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Abstract

The transverse control approach proposed by Morin and Samson is a technique

based on the use of transverse functions to practically stabilize controllable drift-

less systems. This control technique is able to cope with practical stabilization of

admissible trajectories, including fixed points, as well as practical stabilization of

non-admissible trajectories.

In this thesis we attempt to generalize this technique to the control of second-

order systems and, in particular, to the case of mechanical systems described on

Lie groups. Within this class one finds mechanical systems subjects to (holonomic

and non-holonomic) constraints as well as underactuated mechanical systems. It is

important to note that for systems in this class, the drift vector field is required along

with the control vector fields to generate the accessibility distribution.

We define vertical transversality and we show how transverse functions satisfy

vertical transversality, a property that generalizes transversality to second-order sys-

tems. By applying the methodology introduced in this thesis to second-order systems

one achieves practical stabilization of the configuration variables, namely one ensures

that the projection of the state trajectories onto the configuration manifold converge

to an arbitrarily small neighborhood, specified in advance, of the desired equilibrium

point.

Although the approach outlined in this thesis does not constitute a complete

extension of Morin and Samson’s approach based on transverse functions, it takes

initial steps toward what might constitute an interesting theory for the stabilization

of admissible trajectories for second-order systems.
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Resumen

La aplicación de la técnica de control por medio de funciones transversas prop-

uesta por Morin y Samson a sistemas controlables sin deriva da como resultado una

estabilización práctica de las trayectorias del sistema. Esta técnica trata con estabi-

lización práctica de puntos fijos, trayectorias admisibles e inclusive trayectorias no

admisibles.

En esta tesis se generaliza la noción de transversalidad para sistemas de segundo

orden y se plantea el desarrollo de un método de control para estabilizar sistemas

de segundo orden, en particular para sistemas mecánicos que evolucionan en grupos

de Lie. Dentro de esta clase de sistemas se encuentran sistemas mecánicos sujetos

a restricciones (holonómicas y no holonómicas) como también sistemas mecánicos

subactuados. Es importante notar que en esta clase de sistemas el término de deriva

se requiere, junto con los campos vectoriales de control, para generar la distribución

de accesibilidad.

En esta disertación se define transversalidad vertical y se muestra cómo las fun-

ciones transversas definen funciones verticalmente transversas. Se presenta además un

esquema de control para estabilizar sistemas de segundo orden en grupos de Lie usan-

do funciones verticalmente transversas. Este método asegura estabilización práctica

de las variables de configuración del sistema, es decir, la proyección de las trayectorias

del sistema a la variedad de configuración converge a una vecindad arbitrariamente

pequeña del punto deseado de equilibrio.

El esquema expuesto, aún cuando no resuelve por completo el problema de es-

tabilización práctica para sistemas de segundo orden, se presenta como el punto de

partida de un esquema que podría llegar a constituir una teoría interesante para la

estabilización de trayectorias admisibles para sistemas de segundo orden.
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Chapter 1

Introduction

In control theory, the stabilization of critical systems to fixed points or, more

generally, to admissible trajectories, is still an open research problem. A critical

system [1] is a controllable system whose linearization is non-controllable.

Several systems are critical, examples of these systems can be found when one is

dealing with nonholonomic systems and underactuated mechanical systems.

Systems which do not satisfy Brockett’s condition typically are critical. This con-

dition can be formulated as follows. Consider a control system ẋ = f(x, u) where

f : R
n × R

m −→ R
n such that f(0, 0) = 0. Brockett [2] states that a necessary

condition to render the origin asymptotically stable for the given system by means of

a continuous feedback control function u : R
n −→ R

m, is that the map f be open at

zero. There are generalizations of Brockett’s condition that involve asymptotic stabi-

lization of equilibria for systems evolving on more general spaces than on Euclidean

spaces [3].

In view of this, difficulties arise while attempting to produce a unified method to

solve various control problems such as asymptotic stabilization of fixed points and

trajectory tracking for critical systems.

Different control approaches have been proposed to stabilize this class of systems.

For instance, as no continuous feedback control function exists in order to stabilize

critical systems, some approaches make use of discontinuous feedback functions for

the same purpose. However, Ryan [18] has shown, under certain assumptions, that if

a control system is stabilizable to a given trajectory using a discontinuous feedback
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law, then there also exists a continuous feedback law which stabilizes the system to

the given trajectory.

Samson in [19] showed that it is possible to surmount the restriction embodied in

Brockett’s condition by using time-varying feedback to asymptotically stabilize the

unicycle-type robot to a fixed configuration. By a time-varying feedback one means

a control function that depends not only on the system state but also explicitly on

time. A more general result in this direction is presented in [4].

By using the homogeneous approach [8], [17], based on time-varying feedback to

control critical systems, one is able to obtain time-varying feedback laws which force

the trajectories of the system to converge exponentially to the equilibrium point.

Nevertheless, as expounded in [11], the feedback control laws resulting from this

control strategy typically are non-differentiable at the desired equilibrium point, thus

raising difficulties regarding the robustness of the feedback laws in the presence of

modeling errors.

In recent work, Morin and Samson [16], [14] have developed a new framework,

the so called transverse function approach, which allows one to tackle both, the point

stabilization and trajectory tracking problems for controllable driftless systems. This

control approach is applicable to systems of the form ẋ = D(x, t) +
∑m

i=1 u
iXi(x)

where x is a curve on M , a finite-dimensional manifold, D : M × R −→ TM is a

“time-varying” vector field which depends continuously on its second argument (D

may be seen as a perturbing term), and {X1, . . . , Xm} is a set of vector fields defined

on M that satisfy local accessibility at the desired point to be stabilized.

By using this control approach, the trajectories of the resulting feedback system

converge to a pre-specified, arbitrarily small neighborhood of the reference trajectory

(or fixed point.) This sort of convergence is called practical stabilization.

An advantageous property of this approach is that the resulting feedback laws are

smooth with respect to the state, and this allows one to deduce certain properties of

robustness for the resulting feedback system.

The aim of this thesis is to provide initial steps towards a generalization of the

transverse function control approach for the stabilization of second-order systems.

Being more precise, the ultimate purpose would be to stabilize every admissible tra-

jectory for systems of the form:
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ẋ = D(x) +
m∑

i=1

uiX lift
i (x) (1.1)

where x now represents a curve on TM , the tangent manifold of a finite dimen-

sional manifold M , D is a second-order vector field on TM , and {X1, . . . , Xm}

(m ≤ dim(M)) is a set of vector fields defined on M that satisfies local accessi-

bility at a given point in M . Equation (1.1) defines a second-order system on M and

it may represent a given critical system.

We assume that the set {D,X lift
1 , . . . , X lift

m } generates the accessibility distribution

for every t ∈ R, while {X lift
1 , . . . , X lift

m } only spans a proper subdistribution thereof,

thus the transverse function control approach cannot be directly applied to System

(1.1).

In this thesis we present the characterization of a new property which we refer to

as “vertical transversality”, which somewhat generalizes the transversality property

to the case of second-order systems. We attempt to give a methodology to control

second-order systems of the form (1.1) evolving on Lie groups. We focus on mechanical

systems since several mechanical systems are naturally modeled as systems on Lie

groups. For instance, mechanical systems which usually arise in physical applications

are rigid bodies in space, cart-like vehicles, space and underwater robots, which evolve

on Lie groups.

It is important to note that this work serves as a starting point towards a gener-

alization of the transverse function control approach to control second-order systems

and that research work remains to be done in this respect.

This thesis is organized as follows; in Chapter 2 we fix the notation used through-

out this work, we recall some preliminaries on vector bundles, differential geometry,

some background in Lagrangian mechanics and basics on Lie theory. In Chapter 3

we review the “transverse function control approach” proposed by Morin and Samson

[14] and illustrate, in detail, its application to the control of the chained form system.

Chapter 4 presents the main work of this thesis, some necessary lemmas are stated

and proved, as well as the vertical transversality condition and we expound a possible

application thereof to the stabilization of second-order systems. In Chapter 5 some

examples are developed in detail. Finally Chapter 6 presents conclusions of this work
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along with brief descriptions of some of the problems that remain open for research.
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Chapter 2

Mathematical preliminaries

The purpose of this chapter is to recall basic mathematical concepts required in

the following chapters. We will first fix the notation used throughout the present

thesis, then review basic background on vector bundles, mechanical systems and on

Lie theory. The interested reader may find additional details in [9], [10], [12], [20].

2.1. Definitions and conventions

We assume the reader is familiar with basic notions of point-set topology and

differential geometry.

Let I ⊆ R denote a nonempty interval in R which can be finite or infinite, closed

or open at either of its endpoints. If A is a set then idA : A −→ A denotes the

identity map on A. Let a ∈ N ∪ {∞} and n ∈ N. A mapping f : A −→ B where

A and B are manifolds, is said to be of class Ca (or simply f is Ca) if it is a times

continuously differentiable. If f : A −→ B is of class C∞ one says that f is smooth.

Ca(A;B) denotes the space of mappings of class Ca of A into B while Ca(A) stands

for Ca(A; R). T
n = T×···×T (n copies of T), denotes the n-torus, where T = R/2πZ.

The Kronecker’s delta is denoted by δij which equals 1 if i = j while equals zero

if i 6= j. Sometimes we shall use Einstein summation convention for the sake of

readability, that is, repeated doubled indices indicate a summation. In particular let

x ∈ R
n and let {e1, . . . , en} be the canonical basis for R

n (namely, ei is the vector

which components are all zero except the i-th component which is 1), then x = xiei
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for i = 1, . . . , n equals x =
∑n

i=1 x
iei.

By a manifold we refer to a finite-dimensional, paracompact, differentiable man-

ifold. Let M be a manifold, TpM denotes the tangent space of M at p ∈ M while

TM , the tangent bundle of M , is the disjoint union of each TpM for p ∈ M ,

(TM =
∐

p∈M TpM) endowed with the differentiable structure inherited from the

differentiable structure in M . Let p ∈ M , the bundle projection of TM , denoted by

πM : TM −→M , maps v in TpM to πM(v) = p.

Likewise, T ∗
pM denotes the cotangent space of M at p ∈ M , T ∗M is the cotan-

gent bundle of M consisting of the disjoint union of the T ∗
pM for all p ∈ M ,

(T ∗M =
∐

p∈M T ∗
pM) equipped with the differentiable structure inherited from the

differentiable structure in M . π∗
M : T ∗M −→ M stands for the bundle projection of

T ∗M which, for any p ∈M and every ̺ ∈ T ∗
pM satisfies π∗

M(̺) = p.

Given a mapping f ∈ C1(M ;N) where M and N are manifolds, we write Tpf :

TpM −→ Tf(p)N for the (linear) tangent map of f at p. Tf denotes the bundle map

covering f , that is, Tf maps the tangent space of M at any p ∈ M into the tangent

space of N at f(p). One says that Tf covers f if the diagram below commutes,

TM

πM

��

Tf
// TN

πN

��

M
f

// N

i.e. πN ◦ Tf = f ◦ πM . Whenever the base point p is clear from the context we will

simply write Tf for Tpf .

Γa(TM) stands for the space of sections of class Ca of the tangent bundle of M .

An element X in Γa(TM) is a mapping M −→ TM such that πM ◦X = idM , X is said

to be a Ca vector field (defined) on M . On the other hand, Γa(T ∗M) is the space of

Ca sections of the cotangent bundle of M , Υ ∈ Γa(T ∗M) is a mapping M −→ T ∗M

satisfying π∗
M ◦ Υ = idM . Υ is said to be a Ca 1-form on M . The commutative

diagrams below will help to make a clearer idea.

M
X

//

idM !!B
BB

BB
BB

B TM

πM
||yy

yy
yy

yy

M

M
Υ

//

idM !!B
BB

BB
BB

B T ∗M

π∗

M{{xxxxxxxx

M
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In the sequel we shall usually write Xp for X(p) and Υp for Υ(p) in order to not

overburden some expressions. We shall also assume that manifolds, vector fields and

functions are of class C∞ unless otherwise stated, (i.e. M,N manifolds, X ∈ Γ(TM)

and f ∈ C(M,N) are smooth).

One endows Γ(TM) with a C∞(M)-module structure by defining the sum of

vector fields as (X + Y )p = Xp + Yp and the product of functions in C∞(M) and

vector fields as (fX)p = f(p)Xp for all X,Y ∈ Γ(TM), f ∈ C∞(M) and p ∈ M .

We can also provide Γ(TM) with an R-algebra structure by defining, in addition

to the module structure, a mapping [·, ·] : Γ(TM) × Γ(TM) −→ Γ(TM) such that

[X,Y ](f) = X(Y (f))− Y (X(f)) for all f ∈ C∞(M). The operation [·, ·] defined this

way is called the Lie bracket product and it can be shown to satisfy, for every X, Y ,

Z in Γ(TM), the following properties:

1. [·, ·] is an R-bilinear mapping,

2. [X,Y ] = −[Y,X], i.e. it is anti-commutative,

3. [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0, i.e. satisfies Jacobi’s identity.

An algebra with product operation [·, ·] satisfying the three latter properties is

said to be a Lie algebra.

Suppose {X1, . . . , Xn} ⊂ Γ(TM), then Lie({X1, . . . , Xn}) denotes the Lie algebra

generated by {X1, . . . , Xn}, i.e. it denotes the intersection of every Lie subalgebra of

Γ(TM) which contains {X1, . . . , Xn}.

Let X be a vector field on a manifold M , we shall write exp(tX)(p) for the solution

(whenever it exits), of the differential equation ẋ = X(x) at time t and with initial

condition x(0) = p. If for every p ∈ M , ẋ = X(x) has a solution with initial value

x(0) = p defined for all t ∈ R, then X is said to be complete.

Let M be a smooth manifold, we denote the Lie derivative of f ∈ C∞(M), with

respect to X ∈ Γ(TM) by LXf .

Let E denote a vector space and E∗ its associated dual space, then T sr (E) ,

(
⊗r

i=1E
∗)⊗ (

⊗s
i=1E) is the tensor space of type (s, r) over E. If t ∈ T sr (E), t is said

to be a tensor of type (s, r) over E.

Let M be a smooth manifold, then T sr (TpM) =
(⊗r

i=1 T
∗
pM

)
⊗ (
⊗s

i=1 TpM) is

the tensor space of type (s, r) over the tangent space of M at p ∈ M . The tensor
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space of type (s, r) over TM is denoted by T sr (TM) and it is the disjoint union of all

the T sr (TpM) for p ∈ M (T sr (TM) =
∐

p∈M T sr (TpM)), endowed with the differential

structure inherited from the differential structure on M . T sr (TM) possesses, indeed,

a vector bundle structure (cf. the following section). Γ(T sr (TM)) denotes the set

smooth sections of the tensor space of type (s, r) over TM . If T ∈ Γ(T sr (TM)) then

T is said to be a tensor field of type (s, r) over M . It is easy to check that a vector

field on M is a tensor field of type (1, 0) while a 1-form is a tensor field of type (0, 1).

2.2. Vector bundle geometry

In this section we recall notions on vector bundles since these arise as state mani-

folds for systems considered in this work. For instance, in the case of simple mechani-

cal systems the configuration manifold represents all possible positions or orientations

of the system while the space of velocities plus positions and orientations can be seen

as the tangent bundle of the configuration manifold. Let us recall the definition of a

smooth vector bundle.

Definition 1 A vector bundle is a 4-tuple (E,B, F, πB) having the following prop-

erties:

1. E, B are smooth manifolds and F is an R-vector space.

2. πB : E −→ B is a surjective and smooth map.

3. For every x in B, Ex , π−1
B ({x}) is diffeomorphic to F .

4. For every open set U ⊂ B, there exist a diffeomorphism ψ : π−1
B (U) −→ U × F

which maps Ex linearly to {x} × F , so that the following diagram commutes

π−1
B (U) ⊂ E

πB

��

ψ
// U × F

p1
uukkkkkkkkkkkkkkk

U ⊂ B

where p1 is the canonical projection onto the first factor.
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Given a vector bundle (E,B, F, πB) one calls E the total space , B the base

space (or simply the base), F the standard fiber , πB the bundle projection (or the

projection), Ex, for x ∈ B, the fiber over x, and (π−1
B (U), ψ) a local trivialization .

Sometimes we write πB : E −→ B instead of (E,B, F, πB) to denote a vector bundle.

A section of a vector bundle πB : E −→ B is a map S : B −→ E such that

πB ◦ S = idB. The zero-section of a vector bundle is the section that maps every

x ∈ B to the zero vector in the fiber over x. A vector bundle πB : E −→ B is said to

be a trivial vector bundle if there exists a local trivialization (E,ψ), i.e. if there

exists a diffemorphism ψ : E −→ B × F such that the following diagram commutes

πB
−1(B) = E

ψ
//

πB

��

B × F

p1

uukkkkkkkkkkkkkkkkkk

B

Let M be an n-dimensional manifold then TM , the tangent bundle of M , admits

the vector bundle structure (TM,M,Rn, πM) where for every p ∈M the fiber over p

is TpM .

Let M and N be differential manifolds and f a mapping in C1(M ;N). Let X and

Y be vector fields defined on M and N respectively. One says that X is f-related

to Y iff Tf ◦X = Y ◦ f , i.e. iff the following diagram commutes

M

X
��

f
// N

Y
��

TM
Tf

// TN

Let Â and B̂ be vector fields defined on M and A,B vector fields defined on N such

that Â is f -related to A and B̂ is f -related to B, then one easily checks that [Â, B̂]

is f -related to [A,B].

If (x1, . . . , xn) are local coordinates for M , an n-dimensional manifold, then the

natural coordinates for TM are denoted (x1, . . . , xn, v1, . . . , vn) (where vi = v(xi),

i = 1, . . . , n). We shall often write x for the local coordinates on M and (x, v) for the

natural coordinates on TM associated with x. Using this notation, ((x, v), (wL, wH))

are local coordinates on TTM , where the first pair (x, v) represents coordinates for

9



TM and the pair (wL, wH) denotes coordinates for the fiber above (x, v).

Let ρ : I −→M be a curve on a differentiable manifold M then we set ρ̇ = Tρ ◦ ∂
∂r

.

One easily checks that ρ̇, so defined, is a curve ρ̇ : I −→ TM satisfying πM(ρ̇(t)) = ρ(t)

for every t ∈ I.

A vector field X along a curve σ : I −→ M is a map X : σ(I) −→ TM such

that Xσ(t) ∈ Tσ(t)M for every t ∈ I.

Given v in TM , the vertical space over v, denoted by (TvTM)vert, is defined as

the kernel of the tangent map associated to the projection in M , i.e. (TvTM)vert =

kernel(TvπM) ⊂ TvTM . Having defined the vertical space over a vector in TM , we

define a subbundle of the tangent tangent bundle called the vertical subbundle

given by TTMvert =
∐

v∈TM(TvTM)vert. An element w in TTMvert is said to be a

vertical vector . Let us outline how this is represented in coordinates. For every

v ∈ TM one has TvπM : TvTM −→ Tπ(v)M , since πM : TM −→ M . Let v ∈

TpM , if v = (p, v) in a given coordinate chart πM(p, v) = p. It straightforward to

verify that for any w ∈ TTM represented in coordinates by ((p, v), (wL, wH)) one has

TvπM(((p, v), (wL, wH))) = (p, wL), therefore an element w in the vertical subbundle

TTMvert is expressed, in coordinates, as ((p, v), (0, wH)).

Given v, w ∈ TM such that πM(v) = πM(w), one defines the vertical lift of w

by v, denoted lift(v, w), to be the vector in TvTM given by

lift(v, w) = T0γv,w

(
∂

∂r

∣∣∣∣
0

)
,

where γv,w : R −→ TM is the curve determined by γv,w(t) = v + tw.

Given a vector field X ∈ Γ(TM), the vertical lift of X is the vector field X lift ∈

Γ(TTM) defined by X lift
v = lift(v,XπM (v)).

Assume that v, w ∈ TpM are respectively represented in coordinates by (p, v) and

(p, w). Note that, since γv,w : R −→ TM , one has Ttγv,w : TtR −→ Tγv,w(t)TM .

Now, for every t ∈ R one has γv,w(t) = (p, v + tw), so it is easy to check that

Ttγv,w( ∂
∂r

∣∣
t
) = ((p, v + tw), (0, w)). Therefore, since lift(v, w) = T0γv,w( ∂

∂r

∣∣
0
), one has

that, in coordinates, lift(v, w) = ((p, v), (0, w)). Consider v ∈ TM represented in

coordinates by (p, v), suppose that X is a vector field on M which is represented in

coordinates by Xx =
(
x,Xx

)
for any x ∈M , thus X lift

v = lift (v,Xp), so in coordinates

10



X lift
v =

(
(p, v), (0, Xp)

)
.

A vector field X ∈ Γ(TTM) is said to be a vertical vector field if TπM ◦X = 0.

Here it is important to note that a vertically lifted vector field is vertical, whereas a

vertical vector field is not, in general, the result of vertically lifting some vector field.

A vector field X ∈ Γ(TTM) is said to be a second-order vector field (one

also says that X defines a second-order equation on M) if TπM ◦ X = idTM . This

definition can be extended naturally to vector fields along curves in TM , namely, if

γ : I −→ TM is a curve and X is defined along γ then X is said to be second-order

along γ if for every t ∈ I, TπM(Xγ(t)) = γ(t).

Consider v ∈ TM , represented in coordinates by (p, v), and assume thatX is a vec-

tor field on TM , which is represented in coordinates byXv =
(
(p, v), (XL(v), XH(v))

)
.

Thus TπM ◦X(v) = (p,XL(v)), therefore X is vertical if XL(v) = 0 while X is second-

order if XL(v) = v.

A system of the form ẋ = X(x), with x : I −→ TM and X ∈ Γ(TTM) is said to

be a second-order system iff X is second-order.

The Liouville vector field denoted by C is a vector field on the tangent space

at a manifold M (C ∈ Γ(TTM)) which is defined by C(v) = lift(v, v) for any v ∈

TM . In coordinates, if v ∈ TM is represented by (p, v), then Cv is represented by

((p, v), (0, v)).

The canonical almost tangent structure on M , denoted by JM , is a tensor

field of type (1, 1) over TM (i.e. JM ∈ Γ (T 1
1 (TTM))) defined by

(JM(X))v = lift(v, TπM ◦X(v))

where X is a vector field on TM and v ∈ TM . The tensor field JM , so defined, can

be shown to satisfy these two properties [5]

[JM , JM ] = 0 and [C, JM ] = −JM .

In coordinates, if Xv is represented by
(
(p, v), (XL(v), XH(v))

)
then (JM(X))v =

lift((p, v), (p,XL(v))) =
(
(p, v), (0, XL(v))

)
.

The conditions that define a vector field to be vertical or second-order can also be

formulated using the canonical almost tangent structure together with the Liouville
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vector field [5]. A vector field X on TM is said to be vertical iff JM(X) = 0 or,

alternatively, if [C,X] = −X. X is said to be second-order if JM(X) = C. One

also defines, using the almost tangent structure, the notion of semispray. Let X be

a vector field defined on TM , the tangent bundle of a smooth manifold; X is said to

be a semispray (or alternatively an almost spray) iff

JM(X) = C and [C,X] = X.

One notices, by observing the properties above, that a semispray is also a second-order

vector field.

The vertical space at v ∈ TM , being a subspace of the tangent space at v, is canon-

ically given by the kernel of the tangent map associated with the bundle projection

as stated before. However the choice of a horizontal space at v is not canonically

determined, but it can be defined, instead, by means of a connection on M .

Definition 2 Let M be a smooth manifold. A smooth affine connection ∇ on M ,

(or simply a connection on M), is a linear map

∇ : Γ(TM) −→ Γ(T ∗M ⊗ TM)

such that, for each f ∈ C∞(M) and every X ∈ Γ(TM),

∇(fX) = df ⊗X + f∇(X).

We regard a connection as a map ∇ : Γ(TM)×Γ(TM) −→ Γ(TM) such that ∇ :

(X,Y ) 7→ ∇XY . Given vector fields X and Y in Γ(TM), the covariant derivative

of Y along X is defined to be the vector field ∇XY ∈ Γ(TM). It is easy to show

that the conditions already mentioned in Definition (2) are equivalent to requiring,

from ∇, the following conditions, for every X, Y in Γ(TM):

1. (X,Y ) 7→ ∇XY is R-bilinear

2. ∇fXY = f(∇XY ), ∀f ∈ C∞(M)

12



3. ∇X(fY ) = (LXf)Y + f(∇XY ), ∀f ∈ C∞(M).

Let (U, φ) be a coordinate chart for M with coordinates (x1, . . . , xn). Given that

the covariant derivative of the basis vector field ∂
∂xj with respect to the basis vector

field ∂
∂xi is a vector field on M , there exist functions on M , Γkij, i = 1, . . . , n, such

that

∇ ∂

∂xi

∂

∂xj
= Γkij

∂

∂xk
i, j = 1, . . . , n.

The terms Γkij, i, j, k = 1, . . . , n, referred to as the Christoffel symbols, uniquely

define a connection. If, in a given coordinate chart, the vector fields X and Y are

given by X = X i ∂
∂xi and Y = Y i ∂

∂xi , i = 1, . . . , n, then we have

∇XY =

(
∇

(
Y i ∂

∂xi

))
(X)

=

(
dY i ⊗

∂

∂xi
+ Y i∇

∂

∂xi

)
(X)

= dY i

(
Xk ∂

∂xk

)
∂

∂xi
+ Y i∇(Xk ∂

∂xk )

(
∂

∂xi

)

=
∂Y i

∂xl
dxl
(
Xk ∂

∂xk

)
∂

∂xi
+XkY i∇( ∂

∂xk )

(
∂

∂xi

)

=
∂Y i

∂xl
Xkδlk

∂

∂xi
+XkY i∇( ∂

∂xk )

(
∂

∂xi

)

=

(
∂Y l

∂xk
Xk + ΓlkiX

kY i

)
∂

∂xl
,

therefore, rearranging the indices, the expression for the covariant derivative of Y

along X, is

∇XY =

(
∂Y k

∂xi
X i + ΓkijX

iY j

)
∂

∂xk
.

A curve c : I −→ M is said to be a geodesic for an affine connection ∇ if

∇ċ(t)ċ(t) = 0 for every t in I. Let X be a vector field defined on M and suppose

that c : I −→ M is an integral curve of X, thus Xc(t) = ċ(t) for every t ∈ I, or

equivalently, X ◦ c = ċ. Recall that ċ : I −→ TM is defined by ċ(t) = Ttc
(
∂
∂r

∣∣
t

)
.
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One has c̈(t) = Ttċ
(
∂
∂r

∣∣
t

)
, consequently c̈(t) = Tt(X ◦ c)

(
∂
∂r

∣∣
t

)
. By applying the

chain rule one gets c̈(t) = Tc(t)X ◦Ttc
(
∂
∂r

∣∣
t

)
and, by using the definition of ċ one gets

c̈(t) = Tc(t)X ◦ ċ(t), or equivalently, c̈(t) = Tc(t)X ◦ X(c(t)). In coordinates one has

c̈i(t) = ∂Xi

∂xj X
j(c(t)). Then the expression, in coordinates, of ∇ċ(t) ċ(t) = (∇XX)c(t) is

∇ċ(t) ċ(t) =

(
∂X i

c(t)

∂xj
Xj
c(t) + Γijk(c(t))X

j
c(t)X

k
c(t)

)
∂

∂xi

=
(
c̈i(t) + Γijk(c(t)) ċ

j(t) ċk(t)
) ∂

∂xi
. (2.1)

Now suppose that the covariant derivative of X along X equals zero. Hence the

integral curve c of X is geodesic iff

c̈i(t) + Γijk(c(t))ċ
j(t) ċk(t) = 0, for i = 1, . . . , n; ∀ t ∈ I.

The latter is a second-order differential equation on M . If xi = ci and vi = ċi

for i = 1, . . . , n, so the curve ċ in natural coordinates for TM is expressed by

(x1, . . . , xn, v1, . . . , vn), then the corresponding first-order differential equation on TM

is

ẋi = vi

v̇i = −Γijk(x) v
jvk

for i = 1, . . . , n

These first-order equations define a vector field S on TM given in coordinates by

S(x,v) = vi ∂
∂xi − Γijk(x)v

jvk ∂
∂vi . This vector field is known as the geodesic spray

associated with the connection ∇. The integral curves of S are curves in TM whose

projection onto M yield geodesics for the connection ∇.

Given a connection ∇, we define its associated torsion tensor field T by

T : (X,Y ) 7→ ∇XY −∇YX − [X,Y ].

T is indeed a tensor field of type (1, 2), so one may regard it as a function T :

Γ(TM)×Γ(TM) −→ Γ(TM) which is bilinear with respect to function multiplication.

Indeed given X,Y , vector fields defined on M , and functions f, g in C∞(M) T satisfies
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T (fX, gY ) = (∇(gY )) (fX) − (∇(fX)) (gY ) − [fX, gY ]

= (dg ⊗ Y + g∇Y )(fX) − (df ⊗X + f∇X)(gY ) − [fX, gY ]

= dg(fX)Y + g∇(fX)Y − df(gY )X − f∇(gY )X − fg [X,Y ]

−fX(g)Y + gY (f)X

= fg∇XY − fg∇YX + f dg(X)Y − g df(Y )X − fg [X,Y ]

−f dg(X)Y + g df(Y )X

= fg∇XY − fg∇YX − fg [X,Y ],

therefore T (fX, gY ) = fg (∇XY −∇YX − [X,Y ]) i.e.

T (fX, gY ) = fg T (X,Y ).

One easily checks that T also satisfies T (X+Y, Z) = T (X,Y )+T (Y, Z) and T (X,Y +

Z) = T (X,Y ) + T (X,Z) for X,Y, Z in Γ(TM).

Suppose that X,Y are given in coordinates by X = X i ∂
∂xi and Y = Y i ∂

∂xi , i =

1, . . . , n. In this case

T (X,Y ) = ∇XY −∇YX − [X,Y ]

=

(
∂Y k

∂xi
X i + ΓkijX

iY j

)
∂

∂xk
−

(
∂Xk

∂xj
Y j + ΓkjiX

iY j

)
∂

∂xk

−

(
∂Y k

∂xi
X i −

∂Xk

∂xj
Y j

)
∂

∂xk

=
(
ΓkijX

iY j − ΓkjiX
iY j
) ∂

∂xk
,

therefore the expression for the torsion tensor field evaluated at (X,Y ) is

T (X,Y ) =
(
ΓkijX

iY j − ΓkjiX
iY j
) ∂

∂xk
,
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hence, the components of the torsion tensor field in coordinates are

T kij = Γkij − Γkji, i, j, k = 1, . . . , n.

2.3. Simple Mechanical Systems

In this section we review the basics on modeling mechanical systems in the La-

grangian formulation. This class of systems plays a fundamental role in this thesis for

the ultimate purpose consists in devising a control strategy to cope with stabilization

and tracking for such systems.

Definition 3 Let M be a smooth manifold and G ∈ Γ(T 0
2 (TM)) a tensor field of type

(0, 2) over M such that, for all p ∈M and for every w ∈ TpM , G satisfies:

1. Gp(v, w) = Gp(w, v) for every v ∈ TpM “symmetry”

2. If Gp(v, w) = 0 then v = 0 “nondegeneracy”.

The couple (M,G) is said to be a pseudo-Riemannian manifold and G a pseudo-

Riemannian metric.

Moreover, if G is positive definite, i.e. Gp(v, v) > 0 for every p ∈ M and every

v ∈ TpM\{0}, one says that G is a Riemannian metric on M and that the couple

(M,G) is a Riemannian manifold.

Let M be a finite-dimensional, smooth manifold and G a Riemannian metric on

M . Then one defines the bundle map G♭ on TM , such that G♭p : TpM −→ T ∗
pM ,

by G♭p(v) = Gp(v, ·), ∀p ∈ M and ∀v ∈ TpM . Likewise consider the map G♯ so that

G♯p : T ∗
pM −→ TpM given by G♯p = (G♭p)

−1, ∀p ∈ M . Since G is nondegenerate these

two maps G♭ and G♯ define canonical maps between TM and T ∗M and between T ∗M

and TM respectively. In coordinates, the components of the metric G are given by

Gij = G
(
∂
∂xi ,

∂
∂xj

)
. As a consequence, the maps G♭ and G♯ satisfy G♭

(
∂
∂xi

)
= Gij dx

j

and G♯ (dxi) = Gij ∂
∂xi , where Gij, (i, j = 1, . . . , n) is defined by GijG

jk = δki , that is,

the matrix whose entries are Gij is the inverse of the matrix with entries Gij. Hence,

for a vector field X on M and for a 1-form Υ, G satisfies
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G♭
(
X i ∂

∂xi

)
= GijX

i dxj G♯
(
Υi dx

i
)

= GijΥi

∂

∂xj
(2.2)

If a manifold is provided with a Riemannian metric then there is a canonical

connection which is torsion free and compatible with the metric. More precisely, if G

is a Riemannian metric on a smooth manifold M , then there exists a unique affine

connection
G

∇ on M which satisfies ∀X,Y ∈ Γ(TM):

1.
G

∇X G = 0, (metric compatible),

2. T (X,Y ) = 0, (torsion free),

where T is the torsion tensor field associated with G.
G

∇ is called the Levi-Cività

connection associated with G. Given a coordinate chart, the latter two conditions

imply that, [10], the Christoffel symbol,
G

Γ i
jk, of the Levi-Cività connection is given

by:

G

Γ i
jk =

1

2
Gil
(
∂Gjl
∂xk

+
∂Gkl
∂xj

−
∂Gjk
∂xl

)
(2.3)

where Gij, i, j = 1, . . . , n, are defined by GijG
jk = δki .

Let Q be an n-dimensional smooth manifold. A simple mechanical control

system defined on Q is a 4-tuple (Q,G, V,F), where Q is the configuration manifold

of the system, G is a Riemannian metric on Q, V ∈ C∞(Q) is called the potential

energy function and F = {F 1, . . . , Fm} is a set of 1-forms on Q that physically

correspond to forces or torques.

By the forced Euler-Lagrange equations one represents the dynamics of (Q,G, V,F)

by

d

dt

(
∂L

∂q̇i

)
−
∂L

∂qi
=

m∑

i=j

ujF j
i , (2.4)

where L : TQ −→ R, defined by L(v) = 1
2
Gπ(v)(v) − V ◦ π(v) for all v ∈ TM , is the

Lagrangian of the system. If, in coordinates, v = (q, q̇), then L(q, q̇) = 1
2
Gπ(v)(q̇, q̇) −

V (q) = 1
2
Gq,ij q̇

iq̇j − V (q).
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One can express (2.4) using the Levi-Cività connection associated with G [10] as:

G

∇q̇ q̇ = −G♯ ◦ dV (q) +
m∑

i=1

uiG♯ ◦ F i(q) (2.5)

Notice that this is a coordinate-free representation. Let us now express the equation

in coordinates. By (2.1) and (2.2) one has

(
q̈i +

G

Γ i
jk(q) q̇

j q̇k

)
∂

∂qi
= −G♯

(
∂V

∂qi
(q) dqi

)
+

m∑

h=1

uhG♯(F h
i (q) dqi)

= −Gli
∂V

∂ql
(q)

∂

∂qi
+

m∑

h=1

uhGriF h
r (q)

∂

∂qi

Hence a simple mechanical control system can be represented by the following set of

n second-order differential equations

q̈i = −
G

Γ i
jk(q) q̇

j q̇k − Gli
∂V

∂xl
(q) +

m∑

h=1

uhGriF h
r (q) i = 1, . . . , n.

Alternatively, it can be represented by a set of 2n first-order differential equations

(i = 1, . . . , n)

ẋi = vi

v̇i = −
G

Γ i
jk(x) v

j vk − Gli
∂V

∂xl
(x) +

m∑

h=1

uhGriF h
r (x)

with xi = qi and vi = q̇i. From the latter expression one realizes that (2.5) can be

written as a system evolving on TQ, namely

v̇ = SG(v) − (G♯ ◦ dV )lift(v) +
m∑

i=1

ui(G♯ ◦ F i)lift(v), (2.6)

where SG is the geodesic spray associated with the Levi-Cività connection
G

∇.

18



A constrained mechanical control system [10], represented by a 5-tuple

(Q,G, V,F ,D), is a simple mechanical control system (Q,G, V,F) subject to con-

straints represented by D, an (n − l)-dimensional distribution on Q given by the

annihilator of D = {ω1, . . . , ωl}, l linearly independent 1-forms on Q.

The dynamics of a given system (Q,G, V,F ,D) can be obtained by the application

of the Lagrange-d’Alembert principle, which yields the following equations

d

dt

(
∂L

∂q̇i

)
−
∂L

∂qi
=

m∑

i=j

ujF j +
l∑

k=1

λkωk,

where λk (k = 1, . . . , l) are the Lagrange multipliers for the system. Analogously, one

can express this system using the Levi-Cività connection by

G

∇q̇ q̇ = λ− G♯ ◦ dV +
m∑

i=1

uiG♯ ◦ F i(q)

where λ (related to the Lagrange multipliers) is a section of D⊥, the G-orthogonal

complement to D, along the curve q. According to [10], if P : TQ −→ TQ denote the

complementary G-orthogonal projection on D and P ′ : TQ −→ TQ the G-orthogonal

projection onto D⊥ one has

∇q̇ q̇ = −P ◦ G♯ ◦ dV +
m∑

i=1

uiP ◦ G♯ ◦ F i(q), (2.7)

where ∇ is defined by ∇XY =
G

∇X Y +A−1((
G

∇X (AP ′))(Y )) where A is any invertible

tensor field of type (1, 1) on Q . Note that (2.7) has the same form as (2.5), therefore

it can be expressed as a system evolving on TQ by a formula analogous to (2.6).

2.4. Lie Theory Preliminaries

Several mechanical systems have as configuration manifold a Lie group that is

a differentiable manifold having a group structure. This class of systems can be

described as evolving on the tangent bundle of the Lie group.

Definition 4 (Group) A group is a set G together with a map µ : G × G −→ G
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(called the group composition or law of composition) which satisfies:

1. µ(x, y) ∈ G, ∀x, y ∈ G.

2. µ(x, µ(y, z)) = µ(µ(x, y), z), ∀x, y, z ∈ G.

3. There exists e ∈ G such that for every x ∈ G, µ(x, e) = µ(e, x) = x.

4. For all x ∈ G there exists an element x−1 ∈ G such that µ(x, x−1) = µ(x−1, x) =

e.

We refer to e as the identity element (or simply as the identity) in G and to x−1

as the inverse element of x.

For convenience we shall sometimes write g · h or gh instead of µ(g, h). Let G be

a group and X a set. By a left action of G on X we mean a map l : G×X −→ X

which satisfies, for all x ∈ X:

1. l(e, x) = x

2. l(g, l(h, x)) = l(gh, x) ∀ g, h ∈ G

Similarly, a right action is a map r : X ×G −→ X that satisfies, for all x ∈ X:

1. r(x, e) = x

2. r(r(x, g), h) = r(x, gh) ∀ g, h ∈ G

One readily verifies that left and right actions of a group G on itself are naturally

defined by setting l(g, ·) = µ(g, ·) and r(·, g) = µ(·, g). These actions are called left

translation and right translation , respectively.

Definition 5 (Lie Group) A Lie group is a smooth manifold G that has a group

structure compatible with its smooth manifold structure in the sense that the group

multiplication

µ : G×G −→ G µ : (g, h) 7→ gh

is a smooth map.
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It is straightforward to show that if G is a Lie group then the inverse map g 7→ g−1

is also smooth.

Whenever we refer to Lie groups exp(tX) will denote exp(tX)(e), i.e. if G is a

Lie group and X is a vector field defined on G, exp(tX) stands for the solution of the

differential equation ġ = X(g) at time t with initial condition e (the identity element

in G).

Let us denote by Lg and Rg the left and right translations on the Lie group G by

an element g, thus Lg(h) = gh and Rg(h) = hg for all h ∈ G. The following diagram,

involving left and right translations, commutes

G

Rh

��

Lg
// G

Rh

��

G
Lg

// G

i.e. for every g, h in G, Lg ◦Rh = Rh ◦Lg since for a given p ∈ G, Lg ◦Rh(p) = gph =

Rh ◦ Lg(p).

Since Lg−1 (Lg(h)) = g−1(gh) = h and Rg−1 (Rg(h)) = (hg)g−1 = h, the inverse of Lg

is Lg−1 and likewise the inverse of Rg is Rg−1 .

The tangent space at any point in G can be canonically identified with TeG using

the tangent map associated with the left translation L or with the right translation

R. Indeed given a vector v ∈ TgG, the related vector ξ ∈ TeG is given by

ξ = TgLg−1(v) or by ξ = TgRg−1(v).

In the following we will conventionally use the association specified by the left trans-

lation. Given a vector ζ ∈ TeG one defines a vector field Xζ on G by

Xζ(g) = TeLg(ζ),

(an analogous definition holds using right translations). The vector field defined in

this way is said to be left-invariant since Xζ(Lg(h)) = TeLgh(ζ) = Te(Lg ◦ Lh)(ζ) =

ThLg ◦TeLh(ζ) = ThLg(Xζ(h)). One extends this notion as in the following definition.

Definition 6 (Left-invariant vector fields) Let G denote a Lie group and let X
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be a vector field on G. X is said to be left-invariant with respect to the group

operation if

Xgh = ThLg(Xh) ∀ g, h ∈ G.

It is straightforward to verify that the Lie bracket product of left-invariant vector

fields is a left-invariant vector field, i.e. if X and Y are left-invariant vector fields

defined on a Lie group then [X,Y ]gh = ThLg([X,Y ]h).

The Lie algebra of left-invariant vector fields associated with G, a Lie group,

is denoted by g and is isomorphic to the tangent space of G at e (g ≃ TeG). It is

possible to define a Lie bracket product for elements in TeG due to the association of

a vector in TeG with a vector field defined in g, namely [ξ, ζ] = [Xξ, Xζ ](e).

Proposition 1 (The tangent Lie group) Let G be a Lie group, µ̂ its group op-

eration and ê its identity. Then TG can be endowed with a Lie group structure by

defining the group operation µ : TG× TG −→ TG by

µ : (u, v) 7→ TπG(u)R̂πG(v)(u) + TπG(v)L̂πG(u)(v), (2.8)

where L̂ and R̂ are the left and right translations in G. The identity element e ∈ TG

is 0be, that is, the zero vector in the fiber over the identity on G, and the inverse of

u ∈ TG is

u−1 = −TbeL̂πG(u)−1 ◦ TπG(u)R̂πG(u)−1(u) (2.9)

Proof: First let prove that the group composition of two elements of TG is in TG.

Since R̂πG(v) : G −→ G and L̂πG(u) : G −→ G one gets that TR̂πG(v) : TG −→ TG and

TL̂πG(u) : TG −→ TG. As TR̂πG(v)(u) ∈ TπG(u)πG(v)G and TL̂πG(u)(v) ∈ TπG(u)πG(v)G

for all u, v ∈ TG, the sum in (2.8) makes sense and µ(u, v) ∈ TπG(u)πG(v)G ⊂ TG.

Now assume that u ∈ TgG, v ∈ ThG, w ∈ TiG, then by (2.8) one obtains that

µ(v, w) = ThR̂i(v) + TiL̂h(w). By virtue of the linearity of tangent maps one gets

µ(u, µ(v, w)) = TgR̂hi(u) + ThiL̂g(ThR̂i(v) + TiL̂h(w))
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= TgR̂hi(u) + ThiL̂g ◦ ThR̂i(v) + ThiL̂g ◦ TiL̂h(w)

= TgR̂hi(u) + ThiL̂g ◦ ThR̂i(v) + TiL̂gh(w).

Using the fact that TL̂g ◦ TR̂i = TR̂i ◦ TL̂g for each g, h in G, (since left and right

translations commute) one obtains

µ(u, µ(v, w)) = TgR̂hi(u) + TghR̂i ◦ ThL̂g(v) + TiL̂gh(w)

= TghR̂i ◦ TgR̂h(u) + TghR̂i ◦ ThL̂g(v) + TiL̂gh(w)

= TghR̂i(TgR̂h(u) + ThL̂g(v)) + TiL̂gh(w)

Therefore µ(u, µ(v, w)) = µ(µ(u, v), w) since µ(u, v) = TgR̂h(u) + ThL̂g(v), and this

proves the associativity of the product defined in (2.8).

Next, let us verify that 0 ∈ TbeG is the identity element in TG with µ as group

composition.

µ(u, 0) = TπG(u)R̂πG(0)(u) + TπG(0)L̂πG(u)(0)

= TπG(u)R̂be(u)
= u.

Analogously

µ(0, u) = TπG(0)R̂πG(u)(0) + TπG(u)L̂πG(0)(u)

= TπG(u)L̂be(u)
= u,

hence 0 satisfies the properties to be the identity element in TG.

Since πG(u−1) = πG(−TbeL̂πG(u)−1 ◦ TπG(u)R̂πG(u)−1(u)), πG(u−1) equals (πG(u))−1,

thus u−1 ∈ TπG(u)−1G then µ(u, u−1) ∈ TπG(u)πG(u)−1G = TbeG and µ(u−1, u) ∈

TπG(u)−1πG(u)G = TbeG. One also has
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µ(u, u−1) = TR̂πG(u)−1(u) + TL̂πG(u)

(
−TL̂πG(u)−1 ◦ TR̂πG(u)−1(u)

)

= TR̂πG(u)−1(u) − TL̂πG(u) ◦ TL̂πG(u)−1 ◦ TR̂πG(u)−1(u)

= TR̂πG(u)−1(u) − TL̂be ◦ TR̂πG(u)−1(u)

= TR̂πG(u)−1(u) − TR̂πG(u)−1(u)

= 0

and

µ(u−1, u) = TR̂πG(u)

(
−TL̂πG(u)−1 ◦ TR̂πG(u)−1(u)

)
+ TL̂πG(u)−1(u)

= −TR̂πG(u) ◦ TL̂πG(u)−1 ◦ TR̂πG(u)−1(u) + TL̂πG(u)−1(u)

= −TL̂πG(u)−1 ◦ TR̂πG(u) ◦ TR̂πG(u)−1(u) + TL̂πG(u)−1(u)

= −TL̂πG(u)−1(u) + TL̂πG(u)−1(u)

= 0

Hence (·)−1 : TG −→ TG, defined by (2.9), satisfies the properties of the inverse

map. Finally, the map µ̂, the group law of composition defined in G, is smooth, since

L̂g and R̂h are smooth for all g, h ∈ G and, consequently, TL̂g and TR̂h are smooth,

therefore so is µ. �

Note that µ̂ and µ, being group operations in G and TG respectively, satisfy

µ̂(πG(u), πG(v)) = πG(µ(u, v)) (and consequently πG(u)−1 = πG(u−1)), i.e. the fol-

lowing diagram commutes

TG× TG

πG×πG

��

µ
// TG

πG

��

G×G
bµ

// G.

It is important to remark that the following diagrams also commute
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G×G
p1×p2

//bµ
��

G×Gbµ
vvlllllllllllllll

G

T (G×G)
Tp1×Tp2

//

T bµ
��

TG× TG

µ
uukkkkkkkkkkkkkkkkk

TG

where pi : G×G −→ G is the canonical projection on the i-th factor (i = 1, 2). Thus

T µ̂ = µ ◦ Tp1 × Tp2 (2.10)

From now on we shall write L̂, R̂, µ̂ to denote operations in G, and L, R and µ to

denote operations in TG; ê shall denote the identity element in G whereas e = 0be = 0

the identity element in TG.

Proposition 2 Let G be a Lie group and let σ, τ : I −→ G be curves on G. Then

d

dt
(µ̂(σ(t), τ(t))) = Tσ(t)R̂τ(t)(Xσ(t)) + Tτ(t)L̂σ(t)(Yτ(t)) (2.11)

where X and Y are vector fields on G defined along the curves σ and τ such that

Xσ(t) = Ttσ

(
∂

∂r

∣∣∣∣
t

)
, Yτ(t) = Ttτ

(
∂

∂r

∣∣∣∣
t

)
, ∀ t ∈ I.

Proof: Define α : I −→ G × G and γ : I −→ G by α = (σ, τ) and γ = µ̂ ◦ α. By

definition γ̇(t) = Ttγ
(
∂
∂t

∣∣
t

)
, thus γ̇(t) = Tt(µ̂ ◦ α)

(
∂
∂t

∣∣
t

)
. Using the chain rule one

obtains γ̇(t) = Tα(t)µ̂◦Ttα
(
∂
∂t

∣∣
t

)
but, according to (2.10) one has T µ̂ = µ◦Tp1×Tp2,

hence

γ̇(t) = µ ◦ Tα(t)p1 × Tα(t)p2 ◦ Ttα

(
∂

∂r

∣∣∣∣
t

)
.

Using the fact that α̇(t) = (σ̇(t), τ̇(t)) = (Xσ(t), Yτ(t)), we obtain γ̇(t) = µ ◦ Tα(t)p1 ×

Tα(t)p2(Xσ(t), Yτ(t)). Thus

d

dt
(µ̂(σ(t), τ(t))) = γ̇(t) = Tσ(t)R̂τ(t)(Xσ(t)) + Tτ(t)L̂σ(t)(Yτ(t)),

as was to be shown. �
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Proposition 3 Let G be a Lie group and τ : I −→ G a curve on G. Then the vector

field Z along the curve t 7→ (τ(t))−1 defined by Zτ(t)−1 = Tt(τ
−1)
(
∂
∂r

∣∣
t

)
is given by

Zτ(t)−1 = −TbeL̂τ(t)−1 ◦ Tτ(t)R̂τ(t)−1(Yτ(t)) (2.12)

where Y is the vector field along τ defined by Yτ(t) = Ttτ
(
∂
∂r

∣∣
t

)
.

Proof: Consider µ̂(τ, τ−1), then by (2.11) we have d
dt

(ê) = Tτ(t)R̂τ(t)−1(Yτ(t)) +

Tτ(t)−1L̂τ(t)(Zτ(t)−1) = 0 thus Tτ(t)−1L̂τ(t)(Zτ(t)−1) = −Tτ(t)R̂τ(t)−1(Yτ(t)). Using the

fact that (L̂τ )
−1 = L̂τ−1 we obtain

Zτ(t)−1 = −TbeL̂τ(t)−1 ◦ Tτ(t)R̂τ(t)−1(Yτ(t)).

�
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Chapter 3

Transverse function control approach

In this chapter we review results presented in [13] and [14] about the transverse

function control approach applicable to controllable driftless systems. We explain

what defines a function to be transverse — so called since the condition these functions

satisfy bears a resemblance with the transversality condition of differential topology.

We also recall a procedure to construct transverse functions for certain cases. We

review the methodology followed by Morin and Samson to achieve practical stabiliza-

tion of points for controllable driftless systems. We also expound how this control

approach is applied to control the chained form system, which is feedback equivalent

to several other systems, among which the unicycle-type robot.

3.1. Characterization of transverse functions

Let X1, . . . , Xm denote smooth, linearly independent vector fields on M , an n-

dimensional smooth manifold. Suppose the set {X1, . . . , Xm} satisfies the Lie Algebra

Rank Condition (LARC) for some point p ∈M , i.e.

TpM = {Xp : X ∈ Lie({X1, . . . , Xm})}.

Expressed in more geometric terms, the set {X1, . . . , Xm} satisfies the LARC at

a point p iff the distribution spanned by {X1, . . . , Xn} is completely nonintegrable

around p. It is shown in [13] that the latter condition is equivalent to the fact that,

given a neighborhood U of p, there exists an integer κ ≥ n − m and a function
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f : T
κ −→ M such that f(Tk) ⊂ U and f satisfies, for every θ ∈ T

κ, the so-called

transversality condition

Tf(θ)M = span
R
({X1f(θ), . . . , Xmf(θ)}) + Tθf(TθT

κ). (3.1)

Thus the assumption that {X1, . . . , Xm} satisfies the LARC at p ∈ M is equivalent

to the existence of a function, whose image is contained in an arbitrarily small neigh-

borhood of p, such that the tangent space of M at every q in the image of f equals

the sum of the distribution spanned by {X1, . . . , Xm} at q and the image of the tan-

gent map associated to f at q. Any function f satisfying these conditions is called

transverse for the set {X1, . . . , Xm} near p. Notice that, in general, the sum in (3.1)

is not direct, namely κ may be larger than n −m. However, when the manifold M

has a Lie group structure, and the vector fields X1, . . . , Xm are left-invariant, the sum

becomes direct and f turns out to be an immersion. In such a case there exists an

explicit method, outlined in the next section, to construct transverse functions.

3.2. Construction of transverse functions for systems

on Lie groups

As we have already mentioned, the construction of transverse functions can be

readily prescribed when M = G is an n-dimensional Lie group and the elements of

{X1, . . . , Xm} are left-invariant, linearly independent, smooth vector fields defined on

G, and the set satisfies the Lie Algebra Rank Condition at e, the identity element in

G.

The requirement that the set of controlled vector fields satisfy the LARC at ê, i.e.

TbeG = {Xbe : X ∈ Lie({X1, . . . , Xm})} is equivalent, for any point g in G, to

TgG = {Xg : X ∈ Lie({X1, . . . , Xm})},

since by virtue of the left-invariance of the vector fields in Lie({X1, . . . , Xm}) one

readily transfers the LARC condition at ê to an analogous condition at g.

By virtue of the stated assumptions, there exists a function f : T
n−m −→ G such

that
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Tf(θ)G = span
R
({X1f(θ), . . . , Xmf(θ)}) ⊕ Tθf(TθT

n−m) (3.2)

A possible choice for the transverse function f can be described by the following

procedure [14]. Let ξi ∈ g be the vector associated to Xi (i = 1, . . . ,m), i.e. ξi =

Xi(ê). Next define a family {Gk : k ∈ N} of subspaces of g, by setting

Gk , span
R
({[Xi1 , [Xi2 , [. . . , [Xij−1

, Xij ] · · ·]]] : i1, . . . , ij ≤ m, j ≤ k})

Consider two mappings λ, ρ : {m+ 1, . . . , n} −→ {1, . . . , n} together with an ordered

basis {ζ1, . . . , ζn} of g, such that:

1. Gk = span
R
({ζ1, . . . , ζdim(Gk)}), for k = 1, . . . ,min{k : Gk = g}

2. Whenever k ≥ 2 and dim(Gk−1) < i ≤ dim(Gk), one has ζi = [ζλ(i), ζρ(i)], with

ζλ(i) ∈ Ga, ζρ(i) ∈ Gb and a+ b = k.

The set {ζ1, . . . , ζn}, together with the mappings λ and ρ constitute what is termed

a graded basis for g. With this graded basis one can associate a weight vector

(r1, . . . , rn) such that ri = k iff ζi ∈ Gk\Gk−1.

Given a graded basis of g, a transverse function f is constructed by selecting

strictly positive real numbers εm+1, . . . , εn and by defining mappings fi : T −→ G,

i = m+ 1, . . . , n, given in coordinates by

fi(θ) = exp
(
ε
rλ(i)

i sin(θ)Xζλ(i)
+ ε

rρ(i)

i cos(θ)Xζρ(i)

)
. (3.3)

Once these mappings are defined, the expression in coordinates of a transverse func-

tion, f : T
n−m −→ G, is given by

f(θm+1, . . . , θn) = fn(θn)fn−1(θn−1) · · · fm+1(θm+1) (3.4)

where (θm+1, . . . , θn) are coordinates on T
n−m. Notice that by choosing the positive

reals εm+1, . . . , εn appropriately one may ensure that the image of f is contained in

an arbitrarily small neighborhood of ê.
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3.3. Transverse function control technique for sys-

tems on Lie groups

Consider a control system of the form

ġ = D(g, t) +
m∑

i=1

uiXi(g) (3.5)

where g represents a curve on an n-dimensional Lie group G, D(g, t) is a drift term

that depends continuously on t and takes values in the tangent space of G at g (D

might be seen as a perturbing term that may be constant with respect its second

argument), and X1, . . . , Xm are linearly independent, left-invariant smooth vector

fields on G satisfying the Lie Algebra Rank Condition at ê ∈ G. Note that we can

choose any p ∈ G such that (3.5) satisfies the LARC at p, as remarked in the previous

section.

Without loss of generality we assume that {X1, . . . , Xm} is linearly independent,

otherwise one may apply an input transformation to (3.5) such that the resulting

control vector fields become linearly independent.

Given that {X1, . . . , Xm} satisfies the LARC at ê there exists a function f :

T
n−m −→ G such that:

Tf(θ)G = span
R
({X1f(θ), . . . , Xmf(θ)}) ⊕ Tθf(TθT

n−m). (3.6)

One way to take advantage from the transversality condition (3.6) is to adjoin, to

system (3.5), an auxiliary system which allows us to control the system also along

the image of Tf . Consider this auxiliary system to be

θ̇ =
n−m∑

i=1

wiΘi(θ) (3.7)

where θ : I −→ T
n−m and {Θ1, . . . ,Θn−m} is a global frame for TT

n−m, that is

TθT
n−m = span

R
({Θ1(θ), . . . ,Θn−m(θ)}) for every θ ∈ T

n−m. Such a global frame

exists because of the triviality of TT
n−m as vector bundle. If (θ1, . . . , θn−m) are local

coordinates for T
n−m by using the frame {Θ1, . . . ,Θn−m} defined in coordinates by

Θi = ∂
∂θi (i = 1, . . . , n−m), (3.7) can be written as θ̇ = w, where w is an R

n−m-valued
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control input.

One defines an error signal z, by using the group structure of the manifold where

the system evolves, namely

z , g · f(θ)−1. (3.8)

The error quantifies the difference between the state g of System (3.5) and the image

by f of the state θ of the auxiliary system. The error equals ê iff g = f(θ). By

differentiating the error along the trajectories of the composite system (3.5) and

(3.7), we obtain the error dynamics to be

ż = Tz·f(θ)R̂f(θ)−1 ◦ Tf(θ)L̂z

(
m∑

i=1

uiXif(θ) −
n−m∑

j=1

wj Tθf(Θj(θ))

+ Tz·f(θ)L̂z−1 (D(z · f(θ), t))

)
(3.9)

From (3.6) one deduces that given any vector field Z ∈ Γ(TG), there exists a smooth

feedback function (u(z, θ), θ̇(z, θ)) defined by

m∑

i=1

uiXif(θ) −
n−m∑

j=1

wj Tθf(Θj(θ)) = Tz·f(θ)L̂z−1

(
TzR̂f(θ)(Zz) −D(z · f(θ), t)

)

such that (3.9) takes the form ż = Zz.

It suffices to choose for Z a vector field having ê as an asymptotically stable point

(assuming that the projection of D(ê, t) onto (span
R
({X1be, . . . , Xmbe}))⊥ tends to zero

as t tends to infinity) to make the error dynamics z(t) tend to ê as t→ ∞. The state

g of the resulting closed loop system

ġ = D(g, t) +
m∑

i=1

ui(z, θ)Xi(g)

tends to the image of f , i.e. as t → ∞, g(t) → f(θ(t)), and since f(Tn−m) is

a neighborhood of e specified beforehand, one obtains practical stabilization [14,
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Proposition 1].

3.4. Example: The chained form system

The purpose of this section is to illustrate how the concepts recalled in this chapter

may be put to use on a specific example. We show how to apply the transverse function

control approach to the problem of stabilization to a fixed point for the chained form

system evolving on R
3, which has a Lie group structure that differs from the usual

one (derived from its vector space structure) and which is useful for control.

In this example we define a Lie group law of composition, construct a transverse

function around ê ∈ R
3, define an auxiliary system and set the error signal as in

(3.8), and then we obtain the error dynamics. Then we produce a feedback function

that renders the identity element ê asymptotically stable for the error dynamics. This

ensures practical stabilization of the chained form system towards the identity ê. We

also present a numerical simulation which illustrates the performance of the feedback

control law.

Consider the chained form system

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2

which can be written as

ẋ = u1X1(x) + u2X2(x) (3.10)

where X1, X2 are vector fields on R
3 with expressions in coordinates x = (x1, x2, x3)

given by

X1(x) =
∂

∂x1

∣∣∣∣
x

+ x2
∂

∂x3

∣∣∣∣
x

, X2(x) =
∂

∂x2

∣∣∣∣
x

.

The configuration manifold R
3 can be endowed with a group multiplication µ̂ : R

3 ×

R
3 −→ R

3 that turns it into a Lie group, by setting, for every x, y in R
3,
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µ̂(x, y) =




x1 + y1

x2 + y2

x3 + y3 + x2y1


 .

The inverse of an element x in R
3, and the identity element ê are given respectively

by

x−1 =




−x1

−x2

−x3 + x1x2


 and ê =




0

0

0


 .

Next, let us verify that the vector fields X1 and X2 are left-invariant with respect to

the group composition defined above. For any x in R
3, the left translation by x is

defined by L̂x(y) = µ̂(x, y) for all y ∈ R
3, so the tangent map associated to L̂x at y,

i.e. TyL̂x : TyR
3 −→ TbLx(y)R

3, is represented by

TyL̂x =




1 0 0

0 1 0

x2 0 1


 .

Given v in TyR
3, from its expression in coordinates we shall omit the base coordinates,

writing only the fiber coordinates (v1, v2, v3). Thus TyL̂x(v) is given by

TyL̂x(v) =




1 0 0

0 1 0

x2 0 1







v1

v2

v3


 =




v1

v2

x2v1 + v3


 ,

so one has

X1(L̂x(y)) =




1

0

x2 + y2


, TyL̂x(X1(y)) = TyL̂x







1

0

y2





 =




1

0

x2 + y2




and
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X2(L̂x(y)) =




0

1

0


 , TyL̂x(X2(y)) = TyL̂x







0

1

0





 =




0

1

0


 .

Therefore, for every x, y in R
3, Xi(L̂x(y)) = TyL̂x(Xi(y)) for i = 1, 2, i.e. both X1

and X2 are left-invariant with respect the group multiplication µ̂.

The Lie bracket of X1 and X2, [X1, X2], is given by

[X1, X2] = −
∂

∂x3

therefore the tangent space of R
3 at ê, TbeR3, is generated by linear combinations of

X1(ê), X2(ê) and [X1, X2](ê). Hence System (3.10) satisfies the LARC at ê.

The set of linearly independent, left-invariant, control vector fields is {X1, X2},

thus m = 2. The vectors ξ1, ξ2 and ξ3 in TbeR3, associated with X1, X2 and [X1, X2],

respectively, are

ξ1 = X1(ê) =




1

0

0


 , ξ2 = X2(ê) =




0

1

0


 , ξ3 = X3(ê) =




0

0

−1




The dimension of the Lie algebra spanned by {X1, X2} is n = 3, g = Lie({ξ1, ξ2}) =

span
R

({ξ1, ξ2, ξ3}), since every Lie bracket involving three or more vectors equals zero.

Now let us obtain the subspaces {Gk : k ∈ N}. By construction we have

G1 = span
R
({ξ1, ξ2}) G2 = span

R
({ξ1, ξ2, [ξ1, ξ2]}),

notice that G2 = g, hence K = 2.

The ordered set {ξ1, ξ2, ξ3} (ξ3 = [ξ1, ξ2]) with ξi 4 ξj iff i ≤ j, is an ordered basis for

g. One checks that

G1 = span
R
{ξ1, ξ2} G2 = span

R
{ξ1, ξ2, ξ3}

Take k = 2 and 2 = dim(G1) < i ≤ dim(Gk) = 3, i.e. i = 3. Next consider mappings
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λ, ρ : {3} −→ {1, 2, 3} defined by λ(3) = 1 and ρ(3) = 2. Hence

ξ3 = [ξλ(3), ξρ(3)] = [ξ1, ξ2].

The set {ξ1, ξ2, ξ3}, in addition to the mappings λ and ρ, define a graded basis for

g. We may consider the weight vector (r1, r2, r3) = (1, 1, 2), since ξ1, ξ2 ∈ G1 and

ξ3 ∈ G2\G1.

Take (U, θ) to be a coordinate chart for T, for example U = S1\{(0, 1)} and

θ((p1, p2)) = 2 arctan
(

p1
1−p2

)
. Let ε > 0 and f : T −→ R

3 be defined by

f(θ) = exp
(
εrλ(3) sin(θ)Xξλ(3)

+ εrρ(3) cos(θ)Xξρ(3)

)
.

Thus f(θ) = exp(Xθ), where

Xθ(x) = εrλ(3) sin(θ)Xξλ(3)
(x) + εrρ(3) cos(θ)Xξρ(3)

(x)

= ε sin(θ)




1

0

x2


+ ε cos(θ)




0

1

0




and therefore, the vector field Xθ given in coordinates is

Xθ(x) =




ε sin(θ)

ε cos(θ)

ε sin(θ)x2


 .

f(θ) equals the solution of the differential equation ẋ = Xθ(x) at time t = 1 and with

initial condition x0 = e. Therefore

f(θ) =

(
ε sin(θ), ε cos(θ),

1

4
ε2 sin(2 θ)

)
. (3.11)

Figure 3.1 shows the plot of f with ε = 1, together with the vector fields X1 and X2

evaluated at f(θ) for some θ ∈ T and Tθf(ω) for some ω ∈ TθT.

We define the error signal z by
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Figure 3.1: Plot of f (Equation 3.11).

z = µ̂(x, f(θ)−1) =




x1 − ε sin(θ)

x2 − ε cos(θ)

x3 + 1
4
ε2 sin(2 θ) − x2 ε sin(θ)




where θ ∈ T is the state of the auxiliary system θ̇ = α.

According to (3.9), the error dynamics is

ż =




u1 − α ε cos(θ)

u2 + α ε sin(θ)

u1z2 + u1ε cos(θ) − ε sin(θ)u2 − α ε cos(θ)z2 −
1
2
α ε2




which can be rewritten, in matrix notation, as

ż =




1 0 −ε cos(θ)

0 1 ε sin(θ)

z2 + ε cos(θ) −ε sin(θ) −ε cos(θ)z2 −
1
2
ε2







u1

u2

α




Consider the vector field Z ∈ Γ(TR
3) defined by Z(z) = −kz for z ∈ R

3 with k a
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strictly positive real. Clearly this vector field has ê as an exponentially stable point.

Let u = (u1, u2, α). Then the feedback function u(z, θ) needed to impose a closed-loop

error dynamics of the form ż = Z(z) is

u(z, θ) = −k




1 0 −ε cos(θ)

0 1 ε sin(θ)

z2 + ε cos(θ) −ε sin(θ) −ε cos(θ)z2 −
1
2
ε2




−1


z1

z2

z3




or, more explicitly,

u(z, θ) = −2
k

ε




− cos(θ)z2 −
1
2 ε cos(2 θ) 1

2 ε sin(2 θ) cos(θ)

sin(θ)z2 + 1
2 ε sin(2 θ) 1

2 ε cos(2 θ) − sin(θ)

−1
ε (z2 + ε cos(θ)) sin(θ) ε−1







z1

z2

z3


 (3.12)

A numerical simulation of the chained form system with feedback control (3.12)

was performed. The initial condition is x0 = (−2.5, 0.6,−1.5), the controller gain

k = −1.3, and the value of ε is 0.25. Figure 3.2 presents plots of the trajectories of

the chained form system and the trajectories of the error system. Figure 3.3 shows

the time-history of the control input defined by (3.12).

One notes from Figure 3.2 that the error trajectories approach zero as t increases

and, according to (3.8), the trajectories of the chained form system approach f(θ(t))

as t increases, indeed the state x converges to a given fixed configuration near f(θ).

This behavior can be observed in the plot of the system trajectories. The image of f

can be modified by adjusting the value of ε, the smaller the value of ε, the nearer the

system trajectories will be to zero.

In this chapter we have recalled the control technique proposed by Morin and

Samson to stabilize driftless controllable systems. We applied this technique to con-

trol the chained form system equivalent, among others systems, to the unicycle-type

robot. The chained form system is a system whose control vector fields satisfy acces-

sibility, and in spite of its simplicity is a system that satisfies Brockett’s condition,
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Figure 3.2: Plots of the state of the controlled Chained Form System and of the error
function respectively.
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Figure 3.3: Plot of the control input (3.12) applied.
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which means that it is a tough stabilization problem. The following chapter deals

with second-order systems whose control fields alone do not generate the accessibility

distribution. Examples of this systems are vastly found in mechanical systems.
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Chapter 4

Vertically transverse functions and

their application to control

This chapter contains the main contributions of this thesis, among which the

characterization of certain functions we choose to call vertically transverse functions.

These functions, based on the transverse functions proposed by Morin and Samson,

generalize the property of transversality for second-order systems as we will show

later. A possible application of the use of this newly characterized property in the

control of second-order systems evolving on Lie groups is outlined.

4.1. Introduction

Now we have enough mathematical background to state the problem in more

detail. We have already recalled the transverse function control approach proposed

by Morin and Samson to control driftless controllable systems. As remarked earlier,

this control technique can deal with two classical control problems, point stabilization

and trajectory tracking for systems of the form

ẋ = f(x, t) +
m∑

i=1

uigi(x)

where g1, . . . , gm represent smooth vector fields on a smooth manifold M and f is a

time-varying smooth vector field defined on M (f may represent possibly null additive
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disturbances to the system).

In order to use this approach it is necessary that the controlled vector fields g1, . . . , gm

ensure local accessibility at the desired stabilization point (or, in the case of trajectory

tracking, in a subset of M). As a result, this approach cannot be directly applied to

systems in which the drift term f is essential to ensure local accessibility.

Consider now a second-order system

v̇ = D(v) +
m∑

i=1

uiX lift
i (v) (4.1)

where v : I −→ TM is a curve on the tangent bundle of a smooth manifold M , D is

a smooth, second-order vector field on TM , and X1, . . . , Xm are smooth vector fields

on M (recall that if X ∈ Γ(TM) then X lift ∈ Γ(TTM)).

Assume that the set {X1, . . . , Xm} satisfies the Lie Algebra Rank Condition at πM(v)

for some v ∈ TM . Note that the Lie Algebra spanned by {X lift
1 , . . . , X lift

m } cannot

generate the tangent space of TM at v, therefore the drift term D of system (4.1) is

essential to attain local accessibility. However, as we do not have control over the drift

vector field it is not clear how to proceed to obtain stabilization to a given trajectory

by means of the transverse function control approach.

In particular, one cannot apply the approach to System (4.1) since the control

vector fields do not satisfy the LARC at the desired stabilization point. The objective

then, is to provide an extension of the transverse function formalism to this class of

systems.

Although the class of systems considered has a given structure and this apparently

restricts the applicability of the approach proposed in this thesis, it is important to

notice that it encompasses a wide class of second-order systems. For example, a

subclass of systems of the form (4.1) are simple mechanical control systems,

∇q̇ q̇ = −G♯ ◦ dV (q) +
m∑

i=1

uiG♯ ◦ F i(q) (4.2)

where q : I −→ Q is a curve on the configuration manifold Q (positions and orienta-

tions), G♯ is the canonical map T ∗Q −→ TQ, associated with the Riemannian metric

G, V ∈ C∞(Q) represents a potential energy function, F i (i = 1, . . . ,m) are smooth
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1-forms physically representing forces or torques and finally ∇ is the connection as-

sociated to the Riemannian metric G.

Simple mechanical control systems subject to constrains have essentially the same

structure as (4.2), except that ∇ no longer represents the Levi-Cività connection,

and the vector fields are modified depending on the constrain codistribution [10].

Equation (4.2) can be recast as a system evolving on TM with dynamics

v̇ = Sv − (G♯ ◦ dV )lift(v) +
m∑

i=1

ui(G♯ ◦ F i)lift(v),

where S is the geodesic spray associated with the connection ∇. It is clear that if

we take D = S − (G♯ ◦ dV )lift and Xi = G♯ ◦ F i (i = 1, . . . ,m), the class of simple

mechanical control systems (both, subject and not subject to constrains) fits into

Equation (4.1). The cases m = dim(M) (fully actuated mechanical system) and

m < dim(M) (underactuated mechanical system), are also included.

4.2. Vertically transverse functions

Having already discussed the transversality property for functions with respect to

a set of vector fields in Chapter 3, we show how the tangent mappings associated with

transverse functions define vertically transverse functions, which may be regarded as

second-order generalizations of transverse functions for second-order systems.

Prior to defining vertical transversality, let us present the following lemma regard-

ing the way the tangent tangent mapping of a differentiable function acts on vertical

vectors.

Lemma 1 Let M and N denote smooth manifolds and let f : M −→ N be a C2

mapping. Then:

1. TTf maps vertical vectors in TTM into vertical vectors in TTN .

2. For every v, w ∈ TM such that πM(v) = πM(w) we have

TTf(lift(v, w)) = lift(Tf(v), T f(w)).
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Proof: (1.) By basic notions regarding tangent bundles and mappings, the following

diagram commutes

TM

πM

��

Tf
// TN

πN

��

M
f

// N

that is, f ◦ πM = πN ◦ Tf . As a consequence, T (f ◦ πM) = T (πN ◦ Tf) and, by the

chain rule, we have Tf ◦ TπM = TπN ◦ TTf , i.e. the following diagram commutes

TTM

TπM

��

TTf
// TTN

TπN

��

TM
Tf

// TN

Now let v ∈ TM and ξ ∈ TvTM
vert, thus Tf ◦ TπM(ξ) = TπN ◦ TTf(ξ). Since ξ is

vertical it satisfies TπM(ξ) = 0 and, by the linearity of Tf we have TπN ◦TTf(ξ) = 0,

therefore TTf(ξ) ∈ TTf(v)TN
vert, i.e. TTf(ξ) is vertical, as stated.

(2.) Let v, w ∈ TM be such that πM(v) = πM(w). Define the curve γv,w : R −→

TπM (v)M as γv,w(t) = v + tw for each t ∈ R. Thus

lift(v, w) = T0γv,w

(
∂

∂r

∣∣∣∣
0

)
.

By virtue of the linearity of Tpf for every p in M one has

Tf ◦ γv,w(t) = Tf(v + tw) = Tf(v) + t Tf(w) = γTf(v),T f(w)(t) for t ∈ R

i.e. Tf ◦ γv,w = γTf(v),T f(w) thus T (Tf ◦ γv,w) = TγTf(v),T f(w), then TTf ◦ Tγv,w =

TγTf(v),T f(w). In particular we have

TTf ◦ T0γv,w

(
∂

∂r

∣∣∣∣
0

)
= T0γTf(v),T f(w)

(
∂

∂r

∣∣∣∣
0

)
.

Therefore TTf(lift(v, w)) = lift(Tf(v), T f(w)) as required. �

Lemma 2 Let M and N be differentiable manifolds and let f ∈ C2(M ;N), then the

Liouville vector field on TM is Tf -related to the Liouville vector field on TN .
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Proof: Let Ĉ denote the Liouville vector field on TM and C the Liouville vector

field on TN . Recall that Ĉ is a vector field on TM defined by Ĉ(v) = lift(v, v) for

all v ∈ TM (an analogous definition holds for C). For Ĉ to be Tf -related to C the

following diagram must commute

TMbC
��

Tf
// TN

C
��

TTM
TTf

// TTN,

i.e. one must have C ◦ Tf = TTf ◦ Ĉ. This is equivalent, using the definition of

the Liouville vector field, to lift(Tf(·), T f(·)) = TTf(lift(·, ·)). But, by virtue of

Lemma (1), we have lift(Tf(v), T f(w)) = TTf(lift(v, w)) for every v, w in TM , so,

in particular lift(Tf(v), T f(v)) = TTf(lift(v, v)). Therefore Ĉ is Tf -related to C. �

Let us define the vertical transversality condition.

Definition 7 Let M be a n-dimensional manifold and {X1, . . . , Xm} a set of vertical

vector fields defined on TM . A bundle map F : TT
κ −→ TM (κ > n−m) such that

TF (ω)TM
vert = TωF ((TωTT

κ)vert) + span
R
({X1(F (ω)), . . . , Xm(F (ω))})

is said to be vertically transverse for the set {X1, . . . , Xm}.

Let M be a smooth n-dimensional manifold, and X1, . . . , Xm smooth vector fields

on M such that the set {X1, . . . , Xm} satisfies the Lie Algebra Rank Condition

(LARC) at a given point p ∈M , i.e.

TpM = {Xp : X ∈ Lie({X1, . . . , Xm})}

If f is a transverse function for {X1, . . . , Xm} near p then Tf is vertically trans-

verse for the set of the vertically lifted vector fields i.e. the distribution spanned

by {X lift
1 , . . . , X lift

m } along the image of Tf , together with the image by TTf of the
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vertical subbundle (TTT
κ)vert (m ≤ κ ≤ n), generates the vertical space of TTM

along the image of Tf . Let us proceed to formally state this proposition.

Proposition 4 Let {X1, . . . , Xm} be a set of smooth vector fields on M satisfying

the LARC at p ∈ M . Let f : T
κ −→ M be a transverse function for {X1, . . . , Xm}

near p so that, for every θ ∈ T
κ,

Tf(θ)M = Tθf(TθT
κ) + span

R
({X1(f(θ)), . . . , Xm(f(θ))}). (4.3)

Then Tf is vertically transverse for {X lift
1 , . . . , X lift

m }, i.e., for every ω ∈ TT
κ,

TTf(ω)TM
vert = TωTf((TωTT

κ)vert) + span
R
({X lift

1 (Tf(ω)), . . . , X lift
m (Tf(ω))}).

(4.4)

Furthermore, if f is such that the sum in (4.3) is direct (κ = n −m), then the sum

in (4.4) is also direct.

Proof: Let ω ∈ TθT
κ with θ ∈ T

κ, and assume that v ∈ TTf(ω)TM
vert. Since v is

vertical, there exists ṽ ∈ Tf(θ)M such that lift(Tf(ω), ṽ) = v. Making use of (4.3)

one concludes that there exist ω ∈ TT
κ and real numbers a1, . . . , am such that

ṽ = Tθf(ω) +
m∑

i=1

aiXi(f(θ)).

Then

v = lift

(
Tf(ω), Tθf(ω) +

m∑

i=1

aiXi(f(θ))

)
.

Since lift(Tf(ω), ·) is linear one has

v = lift(Tf(ω), Tθf(ω)) +
m∑

i=1

ai lift (Tf(ω), Xi(f(θ))) ,

by Lemma 1-(2 ) and by the definition of the lift of a vector field one has

v = TωTf(lift(ω, ω)) +
m∑

i=1

aiX lift
i (Tf(ω))
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given that lift(ω, ω) ∈ (TωTT
κ)vert this concludes the first part of the proof.

Now assume that the sum in (4.3) is direct, i.e.

Tf(θ)M = Tθf(TθT
n−m) ⊕ span

R
({X1(f(θ)), . . . , Xm(f(θ))}) (4.5)

and suppose that there exists v ∈ TTf(ω)TM
vert such that

v ∈ TωTf((TωTT
n−m)vert) ∩ span

R
({X lift

1 (Tf(ω)), . . . , X lift
m (Tf(ω))}).

We shall show that the unique v satisfying this is v = 0. Thus there exist α ∈

(TωTT
n−m)vert and real numbers a1, . . . , am such that

v = TTf(α) =
m∑

i=1

aiX lift(Tf(ω))

Given that α is vertical, α = lift(ω, ω) for some ω ∈ TθT
n−m. Then v = TTf(α) =

TTf(lift(ω, ω)) and by Lemma 1-(2 ) one obtains v = lift(Tf(ω), T f(ω)). On the

other hand

m∑

i=1

aiX lift(Tf(ω)) =
m∑

i=1

ai lift(Tf(ω), Xi(f(θ)))

= lift

(
Tf(ω),

m∑

i=1

aiXi(f(θ))

)
,

thus lift(Tf(ω), T f(ω)) = lift (Tf(ω),
∑m

i=1 a
iXi(f(θ))). The map lift(Tf(ω), ·) is

linear and injective, then

m∑

i=1

aiXi(f(θ)) = Tf(ω)

However this in contradiction with the assumption that f satisfies (4.5), thus
∑m

i=1 a
iXi(f(θ)) = Tf(ω) = 0. From v = lift(Tf(ω), T f(ω)) and using linearity

of the mapping lift(Tf(ω), ·) it is easy to deduce that v = 0. This concludes the

proof. �
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4.3. Application of vertically transverse functions to

control

In this section we inspect a possible application of vertically transverse functions

to a class of second-order systems evolving on Lie groups. We focus on this class

of systems since a large range of second-order and mechanical systems are naturally

modeled as systems on Lie groups. For instance, mechanical systems which usually

arise in physical applications and evolve on Lie groups are rigid bodies in space, cart-

like vehicles, space and underwater robots which, in addition, may present some sort of

invariance with respect the Lie group operation. Some examples are the hovercraft,

the PPR manipulator, a rigid body in R
2 or R

3, the unicycle-type robot and the

snakeboard [10], [7].

Consider a system with dynamics

v̇ = D(v) +
m∑

i=1

uiX lift
i (v) (4.6)

where v : I −→ TG is a curve on the tangent space of an n-dimensional Lie group

G, D ∈ Γ(TTG) is a second-order vector field, and Xi ∈ Γ(TG) (i = 1, . . . ,m) are

linearly independent, left-invariant, smooth vector fields on G such that

Lie({X1,be, . . . , Xm,be}) = g.

Given these conditions we can construct a transverse function f : T
m−n −→ G,

following the procedure recalled in Section 3.2 of Chapter 3, such that

TTf(ω)TG
vert = TωTf((TωTT

n−m)vert) ⊕ span
R
({X lift

1 (Tf(ω)), . . . , X lift
m (Tf(ω))})

(4.7)

The next step is to dynamically extend the system by adding an auxiliary sys-

tem evolving on TTT
n−m. To do this we select a global frame for (TTT

n−m)vert,

{Ω1, . . . ,Ωm}, consisting of vertical vector fields Ωi ∈ Γ(TTT
n−m) (i = 1, . . . , n−m),

i.e., for every ω ∈ TT
n−m
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(TωTT
n−m)vert = span

R
({Ω1(ω), . . . ,Ωn−m(ω)}).

The existence of such a global frame on TTT
n−m is assured by the triviality of

TTT
n−m as a vector bundle, a consequence of the triviality of TT

n−m.

The proposed auxiliary system is then

ω̇ = ∆w +
n−m∑

i=1

wiΩi,ω (4.8)

where ∆ ∈ TTT
n−m is an arbitrary, smooth, second-order, vector field. Then we

define an error signal z as the group composition of the original system state and the

auxiliary system state, namely

z = µ(v, Tf(ω)−1). (4.9)

Roughly speaking, this error function is used to quantify the error difference between

the state of the system and the image of the auxiliary system by Tf . Let us remark

that one can use alternative error expressions, e.g. z = Tf(ω) · v−1, for which the

approach leads to analogous results.

At this stage one may wonder what the dynamics governing the evolution of the

error is. Prior to continuing, let us present some results that will be useful later

on. The first is a lemma that concerns the induced left-invariance of vertically lifted

left-invariant vector fields.

Lemma 3 Let G be a Lie group and let X ∈ Γ(TG) be a vector field on G. If X is

left invariant, then X lift is a left-invariant vector field on the tangent Lie group TG

(with respect to the Lie group operation induced by the one on G).

Proof: We assume that for every g, h ∈ G, Xgh = ThL̂g(Xh). We shall prove that

X lift(vw) = TwLv(X
lift(w)) for all v, w in TG.

Consider the curve γw,XπG(w)
on TG defined by γw,XπG(w)

: t 7→ w + tXπG(w) with

t ∈ R, then
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TwLv(X
lift(w)) = TwLv ◦ T0γw,XπG(w)

(
∂

∂r

∣∣∣∣
0

)

= T0(Lv ◦ γw,XπG(w)
)

(
∂

∂r

∣∣∣∣
0

)
.

However,

Lv ◦ γw,XπG(w)
(t) = µ(v, w + tXπG(w))

= TπG(v)R̂πG(w)(v) + TπG(w)L̂πG(v)(w + tXπG(w))

= TπG(v)R̂πG(w)(v) + TπG(w)L̂πG(v)(w) + t TπG(w)L̂πG(v)(XπG(w))

= µ(v, w) + t TπG(w)L̂πG(v)(XπG(w))

Given that X is left-invariant one has

Lv ◦ γw,XπG(w)
(t) = vw + tXπG(v)πG(w)

= vw + tXπG(vw)

Therefore Lv ◦ γw,XπG(w)
(t) = γvw,XπG(vw)

(t) for all t ∈ R; thus

TwLv(X
lift(w)) = T0γvw,XπG(vw)

(
∂

∂r

∣∣∣∣
0

)

= lift(vw,XπG(vw))

= X lift(vw),

which shows that X lift is left-invariant with respect µ. �

Proposition 5 Let G be a Lie group and TG its tangent Lie group. Let X ∈ Γ(TTG)

be a complete second-order vector field and assume that Y ∈ Γ(TTG) is a second-order

vector field defined along the curve w : I −→ TG by ẇ(t) = Yw(t). Then:

1. If v : I −→ TG is an integral curve of X, then the curve z(t) = v(t) · w−1(t)
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satisfies, for every t ∈ I,

ż(t) = Tv(t)Rw−1(t)

(
Xv(t) − Tw(t)Lz(t)(Yw(t))

)
. (4.10)

2. The expression (4.10) represents a (non-autonomous) second-order differential

equation on TG.

Proof: (1.) Using Proposition 2 in Chapter 2 one has that if z equals v(t) · w−1(t)

then

ż(t) = Tv(t)Rw−1(t)(Xv(t)) + Tw−1(t)Lv(t)(Ỹw−1(t)). (4.11)

Now, from Proposition 3 in Chapter 2 one knows that if Ỹ is the vector field along

the curve t 7→ w−1(t) defined by Ỹw−1(t) = d
dt
w−1(t), then the expression for Ỹ is given

by

Ỹw−1(t) = −TeLw−1(t) ◦ Tw(t)Rw−1(t)(Yw(t)).

Substituting this expression in (4.11), using the associativity of left translations, in

addition to the commutativity of right and left translations, one gets

ż(t) = Tv(t)Rw−1(t)(Xv(t)) + Tw−1(t)Lv(t)(−TeLw−1(t) ◦ Tw(t)Rw−1(t)(Yw(t)))

= Tv(t)Rw−1(t)(Xv(t)) − Tw−1(t)Lv(t) ◦ TeLw−1(t) ◦ Tw(t)Rw−1(t)(Yw(t))

= Tv(t)Rw−1(t)(Xv(t)) − TeLv·w−1(t) ◦ Tw(t)Rw−1(t)(Yw(t))

= Tv(t)Rw−1(t)(Xv(t)) − Tv(t)Rw−1(t) ◦ Tw(t)Lv·w−1(t)(Yw(t))

= Tv(t)Rw−1(t)

(
Xv(t) − Tw(t)Lv·w−1(t)(Yw(t))

)
.

Recalling that z = v · w−1 this yields

ż = Tv(t)Rw−1(t)

(
Xv(t) − Tw(t)Lz(t)(Yw(t))

)

(2.) Given w̃ ∈ TG such that w̃ = w(t) for some t ∈ I, we define a map Z ew : TG −→

TTG by

Z ew(z) = Tz· ewR ew−1 (Xz· ew − T ewLz(Y ew))
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From the latter expression it is straightforward to show that for every t ∈ I and every

z ∈ TG one has πTG ◦Zeω(z) = z therefore Zeω is a vector field defined on TG along z.

We need to check that TπG ◦ Z ew = idTG in order to show that Z ew represents a

second-order differential equation. Note that, for any α ∈ TG, the following diagrams

commute

TG

πG

��

Lα
// TG

πG

��

G
bLπG(α)

// G

TG

πG

��

Rα
// TG

πG

��

G
bRπG(α)

// G

since for every β ∈ TG, one has

πG ◦ Lα(β) = πG(α · β) = πG(α) · πG(β) = L̂πG(α)(πG(β)) = L̂πG(α) ◦ πG(β),

and, likewise for the right translation,

πG ◦Rα(β) = πG(β · α) = πG(β) · πG(α) = R̂πG(β)(πG(α)) = R̂πG(β) ◦ πG(α).

Hence TπG ◦ TLα = TL̂πG(α) ◦ TπG and TπG ◦ TRα = TR̂πG(α) ◦ TπG.

By using the relations found above, for any z ∈ TG, one has

TπG ◦ Z ew(z) = TπG ◦ Tz· ewR ew−1 (Xz· ew − T ewLz(Y ew))

= TπG(z· ew)R̂πG( ew−1) ◦ Tz· ewπG (Xz· ew − T ewLz(Y ew))

= TπG(z· ew)R̂πG( ew−1) (Tz· ewπG(Xz· ew) − Tz· ewπG ◦ T ewLz(Y ew))

= TπG(z· ew)R̂πG( ew−1)

(
Tz· ewπG(Xz· ew) − TπG( ew)L̂πG(z) ◦ T ewπG(Y ew)

)

As a consequence of the second-order property of X and Y as vector fields

Tz· ewπG(Xz· ew) = z · w̃ and T ewπG(Y ew) = w̃.

Moreover, using the definition for the group multiplication in TG (Proposition 1 in
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Chapter 2) for z, w̃ ∈ TG one has

z · w̃ = TπG(z)R̂πG( ew)(z) + TπG( ew)L̂πG(z)(w̃),

thus

TπG ◦ Z ew(z) = TπG(z· ew)R̂πG( ew−1)

(
z · w̃ − TπG( ew)L̂πG(z)(w̃)

)

= TπG(z· ew)R̂πG( ew−1)

(
TπG(z)R̂πG( ew)(z)

)
.

From (R̂πG( ew))
−1 = R̂πG( ew−1) (Chapter 2), one deduces that TπG ◦ Z ew(z) = z, as

stated. �

In order to obtain an expression for the dynamics of (4.9) one applies the result

of Proposition 5 to v · (Tf ◦ ω)−1 with v : I −→ TG and Tf ◦ ω : I −→ TG

representing, respectively, the state of the system and the the state of the auxiliary

system composed with Tf , the tangent map of a transverse function f .

The vector fields along the curves v and Tf ◦ ω are, respectively,

Xv = Dv +
m∑

i=1

uiX lift
i,v and YTf(ω) = TωTf

(
∆ω +

n−m∑

i=1

wiΩi,ω

)
.

Then the error dynamics of z = v · (Tf ◦ ω)−1 is

ż = TvRTf(ω)−1

(
Xv − TTf(ω)Lz(YTf(ω))

)

= TvRTf(ω)−1

(
Dv +

m∑

i=1

uiX lift
i,v − TTf(ω)Lz ◦ TωTf

(
∆ω +

n−m∑

i=1

wiΩi,ω

))

If we group the terms corresponding to drifts, i.e. D and ∆, one gets

ż = TvRTf(ω)−1

(
Dv − TTf(ω)Lz ◦ TωTf(∆ω)

)
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+TvRTf(ω)−1

(
m∑

i=1

uiX lift
i,v − TTf(ω)Lz ◦ TωTf

(
n−m∑

i=1

wiΩi,ω

))

(4.12)

As a consequence of Lemma 3, one has that X lift
i is left-invariant (i = 1, . . . ,m). In

particular, X lift
i,v = TTf(ω)Lz(X

lift
i (Tf(ω))), since z = v · Tf(ω)−1. Thus

ż = TvRTf(ω)−1

(
Dv − TTf(ω)Lz ◦ TωTf(∆ω)

)

+TvRTf(ω)−1

(
m∑

i=1

ui TTf(ω)Lz
(
X lift
i (Tf(ω))

)

− TTf(ω)Lz ◦ TωTf

(
n−m∑

i=1

wiΩi,ω

))
(4.13)

= TvRTf(ω)−1

(
Dv − TTf(ω)Lz ◦ TωTf(∆ω)

)

+TvRTf(ω)−1 ◦ TTf(ω)Lz

(
m∑

i=1

uiX lift
i (Tf(ω)) − TωTf

(
n−m∑

i=1

wiΩi,ω

))

= TvRTf(ω)−1

(
Dv − TTf(ω)Lz ◦ TωTf(∆ω)

)

+TvRTf(ω)−1 ◦ TTf(ω)Lz

(
m∑

i=1

uiX lift
i (Tf(ω)) −

n−m∑

i=1

wi TωTf (Ωi,ω)

)

By (4.9) one has v = z ·Tf(ω), then the expression one gets for the error dynamics is

ż = Tz·Tf(ω)RTf(ω)−1

(
Dz·Tf(ω) − TTf(ω)Lz ◦ TωTf(∆ω)

)

+Tz·Tf(ω)RTf(ω)−1 ◦ TTf(ω)Lz

(
m∑

i=1

uiX lift
i (Tf(ω)) (4.14)

−
n−m∑

i=1

wi TωTf (Ωi,ω)

)

The differential equation (4.14) is second-order as a consequence of Proposition 5.

This will be the error dynamics we shall use in the sequel.

For second-order systems, the control inputs can only shape the second-order
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time-derivatives of the base trajectories. When dealing with mechanical systems,

this translates into acting only upon accelerations and not upon configurations or

velocities. Since the image of TTf , together with the controlled vector fields along

the image of Tf span the vertical subbundle, it is possible to use this property to

design a feedback law that imposes any desired error dynamics. Let us make this

statement precise.

Theorem 1 Given a second-order vector field Zd ∈ Γ(TTG), there exists a smooth

feedback law α = (α1, . . . , αn) : TG × TT
n−m −→ R

n such that the error dynam-

ics (4.14) with control inputs ui(z, ω) = αi(z, ω) (i = 1, . . . ,m) and wj(z, ω) =

αj+m(z, ω) (j = 1, . . . , n− 1) writes as ż = Zd(z).

Proof: To find such feedback function α one can proceed by setting the right-

hand-side of (4.14) equal to Zd(z) and solving the resulting equation for u1, . . . , um,

w1, . . . , wn−m in terms of z and ω.

Define a vector field Dω ∈ Γ(TTG) (ω ∈ TT
n−m) by

Dω : z 7→ Tz·Tf(ω)−1RTf(ω)−1

(
Dz·Tf(ω)−1 − TTf(ω)Lz ◦ TωTf(∆ω)

)
.

Then (4.14) becomes

ż = Dω(z) + Tz·Tf(ω)RTf(ω)−1 ◦ TTf(ω)Lz

(
m∑

i=1

uiX lift
i,T f(ω) −

n−m∑

i=1

wi TωTf (Ωi,ω)

)
,

by setting this expression equal to Zd(z) one gets:

Zd(z) −Dω(z) =

Tz·Tf(ω)RTf(ω)−1 ◦ TTf(ω)Lz

(∑m
i=1 u

iX lift
i,T f(ω) −

∑n−m
i=1 wi TωTf (Ωi,ω)

)

∑m
i=1 u

iX lift
i,T f(ω) −

∑n−m
i=1 wiTωTf(Ωi,ω) =

(Tz·Tf(ω)RTf(ω)−1 ◦ TTf(ω)Lz)
−1(Zd(z) −Dω(z))

= TzTf(ω)Lz−1 ◦ TzRTf(ω)(Zd(z) −Dω(z)).
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From the proof of Proposition 5-(2 ) one has TπG ◦ TLα = TL̂πG(α) ◦ TπG and TπG ◦

TRα = TR̂πG(α) ◦ TπG, from which one easily finds that for every a, b ∈ TG,

1. TπG ◦ TLb ◦ TRa = TL̂πG(b) ◦ TR̂πG(a) ◦ TπG

2. TπG ◦ TRa ◦ TLb = TR̂πG(a) ◦ TL̂πG(b) ◦ TπG.

Using the equation in 2., together with the fact that X lift
i and Ωj (i = 1, . . . ,m; j =

1, . . . , n−m) are vertical, one deduces that

TRTf(ω)−1 ◦ TLz(
m∑

i=1

uiX lift
i,T f(ω) −

n−m∑

i=1

wiTωTf(Ωi,ω))

is vertical. The latter assertion, coupled to the fact that (4.14) is second-order,

implies that Dω is second-order for every ω ∈ TT
n−m. Now, using 1. one deduces

that TLz−1 ◦ TRTf(ω)(Zd(z) −Dω(z)) is vertical for every z ∈ TG.

Making use of Proposition 4 and in particular of

TTf(ω)TG
vert = TωTf((TωTT

n−m)vert) ⊕ span
R
({X lift

1 (Tf(ω)), . . . , X lift
m (Tf(ω))}),

together with the assumption that {Ω1, . . . ,Ωm} is a global frame for (TTT
n−m)vert,

we conclude that there exist a mapping α : TG× TT
n−m −→ R

n such that, for every

(z, ω) ∈ TG× TT
n−m,

∑m
i=1 α

i(z, ω)X lift
i,T f(ω) −

∑n−m
i=1 αi+m(z, ω)TωTf(Ωi,ω) =

TzTf(ω)Lz−1 ◦ TzRTf(ω)(Zd(z) −Dω(z)).
(4.15)

Since left and right translations and Tf are smooth, their respective tangent maps

are also smooth, and as the vector fields Zd, Dω, X
lift
i and Ωi are smooth we conclude

that α given by the above equation is also smooth. �

Given the latter theorem one is able to impose any desired dynamics to the error, in

particular one would typically aim at having the error converge to zero, the identity

element in TG. To do this one selects for Zd a vector field which has zero as an

asymptotically stable point. This ensures that, in closed-loop, the state v of system

(4.6) converges to the image by Tf of ω(t), the state of the auxiliary system (4.8).
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4.4. Zero-dynamics of the closed-loop system

Suppose that we select for Zd in (4.15) a vector field which has zero as an expo-

nentially stable point. Let us examine the remaining dynamics of the original and

auxiliary system when the error z equals zero. Although z may never reach zero,

when the initial conditions of z are different from zero, this allows us to study the

long-term dynamics of the total feedback system.

Assume that the vector fields D in (4.6), and ∆ in (4.8), are semisprays (several

simple mechanical systems have a semispray as drift term). By applying the feedback

law (4.15) one assures that the error dynamics (4.14) is of the form ż = Zd(z). Let

t0 ∈ R, suppose that z(t0) = 0 = e, then ż(t) = Zd(0) = 0 for all t > t0. Thus

0 = Te·Tf(ω)RTf(ω)−1

(
De·Tf(ω) − TTf(ω)Le ◦ TωTf(∆ω)

)

+Te·Tf(ω)RTf(ω)−1 ◦ TTf(ω)Le

(
m∑

i=1

uiX lift
i,T f(ω) −

n−m∑

i=1

wi TωTf (Ωi,ω)

)
,

where u : TT
n−m −→ R

m and w : TT
n−m −→ R

n−m. Thus the zero-dynamics is

DTf(ω) +
m∑

i=1

uiX lift
i,T f(ω) − TωTf(∆ω) −

n−m∑

i=1

wi TωTf (Ωi,ω) = 0,

which can be written as

D ◦ Tf +
m∑

i=1

uiX lift
i ◦ Tf = TTf ◦ ∆ +

n−m∑

i=1

wi TTf ◦ Ωi (4.16)

From (4.16) one observes that the zero-dynamics of the auxiliary system entirely

governs the zero-dynamics of the target system.

Let ω be in TT
n−m, then there exist an open subset Vu of TG, an open neighbor-

hood Uu of ω and map ũ ∈ C∞(Vu; R
m) with Tf(Uu) ⊂ Vu such that the following

diagram commutes [20]
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Uu
Tf |Uu

//

u
!!CC

CC
CC

CC
Vueu

}}{{
{{

{{
{{

R
m

Therefore (4.16) can be written as

D ◦ Tf +
(
ũ i ·X lift

i

)
◦ Tf = TTf ◦ ∆ + wj TTf ◦ Ωj, (4.17)

with i = 1, . . . ,m and j = 1, . . . , n −m. Define Ŷ to be Tf -related to D + ũ iX lift
i ,

i.e. Ŷ is a vector field defined on TT
n−m such that the following diagram commutes

TT
n−mbY
��

Tf
// TG

D+ eu i Xlift
i

��

TTT
n−m

TTf
// TTG

Thus (4.17) is equivalent to

(
D + ũ iX lift

i

)
◦ Tf = TTf ◦ ∆ + wj TTf ◦ Ωj

TTf ◦ Ŷ = TTf ◦ ∆ + wj TTf ◦ Ωj.

Thus, by virtue of the linearity of TTf on fibers, one obtains

Ŷ = ∆ + wj Ωj. (4.18)

By applying [Ĉ, · ] to both members of (4.18) one gets

[Ĉ, Ŷ ] = [Ĉ,∆ + ωj Ωj]

= [Ĉ,∆] + [Ĉ, wj Ωj]

= ∆ + wj [Ĉ,Ωj] + Ĉ(wj)Ωj

= ∆ − wj Ωj + Ĉ(wj)Ωj, (4.19)
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since ∆ is a semispray (thus [Ĉ,∆] = ∆) and Ωj is vertical (thus [Ĉ,Ωj] = −Ωj),

j = 1, . . . , n−m. By applying TTf to (4.19) one has

TTf ◦ [Ĉ, Ŷ ] = TTf ◦ ∆ − wj TTf ◦ Ωj + Ĉ(wj)TTf ◦ Ωj.

Using that Ĉ is Tf -related to C (Lemma 2) in addition to the fact that [Ĉ, Ŷ ] is

Tf -related to [C,D + ũ iX lift
i ] since Ŷ is Tf -related to D + ũ iX lift

i (Chapter 2) one

obtains

[C,D + ũ iX lift
i ] ◦ Tf = TTf ◦ ∆ +

(
Ĉ(wj) − wj

)
TTf ◦ Ωj.

Equivalently

[C,D] ◦ Tf + [C, ũ iX lift
i ] ◦ Tf =

TTf ◦ ∆ +
(
Ĉ(wj) − wj

)
TTf ◦ Ωj,

[C,D] ◦ Tf +
(
ũ i · [C,X lift

i ]
)
◦ Tf +

(
C(ũ i) ·X lift

i

)
◦ Tf =

TTf ◦ ∆ +
(
Ĉ(wj) − wj

)
TTf ◦ Ωj

Thus, since D is a semispray and X lift
i is vertical (i = 1, . . . ,m), one obtains

D ◦ Tf −
(
ũ i ·X lift

i

)
◦ Tf +

(
C(ũ i) ·X lift

i

)
◦ Tf =

TTf ◦ ∆ +
(
Ĉ(wj) − wj

)
TTf ◦ Ωj,

D ◦ Tf +
(
(C(ũ i) − ũ i) ·X lift

i

)
◦ Tf =

TTf ◦ ∆ +
(
Ĉ(wj) − wj

)
TTf ◦ Ωj

i.e.

D ◦ Tf − TTf ◦ ∆ =
(
Ĉ(wj) − wj

)
TTf ◦ Ωj −

((
C(ũ i) − ũ i

)
·X lift

i

)
◦ Tf,

but, from (4.17), D ◦ Tf − TTf ◦ ∆ = wj TTf ◦ Ωj −
(
ũ i ·X lift

i

)
◦ Tf , so one has

(
Ĉ(wj) − 2wj

)
TTf ◦ Ωj −

(
C(ũ i) − 2ũ i

)
X lift
i ◦ Tf = 0
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Given that f satisfies (4.7), this equation implies that Ĉ(wj) = 2wj and C(ũ i) =

2ũ i, i.e. (using (4.19))

[Ĉ,∆ + ωj Ωj] = ∆ − wj Ωj + Ĉ(wj)Ωj

= ∆ − wj Ωj + 2wj Ωj

= ∆ + wj Ωj.

The zero-dynamics of the auxiliary system ∆ + wj Ωj is second-order given that ∆

is second-order and Ωj is vertical (j = 1 . . . , n − m). This, in addition to [Ĉ,∆ +

ωj Ωj] = ∆ + wj Ωj, shows that the zero-dynamics has a semispray structure under

the assumption that D and ∆ are semisprays.
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Chapter 5

Examples of the application of

vertically transverse functions

The main purpose of this chapter is to illustrate how the control technique pro-

posed in this thesis, which makes use of vertically transverse functions, is applied to

certain specific systems. The description of each system is given along with a detailed

application of the method and a numerical simulation.

5.1. The ENDI system

5.1.1. System description

The ENDI system (ENDI stands for Extended Nonholonomic Double Integrator)

arises when one includes an integrator in series with each of the inputs of the Brock-

ett’s nonholonomic integrator. This latter system does not meet Brockett’s necessary

condition, i.e. it can not be stabilized to any equilibrium point by means of continuous

feedback functions depending only on the state. Brockett’s nonholonomic integrator

is of the form

ẏ1 = u1

ẏ2 = u2

ẏ3 = u1y2 − u2y1.
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where y = (y1, y2, y3) ∈ R
3 and u = (u1, u2) ∈ R

2. The ENDI system arises when one

includes an integrator in series with each of the inputs of the Brockett’s nonholonomic

integrator.

ÿ1 = u1

ÿ2 = u2

ẏ3 = ẏ1y2 − ẏ2y1.

(5.1)

Taking the third equation of (5.1) and computing its time-derivative one gets ÿ3 =

u1y2 − u2y1. Consider then the following system

ẍ1 = u1

ẍ2 = u2

ẍ3 = u1x2 − u2x1,

(5.2)

where x = (x1, x2, x3) ∈ R
3.

u1

u2

x1

x2

ẋ1

ẋ2

x3

∫∫

∫ ∫

∫ ∫

Figure 5.1: The ENDI system.

We refer, in the sequel, to this later system as the ENDI system which can be

sketched as in Figure 5.1. The trajectories of system (5.1) are the same than the

trajectories of system (5.2) whenever the initial condition of (5.2) is of the form

(x0, ẋ0) = (y10, y20, y30, ẏ10, ẏ20, 0).

5.1.2. Application of the vertically transverse function approach

System (5.2) can be written as
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ẍ = u1X1(x) + u2X2(x) (5.3)

where x takes values in R
3 and X1, X2 are vector fields on R

3 defined by

X1(x) =
∂

∂x1

∣∣∣∣
x

+ x2
∂

∂x3

∣∣∣∣
x

, X2(x) =
∂

∂x2

∣∣∣∣
x

− x1
∂

∂x3

∣∣∣∣
x

The Lie bracket of X1 and X2 is given by

[X1, X2] = −2
∂

∂x3

,

hence the Lie Algebra generated by {X1, X2} is span
R
({X1, X2, [X1, X2]}) since Lie

brackets involving three or more vector fields are identically zero. As a result

Lie({X1, X2}) spans TxR
3 at every point x ∈ R

3, therefore {X1, X2} satisfies the

Lie Algebra Rank Condition at every x ∈ R
3.

One can endow R
3 with a Lie group law composition µ̂ defined by

µ̂(x, y) =




x1 + y1

x2 + y2

x3 + y3 + x2y1 − x1y2


 for every x, y in R

3,

with inverse group operation defined by x−1 = (−x1,−x2,−x3) for x ∈ R
3, and

identity element ê = (0, 0, 0).

The equation µ(v, w) = Tπ
R3 (v)R̂π

R3 (w)(v) + Tπ
R3 (w)L̂π

R3 (v)(w) (Equation (2.8)) al-

lows one to explicitly find the Lie group composition in TR
3 associated with µ̂ to

be

µ(v, w) =




v1 + w1

v2 + w2

v3 + w3 + v2w1 − v1w2

v4 + w4

v5 + w5

v6 + w6 − w2v4 + w1v5 + v2w4 − v1w5




∀ v, w ∈ TR
3
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with inverse v 7→ v−1 = (−v1,−v2,−v3,−v4,−v5,−v6) and identity element e = 0.

Given x in R
3, the left translation by x, L̂x, is defined by

L̂x(y) = µ̂(x, y) =




x1 + y1

x2 + y2

x3 + y3 + x2y1 − x1y2


 for all y ∈ R

3

thus, the tangent map associated to L̂x at y ∈ R
3, i.e. TyL̂x : TyR

3 −→ TbLx(y)R
3 is

defined as

TyL̂x =




1 0 0

0 1 0

x2 −x1 1




Let v = (v1, v2, v3) be in TyR
3. Then TyL̂x(v) is given by

TyL̂x(v) =




1 0 0

0 1 0

x2 −x1 1







v1

v2

v3


 =




v1

v2

x2v1 − x1v2 + v3


 .

The vector fields previously defined

X1(y) =




1

0

y2


 and X2(y) =




0

1

−y1




are left-invariant with respect to the group operation µ̂ of R
3 since

X1(L̂x(y)) =




1

0

x2 + y2


 ,

TyL̂x(X1(y)) =




1 0 0

0 1 0

x2 −x1 1







1

0

y2


 =




1

0

x2 + y2
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and

X2(L̂x(y)) =




0

1

−x1 − y1


 ,

TyL̂x(X2(y)) =




1 0 0

0 1 0

x2 −x1 1







0

1

−y1


 =




0

1

−x1 − y1




so that, for every x, y in R
3,

Xi(L̂x(y)) = TyL̂x(Xi(y)) i = 1, 2.

Given that X1 and X2 are left-invariant, X lift
1 and X lift

2 are also left-invariant with

respect to µ according to result stated in Lemma 3 of Chapter 4. These vertically

lifted vector fields are defined in TR
3 by

X lift
1 (v) =

∂

∂ẋ1

∣∣∣∣
v

+ x2
∂

∂ẋ3

∣∣∣∣
v

, X lift
2 (v) =

∂

∂ẋ2

∣∣∣∣
v

− x1
∂

∂ẋ3

∣∣∣∣
v

where we consider coordinates v = (x, ẋ) on TR
3, naturally associated with the

coordinates x.

The system (5.3) can be recast as a system on TR
3 by

v̇ = S(v) + u1X
lift
1 (v) + u2X

lift
2 (v), (5.4)

where S is the second-order vector field defined by S(v) =
∑3

i=1 ẋi
∂
∂xi

∣∣∣
v
.

Next we find a transverse function f : T −→ R
3 for X1 and X2 near ê, following

the procedure reviewed in Chapter 3, which results in

f : θ 7→




ε sin(θ)

ε cos(θ)

0




The tangent map associated to f at θ ∈ T, Tθf : TθT −→ Tf(θ)R
3, is defined for each
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ω = (θ, θ̇) in TθT by:

Tf(ω) =




ε sin(θ)

ε cos(θ)

0

ε θ̇ cos(θ)

−ε θ̇ sin(θ)

0




The transversality property of the map f is equivalent to the nonsingularity of the

matrix M whose columns are the components of the vector fields X1 and X2 evaluated

on the image of f , together with f ′(θ), i.e.

M(θ) ,




1 0 ε cos(θ)

0 1 −ε sin(θ)

ε cos(θ) −ε sin(θ) 0




One easily proves that det(M(θ)) equals −ε2 for all θ ∈ T and, given that ε is a

strictly positive real, the determinant of M is nonzero.

Now, we proceed to define the auxiliary second-order system on TT

ω̇ = ∆ω + wΩω

as

(
θ̇

θ̈

)

︸ ︷︷ ︸
ω̇

=

(
θ̇

0

)

︸ ︷︷ ︸
∆ω

+w

(
0

1

)

︸ ︷︷ ︸
Ωω

i.e.

θ̈ = w (5.5)

The error is defined as the product in TR
3 of the state v = (x, ẋ) of System (5.3)
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and the inverse of the image by Tf of ω = (θ, θ̇) (the latter being the state of the

auxiliary system (5.5)), i.e.

z = µ(v, Tf(ω)−1).

Carrying out the computations one finds the following expression for the error

z(v, ω) =




v1 − ε sin(θ)

v2 − ε cos(θ)

v3 − v2ε sin(θ) + v1ε cos(θ)

v4 − θ̇ ε cos(θ)

v5 + θ̇ ε sin(θ)

ε cos(θ)v4 − ε sin(θ)v5 + v6 − v2θ̇ ε cos(θ) − v1θ̇ ε sin(θ)




.

The error dynamics, obtained by differentiating the expression for the error z, is given

by (4.14)

ż = B(z, ω) +
3∑

i=1

uiHi(z, ω) (5.6)

with u3 = w,

H1(z, ω) = (0, 0, 0, 1, 0, 2 ε cos(θ) + z2),

H2(z, ω) = (0, 0, 0, 0, 1,−2 ε sin(θ) − z1),

H3(z, ω) = (0, 0, 0,−ε cos(θ), ε sin(θ),−ε cos(θ)z2 − ε sin(θ)z1 − ε2)

and
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B(z, ω) =




z4

z5

z6

θ̇2ε sin(θ)

θ̇2ε cos(θ)

−2 θ̇ ε sin(θ)z4 − 2 θ̇ ε cos(θ)z5 + θ̇2ε sin(θ)z2 − θ̇2ε cos(θ)z1




.

As we showed in Proposition 5 in Chapter 4, the error dynamics represents a

second-order differential equation. Consequently we can write it down taking the

second-time derivatives of (z1, z2, z3), namely,




z̈1

z̈2

z̈3


 =




θ̇2ε sin(θ)

θ̇2ε cos(θ)

b3(z, θ, θ̇)




+




1 0 −ε cos(θ)

0 1 ε sin(θ)

2 ε cos(θ) + z2 −2 ε sin(θ) − z1 h3,3(z, θ)







u1

u2

w




(5.7)

with b3(z, θ, θ̇) = −2 θ̇ ε sin(θ)z4 − 2 θ̇ ε cos(θ)z5 + θ̇2ε sin(θ)z2 − θ̇2ε cos(θ)z1 and

h3,3(z, θ) = −ε cos(θ)z2 − ε sin(θ)z1 − ε2.

In order to construct a feedback function to make z converge to e, the identity

element in TR
3, we take a second-order vector field S ∈ Γ(TTR

3) which has e as

locally asymptotically stable point, for instance,

Sz = (z4, z5, z6,−k1z1 − k2z4,−k1z2 − k2z5,−k1z3 − k2z6)

where the control gains k1, k2 are strictly positive real numbers.

One obtains the feedback function (u(z, ω), w(z, ω)) by equating the right hand side

of (5.6) to Sz and solving for (u1, u2, u3), or equivalently, by equating the right hand
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side of (5.7) to SH(z) and solving for (u1, u2, w), where

SH(z) =




−k1z1 − k2z4

−k1z2 − k2z5

−k1z3 − k2z6


 .

For every (z, ω) in TR
3×TT there exists a solution (u1, u2, w) due the nonsingularity

of the square matrix in (5.7), since for every z ∈ TR
3 and θ ∈ T its determinant

equals ε2. After simple manipulations we get

u1(z, θ, θ̇) = k1

(
cos(2 θ)z1 − sin(2 θ)z2 −

cos(θ)
ε
z3

)

+k2

(
cos(θ)
ε

(z2z4 − z1z5 − z6) + cos(2 θ)z4 − sin(2 θ)z5

)

+θ̇
(
sin(2 θ)z4 + 2 (cos(θ))2 z5 − θ̇ ε sin(θ)

)

u2(z, θ, θ̇) = −k1

(
sin(2 θ)z1 + cos(2 θ)z2 −

sin(θ)
ε
z3

)

−k2

(
sin(θ)
ε

(z2z4 − z1z5 − z6) + sin(2 θ)z4 + cos(2 θ)z5

)

−θ̇
(
sin(2 θ)z5 + 2 (sin(θ))2 z4 + θ̇ ε cos(θ)

)

w(z, θ, θ̇) = 1
ε2

(
k1 (2 ε cos(θ)z1 − 2 ε sin(θ)z2 − z3)

+k2 ((2 ε cos(θ) + z2) z4 − (2 ε sin(θ) + z1) z5 − z6)

+2 ε θ̇ (sin(θ)z4 + cos(θ)z5)
)

Using this feedback function z(t) = v · (Tf(ω))−1 tends to zero as t tends to infinity.

Hence v(t) −→ Tf(ω(t)) as t −→ ∞, therefore x(t) = πR3 ◦ v(t) −→ f ◦ πT ◦ ω(t) =

f ◦ θ(t), i.e. x(t) converge to the image by f of θ.

One easily verifies that

θ̈ = 0

is the zero-dynamics of the auxiliary system. Thus θ̇ is bounded with a bound de-
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pending on the initial conditions.

The zero-dynamics of the auxiliary system governs the zero-dynamics of the target

system in (5.3) (Section 4.4 in Chapter 4), therefore ẋ is bounded, and, since x(t) −→

f ◦ θ(t) as t −→ ∞, v = (x, ẋ) is bounded for the long-term behavior.

A numerical simulation of the closed-loop system with feedback control u =

(u1(z, θ, θ̇), u2(z, θ, θ̇), w(z, θ, θ̇)) was performed. The initial condition is v = (x, ẋ) =

(3.5,−0.3, 0.2, 0.5,−0.1, 0.0), the controller gains are k1 = k2 = 1.0, and the value of

ε is 0.5. Figure 5.3 presents plots of the trajectories of the ENDI system and Figure

5.2 presents the evolution in time of the error and the control input applied.
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Figure 5.2: Time histories of the error z and the control input u(z, θ, θ̇) respectively.

The error in Figure 5.2 tends to zero as the time increases. We also note (Figure

5.3) that the configuration variables and velocities of the system, after a transient,

seem to converge to a periodic motion. As a matter of fact the configuration variables

converge to a neighborhood which can be modified by changing the value of ε.

5.2. PPR manipulator

5.2.1. System description

In this section we deal with the three link planar manipulator PPR, (PPR stands

for Prismatic-Prismatic-Revolute), in which the two first joints are actuated whereas
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Figure 5.3: Time histories of the configuration x and velocity ẋ respectively.

the third revolute joint is passive. The system is schematically represented in Figure

5.4.

q1

q2

q3

lc3

y0

x0

Figure 5.4: Planar Prismatic-Prismatic-Revolute manipulator with its third joint
unactuated.

The configuration of the system is given by (q1, q2) ∈ R
2 and q3 ∈ S

1 so for a given

configuration q = (q1, q2, q3) in the configuration manifold Q = R
2 × S

1 ≃ SE(2) of

the system (n = dim(Q) = 3), (q1, q2) represents the net displacement in the R
2 plane

with respect to a fixed basis while q3 ∈ S corresponds to the orientation of the third

link.
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5.2.2. Dynamical model

We do not consider friction in the dynamical model and we assume the system

moves on a horizontal plane, so that it does not experiment the action of any gravita-

tional force. The mathematical model for the PPR manipulator is derived from the

Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
−
∂L

∂qi
= τi i = 1, . . . , 3

where L : TQ −→ R denotes the Lagrangian of the system, given by L = K−P ◦πQ,

with K : TQ −→ R and P : Q −→ R respectively being the kinetic and potential

energies of the system. τi represents the force applied to the i-th link (i = 1, . . . , 3).

In the sequel we shall write c for cos and s for sin. Let [pi]0 (i = 1, . . . , n) be the

position of the centre of mass of the i-th link with respect to the coordinate frame

Σ0 = (x0, y0) (see Figure 5.4). One easily checks that

[p1]0 =

(
−lc1 + q1

0

)
, [p2]0 =

(
q1

−lc2 + q2

)
, [p3]0 =

(
lc3 c(q3) + q1

lc3 s(q3) + q2

)
.

Differentiating we obtain the velocities of the links to be

[v1]0 =

(
q̇1

0

)
, [v2]0 =

(
q̇1

q̇2

)
, [v3]0 =

(
−lc3 s(q3) q̇3 + q̇1

lc3 c(q3) q̇3 + q̇2

)
.

Thus the kinetic energy associated with the i-th link, Ki = 1
2
mi[vi]0

2, is given by

K1(q, q̇) =
1

2
m1q̇1

K2(q, q̇) =
1

2
m2(q̇

2
1 + q̇2

2)

K3(q, q̇) =
1

2
m3(q̇

2
1 + q̇2

2 + lc23q̇
2
3 − 2 lc3s(q3) q̇1q̇3 + 2 lc3c(q3) q̇2q̇3).

Since the potential energy is assumed to be zero, the Lagrangian of the system equals

the kinetic energy, i.e. L(q, q̇) = K(q, q̇) =
∑3

i=1Ki(q, q̇) = 1
2
G(q̇, q̇):

71



L(q, q̇) =
1

2
q̇T




m1 +m2 +m3 0 −m3lc3s(q3)

0 m2 +m3 m3lc3c(q3)

−m3lc3s(q3) m3lc3c(q3) m3lc3
2


 q̇.

Let Mj =
∑3

i=jmi (j = 1, 2) and J = m3lc3
2. Then

L(q, q̇) =
1

2
q̇T




M1 0 −m3lc3s(q3)

0 M2 m3lc3c(q3)

−m3lc3s(q3) m3lc3c(q3) J


 q̇

From the Euler-Lagrange equations we obtain the dynamics of the PPR manipulator

to be

M1q̈1 −m3lc3s(q3) q̈3 −m3lc3c(q3) q̈
2
3 = τ1

M2q̈2 +m3lc3c(q3) q̈3 −m3lc3s(q3) q̈
2
3 = τ2 (5.8)

Jq̈3 −m3lc3s(q3) q̈1 +m3lc3c(q3) q̈2 = 0

Rewriting the above set of equations into matrix notation we have




M1 0 −m3lc3s(q3)

0 M2 m3lc3c(q3)

−m3lc3s(q3) m3lc3c(q3) J







q̈1

q̈2

q̈3


+




−m3 lc3c(q3) q̇2
3

−m3 lc3s(q3) q̇2
3

0


 =




τ1

τ2

0




According to [6], if we consider the input transformation given by

τ1 = −m3lc3c(q3) q̇
2
3 +

(
M1 −

m3
2
lc3

2

J
s2(q3)

)
η1 +

m3
2
lc3

2

J
s(q3)c(q3) η2

τ2 = −m3lc3s(q3) q̇
2
3 +

(
M2 −

m3
2
lc3

2

J
c2(q3)

)
η2 +

m3
2
lc3

2

J
s(q3)c(q3) η1,

the system (5.8) becomes
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q̈1 = η1

q̈2 = η2 (5.9)

q̈3 =
m3lc3
J

(s(q3)η1 − c(q3)η2) .

If we now consider the following state and input transformations

y1 = q1 + J
m3lc3

c(q3)

y2 = q2 + J
m3lc3

s(q3)

y3 = q3

η1 =
(
v1 + J

m3lc3
q̇2
3

)
c(q3) + J

m3lc3
s(q3)v2

η2 =
(
v1 + J

m3lc3
q̇2
3

)
s(q3) −

J
m3lc3

c(q3)v2

,

we obtain the following system

ÿ1 = c(y3) v1

ÿ2 = s(y3) v1 (5.10)

ÿ3 = v2.

The latter system is locally defined on R
2×S

1. One may verify that its control vector

fields Y1(y) = c(y3)
∂
∂y1

∣∣∣
y

+ s(y3)
∂
∂y2

∣∣∣
y

and Y2(y) = ∂
∂y3

∣∣∣
y

satisfy the LARC at every

point, moreover, they are left-invariant with respect to the Lie group operation φ in

R
2 × S

1 defined by

φ(a, b) =




c(a3)b1 − s(a3)b2 + a1

s(a3)b1 + c(a3)b2 + a2

a3 + b3


 for every a, b in R

2 × S
1,

and therefore one is allowed to apply to (5.10) the methodology proposed in this

thesis. However, before we proceed, it is worth mentioning that (5.10) is equivalent

to
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ẍ1 = u1

ẍ2 = u2 (5.11)

ẍ3 = x2 u1,

by considering the following input and state transformations

v1 = sec(y3)u1

v2 = c(y3)
2 u2 − 2 tan(y3)ẏ

2
3

x1 = y1

x2 = tan(y3)

x3 = y2.

In this example we work with System (5.11), which also evolves on a Lie group.

The control vector fields which define (5.11) are, in addition, left-invariant under an

appropriately defined multiplication on R
3 as shown in the next section.

5.2.3. Application of the vertically transverse function approach

The system (5.11) can be recast as

ẍ = u1X1(x) + u2X2(x), (5.12)

where x = (x1, x2, x3) is a curve on R
3 and X1, X2 are vector fields defined by

X1(x) =
∂

∂x1

∣∣∣∣
x

+ x2
∂

∂x3

∣∣∣∣
x

, X2(x) =
∂

∂x2

∣∣∣∣
x

The Lie bracket of X1 and X2 is given by

[X1, X2] = −
∂

∂x3
.

Hence Lie({X1, X2}) spans TxR
3 at every x ∈ R

3.

Consider the differentiable manifold structure of R
3 together with the group struc-

ture defined by
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µ̂(x, y) =




x1 + y1

x2 + y2

x3 + y3 + x2y1


 for every x, y in R

3,

where the inverse of x in R
3 is x−1 = (−x1,−x2,−x3 + x2x1) and ê = (0, 0, 0). From

the expression µ(a, b) = Tπ
R3 (a)R̂π

R3 (b)(a) + Tπ
R3 (b)L̂π

R3 (a)(b) (2.8) one finds that the

Lie group composition µ in TR
3 associated with µ̂ is

µ(a, b) =




a1 + b1

a2 + b2

a3 + b3 + a2b1

a4 + b4

a5 + b5

a6 + b6 + b1a5 + a2b4




∀ a, b ∈ TR
3

The inverse element of a in TR
3 is then

a−1 = (−a1,−a2,−a3 + a2a1,−a4,−a5, a1a5 − a6 + a2a4),

and the identity e = 0. Given x in R
3, the left translation by x, L̂x, is given by

L̂x(y) = µ̂(x, y) for all y in R
3. Thus, the tangent map associated to L̂x at y ∈ R

3,

i.e. TyL̂x : TyR
3 −→ TbLx(y)R

3 is

TyL̂x =




1 0 0

0 1 0

x2 0 1


 .

Let v = (v1, v2, v3) be in TyR
3. Then TyL̂x(v) is given by

TyL̂x(v) =




1 0 0

0 1 0

x2 0 1







v1

v2

v3


 =




v1

v2

x2v1 + v3


 .
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Note that

X1(L̂x(y)) =




1

0

x2 + y2


 ,

TyL̂x(X1(y)) =




1 0 0

0 1 0

x2 0 1







1

0

y2


 =




1

0

x2 + y2




and

X2(L̂x(y)) =




0

1

0


 ,

TyL̂x(X2(y)) =




1 0 0

0 1 0

x2 0 1







0

1

0


 =




0

1

0


 ,

therefore, for every x, y in R
3, Xi(L̂x(y)) = TyL̂x(Xi(y)) i = 1, 2, i.e. the vector fields

X1 and X2 are left-invariant and so are X lift
1 and X lift

2 with respect to µ (Lemma 3 of

Chapter 4). X lift
1 and X lift

2 are vector fields on TR
3 defined by

X lift
1 (v) =

∂

∂ẋ1

∣∣∣∣
v

+ x2
∂

∂ẋ3

∣∣∣∣
v

, X lift
2 (v) =

∂

∂ẋ2

∣∣∣∣
v

where we consider (x, ẋ) as coordinates for TR
3.

The system (5.12) can be rewritten as a system on TR
3 by

v̇ = S(v) + u1X
lift
1 (v) + u2X

lift
2 (v) (5.13)

where S is the second-order vector field on TR
3 defined by S(v) =

∑n
i=1 ẋ

i ∂
∂xi

∣∣
v
.

A transverse function f : T −→ R
3 associated with X1 and X2 near e can be

found by following the procedure recalled in Chapter 3, which yields

f(θ) =

(
ε s(θ), ε c(θ),

1

4
ε2s(2 θ)

)
∀ θ ∈ T.
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The tangent map associated with f at θ ∈ T, Tθf is defined for each θ̇ ∈ TθT by

Tθf(θ̇) =




ε s(θ)

ε c(θ)

1
4
ε2s(2 θ)

ε θ̇ c(θ)

−ε θ̇ s(θ)

1
2
ε2θ̇ c(2 θ)




We proceed to define the auxiliary second-order system on TT by

θ̈ = w, (5.14)

and the error is given by z = µ(v, Tf(ω)−1), that is,

z(θ, θ̇, v) =




v1 − ε s(θ)

v2 − ε c(θ)

v3 − ε s(θ) v2 + 1
4
ε2s(2 θ)

v4 − ε θ̇ c(θ)

v5 + ε θ̇ s(θ)

v6 − ε θ̇ c(θ) v2 − ε s(θ)v5 + 1
2
ε2θ̇ c(2 θ)




.

The error dynamics is found by differentiating the expression for the error z:

ż =




z4

z5

z6

u1 + θ̇2ε s(θ) − α ε c(θ)

u2 + θ̇2ε c(θ) + ε s(θ)α

Z6,z(z, θ, θ̇, u)




, (5.15)
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where

Z6,z(z, θ, θ̇, u) = −2ω ε c(θ)z5 +
1

2
ω2ε2s(2 θ) − ε s(θ)u2

+u1z2 + u1ε c(θ) + ω2ε s(θ)z2 − α ε c(θ)z2 −
1

2
α ε2

From the latter expression, for ż, is easy to note that the vector field defining the error

dynamics is second-order, consequently we can write (5.15) taking the second-time

derivatives of (z1, z2, z3).

z̈ = B(z, θ, θ̇) +H(z, θ)




u1

u2

w


 , (5.16)

with

B(z, θ, θ̇) =




θ̇2ε s(θ)

θ̇2ε c(θ)

−2 θ̇ ε c(θ)z5 + 1
2
θ̇2ε2s(2 θ) + z2θ̇

2ε s(θ)


 ,

and

H(z, θ) =




1 0 −ε c(θ)

0 1 ε s(θ)

z2 + ε c(θ) −ε s(θ) −ε c(θ)z2 −
1
2
ε2




In order to construct a feedback function such that z converges to zero we take

a second-order vector field S ∈ Γ(TTR
3) which has e ∈ TR

3 as local exponentially

stable point, for instance

Sz = (z4, z5, z6,−k1z1 − k2z4,−k1z2 − k2z5,−k1z3 − k2z6)

where the control gains k1, k2 are strictly positive real numbers. One obtains such a

feedback function u(z, θ, θ̇) by solving
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SH(z) −B(z, θ, θ̇) = H(z, θ)




u1

u2

w




where

SH(z) =




−k1z1 − k2z4

−k1z2 − k2z5

−k1z3 − k2z6


 ,

equation which is solvable due the nonsingularity of the matrix H.

The resulting feedback law is (u1(z, θ, θ̇), u2(z, θ, θ̇), u3(z, θ, θ̇)), with

u1(z, θ, θ̇) = 1
2ε

( 4 c(θ)z2k1z1 + 4 c(θ)z2k2z4 − 3 θ̇2ε2s(θ)

−θ̇2ε2s(3 θ) + 2 ε c(2 θ)k1z1 + 2 ε c(2 θ)k2z4

−2 ε s(2 θ)k1z2 − 2 ε s(2 θ)k2z5 + 4 θ̇ z5c(2 θ)ε

+4 θ̇ z5ε− 4 c(θ)k1z3 − 4 c(θ)k2z6 )

u2(z, θ, θ̇) = 1
2ε

( −4 s(θ)z2k1z1 − 4 s(θ)z2k2z4 − 2 ε s(2 θ)k1z1

−2 ε s(2 θ)k2z4 − θ̇2ε2c(θ) − θ̇2ε2c(3 θ)

−2 c(2 θ)ε k1z2 − 2 c(2 θ)ε k2z5 − 4 θ̇ z5s(2 θ)ε

+4 s(θ)k1z3 + 4 s(θ)k2z6 )

u3(z, θ, θ̇) = 1
ε2

( 2 z2k1z1 + 2 z2k2z4 − θ̇2ε2s(2 θ) + 2 ε c(θ)k1z1

+2 ε c(θ)k2z4 − 2 ε s(θ)k1z2 − 2 ε s(θ)k2z5

+4 θ̇ ε c(θ)z5 − 2 k1z3 − 2 k2z6 )

The zero-dynamics of the auxiliary system is

θ̈ = − sin(2 θ) θ̇2, (5.17)

which can be described as evolving on TT. One may interpret this system as a
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mechanical system determined by a connection ∇ which unique Christoffel symbol

is Γ(θ) = sin(θ). Note that ∇ is torsionless, so one may expect the connection be

compatible with a Riemannian metric G defined on T. To obtain this metric we solve

for G in (2.3), which in this case is equivalent to the ordinary differential equation

dG

dθ
(θ) − 2 sin(2 θ)G(θ) = 0.

A family of solutions is given by G(θ) = Ae−2 cos2(θ), with A > 0. Let us define the

Lagrangian of the system L : TT −→ R by

L(ω) =
1

2
Gθ(θ̇, θ̇) (5.18)

=
1

2
Ae−2 cos2(θ) θ̇2, (5.19)

with ω = (θ, θ̇) ∈ TT. One easily verifies that ∇θ̇θ̇ = 0 (from (2.1)) is exactly (5.17),

therefore the zero-dynamics has the form of a simple mechanical system with zero

potential.

It is easy to show that d
dt

(L(ω)) = 0 and so the energy of the system is a conserved

quantity. As G is a continuous function defined on a compact space T, G is bounded

from below. It follows that θ̇ remains bounded for all t ∈ [t0,∞). As a consequence,

the state v of the target system (5.13) converges to a bounded neighborhood of zero

which depends on the initial conditions.

A numerical simulation of the complete system in closed-loop with u =

(u1(z, θ, θ̇), u2(z, θ, θ̇), u3(z, θ, θ̇)) was performed.

The initial condition is v = (x, ẋ) = (2.0, 0.5,−1.5, 0.3,−1.0, 0.1), the controller gains

are k1 = k2 = 1.0, and the value of ε is 0.6. Figure 5.5 depicts the evolution in

time of the error and the control input applied while Figure 5.6 shows plots of the

trajectories of the PPR manipulator. By observing the figures one may note that, as

in the previous example, the state of the system appears to be ultimately bounded.

The configuration variables converge to a neighborhood of zero, while the velocities

converge to a bounded set that depends on the initial conditions.
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Figure 5.5: Time histories of the error z and the control input u(z, θ, θ̇) respectively.
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Time index

ẋ1
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Chapter 6

Conclusions and future work

As shown in this thesis the tangent mappings associated with transverse functions,

as defined in the Morin and Samson sense [13], satisfy also vertical transversality

(Section 4.2). This property comes as a natural generalization of the transverse

condition for functions.

This newly characterized property was used in this work in order to derive a control

technique to control second-order systems and, in particular, to tackle stabilization

of simple mechanical control systems defined on Lie groups. When this technique is

applied to second-order systems one achieves practical stabilization of the configu-

ration variables, namely one ensures that the projection of the state trajectory onto

the configuration converge to a previously specified, arbitrarily small neighborhood

of the desired equilibrium point.

A mechanical system, as remarked in Section 2.3, can be represented as evolving

on the tangent bundle of the configuration manifold. With the proposed approach

it is possible to impose any desired dynamics to the error, in particular one desires

the identity element to be an asymptotically stable point. Then one assures that

configuration trajectories of the system converge to a specified small neighborhood of

the bundle projection of desired equilibria. This means that the system configuration

will ultimately evolve sufficiently near the target equilibrium point. However, at

present, little can be asserted about the evolution of the fiber components of the

trajectories (corresponding to velocities of the system in a mechanical system). This

is mainly because, even though the error tends to zero as time increases, the closed-
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loop system evolves according to a nontrivial zero-dynamics entirely characterized by

the zero dynamics of the auxiliary system, as shown in Section 4.4.

When the drift term of the target and auxiliary systems are semisprays (which, in

the case of simple mechanical systems, it turns out to be the case), we show that the

zero-dynamics is also defined by a semispray. One possible way to proceed in order to

achieve convergence of the fiber trajectories to a specified neighborhood of the zero

section is to examine the drift vector field of the auxiliary system to determine if the

imposition of a particular structure ensures that the velocities remain bounded, i.e. it

could be possible that, by selecting an appropriate second-order field ∆ in Equation

(4.8), the target system achieves the desired behavior.

While applying the approach to a particular system, specifically to the one in

section 5.2 (PPR manipulator), we discovered that the zero-dynamics of the auxiliary

system has an interpretation as a simple mechanical system by finding a Riemannian

metric. With this metric we were able to define a smooth energy function for the

system and thus to show that the fiber trajectories were bounded, with a bound de-

pending on the initial conditions. This example seems to suggest that, for mechanical

systems, the fiber trajectories are bounded, given that in this particular example the

spray associated to the zero-dynamics of the auxiliary system defines a torsionless

connection which is also compatible with a Riemannian metric. If one can show that

the semispray that rules the evolution of the zero-dynamics is the Levi-Cività connec-

tion for a Riemannian metric, then the next natural step would be to use the latter

to define an energy function for the auxiliary system, which could in turn be useful to

guarantee that the velocities do not grow unbounded. However, finding a Riemannian

metric associated with the Cristoffel symbols of a connection is, in general, a rather

involved task, and hence work remains to be done in this direction.

Another way to achieve stabilization of mechanical systems could be to analyze the

possibility of using the so-called generalized transverse functions, a more recent result

published by Morin and Samson [15]. With these functions, which are also transverse

in the original sense, one is able to obtain asymptotic stabilization of trajectories

for certain systems in which the drift is not needed to generate the accessibility

distribution. Trying to generalize these functions might be instrumental to achieve

practical stabilization of mechanical systems.

83



The implementation of trajectory tracking controllers by using the proposed ap-

proach is formally straightforward and is another road to explore in immediate future

work. More future work is to study mechanical systems with symmetries, given that

symmetries play an important role in the analysis and design of motion control algo-

rithms.

Finally, it is worth mentioning that, although the approach outlined in this thesis

does not constitute a complete extension of Morin and Samson’s approach based on

transverse functions, it takes steps toward what might constitute an interesting theory

for the stabilization of admissible trajectories for second-order systems, including fixed

points.
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