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Para obtener el grado de

Maestro en Ciencias Aplicadas

En la opción de

Nanociencias y Nanotecnologı́a

Codirectores de Tesis
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Resumen

Debido a la disminución del tamaño en los procesos de fabricación
de microchips de computadora, se está llegando a lı́mites fı́sicos donde
efectos cuánticos pueden interferir en el desempeño de tales dispositivos.
Por otra parte, aun con el poder de cómputo actual el cálculo de sistemas
microscópicos es ineficiente.

Para tratar de resolver estos inconvenientes, se ha desarrollado un
nuevo modelo computacional que aproveche efectos cuánticos: la com-
putadora cuántica. Esto ha dado lugar a nuevos recursos como el entan-
glement, que se define como una correlación especial entre dos sistemas
microscópicos. Esta propiedad resulta ser crı́tica en los procesos involu-
crados en computación cuántica.

En este trabajo, se utilizó un hamiltoniano tipo Tight Binding para es-
tudiar el entanglement en sistemas unidimensionales con y sin desorden,
ası́ como la aplicación de un método computacional para optimizar dicha
propiedad en sistemas unidimensionales y en redes cuadrada y triangular.

Palabras Clave: Computación Cuántica, Entanglement, Concurren-
cia, Algoritmos Genéticos.
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Abstract

The shrinking processes employed by microchips manufacturers are
begining to reach physical limits where quantum effects can seriously im-
pact performance of such devices. On the other hand, even with present-
day computing capabilities, exact calculation of microscopic systems is
heavily limited.

To try to cope with this issues, a new computational model that takes
advantage of quantum effects was developed: the quantum computer.
This has led to the study of new resources such as entanglement, which
is defined as a special kind of correlation between microscopic systems. It
turns out that this is a key resource in quantum computation processes.

In the present work, a Tight-Binding hamiltonian was used in order to
study entanglement on one dimensional systems with and without disor-
der, as well as the application of a computational method to optimize such
property on one dimensional systems and square and triangular lattices.

Key Words: Quantum Computation, Entanglement, Concurrence, Ge-
netic Algorithms.
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Have a friend, calls me up
Says hello, then hangs up

He must have read my mind
These are the days of a different paradigm

Maybe once, even twice
He said ”God does not play dice ”

Yet if he’s everywhere
He’s in casinos with aces to spare.

Tears For Fears

1.1 Foreword

Quantum Computation and Quantum Information are relatively new
fields which make use of quantum mechanical processes to accomplish
information processing tasks. It is believed that this fields will eventually
allow certain problems to be solved in times that are currently prohibitive
on classical computers.

One of the key concepts in these disciplines –and this work– is the so-
called entanglement, which is a set of states where special correlations
arise. This correlations allow entangled systems to affect each other with-
out the presence of a physical link (a phenomena that Prof. Albert Einstein
would famously describe as “spooky action at a distance”).

The present work deals with disordered systems and their capacity to
display this behavior.

1.2 Computer Science

The modern incarnation of computer science was announced by the
great mathematician Alan Turing [2] in a remarkable 1936 paper. Turing
showed that there is such a thing as a ‘Universal Turing Machine’ that
can be used to simulate any other Turing machine (see the “Notes” Ap-
pendix). Moreover, he claimed that, if an algorithm can be performed on
any piece of hardware (say, a modern personal computer), then there is an
equivalent algorithm of a Universal Turing Machine which performs exactly
the same task as the algorithm running on the personal computer. This
assertion, known as the Church-Turing thesis, asserts the equivalence be-
tween the physical concept of what class of algorithms can be performed
on some physical device with the rigorous mathematical concept of a Uni-
versal Turing Machine.

1.1. Foreword 3



In the late 1960s and early 1970s, it seemed as though the Turing
Machine was at least as powerful as any other model of computation. This
observation was codified into a strengthened version of the Church-Turing
thesis:

“Any algorithmic process can be simulated efficiently using a
Turing Machine”

The first major challenge to the strong Church-Turing thesis arose in the
mid 1970s. Robert Solovay and Volker Strassen showed that it is possible
to test whether an integer is prime or composite using a randomized algo-
rithm (i.e. randomness is an essential part of the algorithm). This algorithm
can determine that a number was probably prime or else composite, and
by repeating the test a few times it is possible to reach a conclusion with
near certainty.

The Strong Church-Turing thesis, lacking randomness, was promptly
fixed making a slight modification:

“Any algorithmic process can be simulated efficiently using a
probabilistic Turing Machine”

Yet, uncertainty arose of whether it could exist another set of problems
not efficiently solved by the Turing Machine. Even more importantly, could
it be that there is some another model of computation that efficiently solves
such kind of problems?

On the other hand, since the development of the transistor in 1947
computer hardware has grown in power at an amazing speed. However,
quantum effects are beginning to interfere in the functioning of electronic
devices as they are made smaller and smaller (At the time of writing this
document, actual computer processors are manufactured using 90 nm and
even 65nm technology, with recent claims stating the beginning of a new
process to develop 45 nm chips tentatively in 2007).

Motivated by this issues, in 1985 David Deutsch wondered whether the
laws of physics could be used to derive an even stronger version of the
Church-Turing thesis [3]. Deutsch looked to physical theory to provide a
foundation for the Church-Turing thesis that would be as secure as the
status of that physical theory. In particular, Deutsch attempted to define a
computational device that would be capable of efficiently simulate an arbi-
trary physical system. Because the laws of physics are ultimately quantum
mechanical, he was naturally led to consider computing devices based on
the principles of quantum mechanics.

In 1994 Peter Shor demonstrated that two enormously important prob-
lems —finding the prime factors of an integer, and the so-called ‘discrete
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logarithm’ problem— could be solved efficiently if performed on a quan-
tum computer [4]. Other evidence for the power of quantum computers
came in 1996 when Lov Grover showed that another important problem
—conducting a search through some unstructured search space— could
also be sped up by a quantum computer [5].

Following an idea of Richard Feynman, it is likely that one of the major
applications of quantum computers in the future will be performing simula-
tions of quantum mechanical systems too difficult to simulate on a classical
computer [6].

At this point, though, we do not know what other problems can be
solved on a quantum computation as it is not easy to come up with good
quantum algorithms. One of the reasons for this is that, to design good
quantum algorithms one must turn off the ‘classical’ intuition for at least
part of the design process, using truly quantum effects to achieve the de-
sired algorithmic end. Moreover, it is not enough to design an algorithm
that is merely quantum mechanical: the algorithm must be better that any
existing classical algorithm.

1.3 Quantum Qubits

The bit is the fundamental concept of classical computation. Quan-
tum computation and quantum information are built upon an analogous
concept, the quantum bit , or qubit . For the most part qubits are treated
as abstract mathematical objects although they can be realized as actual
physical systems (including quantum dots [7], nuclear magnetic resonance
[8], photons [9] and trapped ions [10]).

Just as a classical bit has a state —either 0 or 1— a qubit also has a
state. Two possible states for a qubit are the states |0〉 and |1〉. Notation
like ‘| 〉’ is called the Dirac notation and it is the standard notation for states
in quantum mechanics. The difference between bits and qubits is that a
qubit can be in a state other than |0〉 or |1〉, that is, it is also possible to
form linear combinations of states, often called superpositions:

|ψ〉 = α|0〉+ β|1〉. (1.1)

The numbers α and β are complex numbers. The special states |0〉 and
|1〉 are known as computational basis states, and form an orthonormal
basis for this vector space. We cannot examine a qubit to determine its
quantum state, that is, the values of α and β. Instead, when we measure
a qubit we get either the result 0, with probability |α|2, or the result 1 with
probability |β|2. Naturally, |α|2 + |β|2 = 1, since the probabilities must sum
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to one. Thus, in general a qubit’s state is a unit vector in a two-dimensional
complex vector space.

Contrary to the classical world where discrete states are accessible
(think about a light bulb), a qubit can exist in a continuum of states be-
tween |0〉 and |1〉 until it is observed, when it becomes either one. Fur-
thermore, measurements change the state of a qubit, collapsing it from its
superposition of |0〉 and |1〉. In other words, if measurement gives |0〉, then
post-measurements will always yield |0〉.

1.4 Multiple Qubits

If we had two classical bits, then there could be four possible states:
00, 01, 10 and 11. In the same fashion, a two qubit system has four com-
putational basis states denoted |00〉, |01〉, |10〉 and |11〉. A pair of qubits
can also exist in superpositions of these four states, so the quantum state
of two qubits involves a complex coefficient —sometimes called an ampli-
tude—, such that the vector describing the two qubits is

|ψtwo qubits〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 (1.2)

or, in matrix representation:

α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 =


α00

α01

α10

α11

 . (1.3)

As before, measurement result x (i.e. result 00, 01, 10 or 11) occurs with
probability |αx|2, with the state of the qubits after the measurement being
|x〉. The condition that probabilities must sum to one remains. These
normalization condition is expressed as

∑
x |αx|2 = 1.

In a system such as this (with only two qubits), we could measure just a
subset of the qubits. Measuring only the first qubit gives 0 with probability
|α00|2 + |α01|2 leaving the state as

|ψ′〉 =
α00|00〉+ α01|01〉√

(|α00|2 + |α01|2)
. (1.4)

Note that in order to fulfill the normalization condition, the denominator
must be introduced for this post-measurement state.
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One important two qubit state is the Bell State or Einstein-Podolsky-
Rosen (EPR) Pair

|00〉+ |11〉√
2

. (1.5)

Suppose that, upon measurement of the first qubit, we obtained the
0 result out of the Bell State. The post-measurement state would then
become |00〉. In this case, we already know that measuring the second
qubit will yield 0 again, that is, the measurement results are correlated. It
was John Bell that proved [11] that measurement correlations in the Bell
state are stronger than it could ever exist between classical systems.

Three extra special states considered Bell States also exist. They are
briefly discussed in the Dense Coding section and the “Quantum Circuits
Overview” Appendix.

1.5 Quantum Mechanics Postulates

As it has already been mentioned, Quantum Mechanics does not tell
what laws a physical system must obey, but it does provide a mathemat-
ical and conceptual framework for the development of such laws. What
follows is a basic overview of the Postulates of Quantum Mechanics (for a
quick introduction to linear algebra concepts used, please go to the “Linear
Algebra” Appendix).

1.5.1 The First Postulate: The State Space

The first Postulate states that there is a complex vector space with an
inner product associated to any isolated physical system (or equivalently,
a Hilbert space known as the state space of the system). The system
is completely described by its state vector, which is a unit vector in the
system’s state space.

The simplest quantum mechanical system is the qubit. A qubit has a
two-dimensional state space. Suppose |0〉 and |1〉 form an orthonormal
basis for that state space. Then an arbitrary state vector in the state space
can be written in the same way as (1.1), that is:

|ψ〉 = a|0〉+ b|1〉, (1.6)

where a and b are complex numbers. The condition that |ψ〉 be a unitary
vector, 〈ψ|ψ〉 = 1, is therefore equivalent to the normalization condition
already defined for state vectors.

1.5. Quantum Mechanics Postulates 7



There is an alternate and useful formulation of the state vectors. In this
formulation the system is completely described by its density operator or
density matrix .

Suppose a quantum system is in one of a number of states |ψi〉 where
i is an index, with respective probabilities pi. The density operator for the
system is defined by the equation

ρ ≡
∑

i

pi|ψi〉〈ψi| ≡
∑

i

piρi. (1.7)

It is said that a system is in a pure state if it satisfies tr(ρ2) = 1 where
tr( ) is the trace operator. A mixed state satisfies tr(ρ2) < 1.

This formulation can be applied to the remaining Postulates.

1.5.2 The Second Postulate: Evolution

The second postulate states that the evolution of a closed (that is, an
isolated) quantum system is described by a unitary transformation. This
means that a state |ψ〉 of a system at time t1 is related to the state |ψ′〉 of
the system at time t2 by a unitary operator U which depends only on the
times t1 and t2.

|ψ′〉 = U |ψ〉. (1.8)

In the case of qubits, any unitary operator can be realized in realistic
systems.

In a more refined version of this postulate, the evolution of a quantum
system is described in continuous time by the Schrödinger equation:

ih̄
d|ψ〉
dt

= H|ψ〉. (1.9)

In this equation, h̄ is a physical constant known as the Planck’s constant
andH is a fixed Hermitian operator known as the Hamiltonian of the closed
system.

If the Hamiltonian of the system becomes known, then it is possible to
understand the dynamics of this system completely. In general, this is a
very difficult problem.

Because the Hamiltonian is a Hermitian operator it has a spectral de-
composition given by

H =
∑

E

E|E〉〈E|, (1.10)

with eigenvalues E and corresponding normalized eigenvectors |E〉. The
states |E〉 are conventionally referred to as energy eigenstates, and E is
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the energy of the state |E〉. The lowest energy is known as the ground
state energy for the system, and the corresponding energy eigenstate is
known as the ground state.

1.5.3 The Third Postulate: Quantum measurement

The third postulate states that quantum measurements are described
by a collection {Mm} of measurement operators. These are operators act-
ing on the state space of the system being measured. The index m refers
to the measurement outcomes that may occur in the experiment. If the
state of the quantum system is |ψ〉 immediately before the measurement,
then the probability that result m occurs is given by

p(m) = 〈ψ|M †
mMm|ψ〉 (1.11)

and the state of the system after the measurement is

Mm|ψ〉√
〈ψ|M †

mMm|ψ〉
, (1.12)

where the denominator is introduced to satisfy the normalization condition.
The measurement operators satisfy the completeness equation,∑

m

M †
mMm = I. (1.13)

The completeness equation expresses the fact that probabilities sum to
one: ∑

mM
†
mMm = I

〈ψ|
(∑

mM
†
mMm

)
|ψ〉 = 〈ψ|I|ψ〉∑

m〈ψ|M †
mMm|ψ〉 = 〈ψ|ψ〉∑

m p(m) = 1.

(1.14)

1.5.4 The Fourth Postulate: Composite Systems

The fourth Postulate states that the state space of a composite physical
system is the tensor product of the state spaces of the component physical
systems. Moreover, if we have systems numbered 1 through n, and any
system i is prepared in a state |ψi〉, then the joint state of the total system
is |ψ1〉 ⊗ |ψ2⊗, . . . ,⊗|ψn〉.

Postulate 4 also enables us to define one of the most interesting and
puzzling ideas associated with composite quantum systems- entangle-
ment . A detailed definition of this concept –as well as its importance and
various examples– will be discussed thoroughly in further sections.

1.5. Quantum Mechanics Postulates 9



1.6 Entanglement

1.6.1 Definition of Entanglement

Consider the two qubit state

|ψ〉 =
|00〉+ |11〉√

2
. (1.15)

This state has the remarkable property that there are not single qubit
states |a〉 and |b〉 such that |ψ〉 = |a〉|b〉. As a proof, consider that such
states exist. Then

|a〉|b〉 = (α|a1〉+ β|a2〉) (γ|b1〉+ δ|b2〉) =
|00〉+ |11〉√

2
(1.16)

=αβ|a1b1〉+ αδ|a1b2〉+ βγ|a2b1〉+ βδ|a2b2〉. (1.17)

One of these states must be |00〉. Suppose that |a1〉 = |b1〉 = |0〉:

αγ|00〉+ αδ|0b2〉+ βγ|a20〉+ βδ|a2b2〉. (1.18)

The middle states cannot be |11〉, so |a2〉 = |b2〉 = 0. In that case

|a〉|b〉 = αγ|00〉 6= |00〉+ |11〉√
2

. (1.19)

Composite systems that cannot be written as a product of states of its
component systems are called entangled states, as seen in the example
above.

A pure state of a pair of quantum systems is called entangled if it is
unfactorizable, as in the case of the Bell States. A mixed state is entangled
if it cannot be factorizable into pure states.

Entanglement is also regarded as the potential of quantum states to
exhibit correlations that cannot be accounted for classically [12].

A very important tool that helps us to clarify the idea of Entanglement
is the Schmidt Decomposition. It is presented as the following theorem:

The Schmidt Decomposition 1.6.1 Suppose |ψ〉 is a pure state of a com-
posite system, AB. Then there exist orthonormal states |iA〉 for system A
and orthonormal states |iB〉 for system B such that

|ψ〉 =
∑

i

λi|iA〉|iB〉 (1.20)

where λi are non-negative real numbers satisfying
∑

i λ
2
i = 1 known as the

Schmidt coefficients or Schmidt numbers.
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This is a very important result as many interesting properties of quantum-
mechanical systems are completely determined by the eigenvalues of the
reduced density operator (in this case, the Schmidt coefficients). The
Schmidt numbers can be used to identify entangled states and quantify
the degree of entanglement using the formula for the Entropy of Entangle-
ment between two systems A and B.

This formula states that for each pure state, the Entropy of Entangle-
ment E is defined as the entropy of one of the subsystems A or B [14]:

E(|Ψ〉) = −tr(ρA log2 ρA) = −tr(ρB log2 ρB) (1.21)

where ρx is the partial trace of |Ψ〉〈Ψ| over subsystem x. Using the
Schmidt decomposition:

ρA =trB(
∑

i

λ2
i |iA〉|iB〉〈iA|〈iB|) (1.22)

=
∑

i

λ2
i |iA〉〈iA|. (1.23)

It is remarkable that this formula requires both the Schmidt Decompo-
sition and the complete knowledge of the wave function |Ψ〉 . This makes
it a complicated calculation of entanglement.

However, there is an alternative way to calculate entanglement [15].
This explicit formula makes use of a quantity called Concurrence, which
shall be discussed in the “Measuring Entanglement” section.

A couple of strange effects of entanglement are superdense coding
and the violation of Bell’s inequality. It also makes it possible to “teleport”
quantum states. Details in the following section.

1.6.2 Importance of Entanglement

Entanglement has been seen in recent years as a potentially useful
resource. The predicted capabilities of a quantum computer, for example,
rely crucially on said resource [16], and a proposed quantum cryptographic
scheme converts shared entanglement into a shared secret key [17].

One of the most important application for entanglement between two
systems is the transmission of quantum information between them. In
particular, a remarkable phenomena called Quantum Teleportation will be
discussed shortly.

Another example of the use of entanglement between two systems in-
clude Superdense Codification, which consists of sending two classical
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bits manipulating a single qubit. This effect will also be discussed after-
wards.

One could be led to believe that the importance of entanglement is lim-
ited to quantum computation and quantum information schemes. However,
another point of view about unfactorizable or entangled states is that they
cannot be represented as a single Slater determinant under any unitary
transformation. This naturally relates entanglement with strongly corre-
lated systems. Moreover, the fact that entanglement is a purely quantum-
mechanical property makes it ideal for the study of many-body fermionic
systems under the influence of quantum fluctuations –that is, close to a
quantum phase transition– [18]. That is why a great amount of work is be-
ing directed towards using entanglement to characterize quantum phase
transitions [19, 20, 21, 22].

Cryptography

In the field of cryptography (that is, doing communication or computa-
tion involving two or more parties who may not trust each other) there are
two main kinds of cryptosystems, private key cryptosystems and public
key cryptosystems.

The way a private key cryptosystem works is that two parties (enter
‘Alice’ and ‘Bob’) wish to communicate by sharing a private key, which
only they know. This key is used to encrypt the information to be sent.
To recover this information, the same key must be used. However, the
key distribution problem is in many cases just as difficult as the original
problem of communicating in private.

One of the earliest discoveries in quantum computation and quantum
information was that quantum mechanics can be used to do key distribu-
tion in such a way that Alice and Bob’s security cannot be compromised
[23]. This is known as quantum cryptography or quantum key distribution.
In this way, the presence of an undesired listener will be discovered by
Alice and Bob, who can then stop communicating.

The second major type of cryptosystem is the public key cryptosystem.
In this kind of system, a public key is available to the general public. One of
the parties can make use of this public key to encrypt a message. What is
important is that nobody else can make use of the public key to decrypt the
message. In order to decrypt the message, it is necessary to own a secret
key. Theoretically one could use the public key to decipher the message,
but the encryption transformation is chosen in such a very clever and non-
trivial way that it is extremely difficult to invert the encryption using only the
public key.
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Nowadays the most widely deployed public key cryptosystem is the
RSA cryptosystem, which is believed to offer a fine balance of security
and practical usability. It turns out that inverting the encryption stage of
RSA is a problem closely related to factoring so that Shor’s fast algorithm
for factoring on a quantum computer could be used to easily break RSA.
Although we are years before a large scale quantum computer is built,
quantum algorithms have become a serious issue due to the level of com-
promise it has posed to security systems.

Dense Coding

In 1992 Charles Bennett and Stephen Wiesner explained how to trans-
mit two classical bits of information, while only transmitting one quantum
bit from sender to receiver, a result called dense coding [24].

Let us review a quick example that clarifies the concept of dense cod-
ing.

Suppose that Alice has to send Bob some information stored in binary
form. This means that a string of ones and zeroes has to be sent, for
example 01110010 (which represents the decimal number 114 or the ASCII
character ‘r’). Previously Bob or some other third party has prepared the
Bell State (1.5),

B00 =
(|00〉+ |11〉)√

2
(1.24)

and the first qubit has been sent to Alice. Then Alice is able to turn the orig-
inal (1.24) state into one of a four–element set catalogued as Bell States
Set through Pauli Operators (Pauli Operators are defined in the “General
Mathematical Concepts” Appendix. Explicit construction of the Bell States
can be found in the “Quantum Circuits Overview” Appendix):

I ⊗ I (B00) =
(|00〉+ |11〉)√

2
= B00 (1.25)

Z ⊗ I (B00) =
(|00〉 − |11〉)√

2
= B01 (1.26)

X ⊗ I (B00) =
(|01〉+ |10〉)√

2
= B10 (1.27)

ıY ⊗ I (B00) =
(|01〉 − |10〉)√

2
= B11. (1.28)

Therefore, in our early example, Alice could apply the Z, ıY , I and X
operator on her four qubits and then send them to Bob. As it can be easily
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seen, the Bell Set forms a basis (the set is linearly independent and spans
the C4 space) so it can be measured by operators with the form |Bxy〉〈Bxy|.
In principle, Bob could distinguish that Alice has just send him the B01, B11,
B00 and B10 Bell States corresponding to the information strings 01, 11, 00
and 10, respectively. In the end, this pieces can be concatenated to form
the original 01110010 string.

Experimental evidence of this technique has already been demonstrated
[25] although only partial identification of the Bell States was possible, ren-
dering a 1.58 codification instead of the expected 2 ratio.

Quantum Teleportation

Figure 1.1: Schematic Quantum Circuit for teleporting an unknown qubit (top) using two entangled qubits in the
possesion of Alice (qubit q2) and Bob (qubit q3). The box labeled “m12” is a measurement over the first two
qubits. The X Pauli Operator is applied if the second qubit yields 1 and then the Z Operator is applied if the
first qubit yields 1.

This is an example that shows how entanglement plays a critical role in
a potential application on quantum computation: Quantum Teleportation.
Quantum teleportation is a technique for moving quantum states around,
even in the absence of a quantum communications channel [26].

It is recommended to check the “Quantum Circuits Overview” Appendix
for information about the different Quantum Gates which will be used in this
section.

Here’s how it works. Suppose Alice and Bob generated an EPR pair
and took one qubit of the pair. Alice has to deliver some unknown state
|ψ〉 to Bob but they live far apart now. Alice must make use of quantum
teleportation to solve the problem. The steps of the solution are as fol-
lows: Alice interacts the qubit |ψ〉 with her half of the EPR pair, and then
measures the two qubits in her possession, obtaining one of four possible
classical results, 00, 01, 10 and 11. She sends this information to Bob. De-
pending on Alice’s classical message, Bob performs one of four operations
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on his half of the EPR pair. By doing this he can recover the original state
|ψ〉. The quantum circuit for quantum teleportation is shown in figure 1.1.
The state to be teleported is |ψ〉 = α|0〉+β|1〉, where α and β are unknown
amplitudes. The state input into the circuit |ψ0〉 is

|ψ0〉 = |ψ〉|β00〉 =
1√
2
[α|0〉(|00〉+ |11〉) + β|1〉(|00〉+ |11〉)] (1.29)

where we use the convention that the first two qubits (on the left) belong to
Alice (the first from the unknown input and the second from the first part of
the EPR pair), and the third qubit to Bob. Alice sends her qubits through a
CNOT gate, obtaining

|ψ1〉 =
1√
2
[α|0〉(|00〉+ |11〉) + β|1〉(|10〉+ |01〉)] (1.30)

She then sends the first qubit through a Hadamard gate, obtaining

|ψ2〉 =
1

2
[α(|0〉+ |1〉)(|00〉+ |11〉) + β(|0〉 − |1〉)(|10〉+ |01〉)] (1.31)

This state may be re-written in the following way

|ψ2〉 =
1

2
[α(|0〉+ |1〉)(|00〉+ |11〉) + β(|0〉 − |1〉)(|10〉+ |01〉)] (1.32)

=
1

2
[α(|000〉+ |011〉+ |100〉+ |111〉) + β(|010〉+ |001〉

− |110〉 − |101〉)] (1.33)

=
1

2
[α|000〉+ β|001〉+ α|100〉 − β|101〉+ α|111〉 − β|110〉

+ α|011〉+ β|010〉] (1.34)

=
1

2
[|00〉(α|0〉+ β|1〉) + |10〉(α|0〉 − β|1〉) + |11〉(α|1〉 − β|0〉)

+ |01〉(α|1〉+ β|0〉)]. (1.35)

This expression naturally breaks down into four terms. The first term
has Alice’s qubits in the state |00〉, and Bob’s qubit in the state α|0〉+ β|1〉
—which is the original state |ψ〉. If Alice performs a measurement and
obtains the result 00 then Bob’s system will be in the state |ψ〉. In the
same manner, from the other results of Alice’s measurement, we are able
to know what the state of Bob’s system is:

00 → |ψ3(00)〉 ≡ [α|0〉+ β|1〉] (1.36)

01 → |ψ3(01)〉 ≡ [α|1〉+ β|0〉] (1.37)

10 → |ψ3(10)〉 ≡ [α|0〉 − β|1〉] (1.38)

11 → |ψ3(11)〉 ≡ [α|1〉 − β|0〉]. (1.39)
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Depending on the outcome of Alice’s measurement, Bob’s qubit will
end up in one of these four possible states. Of course, to know which
state it is in, Bob must be told the result of Alice’s measurement (notice
that this fact prevents teleportation from being used to transmit information
faster than light). Once Bob has learned the measurement outcome, Bob
can ‘fix up’ his state, recovering |ψ〉, by applying the appropriate quantum
gate. For example, if the measurement yields 00, Bob doesn’t need to do
anything. If the measurement is 01 then Bob has to apply the X gate; if it
is 10 then he must apply the Z gate and finally if it is 11 he has to apply the
Z gate and then the X gate.

It may be argued that teleportation appears to create a copy of the
quantum state being teleported. This is not the case, as only the target
qubit is left in the state |ψ〉, and the original data qubit ends up in one of
the computational basis |0〉 or |1〉.

Summarizing, sending quantum information using only a classical chan-
nel is impossible. This issue is tackled simply by using the help of an
entangled state.

1.6.3 Measuring Entanglement

Due to its importance, entanglement is a resource that must be care-
fully quantified.

In the last few years a lot of work has been devoted to finding quanta-
tive measures of entanglement, particularly for mixed states of a bipartite
system [27]. Perhaps the most basic of these measures is the entangle-
ment of formation, which is intended to quantify the resources needed to
create a given entangled state .

The formula for the entanglement of formation of a mixed state ρ of two
qubits for a general density matrix is [15]:

E(ρ) = E(C(ρ)) (1.40)

where function E(C(ρ)) is defined as:

E(C) = h(1+
√

1−C2

2
);

h(x) = −x log2 x− (1− x) log2(1− x)
(1.41)

and C is the quantity known as Concurrence . Concurrence is an Entan-
glement Monotone in its own right (i.e. positive or zero for any density
matrix ρ; 0 for factorizable states and 1 for the Bell States):

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}. (1.42)
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In this last formula the λ coefficients are the square roots of the eigenval-
ues of the non-Hermitian matrix ρAρ̃A, in decreasing order. The formula
applies over the density matrix of the subsystem with the pair of qubits
(ρA =trB(ρ)).

To construct the density matrix ρ̃ it is necessary to make use of the spin
flip transformation defined as

ρ̃A =
(
σy ⊗ σy

)
ρ∗A
(
σy ⊗ σy

)
. (1.43)

In this case σy is the Pauli Operator Y .
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2.1 Genetic Algorithms Overview

The advent of electronic computers has undoubtly been one of the
most revolutionary developments in the history of science and technology.
This revolution is profoundly increasing our ability to predict and under-
stand nature in ways that were barely conceived even half a century ago.

The earliest computer scientists (Alan Turing, John von Neumann and
Norbert Wiener, among others) were motivated in large part by visions
of imbuing computer programs with intelligence, with the life-like ability to
self-replicate, and with the adaptive capability to learn and to control their
environments. These early pioneers of computer science were as much
interested in biology and psychology as in electronics, and they looked to
natural systems as a guidance for how to achieve their visions. It should
be no surprise, then, that from the earliest days computers were applied
to model the brain, trying to mimic human learning and simulating biologi-
cal evolution. A couple of those biologically motivated computing activities
have recently undergone an important resurgence: the field of neural net-
works, and what is now called “evolutionary computation”, of which genetic
algorithms are the most prominent example.

2.2 A (very) brief history of genetic algorithms

In the 1950s and the 1960s several computer scientists independently
studied evolutionary systems with the idea that evolution could be used
as an optimization tool for engineering problems. The main idea in all
these systems was to evolve a population of candidate solutions to a given
problem, using operators inspired by natural genetic variation and natural
selection.

Genetic Algorithms (GAs) were invented by John Henry Holland in the
1960s and were developed by Holland and his students and colleagues at
the University of Michigan in the 1960s and the 1970s. Holland’s goal was
not to design algorithms to solve specific problems, but rather to formally
study the phenomenon of adaptation as it occurs in nature and to develop
ways in which the mechanisms of natural adaptation might be imported
into computer systems. Holland’s 1975 book Adaptation in Natural and
Artificial Systems presented the genetic algorithm as an abstraction of bi-
ological evolution and gave a theoretical framework for adaptation under
the GA.

Much alike nature, Holland’s GA is a method for moving from one pop-
ulation of “chromosomes” (e.g. strings of characters or numbers) to a new
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population by using a kind of “natural selection” together with the genetics-
inspired operators of crossover, mutation and inversion (this last operator
is rarely used nowadays).

2.3 Genetic Pseudo-Algorithm

Given a clearly defined problem to be solved and a representation for
candidate solutions, a simple GA works as follows:

1. Start with a randomly generated population of n chromosomes (called
Encoded Candidate Solutions ).

2. Repeat the following steps until a Terminating Condition is met:

• Calculate the Fitness of each of the n chromosomes in the pop-
ulation

• Until n offsprings have been created:

- Select a pair of chromosomes from the present population
using some Selection Method .

- Apply the Crossover Operator to the pair of chromosomes
with probability pc.

- Apply the Mutation Operator to the pair of chromosomes
with probability pm.

• Replace the present population with the newly created offsprings.

Each iteration of this process is called a generation.

2.4 Genetic Terms and Operators in Detail

2.4.1 Encoded Candidate Selection

The way in which candidate solutions are encoded is a crucial point in
the success of a Genetic Algorithm.

Most GA applications use fixed-length chromosomes although this is
not a condition.
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Binary Encodings

The most common encoding of solutions are the Binary Encodings.
One of the reason for this is historical as the early work by Holland con-
centrated in such encoding. Holland gave theoretical justification for using
Binary Encodings although this justification is only valid if Schema Analy-
sis is taken into account (Schemas are common pieces of chromosomes
that appear in individuals with high fitness). This analysis, however has
been questioned [29, 30, 31] and for some problems, Binary Encodings
are unnatural and not very effective (for example, when encoding real-
valued parameters).

Many-Character and Real-Valued Encodings

For many applications, it is more natural to use an alphabet of many
characters or real numbers to form chromosomes. Holland’s schema ar-
gument seems to imply that GAs should exhibit worse performance on
multiple-character encodings than on binary encodings. However, in the
end, the performance depends very much on the problem and the details
of the GA being used, and at present there are no rigorous guidelines for
predicting which encoding will work best.

Later on, it will be clear that the present work is better represented
encoding solutions as collections of real numbers.

2.4.2 Fitness

The fitness function evaluates each chromosome and gives a relative
value of how good a solution it is. The fitness value can be used to max-
imize some value (for example, finding maxima of a given function) or to
minimize some value (for example, finding the minimum potential energy
for some molecule configuration).

In order to evaluate the fitness value of each individual, a decoding
function will be necessary to translate the values stored in the chromo-
some to usable information (for example, translating from a binary base to
a decimal one).

2.4.3 Terminating Conditions

Terminating Conditions include: running time, number of generations,
desired fitness and relative change of fitness between generations. Find-
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ing an appropriate Termination Condition is no easy task and several tries
may be necessary.

2.4.4 Selection Method

Different Selection Methods have been proposed, each one claiming
different advantages.

Fitness-Proportionate Selection

Holland’s original approach was to select individuals with probability
proportionate to its fitness value. The so-called “Roulette Wheel” con-
sisted in spinning an imaginary roulette, divided in as many pieces as the
number of the population. The fitter individuals received a bigger piece of
the roulette, so there would be more chance in selecting them. A random
number between 0 and the total sum of the generation’s fitness is picked
and the ’wheel’ is spun. Fitness of individuals is then summed iteratively
until such sum exceeds the random number, returning the index of the
selected chromosome.

Sigma Scaling

In the beginning of the search it is probable that there are some individ-
uals much fitter than the rest of the population. Under fitness-proportionate
selection, this individuals and their descendents will multiply quickly not al-
lowing the potential exploration of initially less fitting roads. This is known
as “premature convergence”. Later in the search, when all individuals are
very similar, there are no great fitness differences for selection to exploit,
and the evolution grinds to a near halt.

To address such problems, GA researches have experimented with
several “scaling” methods. Under sigma scaling, the expected value of
an individual is a function of its fitness (f(i)), the population mean (f(t)),

and the population standard deviation (σ(t) =
√
〈f(t)2〉 − 〈f(t)〉2).

Expected Value(i, t) =

{
1 + f(i)−f(t)

2σ(t)
if σ(t) 6= 0

1.0 if σ(t) = 0
(2.1)
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Figure 2.1: Example of 3 point crossover

2.4.5 Crossover Operator

This operator usually takes two chromosomes and creates two off-
springs. This is achieved by combining information from the parent chro-
mosomes. Most often there is only one crossover point, but various crossover
points can be selected too. The parents are crossed with certain proba-
bility pc. A typical value for this parameter is 0.7. In the present work, two
types of Crossover Operator were used. The first had only one crossover
point, but it was placed randomly along the chromosome. The second had
a fixed number of crossover points distributed uniformly.

2.4.6 Mutation Operator

If only the Crossover Operator was used, the population would even-
tually stagnate because only the same pieces of information are exchanged.
The Mutation Operator is designed to change one specific piece of a
chromosome (in biology this piece is called allele) with another value. In
this way the population is ensured to explore other roads to the solution.
A typical value for the mutation probability pm is 0.001. If this probability
raises to high values, there would be no time to explore possible solutions
as populations had the tendency to change very fast. Another approach is
to dynamically change the value of the mutation probability if differences
in individuals become negligible with time.

Figure 2.2: Example of mutation
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It’s important to note that the Mutation Operator is applied to every
piece of the chromosome.
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3.1 Introduction

In earlier sections, entanglement has been described as an important
characteristic for quantum information and quantum computation.

In this chapter concurrence, an alternative measure of entanglement,
will be studied in various kinds of systems and optimized entangled states
will be calculated using genetic algorithms.

3.2 Theory

In this section, the specific formulas for entanglement calculation using
concurrence will be deduced.

In the systems about to be studied, qubits are represented by sites in a
lattice or a chain. The two computational basis |0〉 and |1〉 are represented
by occupied and empty sites, respectively.

Using this representation, entanglement can be calculated for different
fillings. This approach might be useful for physical experiments involving
electron control (e.g. quantum dots [32]).

The electronic system will be described by a tight binding Hamiltonian
of the form

Ĥ =
∑

i

εin̂i +
∑
〈ij〉

tij ĉ
†
i ĉj (3.1)

where, for simplicity, we will consider spinless electrons. In (3.1) ĉ†i (ĉj) is
the usual creation (annihilation) operator of a spinless electron at site i,
whereas n̂i = ĉ†i ĉi is the number operator, and tij is the hopping integral
between nearest-neighbors (NN) and next-nearest-neighbors (NNN) sites
i and j. εi is the on-site energy for atom i. In general, it is considered that
we are working with the same kind of atoms and we take εi = 0.

In the first chapter the general formula (1.42) for calculation the con-
currence was introduced. First, we have to obtain the density matrix ρA for
qubits i, j.

3.2.1 The density matrix

The density matrix ρA is the trace over system B of all the possible
states |ψAB〉〈ψAB|. The general state function for this system is

|ψAB〉 =
∑

n

αn|ψA〉|ψB〉 (3.2)
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Figure 3.1: Schematic illustration of the partition of the system of interest into two subsystems for the calculation
of the concurrence between sites i and j.

where, for a system comprised of N sites, n goes through all the 2N possi-
ble combinations in the computational basis (e.g. |00 . . . 00〉 → |11 . . . 11〉).
Subsystem A is comprised of the two qubits of interest in the sites i, j (i.e.
|ψi〉 ⊗ |ψj〉, see also figure 3.1. For a specific system of N sites, there
are N1 occupied and N − N1 not occupied sites. Our two qubit subsys-
tem A has, naturally, four possible states –namely |00〉, |01〉, |10〉 and |11〉–
therefore Eq. (3.2) can be decomposed in the following manner

|ψAB〉 =
∑
m

am|00〉 ⊗ |ψm
B 〉+

∑
o

bo|01〉 ⊗ |ψo
B〉+

∑
p

cp|10〉 ⊗ |ψp
B〉

+
∑

q

dq|11〉 ⊗ |ψq
B〉.

(3.3)

In this equation, the sums run for all the possible combinations in the |ψB〉
space such that the number N1 of occupied sites is preserved. For exam-
ple if |ψA〉 = |01〉, system B is left with N1 − 1 occupied sites.

To obtain the reduced density matrix it is necessary to perform the trace
over system B:

ρA =
2N−2∑
l=1

(
〈I| ⊗ 〈ψl

B|
)
|ψAB〉〈ψAB|

(
|I〉 ⊗ |ψl

B〉
)
. (3.4)

It is clear that applying this operation will not eliminate those terms whose
elements in the B subsystem in |ψAB〉〈ψAB| have the same number of
occupied sites. The terms in system A that are left after the trace operation
are of the kind |00〉〈00|, |01〉〈01|, |01〉〈10|, |10〉〈01|, |10〉〈10| and |11〉〈11|.

The |00〉〈00| element is spared after the trace operator because its |ψm
B 〉

elements contain the same quantity of occupied sites (i.e. N1 sites). This
is a similar case with the |11〉〈11| elements where the |ψq

B〉 wave functions
contain N1 − 2 occupied sites.

In the case of the |01〉〈01|, |01〉〈10|, |10〉〈01| and |10〉〈10| elements, no-
tice how their |ψo,p

B 〉 wave functions have the same number of occupied
sites (N1 − 1).
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Finally, the elements in the reduced density matrix are

ρA =


ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 ρ44

 (3.5)

For ρA to be a valid density matrix, it has to be Hermitic (ρA = ρ†∗A ) and
its trace be equal to 1. This means that ρ32 = ρ∗23 and ρ11+ρ22+ρ33+ρ44 = 1
so it is necessary to calculate only four elements of the matrix.

3.2.2 The density matrix elements

In order to calculate each of the reduced density matrix elements, the
second quantization approach will be used.

The first element of the matrix, ρ11 can be realized as follows

ρ11 = 〈ψAB|
(
1− n̂i

)(
1− n̂j

)
|ψAB〉 (3.6)

where the operator n̂j finds all the elements of the type |x1〉 ⊗ |ψB〉 and
after applying (1− n̂j) we end up with all the elements that do not occupy
the site j (i.e. |x0〉 ⊗ |ψB〉). A similar approach follows (1 − n̂i) and after
applying the bra operation we are left only with the coefficients of all the
|00〉 ⊗ |ψB〉 states.

Likely, the other elements are obtained with the following operators:

ρ22 =〈ψAB|
(
1− n̂i

)
n̂j|ψAB〉 (3.7)

ρ33 =〈ψAB|n̂i

(
1− n̂j

)
|ψAB〉 (3.8)

ρ44 =〈ψAB|n̂in̂j|ψAB〉 (3.9)

ρ23 =〈ψAB|cjc†i |ψAB〉. (3.10)

In the last equation, c†i leaves only those states with the form |0x〉 ⊗ |ψB〉
and transforms them into |1x〉 ⊗ |ψB〉. Out of this set of states, cj deletes
all states of the type |x0〉 ⊗ |ψB〉 and we end up with states |10〉 ⊗ |ψB〉.

It is very easy to show that the ρA elements can be calculated as aver-
age quantities of the complete ground-state wave function. For example,

ρ11 =〈ψAB|ψAB〉 − 〈ψAB|n̂i|ψAB〉 − 〈ψAB|n̂j|ψAB〉
+ 〈ψAB|n̂in̂j|ψAB〉

=1− 〈n̂i〉 − 〈n̂j〉+ 〈n̂in̂j〉.
(3.11)
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The other elements are obtained similarly:

ρ22 = 〈n̂j〉 − 〈n̂in̂j〉 ρ33 = 〈n̂i〉 − 〈n̂in̂j〉
ρ44 = 〈n̂in̂j〉 ρ23 = 〈cjc†i〉

(3.12)

3.2.3 Concurrence

In order to use the Concurrence formula (1.42), the non-Hermitian ma-
trix ρAρ̃A must be calculated. The matrix ρ̃A is constructed using (1.43):

ρ̃a =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




ρ∗11 0 0 0
0 ρ∗22 ρ∗23 0
0 ρ∗32 ρ∗33 0
0 0 0 ρ∗44




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


(3.13)

=


0 0 0 −ρ∗44
0 ρ∗32 ρ∗33 0
0 ρ∗22 ρ∗23 0

−ρ∗11 0 0 0




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 (3.14)

=


ρ∗44 0 0 0
0 ρ∗33 ρ∗32 0
0 ρ∗23 ρ∗22 0
0 0 0 ρ∗11

 (3.15)

Now we are able to construct the non-Hermitian matrix ρAρ̃A:

ρAρ̃A =


ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 ρ44




ρ∗44 0 0 0
0 ρ∗33 ρ∗32 0
0 ρ∗23 ρ∗22 0
0 0 0 ρ∗11

 (3.16)

=


ρ11ρ

∗
44 0 0 0

0 ρ22ρ
∗
33 + ρ23ρ

∗
23 ρ22ρ

∗
32 + ρ23ρ

∗
22 0

0 ρ32ρ
∗
33 + ρ33ρ

∗
23 ρ32ρ

∗
32 + ρ33ρ

∗
22 0

0 0 0 ρ∗11ρ44

(3.17)

but ρA is indeed Hermitian so the following relationships are taken into
account: ρ11 = ρ∗11, ρ22 = ρ∗22, ρ32 = ρ∗23, ρ33 = ρ∗33 y ρ44 = ρ∗44. The matrix
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ρAρ̃A now has the form

ρAρ̃A =


ρ11ρ44 0 0 0

0 ρ22ρ33 + ρ23ρ
∗
23 ρ22ρ23 + ρ23ρ22 0

0 ρ∗23ρ33 + ρ33ρ
∗
23 ρ22ρ33 + ρ23ρ

∗
23 0

0 0 0 ρ11ρ44

 (3.18)

=


ρ11ρ44 0 0 0

0 ρ22ρ33 + ρ23ρ
∗
23 2ρ22ρ23 0

0 2ρ33ρ
∗
23 ρ22ρ33 + ρ23ρ

∗
23 0

0 0 0 ρ11ρ44

 (3.19)

=


ρ11ρ44 0 0 0

0 ρ22ρ33 + |ρ23|2 2ρ22ρ23 0
0 2ρ33ρ

∗
23 ρ22ρ33 + |ρ23|2 0

0 0 0 ρ11ρ44

 . (3.20)

In a block diagonal matrix, eigenvalues are simply the eigenvalues of
individual blocks so two eigenvalues are readily available. The other two
are obtained calculating the determinant of:(

ρ22ρ33 + |ρ23|2 − λ 2ρ22ρ23

2ρ33ρ
∗
23 ρ22ρ33 + |ρ23|2 − λ

)
. (3.21)

which simply is

(ρ22ρ33 + |ρ23|2 − λ)2 − 4ρ22ρ33|ρ23|2 = 0. (3.22)

And now we simply find the value of λ

(ρ22ρ33 + |ρ23|2 − λ)2 = 4ρ22ρ33|ρ23|2 (3.23)

ρ22ρ33 + |ρ23|2 − λ = ±2
√
ρ22ρ33|ρ23| (3.24)

λ = ρ22ρ33 + |ρ23|2 ∓ 2
√
ρ22ρ33|ρ23| (3.25)

which yields the values for the λ coefficients:

λa = ρ22ρ33 − 2
√
ρ22ρ33|ρ23|+ |ρ23|2 = (

√
ρ22ρ33 − |ρ23|)2 (3.26)

λb = ρ22ρ33 + 2
√
ρ22ρ33|ρ23|+ |ρ23|2 = (

√
ρ22ρ33 + |ρ23|)2 (3.27)

λc = ρ11ρ44 (3.28)

λd = ρ11ρ44. (3.29)

Finally, to be able to use equation (1.42) we use the square roots of the
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lambda coefficients: √
λa =

√
ρ22ρ33 − |ρ23| (3.30)√

λb =
√
ρ22ρ33 + |ρ23| (3.31)√

λc =
√
ρ11ρ44 (3.32)√

λd =
√
ρ11ρ44 (3.33)

Notice that λb is the largest eigenvalue. Thus, the final formula be-
comes

C = max{0,√ρ22ρ33 + |ρ23| −
√
ρ22ρ33 + |ρ23| −

√
ρ11ρ44 −

√
ρ11ρ44}

(3.34)

C = max{0, 2|ρ23| − 2
√
ρ11ρ44} (3.35)

C = 2 max{0, |ρ23| −
√
ρ11ρ44} (3.36)

3.3 One dimensional ordered and disordered
systems

To begin our study of entanglement we present results for ordered and
disordered rings. Concurrence is calculated between all nearest neighbor
sites.

3.3.1 Ordered rings

The concurrence between nearest neighbors as a function of system
size for a perfectly ordered, periodic ring can be easily computed, using
the theory presented in the previous section. We have calculated nearest
neighbors concurrence for different ring sizes n. Results are shown in
figure 3.2. We observe in figure 3.2(a) that for smaller ring sizes (n = 4, 8
and 12 sites) it is very difficult to perceive which is the band filling x where
CNN will have a maximum.

When we begin to increase the ring size, we notice that the finite size
effect begins to disappear (figure 3.2(b)). Moreover, CNN starts to show
monotonous behavior and we find that the maximum value of nearest
neighbor concurrence occurs at half band filling. For n = 64 sites the ther-
modynamic limit has been reached already and the values of CNN have
almost converged.
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Figure 3.2: Nearest neighbor concurrence for different ring sizes as function of filling

3.3.2 Disordered rings

Off diagonal disorder

Although for one dimensional systems with diagonal or off-diagonal dis-
order the wave function is localized for all disorder strengths, it is known
that the physical properties are strongly dependent on the type of disorder.
In this subsection we study how off-diagonal disorder affects the concur-
rence.

In figures 3.3(a) and 3.3(b) we present results for CNN for a ring with
n = 200 sites and with off-diagonal disorder tNN ∈ [1,W + 1]. In figure
3.3(a) CNN is showed as a function of band filling for some representative
disorder strengths W whereas in figure 3.3(b) CNN is presented as a func-
tion of disorder strength W for some representative values of band filling.
From the figures, we observe that CNN can increase for some band fillings
when the disorder strength is increased, contrary to the not disordered
case (W = 0). In particular, we observe that this occurs for band fillings
larger than 0.25 and for off-diagonal disorder strength W ≥ 4. Notice that
the maximum value of the concurrence is found for band filling values in
the range (0.4, 0.45) and for W = 20. Moreover, the overall form of the
concurrence curves does not change significantly for W > 20.

It is rather counter intuitive that off-diagonal disorder is able to actually
increase CNN with respect to the non disordered case. This behavior could
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Figure 3.3: Nearest neighbor average concurrence CNN of a ring with n = 200 sites as a function of band
filling for several representative values of the off-diagonal disorder strength W .

be related to the anomaly in the density of states found in these kind of
systems. To inquire about it, we have calculated CNN as a function of the
band filling for a small system with n = 16 sites with only one hopping
element different with respect to the others. Results are shown in figure
3.4, where concurrence between sites 1 and 2, 2 and 3, 3 and 4 and 4 and
5 is shown. To depict the impurity, t12 = −2 and tNN = −1 for the other
pairs of nearest neighbors.

Figure 3.4: Nearest neighbor concurrence for a ring with 16 sites and one impurity localized between sites 1
and 2. Concurrence for close pairs of nearest neighbors (sites 2 and 3, 3 and 4 and 4 and 5) are also shown.

Concurrence between sites where the impurity is located is almost in-
dependent to the band filling and oscillates around 0.72. These high val-
ues are related to the fact that the impurity localizes the eigenfunction |ψ0〉
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Figure 3.5: CNNN in the presence of off diagonal
disorder in a chain with 200 sites.

Figure 3.6: CNNNN in the presence of off diago-
nal disorder in a chain with 200 sites.

with the lowest eigenvalue E0 between the sites where the impurity was
placed, whereas the other eigenfunctions are almost delocalized. Thus
z = 〈ψ0|c2c†1|ψ0〉 has very large contribution to the concurrence for all the
band fillings. It is necessary to remark that the localization effect due to
one impurity only strongly modifies concurrence between sites very close
to it.

Finally, we also studied concurrence as a function of distance in the
context of off-diagonal disorder. Results are shown in figures 3.5 and 3.6.
We can observe that increasing the disorder strength W decreases con-
currence for both cases. This confirms that the effect of the increase in the
maxima of the nearest neighbor concurrence is due to strong localization
on the bonds. Even in the least disordered case, concurrence is signif-
icantly smaller in comparison to its nearest neighbor counterpart in both
cases.

3.4 Optimizing Entanglement using Genetic Al-
gorithms

There have been recent studies about maximum nearest-neighbor en-
tanglement [33, 34]. In these cases, a N qubit ring in a translationally
invariant quantum state has been considered. Under certain conditions,
O’Connor and Wootters have found formulas to obtain the maximum pos-
sible nearest-neighbor entanglement. Moreover, they have compared this
quantity with the entanglement produced by an antiferromagnetic state of
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a ring with an even number of spin 1/2 particles.
Also, there have been studies of concurrence for nearest-neighbors in

finite clusters to see the trend in two dimensions. In particular, this was
carried on for square, triangular and Kagomé lattices [35].

Further studies focus on systems with higher order of entanglement,
that is, when subsystem A is bigger than two qubits.

In this section maximization of entanglement using genetic algorithms
will be discussed. Specifically, we will consider the fundamental state of a
spinless system modelled by a tight binding Hamiltonian as presented in
Eq. (3.1).

The concurrence calculations in the following sections are a sum over
all the pairs of sites, divided over the total number of sites. This is not to
be confused with the previous section’s sum over all the pairs of nearest
neighbors.

The pseudo-algorithm goes as follows:

1. Read input parameters including type of lattice, sites in the system,
number of generations, crossover probability, mutation probability
etc.

2. Build a table with indices of the nearest neighbors of each site. A
table including also next nearest neighbors can be built as well.

3. Using the Neighbor Table, identify the specific places in the Hamil-
tonian Matrix where “bonds” occur. This places represent valid tij
entries and will be stored in a special array. This array will be consid-
ered hereafter as a chromosome .

4. Allocate two arrays, “generation0” and “generation1” composed of
chromosomes.

5. Construct an additional chromosome “best” with initial random num-
bers between (0, 5).

6. For a given range of filling repeat

• Initialize “generation0” with random values in the range (0, 5).

• Make the first chromosome of “generation0” equal to “best”.

• For a given number of generations repeat

– Decode each chromosome in “generation0” into a Hamil-
tonian Matrix, diagonalize it and calculate the total concur-
rence between all nearest neighbors of the system. In other
words, calculate fitness for each individual in “generation0”.
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Figure 3.7: Linear chain with 24 sites. 250 gener-
ations; population = 400; pc = 0.70; pm = 0.002

Figure 3.8: Linear chain with 44 sites. 250 gener-
ations; population = 400; pc = 0.70; pm = 0.002

– Make “best” equal to the chromosome with highest value of
fitness in “generation0”

– Print the value of the average fitness of the population of
“generation0” and fitness of “best” in output files.

– Apply selection operator: Use crossover and mutation oper-
ators on chromosomes in “generation0” to create new chro-
mosomes into “generation1”.

– Make “generation0” equal to “generation1”.
– Make the first chromosome in “generation0” equal to “best”.

• Find the chromosome with the maximum fitness. Print its fitness
value in an output file.

3.4.1 One-dimensional chains

Analysis of entanglement maximization using genetic algorithms be-
gins with the study of small lineal chains with and without periodic bound-
ary conditions. In figures 3.7 and 3.8 we present results of concurrence
as a function of percentage filling for two chains with 24 and 44 sites, re-
spectively. Probability of crossover was pc = 0.70 and probability of mu-
tation was pm = 0.002. Besides nearest neighbors interactions, we have
also considered interactions with both nearest neighbors and next nearest
neighbors in the Hamiltonian. The population size remained at 400 individ-
uals and the generations were kept at 250. Later on, the role of the number
of generations will become apparent.

From the figures, it can be observed that in the case of nearest neigh-
bors interactions with and without periodic boundary conditions, concur-
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rence as function of filling is smoother than in the cases where next near-
est neighbors are also considered. This can be due to a larger size in
the chromosomes in the latter case and a greater number of generations
are necessary to obtain a similar behavior than its only-nearest neighbors
counterpart. We can only conclude that a larger number of generations
and possibly a greater size in the population is necessary to overcome
these oscillations.

Also, notice that cases including next nearest neighbors cannot yield
lower results than the only nearest neighbors case. This is because the
chromosomes from the former case contain the chromosomes of the latter
(i.e. the NN case is a subset of the NNN case), which gives the possibility
to explore a wider spectrum of solutions. In the case where this extra
space yielded only lower results, the best chromosomes would be those
of the NN space.

This phenomenon could be most clearly noticed near half filling. Once
again, this behavior is a direct consequence of the number of generations.

At this point, it is important to remember that there are various param-
eters responsible for a larger chromosome in this kind of system. These
parameters are the size of the system, the periodic boundary conditions
and bringing next nearest neighbors interactions into play. A larger chro-
mosome would allow an exploration of a wider solution space but on the
other hand it is expected to decrease convergence time.

We have already mentioned the possibility of a greater number of gen-
erations affecting directly the smoothness of the concurrence. We ad-
dressed this question by running two cases depicted in figures 3.9 and
3.10, where the former does not consider periodic boundary conditions
while the latter does. In both cases we have set a 44-sites chain with a
population size of 400. Only the interactions between nearest neighbors
were taken into account.

Both figures confirm our early supposition about increasing the num-
ber of generations since the correlation curves look increasingly smoother.
Notice, however, that certain roughness still remains. Some possible solu-
tions consist of increasing the size of the population, dynamically change
the mutation probability (when variation between individuals begins to nar-
row) and raising further more the number of generations. Different selec-
tion methods could also be considered, because an inefficient parent se-
lection could lead to slow evolution of the system. Even though it is clear
that individuals with better fitness are obtained, notice how in figure 3.9
the best chromosome near 0.05 filling was obtained with 600 generations
despite having cases with up to three times more generations. This gives
further evidence about the necessity to investigate the methods discussed
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Figure 3.9: Comparison with different number of
generations not using periodic conditions. Only
nearest neighbors interactions are considered.
Population size = 400; pc = 0.70; pm = 0.002

Figure 3.10: Comparison with different number of
generations using periodic conditions. Only near-
est neighbors interactions are considered. Popu-
lation size = 400; pc = 0.70; pm = 0.002

above.
In figure 3.11, we follow the evolution (optimization) of concurrence for

each filling in a 44 site chain with periodic boundary conditions and inter-
actions only between nearest neighbors. The population size remained
at 350 and generations were 500 per filling. Black dots represent aver-
age fitness per population while red spots represent fitness from the best
chromosome in the population. Notice how the population always follows
closely the evolution of the best chromosome. Transitions between dif-
ferent fillings are readily noticeable through a drop in average fitness. A
very remarkable feature is that the best chromosome for a certain filling
ranks high for the next filling but is not the highest. In other words, there
are different best chromosomes for different band fillings. Further studies
are needed to determine exactly the degree of differences and their exact
nature.

We also notice that the bottom dots correspond to the average con-
currence for randomly disordered populations and that the average con-
currences for the subsequent optimized GA populations are always better
than the disordered cases.

Another remarkable characteristic about figure 3.11 is its symmetry
around half band filling. This property is due to the fact that this is a bipar-
tite lattice and consequently its physical properties are symmetric because
of an electron-hole transformation. Remember that a lattice is considered
bipartite if it can be divided into two independent lattices. The fact that the
results presented show this property reassures the validity of our calcula-
tions.
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Figure 3.11: Best and average fitness for each generation

3.4.2 Two dimensional systems

Recently, the effect of the dimensionality on concurrence has begun to
be studied in square, triangular and Kagomé lattices [35]. In this section
we will study the optimization of concurrence in two dimensional systems
modelled by means of a tight binding Hamiltonian.

Square lattices

In figures 3.12, 3.13 and 3.14 we display concurrence as a function
of band filling for a square lattice of 7x7 sites. In all cases the crossover
probability pc and the mutation probability pm have been 0.70 and 0.002,
respectively.

In figure 3.12, we present a comparison between systems using near-
est neighbor and next nearest neighbor interactions as well as periodic and
open boundary conditions. The number of generations for these cases re-
mained at 350 and the population size 350. It is worth mentioning that, in
general, the cases with interactions only between nearest neighbors rank
slightly higher in its concurrence value. Possible reasons for this behavior
were addressed in the previous section. In figure 3.13 the number of gen-
erations for the exact same cases as figure 3.12 were increased to 600.
It can be seen that this parameter is responsible for a slight increase in
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Figure 3.12: Square lattice comparing nearest
neighbor interactions, next nearest neighbor in-
teractions and boundary conditions. 350 gener-
ations; Population size = 350; pc = 0.70; pm =
0.002

Figure 3.13: This picture depicts the same condi-
tions as those in figure 3.12 except for an increase
of generations, which were raised to 600.

concurrence and greatly reduces roughness of the curves.
To study the effect of the number of generations on the optimized value

of concurrence and the smoothness of the curve, we present calculations
for four different cases in figure 3.14. In this cases, the population size
was kept at 400. It is clear that by raising this number we are able to
obtain better optimized solutions and the concurrence curve tends to be
smoother.

Figure 3.14: Square lattice comparing number of generations. Nearest neighbor interactions; periodic boundary
conditions; Population size = 400; pc = 0.70; pm = 0.002

We believe it is necessary to make further investigations on the effect
of the population size, as well as different selection methods.
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Figure 3.15: Triangular lattice comparing nearest
neighbor interactions, next nearest neighbor in-
teractions and boundary conditions. 350 gener-
ations; Population size = 350; pc = 0.70; pm =
0.002

Figure 3.16: Triangular lattice with the same cases
as figure 3.15. Generations were increased to
600.

Triangular lattices

Finally, we have made calculations for non bipartite lattices in order to
study the effect of frustration on concurrence. It has already been men-
tioned that this kind of lattices are not symmetric under an electron-hole
transformation. This is the reason why their physical properties differ com-
pletely between lower and upper sections of band filling.

As a particular case of a not bipartite lattice, we have considered a tri-
angular lattice with 49 sites. In all cases a crossover probability of 0.70 and
a mutation probability of 0.002 have been used. Results of our calculations
are shown in figures 3.15, 3.16 and 3.17.

In figure 3.15 a population size of 350 has been used and the system
has been allowed to go up to 350 generations. As in previous sections, this
case includes the interaction between nearest and next nearest neigh-
bors, as well as open and periodic boundary conditions. Once again, we
find better optimizations for nearest neighbor interactions. It is important
to remember that we are dealing with a more complex chromosome, as
sites in this kind of lattice have a greater number of neighbors than one
dimensional systems. This is also a cause for a lower time in convergence
as the solution space increases considerably. Evidence for this behavior is
demonstrated in figure 3.16 where, with almost twice the number of gener-
ations, concurrence was only slightly increased. Notice that concurrence
behavior is very similar to the square lattice case.

The effect of the number of generations is depicted in figure 3.17.
These results demonstrate the slow convergence when calculating this
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kind of systems. Notice that, although oscillations decrease and better
individuals are found, efficiency narrows between the cases with 600, 800
and even 1600 generations.

Figure 3.17: Triangular lattice comparing number of generations. nearest neighbor interactions; periodic bound-
ary conditions; Population size = 400; pc = 0.70; pm = 0.002

3.5 Conclusions

In this work, we present the necessary formulation to measure entan-
glement through concurrence for a pair of sites. By doing this, we have
been able to calculate the behavior of concurrence and the effect of off-
diagonal disorder in rings. We have also implemented computational tech-
niques –more specifically genetic algorithms– to optimize entanglement in
systems modeled after a Tight Binding hamiltonian. The qubits in all these
studies have been described as sites in the system and the computational
basis as occupied or empty sites.

Our novel application of genetic algorithms has proved to be valuable,
since we obtained configurations which yield better results for concurrence
in randomly disordered systems (for instance, see figure 3.11). Moreover,
the GA optimization privided better results even with respect to the ordered
cases as can be noticed in figures 3.18, 3.19 and 3.20.

Quantum computation and quantum information are still a long way to
go. Nevertheless, these areas represent a logical and necessary step in
tomorrow’s technological world. In this scenario, quantum entanglement
will play a critical role, and our work attempts to be another step towards
better understanding it. We hope that this effort will also bring us closer to
being able to take advantage of this fascinating quantum property.
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Figure 3.18: Concurrence for an optimized and or-
dered case in a square lattice of 49 sites. 800
generations; Population size = 400. Only near-
est neighbors interactions were allowed. Peri-
odic boundary conditions were used. pc = 0.70;
pm = 0.002. Ordered case was calculated with
off diagonal values of tNN = 1

Figure 3.19: Concurrence for an optimized and
ordered case in a triangular lattice of 49 sites.
800 generations; Population size = 400. Only
nearest neighbors interactions were allowed. Pe-
riodic boundary conditions were used. pc = 0.70;
pm = 0.002. Ordered case was calculated with
off diagonal values of tNN = 1

Figure 3.20: Concurrence for an optimized and ordered case in a one dimensional system of 49 sites. 800
generations; Population size = 400. Only nearest neighbors interactions were allowed. Periodic boundary
conditions were used. pc = 0.70; pm = 0.002. Ordered case was calculated with off diagonal values of
tNN = 1
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Appendix A

Notes

Biographies and definitions were taken from Wikipedia, the free ency-
clopedia that anyone can edit.

Alice and Bob . Alice and Bob are conventional placeholder terms
referring to common archetypal characters used in explanations in fields
such as cryptography and physics. Generally Alice wants to send a mes-
sage to Bob. The names were invented by Ron Rivest for the 1978 Com-
munications of the ACM article presenting the RSA cryptosystem. Other
commonly used names include Carol, a third participant in the communi-
cation and Eve, and eavesdropper who tries to spy the communication but
cannot modify it.

Alan M. Turing (1912-1954) . Born in the United Kingdom, Turing is
often considered father of modern computer science. He provided an in-
fluential formalization of the concept of algorithm and computation with
the concept of Turing machine. During World War II, Turing was a pivotal
player in breaking German cyphers (the Enigma machine). After the war,
he designed one of the earliest electronic programmable digital computers
at the National Physical Laboratory. In 1950 he proposed an experiment
now known as the Turing test, an attempt to define a standard for a ma-
chine to be called “sentient”. Turing worked from 1952 until his death in
1954 on mathematical biology, specifically morphogenesis. His central in-
terest in the field was understanding Fibonacci phyllotaxis, the existence
of Fibonacci numbers in plant structures.

He died in 1954, from eating an apple with cyanide.
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Appendix B

General Mathematical Concepts

B.1 Linear Algebra

Linear algebra is the study of vector spaces and of linear operations
on those vector spaces. A good understanding of quantum mechanics is
based upon a solid grasp of elementary linear algebra.

The basic objects of linear algebra are vector spaces. The vector space
of most interest to us is Cn, the space of all n-tuples of complex numbers,
(z1, . . . , zn). The elements of a vector space are called vectors, and the
column matrix representation is often used: z1

...
zn

 (B.1)

There is an addition operation defined which takes pairs of vectors to other
vectors. In Cn the addition operation for vectors is defined by: z1

...
zn

+

 z′1
...
z′n

 ≡

 z1 + z′1
...

zn + z′n

 (B.2)

where the addition operations on the right are just ordinary additions of
complex numbers.

In a vector space there is a multiplication by a scalar operation. This
operation is defined by

z

 z1
...
zn

 ≡

 zz1
...
zzn

 (B.3)
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where the multiplications on the right are ordinary multiplications of com-
plex numbers.

The standard quantum mechanical notation for a vector in a vector
space is:

|ψ〉 (B.4)

In this representation, ψ is a label and the entire object is often called a
ket.

A vector space also contains a special zero vector, which is denoted
by 0 (NOT to be confused with the vector labeled zero: |0〉). It satisfies the
property that for any other vector |v〉, |v〉 + 0 = |v〉 and 0|v〉 = 0. In Cn the
zero element is (0, 0, . . . , 0).

A vector subspace of a vector space V is a subset W of V such that
W is also a vector space (i.e. the earlier definitions of addition and scalar
multiplication also work in W ).

B.1.1 Bases and linear independence

A spanning set for a vector space is a set of vectors |v1〉, . . . , |vi〉 such
that any vector |v〉 in the vector space can be written as a linear combina-
tion |v〉 =

∑
i ai|vi〉. For example, a spanning set for the vector space C2

is the set

|v1〉 ≡
(

1
0

)
; |v2〉 ≡

(
0
1

)
(B.5)

since any vector

|v〉 =

(
a1

a2

)
(B.6)

can be written as a linear combination |v〉 = a1|v1〉 + a2|v2〉. In this case
we say that the vectors |v1〉 and |v2〉 span the vector space C2. Generally,
a vector space may have many different spanning sets. For example, a
second spanning set for C2 is the set

|v1〉 ≡
1√
2

(
1
1

)
; |v2〉 ≡

1√
2

(
1
−1

)
(B.7)

since an arbitrary vector |v〉 = (a1, a2) can be written as a linear combina-
tion of |v1〉 and |v2〉:

|v〉 =
a1 + a2√

2
|v1〉+

a1 − a2√
2

|v2〉 (B.8)
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If we have a set of non-zero vectors |v1〉, . . . , |vn〉 and somehow find
a set of complex numbers a1, . . . , an (with at least two of them non-zero)
such that the following relation is satisfied:

a1|v1〉+ a2|v2〉+, . . . ,+an|vn〉 = 0 (B.9)

we say that that set of vectors is linearly dependent. If we cannot find such
set of complex coefficients then the set of vectors is said to be linearly in-
dependent. For example consider the set (B.5). It can be readily seen that
one cannot find complex non-zero coefficients such that a1|v1〉+a2|v2〉 = 0.
Thus this set is linearly independent. Furthermore, this is a spanning set
for C2, in which case this set is called a basis for C2. It can be shown that
any two bases for a vector space contain the same number of elements
(e.g. the sets (B.5) and (B.7) both are basis and have 2 elements each).
The number of elements in a basis is defined to be the dimension of the
vector space.

B.1.2 Linear Operators and Matrices

A linear operator between vector spaces V and W is defined to be any
function A : V 7→ W which is linear in its inputs, that is:

A

(∑
i

ai|vi〉

)
=
∑

i

aiA(|vi〉) (B.10)

An important linear operator on any vector space V is the identity oper-
ator, IV , defined by the equation IV |v〉 ≡ |v〉 for all vectors |v〉. Another
important linear operator is the zero operator, which is denoted by 0 and
maps all vectors to the zero vector, 0|v〉 ≡ 0.

If V , W and X are vector spaces and A, B linear operators such that
A : V 7→ W and B : W 7→ X, then the notation BA denotes de composition
of B with A and BA : V 7→ X.

The most convenient way to understand linear operators is in terms of
their matrix representation. It helps to first understand that an m by n com-
plex matrix A with entries Aij is in fact a linear operator sending vectors in
the vector space Cn to the vector space Cm, under matrix multiplication of
the matrix A by a vector in Cn.

A matrix can be regarded as a linear operator and the contrary is also
true (this justifies interchanging terms from matrix theory and operator the-
ory). Suppose A : V ∈ Cm 7→ W ∈ Cn is a linear operator between vector
spaces V and W and |v1〉, . . . , |vm〉 and |w1〉, . . . , |wn〉 are bases for V and
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W , respectively. Then there exists complex numbers Aij such that:

A|vj〉 =
∑

i

Aij|wi〉;
1 ≤ j ≤ m
1 ≤ i ≤ n

(B.11)

The matrix whose entries are the values Aij is said to form a matrix rep-
resentation of the operator A. This matrix representation of A is com-
pletely equivalent to the operator A. Note that to make the connection
between matrices and linear operators we had to specify a set of input
(|v1〉, . . . , |vm〉) and output (|w1〉, . . . , |wn〉) basis states for the input (Cm)
and output (Cn) vector spaces of the linear operator.

B.1.3 The Pauli Matrices

The following are four extremely useful matrices, the Pauli matrices and
their various representations:

σ0 ≡ I ≡
(

1 0
0 1

)
σ1 ≡ σx ≡ X ≡

(
0 1
1 0

)

σ2 ≡ σy ≡ Y ≡
(

0 −i
i 0

)
σ3 ≡ σz ≡ Z ≡

(
1 0
0 −1

) (B.12)

B.1.4 Inner Products

An inner product is a function which takes as input two vectors |v〉 and
|w〉 from a vector space and produces a complex number as output. A
useful but not standard notation for the inner product is (|v〉, |w〉). The
standard quantum mechanical notation for the inner product (|v〉, |w〉) is
〈v|w〉. The notation 〈v| is used for the dual vector to the vector |v〉 and is
a linear operator from the inner product space V to the complex numbers
C, defined by 〈v|(|w〉) ≡ 〈v|w〉 ≡ (|v〉, |w〉)

An inner product satisfies the requirements that:

1. Is linear in the second argument,(
|v〉,

∑
i

λi|wi〉

)
=
∑

i

λi(|v〉, |wi〉) (B.13)

2. (|v〉, |w〉) = (|w〉, |v〉)∗

3. (|v〉, |v〉) ≥ 0 with equality if and only if |v〉 = 0
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Cn has an inner product defined by

((y1, . . . , yn), (z1, . . . , zn)) ≡
∑

i

y∗i zi =
[
y∗1, . . . , y

∗
n

]  z1
...
zn

 (B.14)

A vector space equipped with an inner product is called an inner prod-
uct space.

In the finite dimensional complex vector spaces, a Hilbert space is ex-
actly the same thing as an inner product space.

Vectors |w〉 and |v〉 are orthogonal if their inner product is zero. The
vectors |v〉 ≡ (1, 0) and |w〉 ≡ (0, 1) are an example of orthogonal vectors.

A norm of a vector |v〉 is defined as:

‖ |v〉 ‖≡
√
〈v|v〉 (B.15)

A unit vector is a vector |v〉 such that ‖ |v〉 ‖= 1. A normalized vector is
formed by dividing by its norm: |v〉/ ‖ |v〉 ‖ for any non-zero vector. A set
of vectors is orthonormal if each vector in the set is normalized (i.e. a unit
vector) and different vectors in the set are orthogonal, that is, 〈i|j〉 = δij.

Suppose |w1〉, . . . , |wd〉 is a basis set for some inner product vector
space V . The Gram-Schmidt procedure is a useful method that can be
used to produce an orthonormal basis set |v1〉, . . . , |vd〉 for the same vector
space. Define |v1〉 ≡ |w1/ ‖ |w1〉 ‖, and for 1 ≤ k ≤ d − 1 define |vk+1〉
inductively by:

|vk+1〉 ≡
|wk+1〉 −

∑k
i=1〈vi|wk+1〉|vi〉

‖ |wk+1〉 −
∑k

i=1〈vi|wk+1〉|vi〉 ‖
(B.16)

There is a useful way of representing linear operators which makes use
of the inner product, known as the outer product representation. Suppose
|v〉 is a vector in an inner product space V , and |w〉 is a vector in an inner
product space W . Define |w〉〈v| to be the linear operator from V to W
whose action is defined by

(|w〉〈v|)(|v′〉) ≡ |w〉〈v|v′〉 = 〈v|v′〉|w〉 (B.17)

Linear combinations of outer product operators are also a linear oper-
ators: (∑

i

ai|wi〉〈vi|

)
|v′〉 ≡

∑
i

ai|wi〉〈vi|v′〉 (B.18)

An important result known as the completeness relation for orthonor-
mal vectors represents the usefulness of the outer product notation. Let
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|v1〉,. . . , |vi〉, . . ., |vn〉 be any orthonormal basis for the vector space V such
that any vector |v〉 in V can be written as |v〉 =

∑n
j=1 aj|vj〉 for some set of

complex numbers aj. Note that

(〈vi|) |v〉 = (〈vi|)
n∑

j=1

aj|vj〉 =
n∑

j=1

aj〈vi|vj〉 (B.19)

Because the states |vi〉 and |vj〉 are part of an orthonormal set, all terms
in the summatory vanish except when j = i:

(〈vi|) |v〉 = ai〈vi|vi〉 = ai (B.20)

Therefore (
n∑

i=1

|vi〉〈vi|

)
|v〉 =

n∑
i=1

|vi〉〈vi|v〉 =
n∑

i=1

ai|vi〉 (B.21)

If we write the label j instead of i in the last expression, we recover our
later definition of |v〉, thus(

n∑
i=1

|vi〉〈vi|

)
|v〉 = |v〉 (B.22)

Since the last is true for all |v〉 it follows that(
n∑

i=1

|vi〉〈vi|

)
= I (B.23)

This equation is known as the completeness relation. It gives a means for
representing any operator in the outer product notation. Suppose A : V 7→
W is a linear operator and |v1〉, . . . , |vi〉, . . . , |vn〉, |w1〉, . . . , |wj〉, . . . , |wm〉 or-
thonormal basis for V and W respectively. Using twice the completeness
relation we obtain:

A = IWAIV
=
∑

ij |wj〉〈wj|A|vi〉〈vi|
=
∑

ij〈wj|A|vi〉|wj〉〈vi|
(B.24)

We see from this equation that A has matrix element 〈wj|A|vi〉 in the jth
row and ith column, with respect to the input basis |vi〉 and |wj〉.

B.1.5 Eigenvectors and eigenvalues

An eigenvector of a linear operator A on a vector space is a non-zero
vector |v〉 such that A|v〉 = v|v〉 where v is a complex number known as the
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eigenvalue ofA corresponding to |v〉. The so-called characteristic equation
is used to find them and is defined as

c(λ) ≡ det|A− λI| (B.25)

Where ‘det’ is the determinant function for matrices. The solutions of the
characteristic equation c(λ) = 0 are the eigenvalues of the operator A.
Once the eigenvalues of the operator are known, it is possible to find the
corresponding eigenvectors. Every operator A has at least one eigenvalue
and a corresponding eigenvector. The set of vectors which have the same
eigenvalue v is a subspace of the vector space on which A acts and is
called eigenspace.

A diagonal representation for an operator A on a vector space V is
a representation A =

∑
i λi|i〉〈i|, where the vectors |i〉 form an orthonor-

mal set of eigenvectors for A, with corresponding eigenvalues λi. As an
example of diagonal representation, the Pauli matrix Z can be written

Z =

(
1 0
0 −1

)
= |0〉〈0| − |1〉〈1| (B.26)

Where the matrix representation is with respect to orthonormal eigenvec-
tors |0〉 and |1〉.

B.1.6 Adjoints and Hermitian Operators

If A is any linear operator on a Hilbert space V , there exists a unique
linear operator A† on V such that for all vectors |v〉, |w〉 ∈ V

(|v〉, A|w〉) =
(
A†|v〉, |w〉

)
(B.27)

this linear operator is known as the adjoint or Hermitian conjugate of the
operator A. From the definition it is easy to see that (AB)† = B†A†:

(|v〉, AB|w〉) = (|v〉, Z|w〉) =
(
(Z)†|v〉, |w〉

)
=
(
(AB)†|v〉, |w〉

)
(|v〉, AB|w〉) = (|v〉, A|z〉) =

(
A†|v〉, |z〉

)
=
(
A†|v〉, B|w〉

)
=
(
B†A†|v〉, |w〉

)
(B.28)

By convention, |v〉† ≡ 〈v|.
In a matrix representation of an operator A, the action of the Hermitian

conjugation operation is to take the matrix of A to the conjugate-transpose
matrix, A† ≡ (A∗)T . For example(

1 + 3i 2i
1 + i 1− 4i

)†

=

(
1− 3i 1− i
−2i 1 + 4i

)
(B.29)
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An operatorAwhose adjoint isA is known as a Hermitian or self-adjoint
operator.

An important class of Hermitian operators is the projectors. Suppose
W is a k-dimensional vector subspace of the d-dimensional vector space
V . Using the Gram-Schmidt procedure it is possible to construct an or-
thonormal basis |1〉, . . . , |d〉 for V such that |1〉, . . . , |k〉 is an orthonormal
basis for W . By definition

P ≡
k∑

i=1

|i〉〈i| (B.30)

is the projector onto the subspace W . From the definition, any vector |v〉〈v|
is Hermitian, so P is Hermitian, P † = P . The orthogonal complement of P
is the operator Q ≡ I − P . Q is a projector onto de vector space spanned
by |k + 1〉, . . . , |d〉, which can be called the orthonormal complement of P .

An operator is said to be normal if AA† = A†A. An operator which
is Hermitian is clearly also normal (for A = A† and AA† = A†A = A2).
According to the theorem of spectral decomposition, an operator is normal
only if it is diagonalizable.

A matrix U is said to be unitary if U †U = I. A unitary matrix (or opera-
tor) is also normal and has a spectral decomposition.

A positive operators are a special and important class of Hermitian
operators. A posivite operator is defined to be an operator A such that for
any vector |v〉, 〈v|A|v〉 is a real, non-negative number. If this product is
strictly greater than zero then the operator is positive definite

B.1.7 Tensor Products

The tensor product is a way of putting vector spaces together to form
larger vector spaces.

Suppose V and W are Hilbert spaces of dimension m and n respec-
tively. Then V ⊗W (‘V tensor W ’) is an mn dimensional vector space. The
elements of V ⊗W are linear combinations of ‘tensor products’ |v〉 ⊗ |w〉
of elements. In particular, if |i〉 and |j〉 are basis for V and W respectively,
then |i〉 ⊗ |j〉 is a basis for V ⊗W . For example, if V is a two-dimensional
vector space with basis vectors |0〉 and |1〉 then |0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 is an
element of V ⊗ V . Abbreviated notations for the tensor product are often
used: |v〉|w〉, |v, w〉 or even |vw〉.

The tensor product satisfies the following basic properties:

1. For an arbitrary scalar z and elements |v〉 ∈ V and |w〉 ∈W ,

z(|v〉 ⊗ |w〉) = (z|v〉)⊗ |w〉 = |v〉 ⊗ (z|w〉) (B.31)
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2. For arbitrary |v1〉 and |v2〉 in V and |w〉 in W ,

(|v1〉+ |v2〉)⊗ |w〉 = |v1〉 ⊗ |w〉+ |v2〉 ⊗ |w〉 (B.32)

3. For arbitrary |v〉 in V and |w1〉 and |v2〉 in W ,

|v〉 ⊗ (|w1〉+ |w2〉) = |v〉 ⊗ |w1〉+ |v〉 ⊗ |w2〉 (B.33)

Operators which act of the new tensor spaces can be defined as A⊗B
by the equation

(A⊗B)(|v〉 ⊗ |w〉) ≡ A|v〉 ⊗B|w〉 (B.34)

An arbitrary operator C mapping V ⊗W to V ′⊗W ′ can be represented as
a linear combination of tensor products of operators mapping V 7→ V ′ and
W 7→ W ′:

C =
∑

i

ciAi ⊗Bi (B.35)

A natural inner product on V ⊗W can be defined:(∑
i

ai|vi〉 ⊗ |wi〉,
∑

j

bj|v′j〉 ⊗ |w′
j〉

)
≡
∑
ij

a∗i bj〈vi|vj〉〈wi|w′
j〉 (B.36)

There is a known convenient matrix representation, the Kronecker prod-
uct. Suppose A is an m by n matrix, and B is a p by q matrix. Then:

A⊗B ≡

 A11 . . . A1n
...

. . .
...

Am1 . . . Amn

⊗

 B11 . . . B1q
...

. . .
...

Bp1 . . . Bpq



≡



A11

 B11 . . . B1q
...

. . .
...

Bp1 . . . Bpq

 . . . A1n

 B11 . . . B1q
...

. . .
...

Bp1 . . . Bpq


...

. . .
...

Am1

 B11 . . . B1q
...

. . .
...

Bp1 . . . Bpq

 . . . Amn

 B11 . . . B1q
...

. . .
...

Bp1 . . . Bpq





(B.37)

Tensor product vectors can be represented in the same fashion.
Finally there is a final useful notation |ψ〉⊗k which means |ψ〉 tensored

with itself k times. For example |ψ〉⊗2 = |ψ〉 ⊗ |ψ〉.
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B.1.8 Operator Functions

Given a function f from the complex numbers to the complex numbers,
it is possible to define a corresponding matrix function on normal matrices
by the following construction. If A =

∑
a a|a〉〈a| is a spectral decomposition

for a normal operator A then f(A) ≡
∑

a f(a)|a〉〈a|. As an example, it has
already been shown that Z ≡ |0〉〈0| − |1〉〈1| so that

exp (θZ) = exp (θ)|0〉〈0|+ exp (−θ)|1〉〈1| (B.38)

in matrix form this becomes

exp (θZ) =

[
〈0|
(
e(θ)|0〉〈0|+ e(−θ)|1〉〈1|

)
|0〉 〈0|

(
e(θ)|0〉〈0|+ e(−θ)|1〉〈1|

)
|1〉

〈1|
(
e(θ)|0〉〈0|+ e(−θ)|1〉〈1|

)
|0〉 〈1|

(
e(θ)|0〉〈0|+ e(−θ)|1〉〈1|

)
|1〉

]

=

[
eθ 0
0 e−θ

]
(B.39)

Another important matrix function is the trace of a matrix. The trace of
some matrix A is defined to be the sum of its diagonal elements

tr(A) ≡
∑

i

Aii (B.40)

The trace is said to be cyclic, tr(AB)=tr(BA), and linear, tr(A+B)=tr(A)+tr(B)
From the cyclic property, the trace of a matrix is invariant under the unitary
operation called similarity transformation, that is A → UAU †, as tr(UAU †)
= tr(U †UA)

B.1.9 The Commutator and Anti-commutator

The commutator between two operators A and B is defined to be

[A,B] ≡ AB −BA (B.41)

If [A,B] = 0, that is AB = BA, then it’s said that A commutes with B. The
anti-commutator between two operators is similarly defined:

{A,B} ≡ AB +BA (B.42)

and it’s said that the operators anti-commute if {A,B} = 0. If a pair of Her-
mitian operators commute, then it is possible to simultaneously diagonalize
them. In other words, it is possible to write A =

∑
i ai|i〉〈i|, B =

∑
i bi|i〉〈i|,

where |i〉 is some common orthonormal set of eigenvectors for A and B.
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This result connects the commutator of two operators, which is often
easy to compute, to the property of being simultaneously diagonalizable.
As an example, consider

[X, Y ] =

(
0 1
1 0

)(
0 −i
i 0

)
−
(

0 −i
i 0

)(
0 1
1 0

)

= 2i

(
1 0
0 −1

)
= 2iZ

(B.43)

so X and Y do not commute. In fact, Pauli matrices have the commutation
relationship

[σj, σk] = 2i
3∑

l=1

εjklσl (B.44)

where σjkl = 0 except σjkl = 1 for jkl = 123, 231, 312 and σjkl = −1 for
jkl = 132, 213, 321.

B.1.10 The Polar and Singular Value Decompostitions

The polar and single value decompositions allow us to break general
linear operators up into products of unitary operators and positive opera-
tors. This is useful because unitary operators and positive operators are
better understood than general linear operators.

Let A be a linear operator on a vector space V . Then there exists
unitary U, and positive operators J and K such that

A = UJ = KU (B.45)

where the unique positive operators J and K satisfying these equations
are defined by J ≡

√
A†A and K ≡

√
AA†. If A is invertible then U is

unique. The expression A = UJ is called the left polar decomposition of A
and A = KU the right polar decomposition of A.

If A is a square matrix, then there are unitary matrices U and V , and
diagonal matrix D with non-negative entries such that

A = UDV (B.46)

The diagonal elements of D are called the singular values of A.
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Appendix C

Quantum Circuits Overview

C.1 Qubit Gates

Analogous to the way a classical computer is built from an electrical
circuit containing wires and logic gates, a quantum computer is built from
a quantum circuit containing wires and elementary quantum gates.

Consider for example the classical single bit NOT gate, whose opera-
tion is defined by its truth table, in which 0 → 1 and 1 → 0, that is, the 0 and
1 states are interchanged. The quantum equivalent (quantum NOT gate)
takes the state

α|0〉+ β|1〉 (C.1)

to the corresponding state in which the roles of |0〉 and |1〉 have been
interchanged

α|1〉+ β|0〉 (C.2)

There is a convenient way of representing the quantum NOT gate in
matrix form. Such matrix is

X ≡
(

0 1
1 0

)
(C.3)

If the quantum state α|0〉+ β|1〉 is written in a vector notation as(
α
β

)
(C.4)

with the top entry corresponding to the amplitude for |0〉 and the botton
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entry the amplitude for |1〉, then the corresponding output from the quan-
tum NOT gate is

X

(
α
β

)
=

(
0 1
1 0

)(
α
β

)
=

(
β
α

)
(C.5)

Quantum gates on a single qubit, thus, can be effectively described
by two by two matrices. For a matrix to be a valid quantum gate, the
appropriate and only condition is that the matrix U be unitary, that is U †U =
I where U † is the adjoint of U (obtained by transposing and then complex
conjugating U). I is the two by two identity matrix. This unitarity constraint
is the only constraint on quantum gates.

Two important matrices that shall be useful are the Z gate:

Z ≡
(

1 0
0 −1

)
(C.6)

which flips the sign of |1〉 to −|1〉. The other is no less than the Hadamard
gate:

H ≡ 1√
2

(
1 1
1 −1

)
(C.7)

This gate turns a |0〉 into (|0〉 + |1〉)/
√

2 and |1〉 into (|0〉 − |1〉)/
√

2. Note
that H2 = I so applying H twice to a state does nothing to it.

C.2 Multiple Qubit Gates

In the classical world, any function on bits can be computed from the
composition of NAND gates alone, which is thus known as a universal
gate.

The prototypical multi-qubit quantum logic gate is the controlled-NOT
or CNOT gate. This gate has two input qubits, known as the control qubit
and the target qubit.

Figure C.1: Schematic diagram for the CNOT gate
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If the control qubit (the one with the dark dot) is set to 0, then the target
qubit is left unchanged, otherwise (control qubit = 1) the target qubit is
flipped. For example:

control control
↓ ↓
|00〉 → |00〉; |10〉 → |11〉
↑ ↑

target target

(C.8)

Another way of describing the action of the CNOT is as a generalization of
the classical XOR gate, since the action of the gate may be summarized
as

|A,B〉 → |A,B ⊕ A〉 (C.9)

where ⊕ is addition modulo two, which is exactly what the XOR does. Yet
another way to describe the action of the CNOT is in matrix representation:

UCN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (C.10)

Naturally, as the CNOT gate acts over two qubits, the matrix represen-
tation is to be applied to a column vector with the amplitudes of the four
possible two-qubit combinations (namely |00〉, |01〉, |10〉 and |11〉).

As it can be easily verified, the UCN matrix is a unitary matrix.
The CNOT gate can be considered as a type of generalized XOR gate.

Unfortunately, other classical gates such as the NAND or the regular XOR
gate cannot be represented in the same way the quantum CNOT gate
represents the classical NOT gate because they are irreversible or non-
invertible. In other words, it’s not possible, given the output of those gates,
to know what the inputs were. On the other hand, unitary quantum gates
are always invertible, since the inverse of a unitary matrix is also a unitary
matrix. There have already been experimental implementations for this
gate, including trapped ions [36] and photons [37].

C.3 Quantum Circuits

A quantum circuit is read from left to right. Each line in the circuit rep-
resents a ‘wire’. However, this wire may not correspond to a physical one,
but instead it may represent passage of time or perhaps some physical
particle moving through space.
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Figure C.2: Schematic Quantum Circuit for “swapping” the states of two qubits (e.g |ab〉 → |ba〉)

For example, a simple quantum circuit containing three quantum gates
is shown if figure C.2. This circuit swaps the states of two bits in the fol-
lowing way:

|a, b〉 → |a, a⊕ b〉
→ |a⊕ (a⊕ b), a⊕ b〉 = |b, a⊕ b〉
→ |b, (a⊕ b)⊕ b〉 = |b, a〉

(C.11)

In matrix notation this is:

SWAP = CNOTc=1CNOTc=2CNOTc=1 (C.12)

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (C.13)

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (C.14)

There are a few features allowed in classical circuits that are not usu-
ally present in quantum circuits. For instance, ’loops’, or feedback is not
allowed. Other feature not allowed is what is known as FANIN, that is, al-
lowing wires to be joined together resulting in a single wire containing the
bitwise OR of the inputs. Also, the operation known as FANOUT —using
one wire to obtain several copies of a bit— is not allowed.

Another important operation is measurement. This operation converts
a single qubit state |ψ〉 = α|0〉 + β|1〉 into a probabilistic classical bit M
which is 0 with probability |α|2, or 1 with probability |β|2.

C.4 Bell States

The circuit depicted in figure C.3 shows a Hadamard gate followed by
a CNOT. As an example of how it works, let’s suppose we feed the circuit
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with the state |00〉. The Hadamard gate acts on the first qubit only, turning
the input into

|00〉 → (|0〉+ |1〉)√
2

|0〉 =
(|00〉+ |10〉)√

2
(C.15)

The first qubit in each part of the state acts as a control input for the CNOT
gate, and thus we have

|00〉+ |10〉√
2

→ |00〉+ |11〉√
2

(C.16)

(note how the flipped qubit). The output state is one of the four states
known as the Bell States, or sometimes the EPR states or EPR pairs, after
some of the people —Bell, Einstein, Podolsky and Rosen— who pointed
out the strange properties of states like these.

The explicit construction of the remaining Bell States in matrix notation
goes as follows:

Z ⊗ I (B00) =

(
1 0
0 −1

)
⊗
(

1 0
0 1

)
1√
2

0
0
1√
2



=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




1√
2

0
0
1√
2



=


1√
2

0
0

− 1√
2

 = (|00〉−|11〉)√
2

= B01

(C.17)

Figure C.3: Quantum Circuit to create a Bell State
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X ⊗ I (B00) =

(
0 1
1 0

)
⊗
(

1 0
0 1

)
1√
2

0
0
1√
2



=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




1√
2

0
0
1√
2



=


0
1√
2

1√
2

0

 = (|01〉+|10〉)√
2

= B10

(C.18)

ıY ⊗ I (B00) =

(
0 1
−1 0

)
⊗
(

1 0
0 1

)
1√
2

0
0
1√
2



=


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




1√
2

0
0
1√
2



=


0
1√
2

− 1√
2

0

 = (|01〉−|10〉)√
2

= B11.

(C.19)
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The last page

All code compiled using a licenced Portland Group Fortran 90 compiler
under Linux enviroment. LAPACK routines were also used. Code run
on a dual Opteron workstation (“genesis”) and a dual Xeon workstation
(“comalli”).

Figures created with GIMP and xmgrace.

Text compiled with LATEX.
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