internal model principle [35]. Thus, it is expected that the
repetitive schemes under study can provide appropriate solutions in power electronics applications
for harmonic compensation. ¤

Summarizing, the feedforward modification introduces zeros which produce notches located in
between two consecutive resonant peaks. The latter has the advantage of making the compensators
more selective, in the sense that, the original overlapping (represented by the valleys) or interaction
between consecutive resonant peaks is removed by the notches. This would allow, in principle,
peaks of higher gains and slightly wider bandwidth, avoiding, at the same time, the excitation of
harmonics located in between two consecutive peaks. For instance, the negative feedback compen-
sator with feedforward would compensate the odd harmonics while the even harmonics would be
simply ignored.

2.3 Practical modifications to the proposed compensator

These repetitive compensators are, however, not ready to be used in a real application yet. Notice
from Fig. 2.1 that their expected Bode plots consist in a set of resonant peaks and notches which
have, in theory, an infinite magnitude (+∞ dB at the resonance frequencies and −∞ dB at the
notches). Moreover, notice that the resonant peaks are very narrow, therefore, not only robustness
problems but also instabilities may arise. As the resonant peaks may affect unmodeled dynamics at
high frequencies, and also they can amplify unavoidable noise. In order to solve these issues it is
proposed to add damping to all the poles/zeros by slightly shifting them to the left of the imaginary
axis [33], [34]. This shifting process is realized in the same way of the feedback scheme as follows:
Rpf (s + a; d) and Rnf (s + a; d) for the positive and the negative repetitive schemes, respectively.
Applying the shifting to the exponential term results in e−d(s+a) = e−ade−sd. Notice that, this is
equivalent to multiply the exponential function by a gain factor K = e−ad as shown in Fig. 2.3.

Notice that, For a gain K > 1 the poles/zeros move to the right, but if 0 < K < 1 then they
move to the left. Moreover, it is easy to show that the gain of the resonant peaks at the resonant
frequencies, originally of infinite magnitude, reach a maximum magnitude of (1 + K)/(1 − K),
while the notches reach a minimum magnitude of (1 −K)/(1 + K). Then, this pole/zero shifting
process, limits the peaks amplitude of the repetitive scheme. After the shifting process, the zeros and
poles of the new systems are located at s = −a±jkω0 for Rpf (s; d1,K) and s = −a±j(2k + 1)ω0

for Rnf (s; d2,K), as shown in Fig. 2.2.

It is also recommended in [3] to include a simple LPF in the studied schemes as shown in Fig.
2.3. The idea of this filter is to cope with the noise produced by the sampling process inherent to the
physical implementation. The effect of this modification produces some slight inaccuracies as de-
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Figure 2.2: Pole-zero locations of the repetitive compensators: (a) positive feedback (all harmon-
ics) compensator with feedforward, and (b) negative feedback (odd harmonics) compensator with
feedforward.
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scribed next. First, resonant peaks and notches are slightly shifted with respect to the corresponding
expected harmonic frequency, and second, an almost imperceptible phase shift appears at the tuned
harmonic frequencies.
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Figure 2.4: Theoretical Bode plots of Rpf (s; d1,K) for different values of K (x-axis Hz, y-axis
dB): (dotted line) K = 0.95, (dashed line) K = 0.75, and (solid line) K = 0.5.

Figures 2.4 and 2.5 show the theoretical Bode plots of Rpf (s; d1, K) and Rnf (s; d2,K) for the
compensation of harmonics of 120 Hz and for several values of K. In this case, the delay times are
fixed to d1 = 8.333 ms and d2 = 4.166 ms for the positive and negative feedback compensators,
respectively. For K = 0.95 the plot goes from 31.82 dB at the resonant frequencies to −31.82
dB at the notches. However, if the gain is reduced to K = 0.75 the corresponding maximum and
minimum magnitudes reach 16.90 dB and−16.90 dB, respectively. A further reduction to K = 0.5
results in a maximum and minimum magnitudes of 9.54 dB and −9.54 dB, respectively. All these
gains are valid for both compensators. These plots show clearly that as gain K decreases, the peak
amplitude is reduced. In consequence, the selective nature of the filter is decreased when the K gain
decreases. It can also be interpreted as an increment in the bandwidth at resonant peaks which, in its
turn, increases its robustness with respect to frequency variations. Notice that, with the introduction
of gain K and without the LPF, the phase plots have the interesting feature that the phase shift is
zero exactly at the resonant frequency and are bounded by 90 and -90 degrees.

The Bode plot of the compensator output with LPF for both schemes are shown in Figs. 2.6 and
2.7. The LPF is of the form 1/(τs + 1) and the cut off frequency is located in either 1200 Hz or
12000 Hz, for each one of the repetitive schemes. These figures show three bode plots for a fixed
K = 0.95, and for different values of τ including a theoretical bode plot without LPF. Notice that,
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Figure 2.5: Theoretical Bode plots of Rnf (s; d2,K) for different values of K (x-axis Hz, y-axis
dB): (dotted line) K = 0.95, (dashed line) K = 0.75, and (solid line) K = 0.5.
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Figure 2.6: Theoretical Bode plots of Rpf (s; d1,K) for different values of τ and K=0.95 (x-axis
Hz, y-axis dB): (dotted line) without LPF, (solid line) τ = 1.3263x10−5 s (12 kHz), and (dashed
line) τ = 1.3263x10−4 s ( 1.2 kHz).
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Figure 2.7: Theoretical Bode plots of Rnf (s; d2, K) for different values of τ and K=0.95 (x-axis
Hz, y-axis dB): (dotted line) without LPF, (solid line) τ = 1.3263x10−5 s (12 kHz), and (dashed
line) τ = 1.3263x10−4 s ( 1.2 kHz).

in both schemes, the LPF affects mainly the resonant gain, and it has an effect on the phase shift at
the resonant frequency.

2.4 Analog implementation of the repetitive schemes

The two schematics of the implemented circuits for the positive and negative feedback compensators
with the feedforward modification are given in Figs. 2.8 and 2.9, respectively. The delay line
appearing in both repetitive schemes is implemented using a special purpose IC MN3004. This IC,
known in the music industry as a 512-stage Bucket Brigade Delay (BBD), allows the implementation
of relatively large delays in the range of 2.5 ms to 25 ms.

The basic operation of the BBD MN3004 is described next. The MN3004 uses the auxiliary ex-
ternal clock MN3101, to programme the delay time. In the clock generator MN3101 the oscillation
frequency fcp is fixed by the array of two resistances R1, R2 and one capacitor C1. This frequency is
computed approximately by fcp = 1/(2R2C1) for a fixed R1 slightly larger than R2. The MN3101
delivers two complementary pulse signals indicated by CP1 and CP2 both oscillating at fcp. Thus,
since the MN3004 is a 512-stage, the resulting delay is computed as d = 512/(2fcp). Notice that
these analog implementations use a conventional voltage source of 15 VDC and non special sources
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are required. To exhibit the delay produced by the BBD it is shown in Fig. 2.10 the AC compo-
nent of the output signal (top plot) of the BBD MN3004 circuit in response to a sinusoidal signal
of relatively small frequency, 30 Hz, used as input (bottom plot). Notice that the output signal has
approximately a delay of 4.16 ms with respect to the input signal, which corresponds to the delay
required for the negative feedback compensator. Notice also that, the output signal is polluted by a
higher order harmonic ddue to the sampling process involved, hence, the use of a LPF is essential.
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Figure 2.8: Implemented positive feedback feedforward (all harmonics) compensator.

For harmonic compensation of 120 Hz and 60 Hz delays ranging from 4.166 ms to 16.666
ms should be implemented. These delays are included in the delay times range offered by the
MN3004. For the experimental tests presented here, the compensation of harmonics of 120 Hz has
been chosen. Therefore, delays of d1 = 8.333 ms and d2 = 4.166 ms are implemented for the
positive and negative feedback compensators, respectively.

In both circuits, the value of gain K is fixed according to K = R5/(R3 + R4). Two values
for K have been tested, namely, K = 0.824 and K = 0.955, which should produce, theoretically,
maximum peak gains of 20.31 dB and 32.75 dB, respectively. Moreover, a simple first order LPF of
the form 1/(τs+1) has been included where the time constant has been fixed to τ = R5C2 = 31µs.
The transfer function of the LPF and K in terms of the circuit elements is given by
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Figure 2.9: Implemented negative feedback feedforward (odd harmonics) compensator.
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Figure 2.10: Time responses of (Top) output signal and (Bottom) input signal of the MN3004
circuit.

K
1

τs + 1
=

R5

R3 + R4

1
R5C2s + 1

The experimental frequency responses of the output y(t), for the positive and negative feedback
compensators with feedforward, are shown in Figs. 2.11 and 2.12, respectively. To obtain these
responses, a sinusoidal signal is obtained from a signal generator where the frequency is swept
between 1 Hz to 1200 Hz during one second, and the output signal is captured in an oscilloscope
operated in FFT mode. The plots show that the circuit contains peaks centered at the expected
values, i.e., all harmonics of 120 Hz for the positive feedback, and odd harmonics of 120 Hz for the
negative feedback.

The time responses of the controller to sinusoidal inputs are presented for the negative scheme
only. Figures 2.13 and 2.15 show the responses of the negative feedback compensator circuit with
and without feedforward to a pure sinusoidal signal input. Every figure shows (from top to bottom)
the responses of the output y(t) with feedforward, the output y(t) without feedforward, and the
input signal e(t).

Figure 2.13 shows the responses to a sinusoidal signal input with amplitude 50 mV of peak
amplitude and frequency 120 Hz, that is at the fundamental frequency. It is observed that the output
y(t) with feedforward compensation reaches a peak amplitude of 2 V, which corresponds to 32 dB,
bigger than the 26 dB obtained without feedforward compensation where the output reaches only 1
V of amplitude. Notice that these values are very close to those obtained theoretically.
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Figure 2.11: Experimental frequency response for the positive feedback compensator with feedfor-
ward (x-axis 125 Hz/div and y-axis 10 dB/div): (top) K = 0.824, and (bottom) K = 0.955.

Figure 2.12: Experimental frequency response for the negative feedback compensator with feedfor-
ward (x-axis 62.5 Hz/div and y-axis 10 dB/div): (top) K = 0.824, and (bottom) K = 0.955.
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Figure 2.13: Experimental time response for the negative feedback compensator with K = 0.955
to a sinusoidal signal of frequency 120 Hz and amplitude 50 mV (x-axis 4 ms/div). (from top to
bottom): output y(t) with feedforward (y-axis 2 V/div), output y(t) without feedforward (y-axis 2
V/div), and input e(t) (y-axis 100 mV/div).

Figure 2.14: Experimental time response for the negative feedback compensator with K = 0.955
to a sinusoidal signal of frequency 240 Hz and amplitude 1 V (x-axis 4 ms/div), (y-axis 1 V/div).
(from top to bottom): output y(t) with feedforward, output y(t) without feedforward, and input
e(t). K = 0.955.



2.2.5 Stability analysis of the closed-loop system 29

Figure 2.15: Experimental time response for the negative feedback compensator with K = 0.955
to a sinusoidal signal of frequency 600 Hz and amplitude 50 mV (x-axis 4 ms/div). (from top to
bottom): output y(t) with feedforward (y-axis 2 V/div), output y(t) without feedforward (y-axis 2
V/div), and input e(t) (y-axis 100 mV/div).

In contrast, Fig. 2.14 shows the responses to a sinusoidal input signal with amplitude 1 V and
frequency 240 Hz, that is, coinciding with the frequency of the notch located between peaks of 120
Hz and 300 Hz. As expected, the gain obtained with feedforward compensation reaches -30.45 dB
approximately, the output scarcely reaches 0.03 V of amplitude. This gain is clearly much smaller
compared to the -6.2 dB obtained without feedforward compensation, where the output reaches 0.5
V of amplitude. For the sake of comparison, the same vertical and horizontal scales have been
preserved in this figure.

Finally, Fig. 2.15 shows the time response to a sinusoidal input signal of 50 mV and frequency
600 Hz, i.e., the 5th harmonic of 120 Hz. In this figure similar conclusions as in Fig. 2.13 can be
stated, except that, as predicted by the theory, the gain suffers a slight decrease mainly due to the
effect of the LPF.

2.5 Stability analysis of the closed-loop system

In this section sufficient conditions for BIBO stability are given in terms of the small gain theorem
[44] for the negative and positive repetitive schemes. For this purpose, consider that either of the
repetitive schemes can be connected to a closed loop system as shown in Fig. 2.16, where G(s)
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is a proper and, denotes the plant transfer function and C(s) an appropriate proper stable rational
function representing an stabilizing compensator. That is, the studied repetitive schemes can be
seen as plug in controllers used as refinement terms dedicated in particular to fulfill the harmonic
compensation issue. The overall controller is thus conformed by the parallel connection of the
repetitive scheme and the compensator C(s).

Repetitive compensator


W(s)
 E(s)


U(s)


e
-d  s


F(s)


C(s)
 G(s)


Overall controller


plant


Y(s)


Z
(s)


1


Figure 2.16: General control system with a positive feedback plus feedforward repetitive compen-
sator.

According to Fig. 2.16 the overall repetitive controller is given by C(s)+(1+F (s)e−sd1)/(1−
F (s)e−sd1) for the compensation of all harmonics, and C(s) + (1− F (s)e−sd2)/(1 + F (s)e−sd2)
for odd harmonics. The function F (s) represents the LPF affected by the proportional term K

previously mentioned, i.e., F (s) = K/(τs + 1) with 0 < K < 1, and thus, ‖F (s)‖∞ < 1. Signals
Z(s), W (s) and E(s) correspond to the Laplace transforms of the output z(t), the reference w(t)
and the error e(t) of the system, respectively. Recall that, d1 denote the delay time for the positive
feedback compensator, and d2 denotes the delay time for the negative feedback compensator. The
stability study follows a procedure similar to [21] and considers the BIBO stability for the system
shown in Fig.2.16 that is, it considers only the SISO case. In what follows only the positive feedback
case is treated in detail, since the negative case is treated in a very similar way. For this latter only
the final results are given.

Proposition 2.3 The closed loop system formed by an LTI system and a repetitive-base controller
shown in Fig. 2.16, is BIBO stable if the following conditions are fulfilled:

(i) F (s) is stable

(ii) (1 + (C(s) + 1)G(s))−1(C(s) + 1)G(s) is stable

(iii) ‖ F (s) (1 + (C(s) + 1)G(s))−1 (1 + (C(s)− 1)G(s)) ‖∞< 1
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the error system e(t) = L −1[E(s)] is bounded and continuous for all w(t) bonded.

¤

Proof.

For the closed-loop system shown in Fig. 2.16, that is, considering the positive feedback plus
feedforward case, the following relationships are obtained

E(s) = W (s)− Z(s) (2.7)

Z(s) = G(s)(C(s)E(s) + Y (s)) + Z(s) (2.8)

Y (s) = E(s) + 2F (s)U(s) (2.9)

U(s) = e−sd1(E(s) + F (s)U(s)) + U(s) (2.10)

where terms U(s) and Z(s) correspond to the Laplace transforms of the responses to initial condi-
tions of e−sd1 and G(s), respectively.

The idea behind the stability study followed in [21] is to transform the system to an equivalent
one that isolates the delay line from the rest of the system. This remaining part of the system is then
grouped as a single block, i.e., a single transfer function, which according to the small gain theorem
[44] should have a gain less than one. However, as a delay system is involved, special attention
should be given to the initial conditions.

to perform this transformation it is necessary to substitute Z(s) of (2.8) in (2.7) which yields the
expression

(1 + C(s)G(s))E(s) = −G(s)Y (s) + (W (s)− U(s)) (2.11)

From (2.9) it is possible to obtain

U(s) =
1

2F (s)
(Y (s)− E(s)) (2.12)

Direct substitution of (2.12) in (2.10) yields the following expression

Y = (1− F (s)e−sd1)−1(1 + F (s)e−sd1)E + 2(1− F (s)e−sd1)−1F (s)U(s) (2.13)

From (2.11) the following expression can be obtained G(s)Y (s) = −(1 + C(s)G(s))E(s)) +
(W (s)− U(s)) which substituted in (2.13) yields

(1 + (C(s) + 1)G)E = e−dsF (s)(1 + (C(s)− 1)G)E(s) + De(s) (2.14)
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After simple manipulations the last expression can be rewritten as

E(s) = e−sd1F (s)1 + (C(s) + 1)G(s))−1(1 + (C(s)− 1)G(s))E(s)

+(In + (C(s) + 1)G(s))−1De(s) (2.15)

where

De(s) = (1− F (s)e(−sd1))(W (s)− Z(s))− 2F (s)G(s)U(s) (2.16)

F(s)(
1
+(C(s)+1)G(s))
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(
1
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(
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-
1
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Figure 2.17: An equivalent system for the overall closed-loop system.

A block diagram of this new representation is shown in Fig. 2.17, where the delay line has been
isolated.

Suppose that all elements of w(t) are bounded and continuous periodic signals of period d1.
Denote this by w(t) ∈ P (d1). This assumption yields that w0(t) is a bounded function, where

w0(t) , L −1[(1− F (s)e−d1s)W (s)]

Because |e−d1s| = 1 and F(s) is a design parameter and it is chosen stable. This fact, to-
gether with (2.15) and (2.16), implies that the equivalent exogenous input L −1[(1 + (C(s) +
1)G(s))−1De] is a bounded function under the assumption of the asymptotic stability of (1 +
(C(s) + 1)G(s))−1G(s) (condition (ii)).

BIBO stability of the overall system in Fig. 2.17 depends, on the BIBO stability of the input
transfer functions, plus the BIBO stability of the close loop system shown in the Fig. 2.17. Notice
that the input transfer function can be expressed as:

1
1 + (C(s) + 1)G(s)

= 1− (C(s) + 1)G(s)
1 + (C(s) + 1)G(s)

= 1− C(s)G(s)
1 + (C(s) + 1)G(s)

− G(s)
1 + (C(s) + 1)G(s)

since (1 + (C(s) + 1)G(s))−1G(s) is stable and C(s) is a stable controller, the input transfer
function is stable. The BIBO stability of the stability closed-loop transfer function can be ensured
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follow condition (iii)
∥∥∥∥F (s)

1 + (C(s)− 1)G(s)
1 + (C(s) + 1)G(s)

∥∥∥∥
∞
≤ ‖F (s)‖∞

∥∥∥∥
1 + (C(s)− 1)G(s)
1 + (C(s) + 1)G(s)

∥∥∥∥
∞
≤ 1

where, | e−jωd1 |= 1 and ‖F (s)‖∞ < 1 for all ω0, the result follows from the small gain
theorem [44].

∇∇∇

Remark 2.4 In the negative feedback case, the following similar representation can be obtained
following the same procedure as in the positive feedback case.

E(s) = −e−d2sF (s)(1 + (C(s) + 1)G(s))−1(1 + (c(s)− 1)G(s))E(s)

−(1 + (C(s) + 1)G(s))−1De(s) (2.17)

where

De(s) = −[(1 + F (s)e−d2s(W (s)− Z(s)) + 2F (s)G(s)U(s)] (2.18)

which has a similar block diagram description as in Fig. 2.17, where the only difference are the
signs of the feedback and the input function. Proposition 2.3, with the appropriate changes on the
signs, also applies for the negative feedback case. ¤
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Chapter 3

Harmonic compensation in a DC-DC
boost converter

Summary
This chapter presents the application of the positive feedback plus feedforward repetitive scheme for the control

of a DC-DC Pulse Width Modulated (PWM) boost converter. The introduction of the repetitive scheme is aimed to

compensate the output voltage ripple due to the harmonic distortion present in the input voltage. The structure of the

proposed controller is preserved as close as possible to the conventional one, which includes outer and inner control

loops. Thus, in the proposed controller, the repetitive strategy appears as a refinement term added to the inner control

loop. An analog implementation of the repetitive based controller is proposed, which represents a cost effective solution in

this case, and simplifies enormously the implementation. The repetitive strategy is able to cancel almost every remaining

harmonic distortion component while maintaining an acceptable dynamical performance. Experimental results on a boost

converter board, using a poorly regulated voltage source, are presented to assess the performance of our approach.

3.1 Introduction

The interest of the present chapter is the compensation of the output voltage ripple of a DC-DC
converter, caused by periodic disturbances present in the input line voltage at frequencies in the
audible range (less then 20 kHz). This issue arises in applications where the input voltage may vary
on a wide range, such as in power factor correctors (PFC), where the input voltage is mainly polluted
by a 2nd harmonic component of the line voltage (due to the rectification process in PFC stage)
which is propagated in the form of ripple in the output voltage. This is an issue of vital importance
when a high quality DC voltage is demanded, and in addition, it opens the possibility of reducing

35



36 Chapter 3. Harmonic compensation in a DC-DC boost converter

the output capacitor, as pointed out in [45] and [46]. In [47], [48] and [49], the authors show that,
by simply feedforwarding the input voltage signal, the harmonic distortion appearing in the output
voltage may be reduced. Active ripple filtering presented in [45] and [46] is another technique
addressing the problem of reducing the output voltage ripple due to switching. In [50], the authors
present an extensive and very illustrative analysis of an integral-lead controller for a boost converter.
It is shown that this voltage-mode controller significantly improves the audio-susceptibility curve.

As mentioned in previous chapters, repetitive control arises as a practical solution to the tracking
or rejection of periodic signals, and it is based in the well-known internal model principle. This fact
is the basis of the controller proposed here as explained next. The internal model principle states
that the controlled output can track a class of reference commands without a steady error if the
generator (or the model) of the reference is included in the stable closed-loop system. It is well
known that the generator of a sinusoidal signal, i.e., containing only one harmonic component, is
a harmonic oscillator, in other words, a resonant filter. Therefore, following this idea, if a periodic
signal has an infinite Fourier series (of harmonic components), then an infinite number of harmonic
oscillators are required to track or reject such a periodic signal. Fortunately, the repetitive control
approach can be used to fulfill this issue.

This chapter proposes an alternative implementation of the controller presented in [38] and
[51]. That controller was very close to the conventional one, i.e., it was composed by an inner and
an outer loop, and included a bank of resonant filters aimed to reduce the output voltage ripple.
That controller was obtained following adaptive techniques which gave, in principle, a nonlinear
controller, however, the authors showed that after some transformations, basically rotations, the
adaptive part of the controller became a bank of resonant filters tuned at the frequencies of the
harmonics to be compensated, i.e., at the higher harmonics of 120 Hz which is the fundamental
frequency of the disturbance to reject. It is shown here that the proposed repetitive scheme, i.e.,
a positive feedback plus a feedforward path using a delay line, offers a very close behavior to that
bank of resonant filters; therefore, they can be replaced by the simpler proposed repetitive controller.
The idea behind the controller proposed here is thus, to substitute such a bank of resonant filters in
[38] by a repetitive scheme. In particular the positive feedback plus feedforward repetitive scheme
has been selected for the compensation of every single harmonic of 120 Hz. The overall repetitive-
based controller has been implemented using analog devices which offers a cost effective and rapid
solution. The boost converter is fed by a poorly regulated voltage source polluted by harmonics of
120 Hz, i.e., 120 Hz, 240 Hz, 360 Hz, and so on. Finally, some experimental results are shown to
assess the performance of the proposed controller.

3.2 Problem formulation

A circuit of the boost converter is shown in Fig. 3.1. In this circuit, the equivalent series resistances
(ESR) of inductor, capacitor and Mosfet, as well as the voltage drop in the diode have been neglected
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without loss of generality.
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Figure 3.1: Boost converter circuit.

The system dynamics of the boost converter shown in Fig. 3.1 are described by the following
expressions

Lẋ1 = −ux2 + vin (3.1)

Cẋ2 = ux1 − x2

R
(3.2)

where x1 is the inductor current, x2 is the capacitor voltage, vin represents the voltage source
(this signal is addressed indistinctly as input voltage or voltage source along the chapter), L is the
inductance, C is the capacitance and R is the load resistance. We assume that parameters L, C

and R are unknown positive constants. In the switching model, i.e., u ∈ {0, 1}, the value u = 0
corresponds to the situation where the power semiconductor is conducting, while u = 1 corresponds
to the case where the power semiconductor is disconnected, and thus the diode is conducting. In the
average model [52], it is assumed a sufficiently large switching frequency, hence, u represents the
slew rate of a PWM signal feeding the gate of the boost converter, i.e., u = (1−D) where D is the
duty ratio.

It is assumed that the input voltage vin, polluted by higher order harmonics of the fundamental
frequency ω0, can be represented as:

vin(t) = E +
∑

m∈M ρ>mVs,m (3.3)

ρm =

[
cos(mω0t)
sin(mω0t)

]
, Vs,m =

[
V r

s,m

V i
s,m

]

where ρm represents a unitary vector rotating at a frequency mω0 in counterclockwise direction,
V r

s,m and V i
s,m are the real and imaginary parts of the phasor Vs,m, and, m is the set of indeces of

the harmonic components contained in vin.
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The control objective consists in the regulation of the output capacitor voltage x2 towards a
constant reference Vd despite of the harmonic distortion in the input voltage, that is, the proposed
controller should be able to reject harmonic voltage disturbances existent in the source voltage. It is
well known that, due to the nonminimum phase nature of this converter, it is preferable to indirectly
control the capacitor voltage by first regulating the inductor current towards a constant reference Id

(this scheme is referred in literature as current or indirect control [53]). This imperfection makes
more challenging finding the solution to the harmonic rejection issue. A solution to this problem is
obtained by forcing the inductor current to track a harmonic distorted reference instead of the usual
constant signal. The idea behind this approach is that, by distorting the inductor current reference,
an extra control input is incorporated which allows compensation of harmonics in the capacitor
voltage side.

In [38], two stable and robust controllers were proposed for the solution of the problem stated
above, a first one that required the measurement of vin (usually referred as the feedforward term)
and a second solution that did not require this signal. In this chapter only the latter is considered,
which is specially useful in case that the sensed input voltage signal is lost due to a failure, or
simply to eliminate the voltage sensor. In any case, the controller guaranteed a continuous and
correct functioning. The idea behind that controller is that the harmonic distortion in the capacitor
voltage can be compensated by introducing a certain harmonic distortion in the inductor reference
current, that is, by appropriately distorting the inductor reference current. This distortion represents
in fact, an extra input which is inserted to allow compensation of harmonics in the capacitor voltage
side. As usual in control design for DC-DC converters, the decoupling assumption was appealed,
and hence, the final expression of the controller included inner and outer loops. These two loops of
the controller proposed in [38] are described next for completeness.

The inner control loop was composed by a proportional plus integral term operating on the
inductor current error, and the bank of resonant filters operating on the voltage error. The resonant
filters appeared as a refinement term, they introduced notches in the audio-susceptibility curve,
which were tuned at the harmonics under compensation. Therefore, the bank of resonant filters
was able to cancel only a selected set of harmonics while preserving output voltage regulation. The
resulting control signal is given by

u =
(

kp2 +
ki2

s

)
x̃1 +

∑

k∈H

γks

s2 + k2ω2
0

x̃2 (3.4)

where x̃1
4
=(x1 − Id), x̃2

4
=(x2 − Vd), kp2 and ki2 are positive design parameters, the proportional

and integral gains, respectively; γk is the kth gain of the resonant filter, with k ∈ H and H the
selected set of harmonics to compensate, that is, a certain number of odd and even multiples of the
fundamental frequency. Id is a scalar computed in the outer loop, which corresponds to the usual
reference current in the current loop of the conventional controller, and should be driven as close as
possible to a constant.

The outer voltage loop was formed by a proportional term of limited bandwidth plus an integral
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term, both operating on the capacitor voltage error. In this controller, the usual proportional term
has been affected by a LPF to prevent the reinjection of further harmonics into the control loop due
to the remanent harmonic content in the capacitor voltage.

Id = − kp

τs + 1
x̃2 − ki

s
x̃2 (3.5)

where kp and ki are positive design parameters, the proportional and integral gains, respectively,
and τ is the time constant of the LPF. A block diagram of controller (3.4)-(3.5) is shown in Fig. 3.2.
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Figure 3.2: Block diagram of the adaptive controller using a bank of resonant filters for the com-
pensation of the output voltage harmonic distortion.

3.3 Repetitive-based controller

As even and odd harmonics of the fundamental frequency are considered for compensation, then it
is proposed to use the positive feedback plus feedforward repetitive scheme as is shown in Fig. 2.1
(a). In what follows, it is shown that the proposed repetitive scheme, under certain modifications,
approaches very close the behavior of the bank of resonant filters previously mentioned. This repet-
itive scheme, analyzed in Chapter 2, Section 2.2, introduces an infinite number of poles in every
single multiple of the fundamental frequency, and thus it is able to compensate for all harmonics.
As also explained before, the feedforward path for this scheme improves the selective nature of
the controller as it creates an infinite number of zeros located between two consecutive poles. The
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transfer function for this scheme is given by

Rpf (s; d1) =
1 + e−sd1

1− e−sd1

As explained in Chapter 2 the transfer function Rpf (s; d1) has an equivalent expression in terms
of an infinite sum of resonant filters tuned at every single harmonic of the fundamental frequency
ω0, as expressed in (2.5):

Rpf (s; d1) =
2
s

+
ω0

π

∞∑

`=1

4s

s2 + (`ω0)2
.

That is, the repetitive scheme is equivalent to an infinite bank of resonant filters, all connected
in parallel, and tuned at every single harmonic of the fundamental.

Clearly some differences arise with respect to the original bank of resonant filters in (3.4) out of
which are enumerate next:

i) Existence of an “extra” integrator.

ii) The gains are now fixed to 4/d1 for all filters, instead of the independent γk for every kth

filter.

(iii) All harmonics are considered for compensation, that is, there is no more the possibility to
compensate for a selected group of them.

It is then clear that, to make the repetitive scheme (2.5) more suitable in the present application
it is necessary to make some modifications, as is described next.

In Chapter 2, Section 2.3 some practical modifications are recommended to make this repetitive
scheme usable. They consist in the introduction of a gain K and a LPF with the aim of restricting the
gain of the resonant peaks and notches, as well as to limit the bandwidth of the repetitive scheme.
Moreover, it was shown that they improve the robustness with respect to frequency variations. In
this work a first order LPF of the form 1/(τ1s+1) is used, where 1/τ1 is a positive design parameter
representing the cut off frequency.

As previously mentioned, the positive feedback compensator contains a pole in the origin (see
Fig. 2.1 or eq. (2.1)), i.e., an integrator, which is in most cases undesirable because it may lead
to saturation problems and instabilities. To reduce its effect, it is common practice to include at
the input of the repetitive scheme a derivative term of limited bandwidth of the form H(s) =
τ2s/(τ2s + 1), referred here as High Pass Filter (HPF), where 1/τ2 is a positive design parameter
representing the cut off frequency. However, for practical reasons it was more convenient to insert
this derivative term inside the loop as shown in Fig. 3.4. This simple modification avoids possible
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saturations inside the loop due to the unavoidable offsets in the analog circuitry, besides cancelling
the integral effect.

As a consequence of all these modifications, two side effects appear: first, the peaks of resonance
and notches are slightly shifted with respect to the corresponding harmonic frequencies, and second,
an almost imperceptible phase shift appears at the tuned harmonic frequencies. As is observed in
Fig 3.3 the resonant gain at 0 dB can be minimized but a phase shift can be appeared at the first
resonant peak.
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Figure 3.3: Frequency response of the positive feedback feedforward repetitive scheme, with low
pass filter with cutoff frequency f = 12 kHz and, different values of cutoff frequency of derivative
term of limited bandwidth

The block diagram of the proposed repetitive-based controller is shown in Fig. 3.4. Notice that,
the bank of resonant filters has been replaced by the proposed repetitive scheme. Moreover, a gain
kr has been included to adjust the gain produced in the peaks. Gains K and kr should be combined
to obtain the appropriate frequency response.

The investigation of the stability of the proposed scheme appeals to the decoupling assumption,
out of which the inductor current dynamics and the capacitor voltage dynamics can be treated sep-
arately. Moreover, as the repetitive scheme is intended to deal with the harmonic distortion of the
capacitor voltage, then the error dynamics of the harmonic part of the capacitor voltage is considered
for this analysis only. The latter is given, according to [38], as

Cẋ2h = φω0(t)−
∑

k

ψ1,k − x2h

R
(3.6)

ψ̇1,k = γkx2h − kω0ψ2,k ∀k ∈ H (3.7)

ψ̇2,k = kω0ψ1,k (3.8)
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Figure 3.4: Block diagram of the proposed repetitive-based controller.

where x2h represents the harmonic part of the capacitor voltage; ψ1,k, ψ2,k are the states of a har-
monic oscillator; φω0(t) represents the ripple, that is, a periodic disturbance with period 2π/ω0,
and γk (∀k ∈ H) are positive design constants. Notice that, (3.7)-(3.8) form a bank of harmonic
oscillators, that is, a bank resonant filters each tuned at the kth harmonic component.

It is shown next that the stability property holds after replacing the bank of resonant filters by
the repetitive scheme, as shown in the block diagram of Fig. 3.5. The same procedure as in Chapter
2, Section 2.5, is followed to find stability conditions of the closed loop system by appealing the
small gain theorem. Towards this end, the delay block e−d1s is isolated and the remaining part of
the system dynamics is concentrated in a single transfer function as described next.

3.3.1 Stability analysis

This subsection develops sufficient conditions for the BIBO stability of loop-colsed repetitive-base
control system described previously for the DC-DC boost converter.

Proposition 3.1 The output x2h(t) of system in Fig. 3.4 is bounded for a bounded input φ(ω0)(t),
if the following conditions are fulfilled:

(i) F (s) and H(s) are stable

(ii) (1 + krG(s))−1G(s) are stable

(iii)
∥∥F (s)(1 + krG(s))−1(H(s)− krG(s))

∥∥
∞ < 1

¤
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Figure 3.5: Block diagram of the output voltage error dynamics in closed loop with the repetitive
scheme.

Proof. From the block diagram in Fig. 3.5 the following expressions are derived

X2h(s) = G(s)E(s) + X2h(s) (3.9)

E(S) = φω0(s)− krY (s) (3.10)

Y (s) = X2h(s) + F (s)U(s) + F (s)H(s)U(s) (3.11)

U(s) = e−sd1(X2h(s) + H(s)F (s)U(s)) + U(s) (3.12)

where terms U(s) and X2h(s) correspond to the Laplace transforms of the responses for initial
conditions of e−sd1 and G(s), respectively. Notice that, the plant is given by G(s) = R/(RCs+1)
and the filter is defined as F (s) = K/(τ1s+1), where de constant K is included to add damping to
all the poles/zeros by slightly shifting them to the left of the imaginary axis, as described in Chapter
2 and 3 the HPF is of the form H(s) = τ2s/(τ2s + 1).

Simple manipulations of (3.9)-(3.12) yield the following expression

(1 + krG(s))X2h(s) = e−d1sF (s)(H(s)− krG(s))X2h(s) + De(s) (3.13)

Out of which

X2h(s) = e−d1sF (s)(1 + krG(s))−1(H(s)− krG(s))X2h(s) + (3.14)

+ (1 + krG(s))−1De(s)

where it has been defined

De(s) = (1−H(s)F (s)e−sd1)(G(s)φω0(s) + X2h)− krF (s)H(s)G(s)U(s) (3.15)

A block diagram of this new representation is shown in Fig. 3.6. Notice that, this block diagram
has the same structure as the one shown in Fig.2.17.
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First it is necessary to state that the input (3.15) of the equivalent system is bounded. This based
on the fact that all elements of φω0(t) are bounded and periodic signals. this assumption implies
that φ0ω0(t) the first part of (3.15) is a bounded function, where

φ0ω0(t) , L −1[(1−H(s)F (s)e−sd1)G(s)φω0(s)]

because |e−jω0d1 | = 1 for all ω0 and F (s) = K/(τ1s + 1), H(s) = τ2s/(τ2s + 1) are a design
parameters and they are chosen stables. Notice that the exogenous input is affected by a block
transfer function (1 + krG(s))−1 ,then, under the assumption of the amitotic stability of (1 +
krG(s))−1G(s) (condition (ii)), the exogenous input L −1[(1+ krG(s))−1De(s)] is bounded, then
the input De(t) is bounded.
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Figure 3.6: Block diagram of the proposed repetitive-based controller.

Moreover, if the exogenous input is De bounded, BIBO stability of the overall system depends
on the BIBO stability of the input transfer function and the BIBO stability of the close loop system
shown in Fig 3.6. Since, (1 + krG(s))−1 = 1 − (1 + krG(s))−1G(s), by condition (ii) the input
transfer function is stable. To prove the bounded stability of the close loop system of the Fig. 3.6
formed by F (s)(1+krG(s))−1(H(s)−krG(s)) and esd1 , it is only necessary to fulfill the condition
(iii), since |esd1 | = 1, the result follows from the small gain theorem [44]. Consider that the norm
of F (s) is bounded by ||F (s)||∞ < 1 , where F (s) = K ∗ F̃ (s) and F̃ (s) = 1/τ1s + 1. Therefore,
condition (iii) can be reduced to

∥∥∥∥
H(s)− krG(s)
(1 + krG(s))

∥∥∥∥
∞
≤ 1 (3.16)

which holds based on the fact that

K

∥∥∥∥
1

τ1s + 1
H(s)− krG(s)
(1 + krG(s))

∥∥∥∥
∞

< K

∥∥∥∥
1

τ1s + 1

∥∥∥∥
∞

∥∥∥∥
H(s)− krG(s)
(1 + krG(s))

∥∥∥∥
∞

< 1

and considered that K can take values between 0 < K < 1.

∇∇∇

Moreover, to show that the BIBO stability condition (3.16) is fulfilled for the experimental
values used in CD-CD boost converter, the following Bode plot are shown.
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Figure 3.7: Bode plot of the BIBO Stability condition (3.16) for repetitive controller for a DC-DC
converter

3.4 Experimental results

The proposed controller shown in Fig. 3.4 has been tested in an experimental board of a boost con-
verter with parameters given in Table 3.1. In this experimental board a conventional non regulated
power supply using a full bridge diode rectifier with a 4700µF capacitor filter is used as a voltage
source. The voltage provided by this source is polluted mainly by harmonic components of 120 Hz
(the 2nd harmonic of 60 Hz). This harmonic distortion, as expected, increases for a higher current
demand. Moreover, the inductor current is sensed via a precision resistor of 0.05Ω connected in
series with the inductor, and a typical circuit SG3524 is used to generate the PWM signal.

Diode MBR1045
Power Mosfet IRF540
Inductor 200 µH
Capacitor 100 µF
Load resistor 12.5 or 25 Ω
Vin 17.6 v
VD 24 v

Table 3.1: Parameters of the boost converter.

The repetitive part of the compensator (contained in the inner loop) is implemented using analog
circuitry. For this purpose, the circuit presented in Fig.2.8 has been used, where the input variable
uin corresponds, in this application, to the capacitor voltage error x̃2, and the output yout is sent
to the gain block kr, as shown in Fig. 3.4. The delay time has been fixed to d1 = 8.33 ms for
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compensation of harmonics of f0 = 120 Hz. The main elements used for the implementation of the
delay line are given in Table 3.2. The value of K is fixed by R3, R4 and R5. A simple first order LPF
of the form 1/(R5C2s + 1) has been used, where the time constant has been set to R5C2 = 15.5µ

s, and the time constant of the HPF is fixed to τ2 = 70.5 ms which is selected as big as possible to
minimize the integral effect and without affecting the rest of the frequency response.

The tests performed include:

1. Enabling and disabling the harmonic compensation, that is, connecting and disconnecting
the repetitive controller contribution, respectively, while keeping a constant load resistance
R = 12.5Ω.

2. Step changes in load resistance between 12.5 Ω and 25 Ω to show the robustness of the
proposed controller against load variations.

IC 512 stage BBD MN3004
IC clock MN3101
potentiometer R1 20 KΩ
resistor R2 47 KΩ
capacitor C1 20 pF

Table 3.2: Elements used to implement the delay line.

Fig. 3.8 shows (from top to bottom) the responses of capacitor voltage x2, inductor current x1

and the DC component of the inductor reference current Id. In this figure the harmonic compensa-
tion is enabled after a given period of time. Notice that, the distortion in the output voltage capacitor
is considerably reduced. Fig. 3.9 shows the same responses in the case that the compensation is
disabled after a certain period of time.

Figure 3.10 shows (from top to bottom) the frequency spectrum of x2 without and during com-
pensation. Notice that, the harmonic component at 120 Hz and 240 Hz decreases about 20 dB while
the harmonic at 360 Hz decreases almost 10 dB, and the higher harmonics simply disappear. More-
over, it has been observed that the compensation of harmonic distortion is even more evident for
bigger load resistors. Fig. 3.11 the same frequency response but considering a load resistance of
R = 25 Ω.

Figure 3.12 shows (from top to bottom) the frequency spectrum of the inductor current x1 dis-
abling and enabling the compensation. As predicted by theory, the harmonic content of the inductor
current increases as a consequence of the application of the compensation, roughly speaking, it
is necessary to distort the inductor current in such a way to allow compensation in the capacitor
voltage x2.

Once the system is operating under harmonic compensation, i.e., with the proposed repetitive
scheme connected, the load is changed from 25 Ω to 12.5 Ω. Figure 3.13 shows (from top to bottom)
the transient response of voltage x2 and inductor current x1. Notice that, after a small transient the
voltage recuperates, in average, its desired value 24 V. In Fig. 3.14 the inverse process is performed,
that is, the load resistance is changed from 12.5 Ω to 25 Ω.
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Figure 3.8: Transient responses after enabling the harmonic compensation, with R = 12.5Ω. (From
top to bottom) Capacitor voltage x2, inductor current x1 and the inductor reference current Id.

Figure 3.9: Transient responses after disabling the harmonic compensation, with R = 25Ω. (from
top to bottom) Capacitor voltage x2, inductor current x1 and the inductor reference current Id.
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Figure 3.10: Frequency spectrum of capacitor voltage x2, with R = 12.5Ω. (top) Without harmonic
compensation, and (bottom) under harmonic compensation.

Figure 3.11: Frequency spectrum of capacitor voltage x2, with R = 25 Ω. (top) Without harmonic
compensation, and (bottom) under harmonic compensation.
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Figure 3.12: Frequency spectrum of inductor current x1, with R = 12.5Ω. (top) Without harmonic
compensation, and bottom under harmonic compensation.

Figure 3.13: Transient response for a load step change from R = 25Ω to R = 12.5Ω. (from top
to bottom) Capacitor voltage x2, inductor current x1 and DC component of the inductor reference
current Id.
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Figure 3.14: Transient response for a load step change from R = 12.5Ω to R = 25Ω. (from top
to bottom) capacitor voltage x2, inductor current x1 and DC component of the inductor reference
current Id.



Chapter 4

Boost-based PFC with harmonic
compensation

Summary
This chapter studies a repetitive-based controller for a power factor precompensator. The controller guarantees

voltage regulation with a power factor close to unity, despite of the presence of harmonic distortion in the source voltage

and uncertainties in the system parameters. A key point in the proposed solution is the expression of the model in terms

of the input current instead of the inductor current as usually done. The resulting controller is preserved as close as

possible to the conventional one, which is composed by the cascade interconnection of two controllers namely: inner and

outer control loops. It is shown that while the latter turns out to be a simple low pass filter plus and integration term,

the former is composed by a proportional gain plus a repetitive strategy actuating as a refinement term. It is shown that,

the repetitive scheme considered here is, in fact, equivalent to a bank of resonant filters, which has shown to be a useful

technique in harmonic compensation. The closed loop BIBO stability analysis of such an infinite dimensional system

is performed. Experimental results in a 400 W boost-based PFC, with a fixed point DSP-based implementation of the

proposed controller, are provided to assess the performance of the controlled system.

4.1 Introduction

In the past few years, there has been a growing research on the design and control of power factor
compensators (PFC). This is due to the fact that power converters are, generally speaking, an ubiq-
uitous power source whose applicability ranges from electrical appliances and digital computers to
industrial electronics and sophisticated communications equipment. This issue has been reflected
in several published works [54], [55], [56], [57] and [58] where different new topologies and clever
controllers have been proposed. It is clear from all these works that the control design of a PFC faces
a twofold problem. First, a controller should be designed to guarantee output voltage regulation,
and second, a power factor close to unity should be guaranteed. In the present work, the boost-based
PFC topology shown in Fig. 4.1 is considered, which is perhaps one of the most popular among
the different topologies, although it exhibits certain drawbacks, such as a slight deformation in the

51
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input current signal around the zero crossings. This PFC consists of a diode bridge aimed to rectify
the voltage coming from an AC power supply, and should deliver a regulated DC voltage using to
an associated boost converter.
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Figure 4.1: Switch-regulated boost-based PFC circuit.

Usually, the control design problem for this PFC topology is split in two loops, namely, the
inner and the outer loops. This idea is based on the assumption of decoupling between the inductor
current and the capacitor voltage dynamics due to the considerable difference between their time
scales, which allows to deal with each dynamics separately. The inner loop, also referred as the
current loop, is designed to guarantee the power factor requirement. This part of the controller
should guarantee a sort of tracking of the inductor current towards a reference current. Normally,
the reference current which is a scaled replica of the rectified source voltage is considered. As a
consequence, the controlled system is seen from the power supply as an equivalent resistor, which
holds even in the presence of distortion in the voltage source. The outer loop, also referred as
voltage loop, indirectly performs the regulation of the output voltage by computing the input current
reference amplitude. In the proposed controller, a low pass filter (LPF) has been added to the
proportional term to limit the bandwidth of the PI controller to prevent the reinjection of more
distortion.

The use of a system representation in terms of the input current, instead of the usual inductor
current, is instrumental for our developments. This allows us to treat the problem of harmonic con-
tents in the input voltage in a more natural way, and facilitates considerably the tracking objective.
In [4], a controller was obtained following adaptive techniques which gave, in principle, a stable and
robust nonlinear controller. Special attention was given to the inner control loop where, the inner
loop was composed of a proportional term plus a bank of resonant filters. Those resonant filters
actuated as a refinement term to guarantee perfect current tracking in steady state. In particular,
those resonant filters were tuned at the odd harmonics, which were the main components of the
distorted input voltage. However, notice that, there would be as many resonant filters as harmonic
components considered for compensation. This may represent a drawback, most of all in the case
of highly distorted input voltage signal. To address this issue, it is shown in the present chapter that,
the whole bank of resonators can be replaced by a simpler repetitive scheme while preserving a very
close performance. In particular, the negative feedback plus feedforward repetitive scheme has been
selected for implementation, since the harmonics under consideration are the odd. One of the main
contributions of the present chapter is to present a practical application of the repetitive scheme to
the boost-based PFC converter, and moreover, to show the connection between these two forms of
harmonic compensation. As in [4], the repetitive-based solution considers the main parameters of
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the system (the capacitance and the inductance) and the output load resistance as unknowns, and, as
already mentioned, it allows for harmonic distortion in the input voltage. Finally in this chapter, an
implementation of the controller have been performed for low power applications. The experimental
results are presented here to assess the performance of the controlled system.

4.2 Switch-regulated boost converter as a PFP

In this section, the control problem of the PFP is formulated. The scheme of the PFC circuit is
shown in Fig. 4.1. The differential equations describing the circuit dynamics are:

L
d

dt
iL = −uvC + vi

C
d

dt

(
v2
C

2

)
= uvCiL − v2

C

R
(4.1)

where iL and vC are the inductor current and capacitor voltage variables, respectively; notice that
iL = |ii| with ii = sign(ii)iL the input current (on the AC power supply side); vi(t) = sign(ii)vS

is the voltage measured at the diode bridge output; R represents the load resistance; C and L are
the capacitance and inductance of the circuit, respectively; δ, which takes values in the discrete set
{0, 1}, denotes the switch position function and acts as the control input, that is, for δ = 0 the
transistor Q1 is off, while for δ = 1 the transistor Q1 is on. For the controller design purposes
the averaged model is considered, i.e., the control input u is considered as a continuous signal
representing the slew rate of a PWM switching sequence of a relative high frequency (u = 1 − d
where d is the duty ratio of such a PWM switching sequence).

According to [4], to treat the problem of harmonic content in the input voltage vS in a more
natural way, i.e., to facilitate the current tracking problem, it is very convenient to represent the
system model in terms of the input current, instead of the usual inductor current. For this purpose,
the following coordinate transformations are used

ii = sign(ii)iL , vi = sign(ii)vS , e = sign(ii)uvC

where sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and sign(x) = 0 if x = 0.

Thus, in open sets excluding the zero crossing points, i.e., ∀t such that ii(t) 6= 0, the model can
be rewritten as

L
d

dt
ii = −e + vS (4.2)

C
d

dt
z = eii − 2z

R
(4.3)

where e represents the actual control input and z = vc
2

2 .

The twofold control objective consists in:

(i) First, to guarantee a power factor near unity, the input current ii should follow a signal pro-
portional (same shape and phase) to vS , i.e.,

ii → i∗i = gvS (4.4)
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where gain g represents the conductance of the equivalent resistor seen by the power supply
for a given load resistance R, and under a unitary power factor functioning.

It is usual in practice to redefine gain g by introducing a normalization factor 1/v2
S,RMS as

shown below

g =
G

v2
S,RMS

(4.5)

where G is a gain yet to be defined and vS,RMS is the RMS value of vS . This simple transfor-
mation is very useful in the implementation process as it prevents numerical errors. However,
for the analysis it is more convenient the use of g.

(ii) Second, the DC component of output vC should be driven to some constant desired value
Vd > Vi, where Vi is the peak value of the input voltage vi (rectified voltage). Here and in
what follows the DC component of a signal x(t) is considered as the average of the signal
taken over a period of the fundamental, that is, 1

T

∫ t
(t−T ) x(τ)dτ .

It is assumed that the system parameters L, C and the load resistance R are unknown quantities
that may vary slowly or in steps due to changes in the system. Moreover, it is assumed that the
source voltage can be described as a Fourier series

vS =
∑

k∈H
ρ>k VS,k (4.6)

where

ρk =
[

cos(kω0t)
sin(kω0t)

]
, VS,k =

[
V r

S,k

V i
S,k

]

Numbers V r
S,k, V i

S,k ∈ IR are the kth harmonic coefficients of the Fourier series description of the
source voltage , and ω0 represents the fundamental frequency considered as a known constant. The
harmonic coefficients are assumed unknown constants (or slowly varying) and H = {1, 3, 5, 7, ...}
is the set of indexes of the considered harmonic components, in this case the odd harmonics. Super-
scripts (·)r and (·)i are used to distinguish the coefficients associated to cos(kω0t) and sin(kω0t),
respectively.

4.2.1 Inner control loop

In this subsection, a controller is designed which guarantees tracking of ii towards its desired ref-
erence i∗i computed as in (4.4). It is straightforward to show [58] that the following controller
stabilizes subsystem (4.2), and guarantees that ii tracks its desired reference i∗i

e = −L
d

dt
i∗i + vS + k1ĩi (4.7)

where ĩi = ii − i∗i and k1 > 0 is a design parameter.

Notice that, both the time derivative of i∗i and the parameter L are required to implement the
above controller. In what follows it is shown how this term can be estimated by means of adaptation
using the description in Fourier series (in its harmonics components) of the source voltage vS .
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Using (4.4) and (4.6), the term containing the time derivative can be developed as follows

L
d

dt
i∗i = L (gv̇S + ġvS) =

∑

k∈H
ρ>k L (ġ − kω0gJ ) VS,k (4.8)

where it has been used the fact that

v̇S = −
∑

k∈H
kwρ>k J VS,k , J = −J > =

[
0 −1
1 0

]

Now, by defining the vector

Φk = L (ġ − kω0gJ ) VS,k , k ∈ H (4.9)

which for each k ∈ H practically converges towards a constant1, then (4.8) can be further reduced
to

L
d

dt
i∗i =

∑

k∈H
ρ>k Φk

where vector Φk is unknown. Thus, it is proposed to use an estimate Φ̂k in the control expression
(4.7) above, this yields the controller

e = −
∑

k∈H
ρ>k Φ̂k + vS + k1ĩi (4.10)

Subsystem (4.2) in closed loop with controller (4.10) yields the following error dynamics

L
d

dt
ĩi =

∑

k∈H
ρ>k Φ̃k − k1ĩi (4.11)

where Φ̃k
4
= Φ̂k − Φk.

The following energy storage function is used to deal with the terms associated with the error
signals Φ̃k

W =
L

2
ĩ2i +

∑

k∈H

1
2γk

[(
Φ̃r

k

)2
+

(
Φ̃i

k

)2
]

with a time derivative along the trajectories of (4.11) given by

Ẇ = −k1ĩ
2
i + ĩi

∑

k∈H
ρ>k Φ̃k +

∑

k∈H

˙̃Φ>k Φ̃k

γk

which is forced to be negative semidefinite if the error on the estimates is constructed according to
the following adaptive laws

˙̂Φr
k = −γk ĩi cos(kω0t) , k ∈ H (4.12)

˙̂Φi
k = −γk ĩi sin(kω0t) , k ∈ H (4.13)

1Ideally g and ġ should vary slowly and take constant values in the steady state.
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or in a more compact form
˙̂Φk = −γk ĩiρk , k ∈ H (4.14)

where γk > 0, k ∈ H are design parameters.

Since W is radially unbounded, and Ẇ is negative semi-definite then ĩi ∈ L2
⋂L∞ and Φ̃k ∈

L∞ for every k ∈ H. From (4.11) ˙̃ii ∈ L∞. Now, since ĩi ∈ L∞ and ˙̃ii ∈ L∞, then ĩi is uniformly
continuous, which together with the fact that, ĩi ∈ L2 imply that, ĩi → 0 asymptotically. Out of this
Φ̃p

k, Φ̃n
k equal constants ∀k ∈ H, however, for ĩi = 0 and from (4.11)

∑
k∈H ρ>k Φ̃k = 0. Therefore,

the only possible solution is Φ̃p
k → 0 and Φ̃n

k → 0.

The controller (4.10) with adaptive laws (4.14) can be further simplified using the following
transformations

Ψr
k = −ρ>k Φ̂k , k ∈ H (4.15)

Ψi
k = −ρ>k J Φ̂k , k ∈ H (4.16)

The controller (4.10) is reduced to

e =
∑

k∈H
Ψr

k + vS + k1ĩi (4.17)

and the adaptive laws can be rewritten as

Ψ̇r
k = γk ĩi − kω0Ψi

k , k ∈ H (4.18)

Ψ̇i
k = kω0Ψr

k , k ∈ H (4.19)

Expressing the dynamic extension (the adaptations) in the form of transfer functions ĩi 7→ Ψr
k

yields
Ψr

k =
γks

s2 + k2ω2
0

ĩi , k ∈ H (4.20)

Remark 4.1 The previous resulting compensator has a very similar structure as those controllers
presented in [59] and [60], which include a bank of resonant filters as the main harmonic compen-
sation element, but they were derived intuitively following the internal model principle approach.
¤

A. Discussion on the repetitive controller

Assuming that an infinite number of odd harmonics is considered for compensation, then a controller
comprising the following infinite sum of resonant filters would be required.

∞∑

k=1

γks

s2 + (2k − 1)2ω2
0

=
2ω0

π

∞∑

k=1

2s

s2 + (2k − 1)2ω2
0

(4.21)

where γk = 4ω0/π, k ∈ {1, ..., ∞} has been fixed. An interesting observation here is that, out
of the selection of that precise γk, the expression on the RHS of (4.21) has the following equivalent
expression in terms of the hyperbolic tangent [43].
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2ω0

π

∞∑

k=1

2s

s2 + (2k − 1)2ω2
0

= tanh
(

sπ

2ω0

)

It is described in Chapter 2 that the hyperbolic tangent can be also expressed as

tanh
(

sπ

2ω0

)
=

1− e
− sπ

ω0

1 + e
− sπ

ω0

=
1− e−sd2

1 + e−sd2
(4.22)

where d2 = π/ω0 and represent the delay time. The idea is thus, to substitute the infinite bank of
resonant filters tuned at odd harmonics by the negative feedback plus feedforward repetitive scheme
(4.22), with the appropriate modifications discussed in Chapter 2, Section 2.3, i.e., introduction of a
gain 0<K <1 and a low pass filter F (s) = 1/(τs + 1). Then the inner loop can thus be rewritten
as follows

e = k1ĩi + vS +
1− F (s)Ke

− sπ
ω0

1 + F (s)Ke
− sπ

ω0

(4.23)

4.2.2 Outer control loop

Direct substitution of controller (4.10) and (4.14) in the second subsystem (4.3), yields the following
system (in terms of the reference error)

C ˙̃z = −ii
∑

k∈H
ρ>k Φ̂k + iivs + iik1ĩi − 2z

R
(4.24)

where z̃ = z − V 2
d
2 .

As pointed out before, it is assumed that the dynamics of subsystem (4.11) are much faster than
the dynamics of subsystem (4.24), and moreover, that the control law e is bounded, which is true if
all terms Φ̂k (∀k ∈ H) are bounded. Thus, in a relatively short time, ĩi = 0 and Φ̂ = Φ, and the
model reduces to

C ˙̃z = −gvS

∑

k∈H
ρ>k Φk + gv2

S − P0 (4.25)

where P0 represents the output power load, it may be a simple constant power source, it may also
include the effect of a load resistance2 or simply a constant current source.

Since the main interest in the outer control loop of a PFC is to regulate in average the output
capacitor voltage, then the control objective focus on the dynamics of the DC component of z̃. As
a consequence the higher order harmonics at the RHS of the above equation (4.25) are neglected.
And then a controller is designed with a relatively short bandwidth to attenuate the affects of these
neglected higher order harmonics. This limitation directly affects the dynamical response of the
system, as the DC voltage responds slowly.

To extract the DC component, a moving average function3 is applied to the RHS of (4.25),
which yields

C ˙̃z = −〈gvS

∑

k∈H
ρ>k Φk〉0 + g〈v2

S〉0 − P0 (4.26)

2In most works P0 = 2z
R

is considered.
3The moving average function of a signal x(t) is defined as 〈x(t)〉0 = 1

T

R t

t−T
x(τ)dτ .
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where 〈v2
S〉0 is nothing else than the square of the RMS value of vS , i.e., v2

S,RMS = 〈v2
S〉0.

The first term on the RHS can be rewritten, using (4.6) and (4.9), as

〈gvS

∑

k∈H
ρ>k Φk〉0 = 〈

∑

k∈H
gρ>k VS,k ·

∑

k∈H
ρ>k LġVS,k〉0

−〈
∑

k∈H
gρ>k VS,k ·

∑

k∈H
ρ>k Lgkω0J VS,k〉0 (4.27)

Notice that, the second term at the right hand side of (4.27) will contain the products of orthog-
onal rotating vectors at the same angular speed, plus harmonics components of higher order, thus
its DC component will be zero. On the other hand, the first term on the RHS contains harmonic
components of higher order plus products of parallel rotating vectors which will produce squares of
sinusoidal functions (and thus a DC component) plus higher order harmonics. Therefore, (4.27) can
be reduced to

〈gvS

∑

k∈H
ρ>k Φk〉0 = Lgġ

∑

k∈H
〈
(
ρ>k VS,k

)2
〉0 = Lgġv2

S,RMS

Finally, the error model can be written as

C ˙̃z = − LGĠ

v2
S,RMS

+ G− P0 (4.28)

where the equivalence (4.5) has been used.

Notice that, the term L/v2
S,RMS is extremely small, and thus the first term on the RHS of system

(4.28) can be neglected as far as G varies slowly. Following this idea, it is proposed to compute G
as

G = −kiξ − kpζ (4.29)

ξ̇ = z̃ (4.30)

τ ζ̇ = z̃ − ζ (4.31)

where kp, ki and τ are positive design parameters.

The form of this controller is motivated from the structure of a simple PI, where ζ represents
the signal z̃ filtered by means of a first order filter. It has been observed that direct use of z̃ in
the computation of G (using a normal PI) causes the introduction of more harmonics which will
in principle deform the shape of reference i∗i causing the degradation of the power factor. The
controller (4.29)-(4.31) can be rewritten in the form of a transfer function having as input z̃ and
output G as follows

G = −ki

s
z̃ − kp

τs + 1
z̃ (4.32)

where s represents the complex Laplace variable.

Summarizing, in Fig. 4.2 shows the block diagram of the proposed repetitive-based controller,
where the original bank of resonant filters has been replaced by the proposed negative feedback
repetitive scheme. Hence, similar to the original bank of resonant filters, the repetitive scheme ap-
pears as a refinement term to compensate for the harmonic distortion, in this case the odd harmonics.
Notice that, a gain kr > 0 has been also included. The purpose of this gain is to have control over
the gain produced by the peaks, and to somehow enlarge their bandwidth, which serves to improve
the robustness with respect to frequency variations.
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Figure 4.2: Block diagram of the proposed repetitive-based controller for the PFC.
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Figure 4.3: Block diagram of the input current error dynamics in closed-loop with the repetitive
scheme.

In what follows, a BIBO stability study considering the repetitive scheme is performed based
on the well known small gain theorem. The study focuses on the input current dynamics ii because,
these are the dynamics where the harmonic distortion is present, and where the repetitive scheme
is applied. Following the decoupling assumption, the current dynamics (4.2) are considered as an
independent closed loop system. It is assumed that the damping k1ĩi and the vs cancellation terms
in (4.23) have already been applied to the ii dynamics (4.2), remaining to consider the harmon-
ics compensation term, i.e., the repetitive scheme. This yields the following input current error
dynamics

L˙̃ii = −φ̂ + φ− k1ĩi (4.33)
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where φ(t) represents a periodical disturbance composed of higher harmonics of the fundamental at
ω0, and φ̂(t) represents the control signal computed with the proposed repetitive scheme as shown
in the block diagram of Fig. 4.3. A first order LPF of the form F (s) = 1/(τ1s + 1) has been
considered, which is necessary to limit the bandwidth of the controller (see Chapter 2, Fig. 2.3).
Moreover, both the gain K and the LPF have been concentrated in a single term, that is,

F̃ (s) =
K

τ1s + 1
(4.34)

Let us discuss the error convergence condition or stability condition for the repetitive control
system by considering the BIBO stability. The following proposition states the stability result.

Proposition 4.2 The system in Fig. 4.4 is BIBO stable from input φ to output ĩi, if the following
conditions are fulfilled.

(i) F (s) is stable

(ii) (1 + krG(s))−1krG(s) is stable

(ii)
∥∥∥(1 + krG(s))−1F̃ (s)(krG(s)− 1)

∥∥∥
∞

< 1

¤

Proof. A similar procedure as in Chapter 2 Sec. 2.5 is followed to find an equivalent closed-loop
system for the system shown in Fig. 4.3. The equivalent block diagram is shown in the Fig. 4.4,
where the following relations are obtained.

ĩi(s) = −e−sd2G̃(s)̃ii(s) + D(s) (4.35)

where G̃(s) is equal to

G̃(s) = (1 + krG(s))−1F̃ (s)(krG(s)− 1) (4.36)

and, the input signal D(s) is given by

D(s) = (1 + F̃ (s)e−sd2)(G(s)φ(s) + ĩi(s))− 2krF̃ (s)G(s)U(s) (4.37)

The plant is defined as G(s) = 1/(Ls + k1) which is a stable transfer function, and ĩi and U
represent the initial conditions of ĩi and esd2 , respectively. Suppose that all elements of φ(t) are
bounded and continuous periodic signals. This assumption yield, that φ0(t) ,the first part of (4.37),
is an bounded function, where

φ0(t) , L −1[(1 + F̃ (s)e−sd2)φ(s)]
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because |e−sd2 | = 1, and F̃ (s) = K/(τ1s + 1), is a design parameter and it is chosen stable. This
fact, in addition whit the fact that G(s) is stable for all positive L, k1 implies that the exogenous
input L −1[(1 + krG(s))−1]D(s) is bounded under the assumption of asymptotic stability of (1−
krG(s))−1krG(s).

G(s)

D(s)


s
d

2


-
e


(1+K

r

G(s))
-
1


i
i

~


~


Figure 4.4: Equivalent system of the block diagram shown in Fig. 4.3 for analysis purposes.

Based on condition (ii) it is possible to show that the input transfer function is stable since,
(1 − krG)−1 = 1 − (1 + krG)−1krG then (1 + krG)−1 is stable. To prove the BIBO stability of
the close loop system of the Fig. 4.4 formed by e−sd2 and G̃(s) it is only necessary to fulfill the
condition (iii), since |esd2 | = 1, the result follows from the small gain theorem [44]. Notice that the
condition (iii) can be reduces as:

K

∥∥∥∥
1

τ1s + 1
s + 1/τa

s + 1/τb

∥∥∥∥
∞

< K

∥∥∥∥
1

τ1s + 1

∥∥∥∥
∞

∥∥∥∥
s + 1/τa

s + 1/τb

∥∥∥∥
∞

< 1 (4.38)

where 1/τa = (kr − k1)/L and 1/τb = (kr + k1)/L . Notice that, ‖1/(τ1s + 1)‖∞ = 1 where,
the parameter τ1 is a design parameter. As stated above, k1 and kr are selected positive, hence,
|1/τa| < |1/τb|, therefore

∥∥∥∥
s + 1/τa

s + 1/τb

∥∥∥∥
∞
≤ 1 (4.39)

Condition (iii) is fulfilled if 0 ≤ K < 1.

∇∇∇

In other to show that condition (iii) is fulfilled, that is, the infinite norm in 4.39 is less or equal
to one, the Bode plot for (s + 1/τa)/(s + 1/τb) is shown in Figs.4.5 and 4.6. The gains for this
simulation have been chosen as: k1 = 8 and the value of kr is varied from 2 to 20, which include
the values that are used in the experimental results shown below.

4.4 Experimental results

To show the performance of the proposed controller, a boost-based PFC converter has been designed
using the parameters shown in Table 4.1. The PFC is feed by a power supply of 120 VRMS , at a
fundamental frequency ω0 = 377 rad/s (f0 = 60 Hz). It has been designed to deliver an output
voltage of desired average value Vd = 375 Volts, and a power of 400 W. To show the transient re-
sponse to load variations, the load resistance is commuted between 500Ω and 850Ω. The switching
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Figure 4.5: Bode plot of (s + 1/τa)/(s + 1/τb) for diferent values of kr to show that their norm
is always less than or equal to 1. The Bode plot of 1/(τ1s + 1) is also included where the cutoff
frequency of the LPF is fixed to 12 KHz, K1 = 8 and Kr is varied from 2 to 8.
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frequency of the PWM is fixed to 24 KHz. A fixed point DSP model TMS320LF2407 has been used
to implement the controller with a sampling rate fixed to fDSP = 24 kHz. Notice that, the analog
implementation of the controller could also be possible.

The time delay has been fixed to π/ω0 = 1/(2f0) = 1/120 = 8.33 ms to deal with the odd
harmonics of f0 = 60 Hz. A discrete pure delay of the form z−d has been used to implement the
delay line in the repetitive scheme. Therefore, a d = 200 has been selected to produce the required
delay time, i.e., 200/24000 = 8.33 ms for a sampling frequency of 24 kHz. The rest of the control
parameters have been fixed to kp = 0.0003, ki = 0.045, τ = 0.001, k1 = 8, kr = 8, and K = 0.9.
These parameters have been tuned by trial and error using simulations.

Diode MUR1560
Power Mosfet IRFP22N60K
Inductor 8 mH
Capacitor 700 µF
Load resistor 500 Ω, 850 Ω

Table 4.1: Elements used to implement the boost-based PFC converter.

The source voltage vS and the magnitude of the magnitude of its FFT are shown in Fig. 4.8.
Notice that, this signal is composed of odd harmonics of the fundamental, i.e., 1st, 3rd, 5th, 7th,
etc. Hence, the negative feedback repetitive compensator fits perfectly well in this application as it
is able to compensate odd harmonics.

The tests performed include steady state responses with and without the harmonic compensa-
tion, that is, connecting and disconnecting the repetitive scheme contribution, respectively. The
frequency spectrum is included in some cases to exhibit the harmonic content of the signals. Tran-
sient responses during step changes in the load resistance between 500 Ω and 850 Ω, and back are
also included to show the robustness of the proposed controller against load variations.

Figure 4.7 shows the transient response of the output voltage vC and the gain G during a load
step change from R = 850 Ω to R = 500Ω and back. Notice that, both signals converge towards
constants, indeed, vC returns to the desired 375 Volts, while G increases its value for a higher load
since it is proportional to the dissipated power.

Figure 4.9 shows that, in the steady state and under the proposed controller, the input current ii
(middle plot) follows very close the shape of the source voltage vS (top plot), and therefore the input
current error ĩi = (ii − i∗i ) (bottom plot) is maintained very close to zero. As a consequence, Fig.
4.10 shows that the input current (bottom plot) has a similar harmonic content as the input voltage
vS (top plot).

Figure 4.11 compares the input current responses under the harmonic compensation, i.e., with
the repetitive scheme connected (top plot), and in the case that only a proportional term is used, i.e.,
with the repetitive scheme disconnected (bottom plot).
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Figure 4.7: Time responses of (top) voltage vC (y-axis 100 V/div, x-axis 2 s/div), and (bottom) G
for a load step change from R = 850Ω to R = 500Ω and back (y-axis approx. 250 W/div, x-axis 2
s/div).

Figure 4.8: (top) Source voltage vS (y-axis 100 V/div, x-axis 4 ms/div) and (bottom) harmonic
content of vS (y-axis 20 dB/div, x-axis 125 Hz/div).
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Figure 4.9: (from top to bottom) Source voltage vS(t) (y-axis 100 V/div, x-axis 4 ms/div), input
current ii(t) (y-axis 2 A/div, x-axis 4 ms/div), and input current error ĩi(t) (y-axis 2 A/div, x-axis 4
ms/div), for a load resistance R = 500Ω.

Figure 4.10: Harmonic content of (top) the source voltage vS(t) (y-axis 20 dB/div, x-axis 125
Hz/div) and (bottom) the input current ii(t) (y-axis 20 dB/div, x-axis 125 Hz/div) under the pro-
posed compensator at a load resistance R = 500 Ω.
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Figure 4.11: Time responses of (from top to bottom) input current reference i∗i (t) (y-axis 4 A/div,
x-axis 4 ms/div), input current ii(t) with harmonic compensation (y-axis 4 A/div, x-axis 4 ms/div),
and input current ii(t) without harmonic compensation (y-axis 5 A/div, x-axis 4 ms/div), all of them
at a load resistance R = 500Ω.



Chapter 5

A repetitive controller for a half bridge
active filter

Summary
This chapter presents a repetitive-based controller for an active filter to compensate reactive power and current

harmonic distortion in a single phase system, guaranteeing a power factor close to unity. The half-bridge topology is
selected for the active filter consisting of a single branch of two switches plus a branch of two capacitors on the DC
side (split DC-capacitor), thus reducing the number of switching devices. The repetitive scheme consists in a negative
feedback array plus a feedforward path. In addition, the controller guarantees the regulation and balance of both capacitors
voltages. Experimental results are presented to show the performance of the proposed solution.

5.1 Introduction

The use of electronic equipment drawing highly distorted currents has increased considerably, caus-
ing the lowering of the PF. A typical solution for this issue is the use of a power factor correction
converter (PFC), which is a system designed to draw sinusoidal current in the source side [4, 56, 57].
This converter substitutes the classical uncontrolled diode-based rectifier commonly found in the
power supply of many domestic appliances.

An alternative solution that does not require the redesign of the voltage supply consists in the
application of the active filter principle. In this case, an active filter is connected in parallel to the
nonlinear load, i.e., the diode-based voltage supply, to inject the distorting harmonic components
demanded by the load current. As a result the effect of harmonic distortion due to the nonlinear load
can be practically eliminated from the source line. An interesting solution is shown in [61], where
a bidirectional DC-DC converter referred as harmonic reducer (HR) is connected in parallel next to
the uncontrolled rectifier, i.e. on the DC side. However, a decoupling diode at the load side is also
required to guarantee a good performance of the HR. The authors show that, placing such an active
filter on the DC side reduces to two the required switches, in contrast to the four switches used in a
full-bridge active filter connected on the AC side.

67
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Following with the active filtering idea, the present work shows the use of a single phase shunt
active filter connected on the AC side for reactive power and harmonic distortion compensation
in the line current. The topology of the active filter used here consists of a half-bridge converter,
thus reducing the number of switching devices to two. In return, two capacitors appear on the DC
side with their point of common connection grounded, thus maintaining the implementation fairly
simple. Moreover, this topology does not require the decoupling diode used in [61], and thus, it is
not necessary to make any modification to the power supply.

A controller is proposed for this half-bridge topology to, first, compensate reactive power and
current harmonic distortion and, second, to guarantee regulation and balance of both DC-capacitors
voltages, simultaneously. It is shown that, the balancing problem can be solved by the introduction
of an extra control input that modifies the current reference signal. This extra control input has
only effect during the transient, and practically vanishes in the steady state. Moreover, a negative
feedback plus feedforward repetitive structure is introduced for the compensation of reactive power
and harmonic distortion. This repetitive scheme acts only on the odd harmonics. It is thus expected
that, the negative structure based controller will provide better performance and cleaner responses.

The complete controller is composed by the cascade interconnection of a current and a voltage
loop. The repetitive scheme appears as a refinement term in the current loop, aimed to compensate
the harmonic distortion. In this dissertation, an analog implementation has been selected for the
overall controller. Finally, experimental results are provided to assess the performance of the control
law.

5.2 System Description

In the present chapter the single phase active filter shown in Fig. 5.1 is considered. The model of
this system is described by the equations (5.1)-(5.3):

Lẋ1 = L
d

dt
i0 − (2u− 1)

x2

2
− x3

2
+ vS (5.1)

Cẋ2 = (2u− 1)(x1 − i0)− x2

R
(5.2)

Cẋ3 = (x1 − i0)− x3

R
(5.3)

e = ux2 +
x3 − x2

2
= u(vC1 + vC2)− vC2 (5.4)

where x1 , iS is the line current, i.e., the current observed by the source, x2 , (vC1 + vC2)
the sum of the capacitors voltage, and x3 , (vC1 − vC2) their difference which is a measure
of the unbalance; i0(t) represents the load current and vS(t) the line voltage; i(t) is the injected
current. The parameter L represents the inductance of the input inductor and C the capacitance
of the DC-side capacitors. It is assumed that both capacitors have the same capacitance. Notice
that, both switching devices work in a complementary way. The switch position function δ takes
values in the set {0, 1}, that is, for δ = 1 the upper switch is turned on, while for δ = 0 the lower
switch is turned on. For control design purposes, an averaged model is considered instead, therefore
the switching position function is replaced by a continuous variable u which represents the duty
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ratio of a PWM (at a relatively high switching frequency) generating the switching sequence δ.
Variable u is considered as the control input taking values in the interval [0, 1]. The injected voltage
is represented by e. Switching and other losses are collected and modelled as unknown constant
resistive elements R.
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Figure 5.1: Single phase half bridge shunt active filter.

The control objectives can be associated to the design of the following three control loops:

(i) A current tracking control loop is designed to guarantee the tracking of the line current towards
a reference current signal proportional to the line voltage, i.e., x1 → x∗1, in other words, the same
apparent resistance is observed by the voltage source, which is equivalent to have a power factor
close to unity. The current reference is computed as

x∗1 = (G/v2
S,RMS)vS − ζ (5.5)

where the scalar variable G/v2
S,RMS represents the apparent conductance, vS,RMS is the RMS value

of vS , and ζ is used as an extra control input aimed to balance the capacitors voltage. Notice that, ζ
modifies the current reference signal during the transient, however, it vanishes in the steady state as
will become clear later. The simple and useful normalization G/v2

S,RMS prevents G of taking very
small values, which may cause further distortion due to numerical errors.

(ii) A regulation control loop drives the sum of the capacitors voltages towards its desired constant
reference Vd, that is, x2 → Vd. Regulation of these voltages sum is equivalent to guarantee that
enough energy has been stored in the capacitors for the correct fulfillment of the previous objective.
Out of this control loop, a value for the scalar G is obtained, which is required to construct the
reference x∗1 as stated above.

(iii) A balancing control loop forces the difference of the capacitors voltages to reach zero (at least
in average), i.e., x3 → 0, in other words, guarantees convergence of both capacitors voltages to the
same constant value.

General assumptions:
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A1. [decoupling assumption] It is assumed that, the inductor current dynamics are faster than
the capacitor voltage dynamics. Thus based on the time scale separation principle, the control design
is split in two parts: a current control loop and a voltage control loop.

A2. The load current i0 and source voltage vS are periodic signals that contain higher odd
harmonics of the fundamental frequency ω0 = 2πf0, which is considered as a known constant, and
have the following Fourier series description.

vS =
∑

k∈H
ρ>k VS,k , i0 =

∑

k∈H
ρ>k I0,k (5.6)

where

ρk =
[

cos(kω0t)
sin(kω0t)

]
, VS,k =

[
V r

S,k

V i
S,k

]
, I0,k =

[
Ir
0,k

Ii
0,k

]

Numbers Ir
0,k, Ii

0,k, V r
S,k and V i

S,k ∈ IR are the kth harmonic coefficients of the Fourier series de-
scription (also referred as the phasors) of the load current and source voltage, respectively. The har-
monic coefficients are assumed to be unknown constants (or slowly varying) and H = {1, 3, 5, ...}
is the set of indexes of the considered odd harmonic components. Superscripts (·)r and (·)i are used
to distinguish the coefficients associated to cos(kω0t) and sin(kω0t), respectively.

A3. It is assumed that, the system parameters L, C and R are unknown positive constants.
However, a nominal value of this parameters is required for the tuning process of the controller.

5.3 Controller design

To facilitate the control design, it is more convenient to rewrite the model (5.1)-(5.3) using the
following coordinate transformations ε , (2u− 1)x2, z2 , x2

2/2, which yields

Lẋ1 = L
d

dt
i0 − ε

2
− x3

2
+ vS (5.7)

Cż2 = (x1 − i0)ε− 2z2

R
(5.8)

Cẋ3 = (x1 − i0)− x3

R
(5.9)

where ε represents the actual control input. The regulation objective becomes now z2 → V 2
d
2 .

5.3.1 Inner control loop

The design starts with the inner loop controller. In this case, an adaptive technique is proposed
to cancel out a selected group of harmonic components of the disturbance. The idea behind the
adaptation is to estimate the frequency domain quantities of the periodic disturbances so they can be
cancelled. These adaptations are then reduced, by suitable transformations, to a bank of harmonic
oscillators. As already shown in previous chapters, this infinite bank of harmonic oscillators tuned
at odd harmonics is equivalent to a negative feedback plus feedforward path repetitive scheme.
Therefore, the original bank of harmonic oscillators can be replaced for this fairly simple algorithm.
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If the parameters are fully known, case the following controller stabilizes subsystem (5.7) and
guarantees that x1 tracks its desired reference x∗1.

ε = 2
(
−x3

2
+ vS + k1x̃1 − φ

)
(5.10)

where x̃1 , x1 − x∗1, k1 > 0 is a design parameter, and φ , L d
dt(x

∗
1 − i0), which, based on

assumption A1, can be considered as a harmonic disturbance and thus it can be expressed as

φ =
∑

k∈H
ρ>k Φk (5.11)

According to assumptions A2, G is considered in the current dynamics as a constant and thus,
Φk (k ∈ H) can also be considered as an unknown constant. In what follows, it is shown how this
term can be estimated by means of adaptation.

Based on the structure of (5.10), the following controller is proposed, where the disturbance has
been replaced by its estimate according to (5.11)

ε = 2

(
−x3

2
+ vS + k1x̃1 −

∑

k∈H
ρ>k Φ̂k

)
(5.12)

Subsystem (5.7) in closed-loop with controller (5.12) yields the following error dynamics

L ˙̃x1 = −k1x̃1 +
∑

k∈H
ρ>k Φ̃k (5.13)

where Φ̃k
4
= Φ̂k − Φk for every k ∈ H.

The adaptive laws to reconstruct the estimates Φ̂k are obtained by proposing the following en-
ergy storage function

W =
L

2
x̃2

1 +
∑

k∈H

1
2γk

||Φ̃k||2

where γk > 0 is a design parameter. The time derivative of W along the trajectories of (5.13) is
given by

Ẇ = −k1x̃
2
1 + x̃1

∑

k∈H
ρ>k Φ̃k +

∑

k∈H

˙̃Φ>k Φ̃k

γk

which is made negative semidefinite by constructing the estimates according to the following adap-
tive law

˙̂Φk = −γkx̃1ρk , k ∈ H (5.14)

Given that W is radially unbounded and Ẇ is negative semi-definite, then x̃1 ∈ L2
⋂L∞ and

Φ̃k ∈ L∞ for every k ∈ H. From (5.13) ˙̃x1 ∈ L∞. Now, since x̃1 ∈ L∞ and ˙̃x1 ∈ L∞, then
x̃1 is uniformly continuous, and given that, x̃1 ∈ L2 imply that, x̃1 → 0 asymptotically. Out of
this Φ̃p

k, Φ̃n
k equal constants ∀k ∈ H, however, for x̃1 = 0 and from (5.13)

∑
k∈H ρ>k Φ̃k = 0.

Therefore, the only possible solution is Φ̃p
k → 0 and Φ̃n

k → 0.
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The controller (5.12) with adaptive laws (5.14) can be further simplified using the following
transformations

φk = ρ>k Φ̂k , k ∈ H (5.15)

ψk = ρ>k J Φ̂k , k ∈ H (5.16)

which applying a similar procedure that in Sec. 4.2.1 yields the expression

ε = 2

(
−x3

2
+ vS + k1x̃1 +

∑

k∈H

2γks

s2 + k2ω2
0

x̃1

)
(5.17)

where s is the complex Laplace variable.

Notice that, harmonic oscillators tuned at odd harmonics have come out, which are aimed to
compensate harmonic distortion containing mainly odd components, thus confirming the internal
model principle [35].

A. Substitution of the bank of harmonic oscillators by the repetitive scheme

In equation (2.6) of Chapter 2, an equivalence between the previous bank of harmonic oscillators
tuned at odd harmonics and the negative feedback plus feedforward path repetitive scheme was
established. Therefore, it is proposed to replace the bank of harmonic oscillators by such a repetitive
scheme, which will, in principle, reduce considerably the implementation effort. After substitution
of the bank of harmonic oscillators by the repetitive scheme, the inner control loop can be rewritten
as

ε = 2

[
k1x̃1 + vS − x3

2
+ kr

(
1−Ke

− sπ
ω0

1 + Ke
− sπ

ω0

)
x̃1

]
(5.18)

Notice that, a gain kr has been introduced in the repetitive scheme to allow additional control
over the gain produced in the resonance peaks. The block diagram of the inner loop (tracking)
controller is shown in Fig. 5.2.

Notice that, the BIBO stability analysis of the proposed repetitive-based controller can be study
in the same way as in Chapters 3 and 4, where an equivalent representation can be found and the
stability proof is developed from Preposition 2.3. For this purpose, only the inner loop is considered,
based upon the decoupling assumption A1.

5.3.2 Voltage control loops

A. Voltage balance

In what follows, according to the decoupling assumption A1, it is assumed that in a relatively short
time x1 = x∗1 = (G/v2

S,RMS)vs − ζ, and Φ̂ = Φ. Therefore, subsystem (5.9) can be rewritten as

Cẋ3 = (G/v2
S,RMS)vS − ζ − i0 − x3

R

which is a first order linear system perturbed by a harmonic distortion.
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As stated above, the objective is to regulate x3 to zero by means of the extra control input ζ.
However, ζ is a term affecting directly the current reference i∗S as shown in (5.5). Therefore, it
would be interesting to propose a ζ that tends to zero in the steady state. Notice that, introduction
of an integral effect is not recommended since it may introduce a DC offset in the current reference,
which should be, in principle, a non biased periodical signal in the steady state. In fact, these two
requirements cannot be fulfilled completely. In what follows, a controller that keeps the trajectories
of both x3 and ζ inside a ball containing the origin is proposed. This controller consists of a simple
damping term with limited bandwidth, which improves the low pass filtering capability.

ζ = kdη , τdη̇ = −η + x3 (5.19)

where kd is the proportional gain, and 1/τd the cutoff frequency of the LPF. It is clear that, to
avoid reinjection of distortion, the real part of the closed loop poles should be kept smaller than the
fundamental frequency.

B. Voltage regulation

As before, according to the decoupling assumption A1, subsystem (5.8) can be rewritten as

Cż2 = 2(x∗1 − i0)
(

vS − x3

2
+ L

d

dt
(i0 − x∗1)

)
− 2z2

R
(5.20)

For the sake of simplicity, consider that, a controller is designed in such a way that the dynamics
of z2 are much slower than the the dynamics of (x3, η), and thus, it can be assumed that, (x3, η)
reach arbitrarily small values in a relatively short time. Out of this, the system can be further reduced
to

C

2
ż2 =

Gvs

v2
S,RMS

− i0vS − (i0 − x∗1)L
d

dt
(i0 − x∗1)−

z2

R
(5.21)

Notice that, due to the unavoidable harmonic distortion entering in this system, the regulation
objective can only be fulfilled in average. Therefore it is proposed to focus in the DC component of
(5.21) by applying the moving average function1 which yields the following system

C

2
ż20 = G− P0 − z20

R
(5.22)

where z20 = 〈z2〉0 represents the DC part of the state z̃2, and P0 = 〈vSi0〉0 represents the aver-
age output power, which is considered an unknown constant. Moreover, it has been used the fact
v2
S,RMS = 〈v2

S〉0.

Remark 5.1 As the high harmonic distortion has been neglected, the controller should be proposed
with a short bandwidth with the aim of reducing such distortion. This has the disadvantage of
making slow the dynamical response of the output capacitor voltage. As the current reference
amplitude is modulated by the output voltage loop, then, the current dynamics is affected too. ¤

1The extraction of the the DC component (or moving average function) of a scalar x is defined at time t by the
following averaging operation 〈x〉0(t) = 1

T

R t

t−T
x(τ)dτ .
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A controller that guarantees z20 → V 2
d /2 consists in a proportional plus integral action with

limited bandwidth given by

G = −kiξ − kpχ (5.23)

ξ̇ =
(

z20 − V 2
d

2

)
(5.24)

τ χ̇ =
(

z20 − V 2
d

2

)
− χ (5.25)

where kp, ki are the proportional and integral gains of a PI controller, respectively, and τ the time
constant of a LPF affecting the proportional term.

Relying on the LPF capability of the PI, similar results are obtained if z20 is replaced by z2, this
yields the following controller which is written in its transfer function form as follows

G(s)
z̃2(s)

= −ki

s
− kp

τs + 1
(5.26)

where z̃2 , (z2 − V 2
d
2 ).
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Figure 5.2: Block diagram of the proposed controller.

Summarizing, the expression for the final proposed controller is given by

(i) Current tracking

u =
1
2

(
ε

x2
+ 1

)
(5.27)

ε = 2

[
k1x̃1 + vS − x3

2
+ kr

(
1−Ke

− sπ
ω0

1 + Ke
− sπ

ω0

)
x̃1

]
(5.28)

(ii) Voltage balance
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x∗1 =
Gvs

v2
S,RMS

− kdx3

τds + 1
(5.29)

(iii) Voltage regulation

G = −
(

ki

s
+

kp

τs + 1

)
z̃2 (5.30)

where x̃1 , (x1 − x∗1), z̃2 , (z2 − V 2
d
2 ) and z2 , x2

2
2 .

5.4 Experimental results

An academic prototype of low power for the harmonic reducer under study has been implemented
to test the performance of the proposed controller. The analog implementation of the proposed
controller is shown in Fig. 5.3, and the power stage for the half bridge single phase active filter is
shown in Fig. 5.4 . A voltage source of 12 Vrms at a frequency of f0 = 60 Hz (ω0 = 377 rad/s)
is considered. The load is composed of an uncontrolled diode bridge rectifier feeding a resistive
load R0 which switches between 25 Ω and 12.5 Ω, and a capacitor of C0 = 470 µF. The half
bridge topology active filter is constructed with discrete MOSFET transistors, and capacitors of
C = 4700µF each. The active filter is connected to the line by means of an inductor of L = 2
mH. The implementation of the overall controller is performed with analog circuits. The controller
parameters have been fixed to kd = 6.7, τd = 0.15, kp = 5, ki = 5.5, τ = 0.00125, k1 = 4,
K = 0.95 and kr = 1. These parameters have been selected by trial and error by means of
numerical simulations.

Figure 5.3: The analog implementation of the proposed controller for a half bridge active filter

Figure 5.5 shows that the line current iS (middle plot) has a wave form proportional to the
voltage source vS (top plot). Notice that, the current error (bottom plot) is almost zero in steady
state. Notice that, in spite of the slight deformation of the source voltage, the proposed controller
accomplishes the tracking objective since the algorithm has been designed to deal with both, the
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Figure 5.4: Power leg of the half bridge active filter.

deformation in the load current and in the source voltage. As a consequence, the harmonic contents
of both, vS and iS are quite similar, as demonstrated in Fig. 5.6. Notice that, the slight source
voltage distortion produces the 3rd, 5th and 7th harmonics.

Figure 5.7 shows the compensated line current iS (top plot) as a result of the addition of the
injected current i (generated by the active filter) to the load current i0 (bottom plot).

Figure 5.8 shows that, both capacitor voltages vC1 and vC2 (top) reach the desired voltage
reference set at 26 VDC making a total sum of 52 VDC . The transients are due to changes in
the load resistance R0 going from 12.5 Ω to 25 Ω and back. Notice that, the voltages difference
x3 (middle plot) is almost zero with an almost imperceptible transient, therefore, guaranteeing a
voltages balance in both capacitors. The bottom plot shows the equivalent conductance G/v2

S,RMS

observed by the source which, as expected, is proportional to the dissipated power in the load. It
is important to remark that bigger C0 would produce a more distorted load current. This highly
distorted current might be difficult to compensate because of limitations on the bandwidth of the
current controller, as well as physical limitations on the control amplitude. To somehow alleviate
this issue it would be necessary to redesign the converter parameters, and perhaps to increase the
DC voltage reference.
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Figure 5.5: Time waveforms of (from top to bottom) line voltage vS (real scale 20 V/div), com-
pensated line current x1 = iS (real scale 2.5 A/div), and current error x̃1 (real scale 0.5 A/div).

Figure 5.6: (top) Frequency spectrum of vS (20 dB/div), and (bottom) frequency spectrum of
x1 = iS (20 dB/div).
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Figure 5.7: Time waveforms of (from top to bottom) compensated line current iS (real scale 2.5
A/div), distorted load current i0 (real scale 2.5 A/div), and injected current i (real scale 2.5 A/div).

Figure 5.8: Transient responses of (from top to bottom)capacitor voltages vC1 and vC2 (5 V/div),
voltages difference x3 = (vC1 − vC2) (1 V/div) and scaled equivalent conductance G (10 W/div)
during load step changes.



Chapter 6

A repetitive controller for a single phase
active filter

Summary
This chapter presents a controller for a single-phase active filter with a repetitive-based control strategy aimed to

compensate reactive power and current harmonic distortion. The topology selected for the active filter consists of a single
phase full-bridge VSI. Following an adaptive control approach, it is possible to find a control law to compensate the
current harmonics. This adaptive control law provides a bank of resonant filters as a refinement term for compensation
of selected harmonics, in particular for odd harmonics. The equivalences between a negative scheme of the repetitive
compensator, and the bank of resonant filters tuned at odd harmonics found in previous chapters is used here too. The
proposed control scheme has been experimentally tested in a 1.5 kVA prototype and the results are presented here.

6.1 Introduction

Recently, the use of electronic equipment drawing highly distorted current from the AC mains has
been increasing considerably, causing low power factor, low efficiency, increasing of EMI, overheat
of passive elements, among others. These issues have received special attention in the power elec-
tronics and power systems applications, where the disturbances to cancel are composed of specific
higher harmonics of the fundamental frequency of the power supply. It is important to remark that
the harmonic pollution in the current is basically composed of odd harmonics of the fundamental in
single phase AC systems. An interesting solution to alleviate such problems, caused by a distorted
load current, is the use of active filters based on VSI. These filters are connected in parallel with
the non-linear loads as shown in Fig.6.1. In this type of applications, the active filter is used as a
current source which injects the higher harmonic components demanded by the distorted load, thus,
eliminating their effect on the source side. In particular, this chapter studies an active filter based on
the single phase full bridge topology, which is aimed to compensate for reactive power and current
harmonic distortion.

Usually, a decoupled technique is used to design the control of these systems and generally two
control loops arise, namely inner and outer loops. Normally, the inner loop controls the current

79
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dynamics while the outer loop guarantees regulation of the voltage level in the capacitors. Thus,
the harmonic compensation is performed in the inner loop, where the disturbance rejection problem
can be recast as a tracking objective, as will be shown later. It has been reported that conventional
techniques [54] and [62], used for active power filters, exhibit a limited achievable performance
mainly due to the limited control bandwidth and to the delay caused by the digital implementation.
These techniques may even exhibit stability problems due to the high gain techniques used in the
inner loop. To overcome such issues, it is proposed here to follow an adaptive approach, just as in
the previous chapter, to estimate the unknown system parameters and frequency domain quantities
of the periodic disturbance. The adaptive part of this controller is later reduced, by suitable trans-
formations, to a bank of resonant filters. This observation is supported by the well known internal
model principle [35]. These harmonic oscillators are tuned at selected harmonics, in particular, the
odd harmonics, which seem to be the main components of usual single phase nonlinear loads. As
it has been shown previously, there is an equivalence between an infinite bank of harmonic oscilla-
tors tuned at odd harmonics and a negative feedback plus feedforward repetitive scheme, hence, the
bank of oscillators can be replaced by the repetitive scheme. This latter, as discussed previously,
represents an interesting and easy to implement solution.

It is important to remark that the proposed control design is based on the measurements of
line currents instead of inductance currents as in conventional controllers. This modification is
fundamental for the development of the control law, and allows to treat the problem in a more
natural way. The resulting controller will have a familiar and simple form which is very similar to
the conventional controller, and thus it is suitable for implementation.

6.2 Problem formulation

Consider the single-phase active filter shown in Fig. 6.1. The system dynamics are described by
(6.1)-(6.2)

L
diS
dt

= L
d

dt
i0 − uvC + vS (6.1)

C
dvC

dt
= u(iS − i0)− vC

R
(6.2)

where parameters L and C are the input inductance and DC side capacitance of the active filter,
respectively, iS is the current in the source, vC the capacitor voltage; i(t) is the injected current;
i0(t) represents the current load; vS(t) the line voltage; and u(t), which takes values in the discrete
set {−1, 0, 1}, denotes the switch position function and acts as the control input, that is, for u = 1
transistors Q1 and Q4 are turned on, while transistors Q2 and Q3 are turned off, and the opposite
for u = −1. Moreover, for u = 0, either, Q1 and Q2 are both on, or Q3 and Q4 are both on. The
term R is a resistive element modeling the switching and other losses in the system, it is considered
an unknown constant.

The control objectives for the single phase full bridge active filter are:

(i) Tracking of the source current towards a reference current signal proportional to the line voltage,
that is, iS → i∗S = ηvS , where i∗S represents the current reference, with η a scalar representing the
apparent conductance observed by the source. This is equivalent to seek for a power factor close to
unity.
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Figure 6.1: Single phase full-bridge shunt active filter.

(ii) Regulation of the capacitor voltage towards a desired constant reference Vd, that is, vC →
Vd. This condition guarantees that enough energy has been stored in the capacitor for the correct
fulfillment of the previous objective.

Main assumptions:

A1. For controller design purposes, the averaged model is considered, i.e., the control input u
is considered as a continuous signal taking values in the range [−1, 1].

A2. It is assumed that the controller design is performed in such a way that, in the closed
loop, the inductor current dynamics are faster than the capacitor voltage dynamics. Therefore, and
maintaining the time scales of both dynamics sufficiently separated (at least ten times), it is possible
to split the control design in two loops, an inner current loop and an outer voltage loop. This is
referred as the decoupling assumption, since both dynamics can be treated separately. Evidently
this restriction will impose limitations on the control parameters.

A3. The load current i0 and source voltage vS are periodic signals that contain higher odd
harmonics of the fundamental frequency ω0 = 2πf0. They can be described by their Fourier series
as follows

vS =
∑

k∈H
ρ>k VS,k , i0 =

∑

k∈H
ρ>k I0,k (6.3)

where

ρk =
[

cos(kω0t)
sin(kω0t)

]
, VS,k =

[
V r

S,k

V i
S,k

]
, I0,k =

[
Ir
0,k

Ii
0,k

]

Notice that, the values Ir
0,k, Ii

0,k, V r
S,k and V i

S,k ∈ IR are the kth harmonic coefficients of the
Fourier series, and ω0 represents the fundamental frequency considered as a known constant.

The harmonic coefficients in both series are assumed unknown constants (or sufficiently slow
variables). Furthermore, H = {1, 3, 5, 7, ...} is the set of indexes of the considered harmonic com-
ponents present in the load current and source voltage . Superscripts (·)r and (·)i are used to distin-
guish the relation of the coefficient with the cos(kω0t) and sin(kω0t), respectively.

A4. It is also assumed that that the system parameters L, C and R are unknown positive con-
stants, although a nominal value for them is required for the tuning process of the control parameters.
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6.2.1 Inner control loop

In this subsection, a controller which guarantees tracking of iS towards its desired reference i∗S is
designed. For the control design purpose, it is more convenient to rewrite the model (6.1)-(6.2)
using the following coordinate transformations

x1 = iS , x2 =
v2
C

2
, e = uvC

After these transformations, the model can be rewritten as

Lẋ1 = L
d

dt
i0 − e + vS (6.4)

Cẋ2 = e(iS − i0)− 2x2

R
(6.5)

where e, the injected voltage, represents the actual control input. Notice that, to accomplish the
twofold control objective, x1 should track the reference x∗1 = ηvS while x2 should be driven towards
V 2

d /2.

It is straightforward to show that the following control law guarantees a stable tracking of sub-
system (6.4)

e = L
d

dt
(i0 − x∗1) + vS + k1x̃1 (6.6)

where x̃1 = x1 − x∗1 represents the current error, and k1 > 0 is a constant design parameter.

It is important to remark that the inductance value L and the d
dt(i0) are required to implement

the above control law. However, as L and the load current time derivative are considered unknown,
then it is proposed to estimate the disturbance term L d

dt(i0−x∗1) by means of adaptation. As shown
below, the estimation can be considerably simplified if the disturbances are expressed as Fourier
series.

Using (6.3) it is possible to express the disturbances of the system as

L
d

dt
(i0 − x∗1) =

∑

k∈H
ρ>k Φk (6.7)

where it has been defined Φk
4
= L (ġ − kω0gJ ) VS,k + Lkω0J I0,k (k ∈ H) and the following

matrix rotation has been used.

J = −J > =
[

0 −1
1 0

]
(6.8)

The time derivatives of the load current and supply voltage are given by

v̇S = −
∑

k∈H
kω0ρ

>
k J VS,k ,

di0
dt

= −
∑

k∈H
kω0ρ

>
k J I0,k

According to the decoupling assumption, vector Φk (k ∈ H) converges towards a constant1. It
is then proposed to use an estimate Φ̂k in the control expression (6.6) instead of the term Φk. This

1Ideally g and ġ should vary slowly and take constant values in steady state.
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yields the controller
e = vS + k1x̃1 +

∑

k∈H
Φ̂k (6.9)

The error dynamics of subsystem (6.4) in closed loop with controller (6.9) can be expressed as
follows

L ˙̃x1 =
∑

k∈H
ρ>k Φ̃k − k1x̃1 (6.10)

where Φ̃k
4
= Φ̂k − Φk for every k ∈ H represent the estimation errors.

Based on the structure of the error function (6.10) (see (4.11) and (5.13)), a similar procedure
as in previous chapters can be followed here, that is, an energy storage function W is proposed as
follows

W =
L

2
x̃2

1 +
∑

k∈H

1
2γk

[(
Φ̃r

k

)2
+

(
Φ̃i

k

)2
]

The time derivative of W along the trajectories of (6.10) yields

Ẇ = −k1x̃
2
1 + x̃1

∑

k∈H
ρ>k Φ̃k +

∑

k∈H

˙̃Φ>k Φ̃k

γk

which is made negative semidefinite by proposing the following adaptive laws

˙̂Φk = −γkx̃1ρk , k ∈ H (6.11)

where γk > 0 ∀, k ∈ H are design parameters.

The proof of convergence and stability is not included here, as it follows a similar procedure as
that presented previously for the PFC and half bridge active filter in Chapters 4 and 5, respectively.

The following transformations are used to further simplify the controller (6.9) and adaptations
(6.11).

Ψr
k = −ρ>k Φ̂k , k ∈ H

Ψi
k = −ρ>k J Φ̂k , k ∈ H

After these transformations, the controller (6.9) is reduced to

e(s) =
∑

k∈H
Ψr

k + vS + k1x̃1 (6.12)

where the adaptive laws can be rewritten as

Ψ̇r
k = γkx̃1 − kω0Ψi

k , k ∈ H (6.13)

Ψ̇i
k = kω0Ψr

k , k ∈ H (6.14)
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Expressing the adaptive laws in the form of transfer functions x̃1 7→ Ψr
k (k ∈ H) yields

Ψr
k(s) =

γks

s2 + k2ω2
0

x̃1(s) , k ∈ H (6.15)

Summarizing, the expression for the inner current controller is given by

e(s) = k1x̃1 + vS +

(∑

k∈H

2γks

s2 + k2ω2
0

x̃1

)
(6.16)

Clearly, the interesting part in the inner loop is the bank of resonators tuned at odd frequencies
(H = {1, 3, 5, 7, ...}) of the fundamental ω0, each with an associated gain γk, k ∈ H. As it has
been done in previous chapters, the bank of resonant filters inside the parenthesis are equivalent to
a negative feedback plus feedforward repetitive compensator, and thus, the former can be replaced
by the repetitive scheme ensuring a similar performance.

After substitution of the bank of harmonic oscillators by the repetitive scheme, the inner control
loop can be rewritten as follows:

ε = k1x̃1 + vS + kr

(
1−Ke

− sπ
ω0

1 + Ke
− sπ

ω0

)
x̃1 (6.17)

Notice that, the gain γk is fixed as γk = 4ω0/π, where, the gain kr in the repetitive scheme
allows additional control over the gain produced by the resonant peaks.

A block diagram of the inner current control loop is shown in Fig. 6.2(a), where a LPF of the
form F (s) = K/(τs+1) is proposed according to the practical modifications suggested in Chapter
2, in particular in Sections 2.2 and 2.3, respectively. In Fig. 6.2 (b) an equivalent block diagram is
shown, where ξ = i0− i∗S and i represent the injected output current. Notice that the block diagram
of Fig. 6.2b has the same structure of the system in Fig. 2.16 used to study the BIBO stability in
Chapter 2. In fact, it is easy to show that this system satisfies all conditions of Proposition 2.3, and
thus it is BIBO stable.

6.2.2 Outer control loop

As pointed out before, it is considered that the dynamics of subsystem (6.1) are much faster than
the dynamics of subsystem (6.2), and moreover, that the controller e is bounded, which is true if all
terms Φ̂k (∀k ∈ H) are bounded. Thus, in a relatively short time x̃1 = 0 and Φ̂k = Φk , ∀ k ∈ H.
Hence, subsystem (6.5) can be written in terms of the reference error for x2 as

C ˙̃x2 =
(

L
d

dt
(i0 − x∗1) + vS

)
(x∗1 − i0)− 2x2

R
=

= ηv2
S − vSi0 − L

d

dt
(i0 − x∗1)(x

∗
1 − i0)− 2x2

R
(6.18)

where the quadratic error of the capacitor voltage is represented and defined as x̃2
4
= (x2 − V 2

d
2 ).
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Figure 6.2: Block diagram of the inner control loop.

Moreover, since the main interest is about the behavior of the dynamics of the DC component of
x̃2. This component is extracted from (6.18) by applying a moving average function to subsystem
(6.18). The so-called DC model of the dynamics of the capacitor voltage is given by

C ˙̃x20 = ηv2
S,RMS − p0 − 2x20

R

where x̃20 represents the DC component of state x2; the extraction of the DC component of a
scalar x is defined at time t by the following averaging operation 〈x〉0(t) = 1

T

∫ t
t−T x(τ)dτ . There-

fore, p0 = 〈vSi0〉0 represents the average output power, considered as an unknown constant, while
v2
S,RMS = 〈v2

S〉0 is the square of the RMS value of vS which is also a constant.

Similar to the PFC in Chapter 2, it is proposed to compute the current reference x∗1 as follows

x∗1 = δ

(
vS

v2
S,RMS

)
(6.19)

which is equivalent to make the following transformation in our developments

δ = ηv2
S,RMS

It has been observed that this simple transformation keeps the values of most variables on the
same order, and thus reduces the risk of numerical errors since the value of η is usually very small.

The error model can be rewritten as

C ˙̃x20 = δ − p0 − 2x20

R
(6.20)

A controller that guarantees x̃20 → 0 is

δ = −kiξ − kpζ (6.21)

ξ̇ = x̃20 (6.22)

τ ζ̇ = x̃20 − ζ (6.23)
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where kp, ki are the proportional and integral gains of a PI controller, and τ the time constant of a
LPF.

Relaying in the filtering capability of such a PI controller, it is proposed to use x2 instead of x20

for the control implementation. The controller (6.21)-(6.23) can thus be rewritten in the form of a
transfer function as follows

δ(s)
x̃2(s)

= −ki

s
− kp

τs + 1
(6.24)

Summarizing, the overall proposed controller is given by

e = k1x̃1 + vS + kr

(
1−Ke

− sπ
ω0

1 + Ke
− sπ

ω0

)
x̃1 (6.25)

δ = −
(

Ki

s
+

Kp

τs + 1

)
x̃2 (6.26)

x∗1 = δ
vS

v2
S,RMS

(6.27)

where a gain kr has been included to have control over the gain produced in the resonant peaks. The
block diagram of the overall proposed repetitive-based controller is shown in Fig. 6.3. Notice that,
the bank of resonant filters has been replaced by the proposed repetitive scheme.
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Figure 6.3: Block diagram of the proposed repetitive-based controller.

6.3 Experimental results

To test the proposed controller, a prototype of 1.5 KVA of a single phase shunt active filter was de-
signed. The complete prototype is shown in Fig.6.4. The prototype is connected to a voltage source
of 127 Vrms, f0=60 Hz (ω0=377 rad/s) with a THD of 4.8%. The nonlinear load is composed of a
diode bridge based rectifier connected in parallel with a resistor load of 100 Ω. The latter is included
to increase the amplitude of the load current without increasing the distortion, as the resistor adds
only a sinusoidal component. The diode bridge based rectifier contains a DC capacitor of 330 µF
feeding a resistor of either, 40 Ω or 80 Ω. The nonlinear load produces a distorted current contain-
ing all odd harmonics of the fundamental frequency (60Hz). The active filter has been designed
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with the following parameter values: L = 4 mH, C = 6800µF, R = 22 kΩ. This R is used to
safely discharge the capacitor. A fixed point digital signal processor TMS320LF2407A from Texas
Instruments has been used to implement the controller. Sampling and switching frequencies are
fixed to 24 kHz. A discrete pure delay of the form z−d has been used to implement the delay line
in the repetitive scheme. Therefore, a d = 200 produces the required delay time (to compensate the
odd harmonics of 60 Hz), i.e., 200/24000 = 8.33 ms for a sampling frequency of 24 kHz. That is,
a stack of 200 memory locations has been reserved to generate a required delay. The other control
parameters are fixed to kp = 0.018, ki = 0.01, k1 = 10, K = 0.944 and kr = 0.75. All these
control parameters have been obtained by trial and error using a numerical simulation.

Figure 6.4: Prototype of single Phase active filter

Figure 6.5 shows (from top to bottom) the steady state responses of the source voltage, com-
pensated line current, load current and injected current. This figure shows that the compensated line
current iS(t) presents a proportional wave form to the voltage supply vS(t), despite of the highly
distorted load current i0(t) (47% of THD). Notice that, even though the voltage source has a slight
deformation corresponding to the 4.8% of THD, as mentioned above, the proposed algorithm has
been designed to deal with the deformation in both, the load current and the voltage source .

Figure 6.6 shows (from top to bottom) the source voltage vS , the line current iS with harmonic
compensation (including the repetitive scheme), and the line current iS without harmonic compen-
sation. Notice that, there is a considerable improvement in the current wave form when the repetitive
scheme is introduced.
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Figure 6.7 shows the transient responses of the capacitor voltage vC and scaled apparent con-
ductance δ = v2

S,RMSη(t) when the load in the diode bridge rectifier is changed from 80Ω to 40Ω
and back to 80Ω. It is shown that after a relatively small transient, the capacitor voltage vC(t)
converges towards its reference 250 VDC , while the scaled apparent conductance δ(t) reaches (in
average) a constant value which depends on the load characteristics.

Figure 6.8 shows the spectrum of the compensated current iS in comparison with the spectrum
of the line voltage vS . It is shown that, as expected, iS has a similar harmonic content as vS , which
is mainly composed by a fundamental harmonic. The compensated current reaches a THD of 6%,
compared to the 4.8% of THD in the line voltage and the 47% of THD in the load current.

Remark 6.1 As established in the control objective, the line current is forced to track a waveform
proportional to the supply voltage, therefore, the compensated current should be as distorted as the
source voltage. Clearly, the harmonics of the compensated current are similar to the harmonic con-
tent of the supply voltage. Therefore, with the fulfillment of the control objective, current harmonics
are reinjected into the grid. This is preferred here to exhibit the ability of the proposed controller to
deal with distortion in the supply voltage. An alternative objective to avoid the reinjection of current
harmonics consists in simply taking the fundamental component of the supply voltage to build the
current reference. ¤

Figure 6.5: Time responses with the proposed controller of: (from top to bottom) line voltage
vS(t) (250 V/div), compensated current iS(t) (10 A/div), current load i0(t) (10 A/div), and injected
current i(t) (10 A/div).
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Figure 6.6: (from top to bottom) Source voltage vS(t) (250 V/div), source current iS(t) with
harmonic compensation (10 A/div), and source current iS(t) without harmonic compensation (10
A/div).

Figure 6.7: Transient responses during a load step change of (top) capacitor voltage vC(t) (100
V/div), and (bottom) scaled apparent conductance δ(t) = v2

S,RMSη(t) observed by the source (500
W/div).
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Figure 6.8: Spectra of (top) the line voltage vS (20 dB/div), and (bottom) the compensated current
iS (20 dB/div).



Chapter 7

Concluding remarks and future work

7.1 Concluding remarks

The present dissertation work was interested in the solution of the harmonic compensation issue in
different power electronics systems. For this purpose, the problem of harmonic compensation was
recast as a tracking problem, where the disturbance signal was assumed as a periodical signal. To
facilitate the study, the disturbance was expressed as a Fourier series composed by an infinite num-
ber of terms, referred as harmonic components. The methodology for the solution of this problem
was based originally on adaptive techniques. Several remarks of interest are highlighted next:

. The adaptations proposed to compensate the periodic disturbances could be transformed, by
suitable rotations, into a bank of resonant filters, which was in agreement with the internal
model principle.

. An infinite bank of resonant filters tuned at odd harmonics was equivalent to a hyperbolic
tangent function, which is equivalent to the proposed negative feedback repetitive scheme .

. An infinite bank of resonant filters tuned at every single multiple of the fundamental fre-
quency, including the dc component, was equivalent to a hyperbolic cotangent function, which
is equivalent to the proposed positive feedback repetitive scheme.

. Implementation of these control schemes were based on a feedback array of a simple transport
delay. In contrast to conventional schemes, the two proposed schemes include a feedforward
path.

. These schemes could be implemented digitally or using analog components. In this work,
simple analog circuits to implement both positive and negative feedback schemes were de-
scribed also. The proposed circuits used a BBD circuit thoroughly used in the music industry
to generate reverberant and echo effects. The tuning for these circuits was performed by two
trimming resistors, one devoted to set the correct time delay and therefore fix the resonant
frequencies, and one more to fix the gain and bandwidth of the peaks at the resonant frequen-
cies. These circuits turned out to be well suited for applications of harmonic compensation in
low power electronics systems.

91
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. It has been shown that the negative feedback scheme produces poles located at odd harmonics,
while the positive feedback scheme produces poles at every single multiple of the fundamental
frequency. Moreover, due to the feedforward path, zeros are included in between every two
consecutive poles. It is thus clear that, the implementation of these schemes generate an
infinite set of peaks centered at higher order harmonic frequencies, and due to the feedforward
term, notches were inserted in between two consecutive peaks. The latter allows peaks of
higher gain and enhanced selectivity, therefore improving considerably the performance.

. Some modifications for the proposed schemes were given to make them suitable for real
applications, as the introduction of a LPF and a limiting gain K.

. A BIBO stability proof was developed for both schemes when they were used in a quite
general closed loop control system.

Therefore, the bank of resonant filters, a scheme thoroughly used in controllers for harmonic
compensation in different power electronic systems, could be replaced by these simpler repetitive
schemes. This facilitated the controller implementation enormously. Originally, a resonant filter was
required for each harmonic to compensate, which tuned out to be more involved as more harmon-
ics were considered resulting in an unpractical solution. Thus, the two repetitive schemes, above
described, represented an interesting approach particularly useful in control systems with periodic
reference signals or disturbances.

This work presents also a collection of applications of repetitive based schemes to several rep-
resentative systems in the power electronics field which are described next:

. A repetitive-based controller has been applied to the dc-dc boost converter whose control
structure was very close to a conventional one. The main difference consisted in the intro-
duction of a repetitive strategy aimed to compensate for harmonic distortion contained in the
output capacitor voltage. This type of disturbance was mainly due to a voltage source pol-
luted by harmonics in the audible range. This controller took the same structure as the one
presented in [38] and [51], where the repetitive scheme replaced the bank of resonant filters.
The idea behind these controllers was to distort the inductor reference current to incorporate
an extra control input to allow harmonic compensation on the capacitor voltage side. A series
of tests were carried out in an experimental prototype to assess the performance of the pro-
posed controller. The experimental results compared the responses obtained with and without
the harmonic compensation term. Transient responses to step changes in the load were also
presented to exhibit the robustness of the proposed controller against load variations.

. A repetitive-based controller for a boost-based PFC was presented. This controller guaranteed
voltage regulation with a power factor close to unity. The proposed controller was composed
of the cascade interconnection of inner and outer loops, just as in the conventional controller.
The outer loop consisted of a low pass filter plus an integral term, while the inner loop was
composed by a negative feedback repetitive scheme plus the usual proportional term. In this
case, the repetitive scheme could replace the bank of resonant filters tuned at odd harmonics,
which represented a considerable reduction on the computational load. Experimental results
in a 400 W boost-based PFC were obtained to show the effectiveness of the proposed control
law.

. A repetitive based controller was presented for a half-bridge active filter working as a har-
monic reducer. This system was connected in parallel with the supply voltage of a non
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controlled full bridge rectifier to correct the power factor. The controller also guaranteed
regulation and balance of both capacitors voltages present in the half-bridge topology. The
controller was composed of three control loops, namely, tracking (inner), regulation and bal-
ance control loops. A first contribution was that, to allow the voltage balance, an extra control
input was included in the line current reference whose effect practically vanished in steady
state. A second contribution of this work was the use of a negative feedback repetitive scheme
in the tracking (inner) control loop to guarantee current tracking and disturbance rejection. Fi-
nally, experimental results were obtained with a low power laboratory prototype to show the
effectiveness of the proposed controller.

. A repetitive based controller for a full bridge shunt active filter was presented. This controller
was integrated by the cascade interconnection of inner and outer loops. The latter was de-
signed as a low pass filter plus an integral term, while the former was composed of a negative
feedback repetitive scheme plus the usual proportional term. The idea behind the repetitive
scheme was to compensate for odd harmonic components of a highly distorted load current.
Finally, experimental results in a 1.5 KVA prototype were obtained to show the effectiveness
of the proposed control law.

7.2 Future Work

The following issues are still under study and the results will appear in future works:

. Performance analysis of the controllers presented in this work.

. The study of singular perturbation techniques to relax the decoupling assumption in the con-
trol of power electronics systems.

. The study of the passivity proprieties of the proposed repetitive base controllers.

. A formal study of the parameters tuning process in the proposed controllers

. The use of direct power control to propose control laws for power electronics systems.

. The study of practical modifications in repetitive scheme to improve the phase distortion
caused by practical modifications in feedback feedforward repetitive structures.

. The study of hybrid solutions, i.e. combination of active and passive filters for the harmonic
compensation issue in a single phase systems.

. The study of sensorless techniques for power electronics system.
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gle synchronous frame hybrid (ssfh) multifrequency controller for power active filters. IEEE
Trans. on Ind. Electr., 53(5):1640–1648, 2006.

[11] G. Escobar, A. Stankovic and P. Mattavelli. An adaptive controller in stationary reference
frame for d-statcom in unbalanced operation. IEEE Trans. on Ind. Electr., 51(2):401–409,
2004.

[12] G. Escobar, A. M. Stankovic and P. Mattavelli. Adaptive controller for d-statcom in the sta-
tionary reference frame to compensate for reactive and harmonic distortion under unbalanced
conditions. US Patent, No. 6862199 B2:1, 2005.

[13] D. N. Zmood, D. G. Holmes and G. Bode. Frequency domain analysis of three phase linear
current regulators. Conf. Rec. IEEE-IAS Annual Meeting, 1:818–825, 1999.

95



96 BIBLIOGRAPHY

[14] C. B. Jacobina, R.O. de Carvalho Jr., M. B. R. Correa, A. M. N. Lima and E. R. C da Silva.
Digital current controller of unbalanced three-phase power electronic systems,. Proc. IEEE
Pow. Elec. Spec. Conf. (PESC), 2:767–772, 1999.

[15] S. Fukuda and T. Yoda. Investigation of current controller for single phase pwm converters
based on the internal model principle. 1:1–6, 1999.

[16] S. Fukuda and T. Yoda. A novel current tracking method for active filters based on a sinusoidal
internal model. 1:1–6, 2000.

[17] X. Yuan, W. Merk, H. Stemmler and J. Allmeling. Stationary-frame generalized integrators
for current control of active power filters with zero steady-state error for current harmonics
of concern under unbalanced and distorted operating onditions. IEEE Trans. on Ind. App.,
38(2):523–532, 2002.

[18] S. Hara, T. Omata and M. Nakano. Synthesis of repetitive control of a proton synchrotron
magnet power supply. Proc. 8th. IFAC World Congress, 2:216–221, 1981.

[19] S. Hara, T. Omata and M. Nakano. Synthesis of repetitive control of systems and its aplica-
tions. Proc. 24th. IEEE Conf. Decision Contr., 3:1387–1392, 1981.

[20] T. Omata, S. Hara and M. Nakano. Repetitive control for linear periodics systems. Elect. Eng.
Jpn., 105:131–138, 1985.

[21] S. Hara, Y. Yamamoto, T. Omata and M. Nakano. Repetitive control systems: A new type
servo systems for periodic exogenous signals. IEEE Trans. on Automat. Contr., 33-7:659–668,
1988.

[22] Y. Yamamoto and S. Hara. Relationships between internal and external stability for infinite-
dimencional systems whit applications to a servo problem. IEEE Trans. on Automat. Contr.,
33-11:1044–1053, 1988.

[23] Brad Paden Ghosh and Jayati. Nolinear repetitive control. IEEE Trans. on Automat. Contr.,
45-5:949–954, 1988.

[24] Steinbuch Maarten. Repetitive control for systems whit uncertain period-time. Automatica,
38:2103–2109, 2002.

[25] M. Tomizuca, T. Tsao and K. chew. Discrete-time domain analisys and synthesis of repetitive
controller. Proc. American Control Conference, 1:860–866, 1988.

[26] M. Tsai, G. Anwar and M. Tomizuca. Discrete time repetitive controllers for robots manipu-
lators. Proc. IEEE Conf. Robotics Automat., 3:1341–1346, 1988.

[27] H. L. Broberg and R. G. Molyet. Reduction of repetitive errors in tracking of periodical
signals: theory and application of repetitive control. Proc. IEEE Conf. Robotics Automat.,
3:1341–1346, 1988.

[28] P. Mattavelli and F. P. Marafao. Selective active filters using repetitive control techniques.
IEEE Transactions On Industrial Electronics, 51-5:1018–1024, 2004.

[29] Shunxiao Xu and Fuwen Yang. A novel three-phase ac/dc converter without front-end filter
based on repetitive control technique. Proc. 3rd International Power Electronics and Motion
Control Conference: PIEMC’00, 3:1111–1115, 2000.



BIBLIOGRAPHY 97

[30] Ying-Yu Tzou, Shih-Liang Jung and Hsin-Chung Yeh. Adaptive repetitive control of pwm
inverters for very low thd ac-voltage regulation with unknown loads. IEEE Trans. on Pow.
Electronics, 14-5:973–981, 1999.

[31] Kai Zhang, Jian Xiong, Yong Kang and Jian Chen. Direct repetitive control of spwm inverter
for ups purpose. IEEE Trans. on Pow. Electronics, 18-3:784–792, 2003.
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[42] R. Griñó and R. Costa-Castelló. Digital repetitive plug-in controller for odd-harmonic periodic
references and disturbances. Automatica, 41:153–157, 2005.

[43] I. S. Gradshteyn and I.M. Ryzhik. Table of integrals, series, and products. Academic Press,
6th edition, 2000. ISBN0-12373-637-4.

[44] Jhon C. Doyle Kemin Zhou. Essentials of Robust control. Prentice Hall, 2nd edition, 1996.
ISBN0-13-525833-2.



98 BIBLIOGRAPHY

[45] A. C. Chow and D. Perreault. Design and evaluation of a hybrid passive/active ripple filter with
voltage injection. IEEE Trans. on Aerospace and Electronic Systems, 39-2:471–480, 2003.

[46] S. Y. M. Feng, W. A. Sander III and T. G. Wilson. Small-capacitance nondissipative ripple
filters for dc supplies. IEEE Trans. on Magnetics, MAG-6:137–142, 1970.

[47] M. K. Kazimierczuk and L. A. Starman. Dynamic performance of pwm dc-dc boost converter
with input voltage feedforward control. Transactions On Circuits and SystemsI: Fundamental
Theory And Applications, 46-12:137–142, 1999.

[48] M. K. Kazimierczuk and A. Massarini. Feedforward control of dc-dc pwm boost converter.
Transactions On Circuits and SystemsI: Fundamental Theory And Applications, 44:143–148,
1997.
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