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Sistemas finitos bajo presion
Samuel Baltazar Rojas

Tesis para optar al grado de Maestro en Ciencias Aplicadas

Junio, 2004

Resumen

El estudio de estructuras bajo condiciones extremas como altas presiones, puede en-
tregarnos nuevas configuraciones y/o situaciones que son metaestables bajo condi-
ciones normales. Estas transiciones pueden estar asociadas a nuevas propiedades
electrénicas y mecanicas.

En este trabajo se discuten diversos métodos tedricos para estudiar sistemas finitos
bajo presién en un marco clasico. Se han implementado algunos métodos ya publica-
dos y se comparan con dos nuevas definiciones propuestas en este trabajo. Ademds
se han comparado las predicciones de cada uno de ellos aplicados a diferentes sis-
temas fisicos. Los métodos pueden ser dividos en dos grupos principales; el primero
depende de una extensién del término termodindmico PV mientras que en el se-
gundo el sistema finito es incluido en un reservorio de presion.

Junto con discutir la importancia del volumen asociado, se han considerado diversos
sistemas finitos para comparar los métodos. Transiciones estructurales en nanotu-
bos de carbono, nanodiamantes y clusters metalicos son presentados en este trabajo

y su comportamiento como funcién de la presién externa son discutidos.

Copyright (¢ 2004 por Samuel Baltazar Rojas.



Finite systems under pressure
Samuel Baltazar Rojas

Submitted for the degree of Master in Applied Sciences
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Summary

The study of systems under extreme conditions like high pressures can give us
novel structures and/or configurations that are metastables under normal condi-
tions. These transitions could be associated to new electronical and mechanical
properties. In this work we discuss several theoretical methods to simulate finite
systems under pressure. We have implemented techniques already published and
compared with two new methods proposed by us. We compare the predictions of
every one of them and present results on different physical systems. The methods
can be divided in two main groups, one which depends on an extension of the thermo-
dynamical term “PV” and the second one which is the simulation of a finite system
embedded in a pressure reservoir. In general, we have implemented five different vo-
lume defintions: an atomic volume representation, an average description of cluster
volume, a volume definition from gyration radii, the Quick Hull volume definition
and an a volume defined from surface coordinates. We discuss the importance of a
good volume definition. Our results show the fullerene Cgq molecule collapses at pre-
ssures around 35-40 GPa. The study of single walled carbon nanotubes (SWCNTs)
and gold clusters reveals that the adapted convex volume definition is more suitable
to describe hollow systems, and that the volume definition considering a gyration
radii can be applied to compacted structures such as metallic clusters. Bond tran-
sitions of carbon nanotubes, nanodiamond and onion structures are also described.
For cubeoctahedral gold clusters, we observed structural changes at pressures larger

than 10 GPa at 300 K.

Copyright (© 2004 by Samuel Baltazar Rojas.
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Chapter 1

Introduction

1.1 The need for computational simulations

Characterisation, description and detailed studies on materials were developed
considering, three main streams: experimental work, the analytical solution of simple
or more elaborated models and by making mechanical simulations.

The experimental work designed to solve a problem can be, in many cases, easily
performed or implemented for a single case, but it would be difficult to study the
given system as function of different parameters. For example, the characterisation
of the physical transitions such as the boiling or freezing points of water at atmo-
spheric pressure were studied long ago [1]. If our interest is to study this behaviour
as function of pressure, we certainly have to face new challenges to design the exper-
iment; how we can get the properties that are desirable to know in the less expensive
way.

A second approach to study physical systems has been derived from proposing
simple models which can be solved analytically or using perturbation theory. Even
though, this approach is still very important in physics, the complexity of the sys-
tems we have to study nowadays restrict its applications. Starting with simple laws
such as Newton’s laws, it is possible to predict the whole dynamical behaviour but
with the difficulty of solving the equations of motion as the number of degrees of
freedom increase. The main difficulty with this approach comes from two different

views, on one hand, the potential interactions among atoms have to be defined as

1



1.2. Motivation 2

simple as possible, such that the equations of motion can be solved; and in the other
hand, the electronical properties become important and the problem enters into the
quantum mechanics regime.

The last chosen possibility known before the computer era, was based on the
study of systems by a simple macroscopical model which shows the same searched
behaviour. As an example we can mention the study of dense liquids. It was sys-
tematically developed by J.D. Bernal [2,3], considering large ensembles of spheres
arranged such that the dynamical behaviour mimics the behaviour of atoms in a
liquid. The enormous effort that was necessary to design these simulations and sub-
sequent analysis (for example to characterise local package geometries) shows the
importance to solve these problems using computers as soon as they were available

for researchers.

1.2 Motivation

The field of computational physics allows us to study physical phenomena that before
the appearance of computers were difficult to solve before computers appeared. In
spite of analytical solutions which provide the exact information and detail on time
and length scales, computational methods allow us to predict with large precision
and some times using a more accurate model (even though usually more complex),
physico-chemical properties of a molecule, crystalline systems, liquids, etc.
Computational physics becomes a bridge between experimental work and the
efforts of theoreticians. Simulations are used to reproduce and predict experimental
observations, or at least to obtain qualitative behaviours found in the experiment.
These techniques are also able to implement a wvirtual laboratory that allows us to
discover novel material properties under conditions that have not been observed
in the experiment. For example, some of the first works of liquid transitions were
developed by Alder and Wainwright, who found a first-order freezing transition of
a liquid system [4] before that experiments were carried out. By implementing

different force fields between the atoms, they were able to conclude that repulsion
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forces instead of attractive interactions are dominant for this transition (result that
is relevant in the work present in this thesis). It can be found many other examples
where computational methods are able to compare, predict or explain some of the
most important experimental observations over the last decades.

Here we focus on the characterisation of finite systems under hydrostatic pre-
ssure. The study of those systems such as clusters, nanocrystals, biological systems,
has important implications in astrophysics, geophysics, biology, chemistry, electro-
nics ,etc [5-7]. Although there is a large number of experimental examples (the sys-
tems now known as nanostructures fall into this category), the theoretical part has
been rather superficial. Among many experimental studies, one who has attracted
a large interest is the structural characterisation of clusters, metallic nanoparticles
or carbon nano-systems, molecular systems, etc. structural changes on these nano-
structures result in significant variations in the electronic, optical and transport
properties.

The development of theoretical methods such as extended Lagrangian (see chap-
ter 2), has opened different routes to simulate physical systems of different ensem-
bles. Those methods have been implemented considering ion interactions (classical
methods), electronical properties (quantum-mechanical methods). In the case of
applied hydrostatic pressure at constant temperature, there are two main methods
that have been used since the 80’s: constant-pressure molecular dynamics proposed
by Andersen [8] and an extension given by Parrinello-Rahman [9]. Various examples
are found in the literature, where the agreement between experimental observations
and theoretical predictions under these methods have been recognised. Unfortu-
nately, these methods have only been developed for infinite systems (periodicity
condition in crystals).

Studies of finite systems using a classical mechanic or a quantum mechanical
apporach have no been fully developed. It is clear that a more accurate method
should consider quantum mechanics in their description and therefore only first
principle calculations appear more suitable to explain any physical observation. In
this context, we are restricted to study a reduced number of atoms due to the large

computational effort required. Consequently, the classical methods are still of great
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advantage when a large amount of calculations or atoms have to be considered. In
such a case, the potential energy used to represent atom interactions are taken from
a more accurate calculation or from a parametrisation of functional interactions, in
which these parameters are obtained by combining observables and experimental
measurements.

In this work we are interested in studying finite, non-periodic systems, under
hydrostatic pressure. The change of this variable (pressure) could lead to structural
transformations, or to rearrangements of the atomic positions so that the total
energy of the system decreases. We believed, that these types of simulations could
be helpful in the experimental work. Even though, the methods for simulating
systems under pressure are well known since the 80’s, none of these can be applied
directly to a finite system. More recent implementations are based on applying the
pressure to a box where the system is embedded and where the periodic images are
included. In the case of a finite system, there is not such a periodicity and there is
no physical meaning for a box enclosing such a system. Only recently, some reports
have performed calculations a long these lines using an extended Lagrangian for finite
systems [10,11]. They have been applied to Al, clusters [12], carbon nanotubes [10],
graphite [11] and metal nanoparticles [13]. An additional term included in the
Lagrangian is based on a well-defined volume for finite systems. This is a critical
issue, mainly because this quantity cannot be defined uniquely. On the other hand,
a more general thermodynamical model has been also presented very recently by
Martonak et al. [14]. This method assumes that a finite system is embedded in a
fluid of classical and repulsive particles which provide pressure as function of the
particle interactions, temperature and volume which encloses the two systems (fluid
and cluster). They have applied this method to many different system, finding
important structural changes due to the applied pressure.

Therefore, we present and discuss all different methods known until now, which
are able to simulate finite systems under pressure. Even though, the methods we
discuss here are going to be applied to systems where we assume a classical inter-
action, these methods can be easily generalised considering quantum mechanical

approaches. In the theoretical presentation, we also propose different methods in
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order to apply different methodologies to several important finite systems such as

fullerenes (Cy), carbon nanotubes concentric fullerenes, carbon nanodiamonds and

metallic clusters.
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1.3 Thesis objectives

In this work we accomplish each one of the following goals:

e To implement computational algorithms which solve the equation of motion
for atoms considering different models for simulating systems under hydro-
static pressure. Besides those already proposed in the literature, we suggest
new methods and we show that our methods are in agreement with a method
proposed by Martonak et al. [14] and based in a tight-binding approach and
experimental observations. The program language chosen is FORTRAN 90.
In order to analyse the results obtained in our simulations, we used different
packages such as Cerius?, xmgrace, SYMMOL, MOLEKEL, or we cre-

ated necessary routines to perform specific analysis.

e To compare and analyse the results of the dynamical atomic trajectories ob-
tained from different methods for a Cygq fullerene, carbon nanotubes and nan-
odiamonds. Based on these results, we select a suitable model to apply an

external pressure considering other systems.

e To study nanodiamond structures under hydrostatic pressure and temperature
trying to find structural transitions of these nanoparticles and eventually to

compare with experimental results available in the literature.

e To study single walled carbon nanotubes under hydrostatic pressure and tem-
perature in order to search for structural transitions, and compare the results

with published data.

e To study concentric fullerene structures (sometimes called graphitic onions)
under pressure at different temperatures in order to find structural transforma-

tions from concentric fullerenes to diamond structures or amorphous phases.

e Study of metallic systems (gold clusters) under pressure and find structural

transitions that have been detected in previous experimental works.



1.4. Overview 7

1.4 Overview

The chapter 2 provides a theoretical framework defining the isobaric-isothermal
ensemble that has been considered in our work. Subsequently, we describe the atomic
interaction potentials that are used to model the different nanostructures: Tersoff-
Brenner potential applied to covalent systems and the Gupta potential applied to
metallic systems.

The volume is an important factor and we present five definitions of a finite system
that will be applied to various structures. In addition, an additional method that
doesn’t need to consider the volume of the cluster to apply an external pressure, is
modified from a previous work by Martonak et al.

Chapter 3 shows the scheme of the algorithms developed in this work and some
routines implemented in order to obtain the equations of motion. On chapter 4,
we consider the results obtained from our simulations applied to numerous finite
systems and finally on the chapter 5, the main conclusions of our work and the

future research are presented.



Chapter 2

Theoretical background

2.1 Extended Lagrange methods

From theoretical physics is well known that the Lagrangian (or Hamiltonian) is the
functional which contains the complete representation of a given system, as long as
the potential energy is well defined. If we now start from the general Lagrangian
functional, an external pressure can be added to the system if we follow a similar
approach as in thermodynamics. The pressure is defined as the change of energy
as function of volume, therefore volume becomes an adjustable variable function.
Now, when a pressure is applied to any system, the enclosed volume changes until
the internal pressure balances out the applied external pressure. The way to include
this observation in the equations, it is by adding a term like a pressure with its

conjugate variable, the volume, so that the Lagrangian is now expressed as

L=y % (6({rs}) + PV (2.1

where r;, m; and p; are coordinates, mass and conjugate momentum of each atom 7
(1 =1,..., N ) respectively, ¢ is the particle interaction potential and V' corresponds
to the volume occupied by the system particles.

The equations of motion could derive from equations:

d (85) oL (2.2)

dt\oi;) — or;

8
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and applying the previous equations to the Lagrangian (eq. 2.1), we obtain the

equations of motion for every particle position as

827’1',& _ 151%

F;' a Peact
6ri,a

Miap =1 a=xy,2 i=1,...,N (2.3)

These equations describe a set of particles interacting via a conservative force (de-
rived from the potential ¢) and an applied external pressure, a constant pressure
canonical ensemble. Letting the system evolving up to equilibrium, the average
change of the virial quantity (D> r-p where r and p are the position and momenta

vectors) respect to time is zero [15], giving an expression

<(§:miv§—ﬁjri-v¢—Zeri-Pextvv)> =0 (2.4)

i
and then

(Domiv? =Y xi-Vé) = (3_xi- Pt VV) (2.5)

i
If the volume is a parametric function of the atomic coordinates of degree 3 (V (Ar;) =
A3V (r;)), we could apply Euler’s theorem, which for this particular case takes the

form:

N
Y 1 ViV =3V (2.6)

By replacing eq. 2.6 into eq. 2.5, we obtain

N N
Pe:ct = f)int = (%(Zmzvf - Zri : V¢)> (27)

which corresponds to the pressure version of the virial theorem. The internal pre-
ssure Pj,; balances out the applied external pressure. It is noteworthy that the
internal pressure depends directly on the interparticle potential, but more impor-
tantly on the volume, thus indicating that the volume definition is critical to ensure
that the virial theorem applies.

We now start describing the interaction potentials used in this work, followed with
a discussion of several volume definitions, some of them have been published and
others came from our extensions. As a comparison, we have also performed an im-
plementation of a different approach, which considers a cluster in contact with a

liquid bath, which serves as a pressure reservoir [14]. Even though, this method is
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not really the core of the present work, we use this method as a ground comparison,
mainly because this method can be proved to give a proper description of finite

systems under pressure [22].
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2.2 Potential interaction definitions

In this work we have focused in two different types of systems; covalent and metallic
monoatomic particles. In particular, we have implemented classical potentials for
carbon and gold atoms. By defining the interparticle potential interaction in each
case, we could proceed by solving the equations of motion of a given finite system
under pressure. Every one of the potentials have been throughly tested by other
authors and they have been used extensively to calculate many different crystalline
and liquid properties. In the case of the carbon, the interparticle potential is a three
body potential, which has been successfully applied to crystalline carbon and silicon
systems [16] and adapted to study fullerene structures [17]. In particular, we have
followed the implementation considered by Maruyama et al [18] to study fullerene
formation.

On the other hand, we have used the semiempirical Gupta potential in order to
model interactions between metallic atoms [19]. This potential has been obtained

by using the tight-binding second moment approximation as it is summarized below.

2.2.1 Tersoff-Brenner potential for covalent systems (car-

bon)

The energy of carbon systems can be described as the sum of many body interactions
between all carbon atoms in a given system, which is reduced to a three body
interaction in the Tersoff-Brenner aproximations as:

U= > Valry) = ByVa(rij)] (2.8)

i j(g>1)

where 7;; is the carbon-carbon distance and the repulsion (V) and attraction (V)

terms are:

Valr) = F(r) gt exp {~AV2S(r — R.)} (2.9)

5=
D5 exp{ 5\f7~— } (2.10)

Va(r) = f(r )
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where the cutoff function is defined as:

1 (r < Ry)
f(r) =79 %(1+cos ];";_Rél m) (Ri <7 <Ry) (2.11)
0 (’f' > RQ)

*

The many-body coupling is represented by Bj;, that is angular dependent bonds

1 — 7 and ¢ — k produced by the local environment of atom 1.

. B;; + B; . -
Bij =Y _r with Bij = (1 + Z [Gc(ez]k)f(rzk)]> (212)
k(#4.3)
where:
G.(0) = a (1+@_ ¢’ ) (2.13)
A do>  do® + (14 cosh)? '

Figure 2.1 shows a schematic representation of interactions considered in the Tersoff-
Brenner potential used in this work. The three body potential appears as function

of an angle formed by 3 carbon atoms and it is usually called bond-angle. Table

Figure 2.1: Three-body interaction model.

2.1 presents the parameters fitted by Maruyama et al [18], which are the ones used
in this work. These parameters were modified from the original Tersoff-Brenner

definitions [20] and applied to study properties of fullerenes and single-walled nano-

tubes (SWNTs).

Using the fitted parameters in this model, we study carbon structures such as
shown in Fig. 2.2. Note that we have also included structures where Van der Waals
interaction play an important role at equilibrium conditions. These interactions are
less important when an external pressure is applied to the system. Fig. 2.2(a) corres-

ponds to a model of carbon cluster diamond-like (293 atoms) with sp® hibridized
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Table 2.1: Carbon Parameters

Parameters D, S 15} R, R Ry ) Qo Co do
U L I A
Carbon 6.00 1.22 210 1.39 1.70 2.00 0.50 208.13-10~% 330.00 3.50

carbon atoms inside the shell and sp? and sp carbons on the surface. the model
shown in Fig. 2.2(b) is an example of concentric carbon cages of three layers (800

atoms corresponding to Cgo@C540@C50) and Fig. 2.2(c) is a fullerite cluster taken

from an fecc structure (780 atoms).

K
Coke 2 L7

ARG
o« Fp
et

Figure 2.2: Carbon structures:(a) Nanodiamond, (b) Structure type graphitic onion

and (c) fullerite cell.
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2.2.2 Gupta potential for metallic systems

The study of transition metal clusters and metallic alloys has been widely develo-
ped both theoretically and experimentally [13,37,47]. Among different theoretical
approaches, the one which has received a lot of attention, due to its good agree-
ment with experimental observations, is a classical many-body molecular dynamics;
providing a good representation of crystalline phases and clusters structures. This
potential has also described more-or-less accurately elastic properties, diffusion dy-
namics, thermal transport coefficients,etc. In this context, the bond interatomic
potential describes the interaction as a function of the interatomic distance of all
particles (up to a cutoff).

The Gupta potential considers two terms: i) a hopping integral or overlap term

and ii) an ionic repulsion term:

E.=) (Ey+ Ep) (2.14)

7

where F, is the total binding energy obtained as individual contributions of terms

_ o 1/2
By = —[ 3 2y mentralri®=n)] (2.15)
J

By =3 Aggerestr/rs?=1) (2.16)
J

where E% and EY% are the binding and repulsion terms respectively.

This model has been obtained by Gupta by using tight-binding calculations [24].
In this work, we have extracted the different optimized parameters used for this
potential from a previous work reported by Cleri and Rosato [19], who generated a
table of parameters for several transition metals and tested the potential for different
atomic structures and environments. These parameters have been obtained for Ni,
Cu, Rh, Au, Pb, etc. In this work, we focus on monoatomic metallic systems
specifically Au, where many papers have been published testing its agreements with
experimental conditions [62-64]. We also would like to identify the stability of the
cluster symmetry as function of pressure and possible structural transformations.

Typical nanoclusters that we have considered in this work are shown in Fig 2.3 a-b.
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Table 2.2: Gold parameters

Metal A[eV] £ [eV] D q
Au 0.2061 1.790 10.229 4.036

Figure 2.3: Metallic Clusters.(a) shows a cluster of Au with Icosahedral symmetry

and (b) corresponds to an Octahedral symmetry of an alloy Au-Cu

2.3 Functional volume definitions

In order to perform a complete assessment on the functional form of the volume as
a function of the atomic coordinates, we have implemented five different possible
definitions. Three of them have been reported already in the literature and two of
them are basically our own contribution. The definitions can be divided in two main
groups. A first group is a volume function which depends on all atomic coordinates
of the finite system of interest. Usually, the volume formula makes an estimation of
the real enclosed volume. The benefit of using these functional forms is that they
are continuous and the partial derivate can be exactly calculated; they are involved
directly in the equations of motion of every particle and make the method rather
efficient. The second group corresponds to define the volume of the system by using
the surface particles which are only on the surface. This method is more precise but

it has the difficulty that the atoms that belong to the surface have to be identified
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on each iteration.

From the first volume group, we have considered three different volume definitions:
(a) atomic volumes (applied to N7 nanocrystals and carbon nanotubes) [10], (b)
average interparticle distance [11] and (c) radii of gyration volume, which was pro-
posed previously but never implemented in the past, it was used only to calculate a
postprocessing analysis of Al, clusters [12].

From the second volume group, we have considered two different volume definitions.
A first one which has been recently implemented [13] and basically estimates the
volume from a convex volume (a minimal polyhedron that encloses the structure)
using the QuickHull algorithm (see below) [30]. This volume, is an overestimation
of the real volume in cases where the structure is concave. It was implemented on
MonteCarlo simulations, and the goal was to minimize the energy with the extra
VP term but no dynamical evolution was studied. Here we have done a similar im-
plementation but including the PV term on the dynamical equations of motion only
for the surface belonging to the enclosing polyhedron. The last volume definition
we have used in this work starts from calculating a triangular surface (also called
Delaunay triangulation) which encloses tightly the structure. This is an extension
of the previous definition but here the volume is able to cover (to some extend)
concave parts if they are present on the structure.

The major difference between algorithms used for periodic and non-periodic systems
is the use of ficticious variables. These kind of variables, ficticious kinetic energy
and ficticious mass, are coupled to the cell variables in periodic systems, which are
added to the Lagrangian. In order to avoid kinetic energy transfer between the cell
and clusters, we have to consider appropriated values to these variables, as well as

the time step has to be the largest value to perform a simulation.

2.3.1 Total coordinates Dependence
The atomic volume representation (Type I)

As it was discussed previously, in order to have a precise simulation method by

using the PV term extension in the Hamiltonian, it is critical to have a proper
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volume definition. The first approach in this direction was presented by Sun and
Gong [10]. The definition depends on all atomic positions and there is not an
adjustable parameter. The volume is represented as the sum of independent terms

which are atomic volumes

Figure 2.4: First volume definition considering the atomic volumes.

V= f:v,- (2.17)

where each atomic volume V; is represented by a cubic function

Vi=Y_f0rd) (2.18)
J#i
This volume definition is based on the well known definition of the Wigner-Seitz

primitive cell. We obtain the individual volumes using a scaled volume of indepen-

dent atomic spheres (a schematic view is shown in Fig. 2.4)

V=g 3 () (2.19)

J#i
where the sum is made over nearest neighbours and +; is a scale factor that is the
inverse of nearest neighbours number of each atom 1.

Using this definition we have calculated volume variations with respect to atoms

and coordinates; giving
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oV
87“,-,&

= g% Z Tij - (Tia — Tj,a) Q=192 (2.20)
J#i

where r; , is the a-component of 7 and r; , corresponds to the a-component of 7.
This expression was introduced in the equations of motion for every particle 2.3. It
is noteworthy that external pressure affects the position of every particle but it does
it only through changes of atomic local volumes.

It is important also to note that this definition is very simple to implement but it
is a very crude estimation of the real volume. Therefore, the actual pressure could
be overestimated as we show in chapter 4. Besides, the estimation of the volume

from atomic volumes could be more appropriate to compact structures; in cage-like

structures, this definition becomes very unrealistic and could lead to wrong results.

The average interparticle description of cluster volume (Type II)

A more adequate volume definition could arise from the observation that the volume
scales as a spherical length scale V ~ R? as was proposed by Landau [11]. He defines
the volume using this scaling form and taking R as the average interparticle distance
(see Fig. 2.5). The cluster is then mapped to a spherical shape with a radius equal
to the average particle distance. The distance between atom 7 and atom j is defined

as follows

1/2
Tij = [Z(n,a - rm)Q] a=2x,9,2 (2.21)

o7

and the atomic average distance is given by

N 1/2
R= (v, 20, [ 20 e 222

i=1,j=1
In the functional form introduced in ref. [11], an initial volume is scaled through the

changes of the interparticle distance to provide the volume variation over time as

3
V = Vi (2.23)

where R;,; and V;,; are the initial average distance and the initial volume respec-

tively. These values could be obtained by atomic initial positions and evaluating the
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Figure 2.5: Example of a volume cluster according to the average interparticle de-

scription.

volume using any definition. For example; atomic volume (see previous section) or
volume from gyration radii (defined in the following section) are considered in order
to stablish an initial volume.

As we have mentioned before, we need to consider variations of volume due to
changes in their atomic positions to be included in the particle equations of motion.

These terms could be obtained as

N

e R, N(N—1) > (ria = Tj0) (2.24)
e i#i

ine

The volume from gyration radii (Type III)

Another functional volume we could choose (as previously suggested in Ref. [12]),
it is to define the volume from the radii of gyration R; (see Fig. 2.6). Thus R; is
defined as

Ry = /TN (2.25)

where I; corresponds to principal inertial moments of the system and M is the total

mass. The cluster volume can be approximated by
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Figure 2.6: Gyration radii used to define the volume of a cluster. They are along

the principal axis.

4
V & §7I'R1R2R3 (2'26)

An evaluation of these quantities requires to calculate the inertia tensor (a symme-

tric matrix), which is defined as

Ia:a: Imy Izz
I=1\ 1, I, I, (2.27)
Izm Izy Izz
where each one of these terms are
Ijk = Z mi(rféjk - xi,j-ri,k) (228)
i

As it is known, the trace of a matrix is invariant under unitary transformations,

therefore, the quantity that matters is the determinant of this tensor as
det(I) = =17, Iy + 2Ly loo 1y, — Ingd?, — 12, Ly + Iogdyy I, (2.29)

Finally the radii or gyration volume definition can be expressed by

4 [1-1[213 4 det([)
V= g’ﬂ' N3 = gﬂ' N3 (230)
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As discussed earlier, this definition depends on all system coordinates, and the vo-
lume variations affect each equation of motion. In order to evaluate variations of

volume for every particle and coordinate we could use

2

;&; - 2V1N3 G”) agii(f ) (2:31)
This definition is quite accurate describing cage-like structures as well as compact
structures but the real volume is always underestimated by a 20-30%. This will affect
the real pressures required to produce changes on the system. The benefit of using

this definition, it is that the pressure is included directly in the equations of motion

and makes the implementation quite efficient when compare to other definitions.

2.3.2 Volume from surface coordinates

The second group of volume definitions that we have considered takes into account
a volume enclosed by a surface. It is clear that the real volume of a system is really

described only by the surface atoms (see below).

The Quick Hull volume definition (Type IV)

A simple method to estimate the volume enclosed by a surface is the one defined
through the convex volume (applied to metallic systems by Calvo et al [13]). This
method calculates the minimal convex polyhedron that encloses the structure. First
of all, an identification of the surface atoms has to be performed, which are the
planes which form the convex polyhedron as shown in Fig. 2.7. The planes defined
from this polyhedron enclosed completely the volume of the cluster. The Quickhull
algorithm is a very fast method to calculate the smallest convex polyhedra that
encloses a point set P (for additional details we refer the reader to ref. [30]). This
algorithm is able to identify a set of planes which form a polyhedron. A major
failure in describing a structure, it is that coplanar particles or concave structures
do not belong to the surface. In our implementation, this observation has an impor-
tant consequence, the pressure can only be applied to atoms on the plane vertexes

found in the search of the polyhedron. Although these points are not considered,
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the volume of the structure is very precise and quite accurate in most of the sys-
tems we have considered in this work. Below, we will discuss the cases where this
implementation can give wrong results.

After the polyhedron has been found, the unitary vectors perpendicular to every

Figure 2.7: Vertexes of single walled carbon nanotubes are used to generate areas

and the volume approximation.

face has to be calculated. We assume that pressure is completely hydrostatic (per-
pendicular to the surface) and every face will feel the pressure proportional to the
area. After the unit vector has been found, we take the pressure as a force perpen-
dicular to the face (F£* = P - A; where A; correspond to the area) and it is applied
to every vertex by taking the pressure, multiplying it by the area and distributing
the force to each vertex (Fyzt = F¢™ /N, where N is the number of vertexes of a
given plane). This method only affects the motion equation particles, which belong
to the convex hull surface as follows

82Ti,a
i 5

:Fi,a—F{fzt a=x,y,2, 1=1,...,N (2.32)

where N corresponds to the effective number of vertexes (N < number of atoms on
the surface).

This method is not as efficient as those described earlier. Here, the evaluation of the
volume and the search of the surface atoms has to be performed for every iteration.

The volume is usually as 90-100% close to the real volume, if the structure does not
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possess concavities.

The adapted convex volume definition (Type V)

As described in the previous section, the use of an extended Lagrangian in simulating
finite systems under pressure, it is based on having a good volume description of
the structure. The best volume defined until now it is based on the convex hull
algorithm (see previous section) but it fails to describe structures with concave
geometries. Here we generalise the convex hull method by relaxing the search of the
atoms on the surface and describing them by a triangulation which encloses tightly
the structure.

In this generalisation, the algorithm could be described as follows:

e For every atom %, all triangles containing the atom and two other neighbours
(up to a given cutoff) are calculated, they are defined through a plane which
contains all three points. We discard all triangles that are inside the structure
and we called those as interior planes. For example, for a given plane (Az +
By + Cz + d = 0), we consider all particle positions (4,4, 24) within the
enclosed region (inside the given cutoff) and evaluate the plane equation on
every one of those atomic coordinates as follows Az + Bys + Cz4 +d = 6,
the plane is discarded if § > € for any of the coordinates considered, where ¢

is a tolerance parameter.

e Considering all remaining planes, the algorithm neglects planes with a normal
vector directed towards the interior of the structure. Also the triangles that

contain another triangle are deleted.

e At this step, all surface triangles that intersect its area with another previously

considered are deleted.

e Finally, the areas, normal vectors and vertexes associated to each remaining

triangle and volume of the structure are calculated.

An example of this algorithm applied to a structure (the same system used in pre-

vious section) is shown in Fig. 2.8. The external pressure is applied to the system
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Figure 2.8: The same SWCNT is used in Fig.2.7, but now considering the triangu-

lation surface method.

as in the fourth definition: taking 3 vertexes we can define a plane with a normal
vector associated to it. The force applied on each plane is defined as Ff*' = P - A;
where A; correspond to each area. Subsequently, the force is distributed on the
vertexes(atoms) related to the area at same proportions. Equations of motion are
obtained by adding this external force to the atomic interactions:

2
(9 Tia

miW:E,a_F;’?Zt a=z9z2 i=1,...,N (233)

where N is the effective number of vertexes (N number of atoms on the surface).

In general, this method could be applied to several kind of structures, hollow or
compacted systems, but it doesn’t work correctly with structures with big concavi-
ties. In our work, we are going to consider structures that don’t have these kind of

problems.
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2.4 Classical pressure reservoir method (Type VI)

In all methods previously mentioned, we have considered an extended Lagrangian
adding a term “PV”, where volume is evaluated from all atoms or atomic coordinates
on the surface. Nevertheless, we also can study pressure effects on finite systems
using a more realistic method and corresponds to a variation of a method proposed
by Martonak et al [14] and originally applied to cluster amorphization (SizsHss).
In the original implementation, a classical pressure reservoir is put in contact with
a cluster (energetically described by first principles). The cluster and the liquid
interact classically by fixing the least number of parameters. The liquid serves as
a system providing an approximately hydrostatic pressure (if there is a constant
density). The equations of motions are derived from classical potentials for the
liquid and depending on the cluster description, the potential energy for the cluster
is obtained from ab initio, tight-binding or even classical potentials (as done in this
work). The main constraints in this method are the system size and the maximun
pressure limits. The liquid particle numbers has to be large enough to minimize
pressure gradients. The interaction potential parameters are not known before the
simulation, therefore some testing has to be performed to avoid liquid particles to get
into the cluster. The liquid is represented by a pure repulsive potential embedded
in a large box with periodic boundary conditions. The Lagrangian representing the

coupled system is defined

=3 [y o] + 32 -
Nn

> Vin(Ri - X;) - zn: Vi (Xi — X;) (2.34)

1, 1<y

where R; and M, are coordinates and masses of cluster atoms and X; and m,; are
coordinates and masses of liquid particles. From this Lagrangian, the equations of
motions for every particle in the cluster and liquid are obtained.

In order to obtain a hydrostatic pressure, the liquid system particle number must be
large enough and also it has to be able to flow quickly to avoid pressure gradients.
In the case of pure repulsive potentials, it is well known that for high densities, the

liquid could crystallize and the user has to be aware on the choice parameters. They
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have to be chosen far as possible from this regime.

The liquid particle potential is a purely repulsive soft-sphere potential V,_; =
<€(”LT*L)12 where o7 1 is a strength parameter of interaction between two liquid
particles. From this potential form, the equation of state has been calculated [23]
as

p= ") (23)
L

where p is the pressure, T is the liquid temperature and the reduced density, z, is

given by

N;o3 1/4
- L"L*L( ¢ ) (2.36)

TR0 kT
It was shown that the liquid system crystallises at x = x. ~ 0.8, where £(z.) ~ 20
and it is at a dilute regime at  ~ 0 or £ ~ 1 [23]. Note that changing the different
system parameters, box size, temperature and particle numbers, the liquid pressure
changes. A snapshot of simulation for the case of Cgg is depicted Fig. 2.9 (Number
of particles: 312, box size: 36.5° angs.).
The cluster-liquid interaction is also represented by a purely repulsive soft-sphere
potential Vo_p = €(?%<%)'? where o¢_y, is a suitable parameter. This potential
has to be large enough in order to prevent possible penetration of liquid particles
inside the cluster when high pressures are applied. However this parameter must be
suficiently small to avoid a dominant interface tension energy.
Another parameter is the liquid mass, which must exhibit a low value to allow the
liquid to adapt to rapid changes and large enough to consider a reasonable time
step in our simulations (A more detail presentation of this method and discussion
on how to choose the parameters is in Ref. [23]).
In general, parameters are chosen by experience and some previous testing has to

be performed before any calculation.
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Figure 2.9: Example of Cluster into a liquid system with a detail of the Fullerene
Ceo (Number of particles: 313, box size: 36.5° angstroms and T: 600 K)



Chapter 3

Implementation

In this chapter we present the algorithms used to model the dynamics under pressure
using all diferent approaches introduced in the previous chapter. Qur programming
language chosen to implement the code has been FORTRAN 90. Different modules
were build for every one of these methods and the numerical algorithms for solving
the dynamical equations. Simulations were performed in personal computers pen-
tium V with 1 GHz of RAM and a cluster of compute nodes Atipa of 1 Ghz.

We have also divided the implementation of the method in two programs: the first
one considers the total coordinates dependence scheme and the volume definitions
from surface coordinates. In both cases the structures considered are a non-periodic
Systems.

A second program was made to include the classical pressure reservoir method which

is a periodic system.

3.1 The extended Lagrangian method: total coor-
dinates and surface dependence algorithms

Here we include two approaches to calculate the structure volume; the total coordi-
nates and the surface dependence methods in the same section. This is because both
methods consider similar algorithms like the integration method and they have com-

mon parameters. Besides, the computational cost associated to the particles number
28
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is lower than the classical pressure reservoir.

3.1.1 Program flux diagram

Fig. 3.1 summarizes the simulation used in the Lagrangian extended method. We
have to consider at least two files as program input files: the initial coordinates of
the system and the parameters selected. These parameters are: external pressure,

temperature applied, volume definition considered, simulation time, etc. During the

INPUT OQUTPUT

- Coordinates - Trajectory
- External pressure - Internal pressure
and temperature and temperature
- Volume definition - E(t), V(t)
- Simulation time
N
oV Yes

> 3??,3

ﬂ o Pea:t Temt — {ri}

Fgan:t
—> —

Figure 3.1: The flux diagram of the dynamic simulation. The initial coordinates

and the parameters are given to the program as input files.

internal process, our algorithm evaluates the interatomic forces, the process selected

to apply the external pressure (af—,v or F2'), the application of a thermal restriction,

etc. The simulation gives the user several output files, like for example: trajectory,

energy, volume structure, internal pressure and temperature as function of time.
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3.2 Classical pressure reservoir method

In this method we have considered periodic boundary conditions. The finite system
is embedded in a liquid system that provides the external pressure according to their
parameters.

The program requires the cluster initial coordinates and the parameters of the si-
mulation. The parameters considered are cell parameters, temperature of the liquid
system and parameter of interaction o5 between liquid particles. The choice of
those, predefined the pressure used into simulation.

The output files are the same as in the previous section: trajectory, energy, volume,
temperature, pressure,etc. Every case, the liquid is relaxed until the equilibrium is
reached, the inner particles are replaced by the cluster and keeping it fixed until the

system is again relaxed.

3.3 The integration algorithm

The integration of equations of motion have been calculated using the method called

Verlet-algorithm [25,26]. This algorithm calculates positions and velocities as fol-

lows:
At At VAN
Gi(t+ =) = Tt — =) + F(1) = 1
B+ 5 =t - 50+ R (31)
. . . At
. 1], At At
i) = 3 [ - 5 + e+ 5] (3.3
where the previous velocity is defined by
A 1
st - 30 = 3 ) ~ i - A1) (3.4

According to the method applied to include the external pressure, the total force
on the atom i could be F; — Pm% as described in eq. 2.3 if the total coordinates
dependence scheme is considered, or it is F; — F** as in eq. 2.32 if the surface coor-

dinates method is used.
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3.3.1 The temperature control

The temperature of the system can be adjusted by using the rescaling velocities
method [27]. This method can be added to the Verlet’s integration method scaling

the velocity (t — ) by a factor 8 as follows:
Uit + =) = 6t — —-) B+ Fit) — (3.5)

where the factor 3 is equal to
3(N — 1)kT, =
SO Gl (8)2(t — 5)

T, is the required temperature, N is the number of particles and m is the atomic

B = (3.6)

mass. We have considered a (N — 1) factor because the total momenta of the
system is zero. This procedure is performed every p iterations and this frequency
is diminished each 1000 iterations until rescaling is not necessary to maintain the

temperature of the system.



Chapter 4

Results

4.1 Fullerene Csy under external pressure

As a prototypical cage molecule and symmetric
structure, we have studied the effect of external
hydrostatical pressure applied to an individual
molecule of Cgy [28]. This novel structure has
been discovered some years ago and it has been
widely studied mainly due to its novel physico-
chemical properties and possible applications in
several areas. An schematic representation of
the truncated icosahedral structure of 60 carbon
atoms under hydrostatical pressure is shown in
Fig. 4.1.

We have applied all different methodologies in-

Figure 4.1: The fullerene Cgy un-

der pressure.

troduced in the previous chapter (even a non-classical tight-binding simulation) in

order to discriminate the performance and the physical meaning of every one fo the

discussed methods. In this context, we included as the basic comparison from the

algorithm proposed and implemented by Martonak et al [14]. They have consider a

tight binding energy approximation to the cluster and a classical interaction between

the liquid and cluster.

32
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The conditions established for these simulations are:

e For type II (the average interparticle description of cluster volume), we have

obtained the initial volume from the initial gyration radii (type III).

e Total simulation time: 100 ps for types I, IT and III and a time step of 0.5
fs. Types IV, V, and VII were simulated with a total time of 20 ps with a
time step of 0.5 fs. The method VI has been applied considering a total time
of 20 ps with a time step of 2 fs. All cases have been relaxed by 5 ps before

statistical data collection.

e Definitions I, II, III, IV, V were considered in an isobaric ensemble. In the
types VI and VII the dynamic simulations consider an isothermal-isobaric

ensemble due to the nature of these models.

The left hand side of Fig. 4.2 shows the normalized average volume change as
function of the applied external pressure and after equilibrium has been reached.
The right side shows a table of critical pressures associated with each definition. We
have defined the critical or unstable limit when the fullerene suffers an amorphization
so it never returns to a relaxed equilibrium, and the cluster breaks down or collapses
due to carbon-carbon bond irreversible breaking. All the curves are depicted in
Fig. 4.2 until before the unstable limit, except in cases I and VII where they
are beyond the pressure (135 GPa in type I) or the volume ratio (0.88 in Type
VII) ranges considered. As seen in this figure, depending on the volume definition,
the predicted pressure collapse value for the Cgy fullerene structure is different.
In order to compare the physical behaviour of all different volume definitions, we
have considered the trajectory obtained in each simulation and we have taken into
account the volume definition of method V (the adapted convex volume definition) to
generate the curves reported in Fig.4.2. Methods II, III and IV and VI (tight binding
simulation) predict that Cgo collapses at pressures around 35-40 GPa, compared to
the 137 GPa predicted by the first method (type I), 28 GPa predicted using method
V and 17 GPa obtained with method VII.



4.1. Fullerene Cg, under external pressure 34
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Figure 4.2: Changes of volume as a function of pressure for the different volume
definitions considered for a Cgy molecule. The curves were plotted until the last sta-

ble configuration. The right hand side shows the critical pressure of each definition.

The atomic volume definition (type I) shows that the fullerene Cgq is stable until
pressures around 130 GPa. If we compare this behaviour with the reference method
(type VI tight-binding) and the rest of the other methods, it is clear the difference
in the pressure for diffrent volume definitions. Type II establishes that Cl is stable
up to 42 GPa, whereas the third case, Type III, reveals that the system maintains
its stability at pressures lower than 40 GPa. The Volume defined from the surface
coordinates (type IV) is stable until reaching 35 GPa. The adapted convex volume
definition (type V) has a limit close to 25 GPa. The classical pressure reservoir
approach (type VII) is stable until 15 GPa of external pressures.

Methods II, III, IV, exhibit critical pressures similar to the predicted pressures us-
ing tigth-binding calculations. tight-binding method. The method V indicates a
lower critical pressure than the reference method, but this could be for a different
reason. The reference method has considered an external pressure given by a clas-
sical reservoir, in which the pressure on the whole structure is equal, in average,
to the external pressure, where as for the adapted convex volume definition, each
face (defined by three vertexes) distributes the force applied on its surface to each

vertex atom. In this context, it is feasible to expect a critical pressure less than
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in the reference case due to the fact that the supported pressure in every face is
exactly equal to the applied pressure. In definition VII (classical approach of the
pressure reservoir), we have found that the particle number in the liquid system is
critical in order to avoid gradient pressure effects. This could be the main problem
of this approach and the reason to obtain a smaller value of a critical pressure and
a smaller critical volume ratio. In the case of type IV, we obtain a pressure that is
close to the methods II, IIT as well as the reference method (Even though, there is a
potential problem). The faces are defined by the minimal number of vertexes used
in the convex volume definition excluding coplanar points and points that belong to
the concave surface, and we think, this effect can change details of the dynamics.
In addition, the reference method, obtained using a tight binding calculation to de-
scribed which is embedded in a pressure reservoir, has to include a large number
of liquid particles so the simulation time increases by a large factor respect other
methods.

In order to verify the equilibrium relaxation, we have followed the volume changes
and internal pressure as function of time for type III as shown in Fig.4.3. It is
clear, that volume and pressures oscillate around the equilibrium value as function
of time. The dynamical behaviour reveals several vibrational excitations on the
fullerene, with decreasing radial amplitude as function of pressure. This is a clear
indication, that forces in the radial direction are responsible of maintaining the clus-
ter in equilibrium until the pressure is larger than the extended forces that are not
able to keep the fullerene structure.

It is clear from our analysis, that type I and type II predict in agreement the dynam-
ical behaviour of caged structures under pressure but they overestimate the critical
pressure required to break the structure.

From now on, we will not include these definitions (except type II in next section)
in our subsequent calculations. When a finite system is submitted to a large hy-
drostatic pressure, “anisotropies” can be part of the dynamics and a method which
contains those features is more relevant. In the case of type IV, as long as the
structure does not show concave behavior, the method is well adapted; but as we

shown in other examples, concave geometries are quite frequent and this method
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Figure 4.3: Pressure and volume as functions of time for Cgy at 600 K. The applied

external pressures are 10 GPa and 40 GPa as shown in the insets

could lead to wrong conclusions.
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4.2 SWCNT under external pressure

In this section, we have considered the effects of an external pressure on single salled
carbon nanotubes (SWCNTs). These novel structures identified by Iijima [38] have
been widely studied due to their fascinating properties and applications in several
fields. These structures are produced by several methods like: Carbon arc dis-
charge [39], pulsed-lased vaporisation [40], chemical vapour deposition [41,42], etc.
The theoretical stability and electronic properties of these structures have been re-
ported but in several papers [32,33], but mos of the studies have been performed in
a periodic frame. In this situation, the tube is considered as an infinite open tube
along the tube axis, i.e. without caps.

Pressure effects on SWCNTs have been also studied considering a periodic frame-
work [35,36]. A measurement of the SWCNT compressibility in a hexagonal closed
packing lattice of 1.4 nm diameter tubes has been reported by Tang et al [34] and
found a stability upper limit of 4 GPa to an external pressure.

The properties derived from periodic models could be different from the finite case.
In this work, we consider a caped carbon nanotube armchair (5,5) (as the ones shown
in Fig. 4.5), The cap is obtained by introducing carbon pentagons and hexagons
in a spherical shape (half Cgp). The (5,5) nanotube has been used to demostrate
different effects of two volume definitions: the average description of cluster volume
(type II) and the volume from gyration radii(type III).

As discussed previously in chapter 2, these definitions affect the equations of motion
in a different form. One of our goals it is to show the mechanical deformation of
a SWCNT as function of pressure. In the case of a nanotube, this deformation is
larger than in Cgg fullerene and happens in both axial and radial directions. In Fig.
4.5, we have considered an armchair nanotube with 370 atoms. It has a diameter of
7.1 Angs. and a length of 45 Angs.

The conditions of these simulations were:

e Total simulation time: 15 ps. First 5 ps. for relaxation, 10 ps of statistical

data collection. The time step is 0.5 fs.
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e The simulation was developed considering an isobaric ensemble (no tempera-

ture restriction).

e Whereas the dynamic behaviour is controlled according to each volume definition

(the term %), the calculated volumes have the same definition in both cases:

the volume from gyration radii.

e The Initial volume V; given as parameter in definition II and calculated accor-

ding to definition III.

The Figure 4.4 shows a comparison of the deformations experienced by the nano-
tubes as function of pressure for the two volume definitions (type II and type III).
The volume change (a) and the total energy (b) are shown as functions of the hy-
drostatic pressure until a critical pressure, in which the nanotube collapses. The top
graph indicates that depending on the volume definition, the deformation results in
a different value, which is not the case for Cyy, where no anisotropy is present. In
the case of the average distance volume (type II), the critical pressure is much lower
than the case of the gyration radii volume. This is mainly due to the fact that in
the former case, the volume is mapped on a spherical shape and there is no record
on the volume itself to have that symmetry.

The energy per atom, on the right hand side of this graph, confirms the different
effects of each simulation. Initially, the two volumes show similar behaviour (almost
a linear change of total energy as function of pressure) but the system starts to
experience different behaviour as the pressure increases. Thus the nanotube starts
feeling different dynamics with respect to the main axial direction. Phonons along
the tube axis are excited more efficiently if the volume definition accounts for the
asymmetry. These phonons are able to aid the tube stabilisation and the critical
pressure occurs at a higher value. We conclude that the volume definition type
IT is unable to reproduce physical behaviour in anisotropic structures for extreme
pressures.

From Fig. 4.4, one could observe the nonlinear volume dependence of the pressure,
which is an important feature of systems that are not in thier elastic regime. The

deformation occurs in the axial direction, where there is a compression and on the



4.2. SWCNT under external pressure 39

i iH
L '5 =+ Vol. Type I | B
L \:‘\\ L & © Vol. Type IIT|
\\ n\ :2 :G.)
099 Ny Tl e 3
2 S~ g g
- S w8 1§
>C) \\ N 'g Ig
b .
\0.98— \\ "P 1=
> AN (BN |
\E i ’fl\\ i
e ~ I
0.97 - \ . :
L vl % I
0.96 — u] S
1 ‘¢
r ]
0.95 \ | ! \ L
70 1 2 3 4 5 6

Pressure[GPa]

—6.86

= L 1+ |+
> i"" i~-—|
QO 688 — 5 = £ Vol. Type I1 E
‘g‘ 69, :'_| (3--€)Vol.TypeHI:’_|
T 10 Qo
® 0 6 7
—6.92 rQ - e
) I © - I's
Y L ua @ I
Q goal- 1 i '
& 1l . =
I rl !D /~ !D
] ’ :
] [ ! ,f® !
2—698 - / v i
L - I
Q . ;
N e i
F g ! !
.S 102 b ,—g/’ ! !
0] | i ! !
B 70l \ I ! | | f
0 1 2 3 4 5 6

Pressure|[GPa]

Figure 4.4: (a) Volume as a function of pressure for a caped (5,5) nanotube.(b) Total
energy per atom for a caped (5,5) after a relaxation of 5 ps. The curves were drawn

until experiencing unstable configurations.

nanotube center where there is a transition to a peanut shape. The caps does not
show any deformation (remember that Cgy collapses at around 35 GPa). Finally,
a summary of the structural changes caused by an external hydrostatic pressure
applied to a (5,5) nanotube are presented in Fig.4.5. The dynamical simulations
corresponds to the isobaric ensemble that uses definition III.

This figure (4.5), starts with the initial nanotube enclosed by caps obtained with

hexagons and pentagons. When the hydrostatic pressure increases, the middle of the
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Figure 4.5: SWCNT at different external pressures.

nanotube starts to be compressed, affecting of the radial pressure and the pressure

This effect can be attributed to the anisotropy of the tube

exerted at the caps.

This fact can be clearly observed when

which provides a rigidity along the tube.

the pressure increases until a critical value of collapsing.

Another interesting simulation approach would be to consider the definition of vo-

lume according to the adapted convex volume, because it could maintain a pressure

on each face defined on the surface that can be convex or concave. This calculation

is not included in this work.
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4.3 Nanodiamonds under external pressure

A type of compact carbon structures is a diamond-like cluster also called nano-
diamond. They can be found in different symmetries and they can have different
reactivities depending on how their surfaces reconstruct. In order to use this type
of system various volume definitions should be tested. We have started considering
a spherical nanodiamond, which is built by taking a crystalline carbon diamond
system and resahping it into a spherical cluster by a given radius. The geometry is
optimized by using tight-binding methods, in order to relax the structural surface.
After a nanodiamond has been obtained, we use this as input file in our simulation.
The dynamical simulation has been performed by using the volume definition III
(or volume generated from the gyration radii). This was chosen due to the results
obtained from our previous analysis of Cg, and single walled carbon nanotube simu-
lations.

The conditions applied to these simulations were:

e The dynamical simulations correspond to an isothermal-isobaric ensemble.

e The simulation time is 15 ps: 5 ps. of relaxation and 10 ps to collect the

statistical data.

e The temperature of the system is scaled with a velocity Verlet algorithm every

30 iterations.

Using the volume definition called gyration radii definition (Type III), we have stud-
ied finite carbons systems. To perform this study we have considered two nanocrys-
tals of carbon diamond; the first one considers a system of 441 atoms and the second

is the same system but without a central atom (440 atoms).

4.3.1 Nanodiamond A

The conditions applied to this nanocluster are: external pressure of 50, 100, 200
GPa and temperature of 300 K, 600 K and 900 K.

Our first observation is basically that the nanodiamond suffers a transition from the
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Figure 4.6: (a) Model of a nanodiamond with 441 atoms.(b) Amorphous phase at
temperature simulations of 300 K, and 10 ps of data were collected after 5 ps of

relaxation.

ordered structure (sp® hybridisation in volume) to a more disordered phase, with
sp and sp? present. This transition occurs at 100 GPa. The predictions on the
transition depend on the method used. For example the method of atomic volumes
(type I) predicts a transition structure at pressures higher than 200 GPas whereas
method II and III show a different critical pressure. We should conclude that the
most accurate volume definition we have used predicts transition at a pressure close
to 100 GPa. Figure 4.6 shows the initial and the final configuration of the nanodia-
mond after applying a pressure of 100 GPa.

In order to characterise the quality of the amorphous carbon structure obtained from
our simulation, we have performed an analysis of the average coordination number
as function of pressure and temperature (see table 4.1). The second column corres-
ponds to the initial percentage of coordination numbers. We notice that there is an
important variation when the external pressure changes from 50 to 100 GPa (at 300
K). It is noteworthy, that the temperature helps to obtain rather uniform amorphous
carbon, The number of carbon with coordination number 4 has decreased from 58.7
% to 20.2 % at 50 GPa-300K and 100 GPa-300K respectively (see table 4.1). The
number of carbon atoms with coordination 3 has been enhanced, showing the strong
amorphization happening in the sample. There is no major change between 600 K

and 900 K, indicating that the system is stable. This has important implications
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on the manufacture of disordered systems (which are very interesting due to its
electronic properties and applications to integrate biological systems with electronic

devices [60]).

Table 4.1: Percentage of coordination number in Nanodiamond A
N  Initial 300 K 600 K 900 K

Pressure [GPa]

50 100 200 50 100 200 50 100 200

0.0 0.0 00 007} 00 00 0.01]00 00 0.0
0.0 04 02 00| 04 02 02]04 02 02
5.4 73 107 116 | 14.1 152 125|219 152 125
37.2 33.6 483 48.5 | 65.3 587 51.9|69.9 58.7 51.9
57.4 58.7 40.8 399 ]20.2 259 354 | 7.8 259 354
0.0 0.0 00 00} 00 00 0.09]00 00 0.0

Tt = W NN = O

— Nanodiamond (441 atoms)
F , --— 50 GPa
I —-- 100 GPa
2 ! < 200 GPa
! — Amorphous Carbon

2 3 4 | 5 | 6
r[Angs. ]

Figure 4.7: Reduced Radial Distribution Function of nanodiamond A (441 atoms)

under external pressure at 300 K.

In order to describe the transition of nanodiamond to an amorphous phase, we have

calculated the reduced radial distribution function (RDF) of the system before and
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after the pressure is applied and compare it with the RDF of a model of amorphous
carbon [61] (a discussion on how RDF is calculated is presented in appendix I).

It can be seen from Fig 4.7 that between 50 GPa and 100 GPa there is a transition
from the diamond phase to an amorphous one. The radial distribution function of
our amorphous nanodiamond is in good agreement with the amorphous phase until
the 4" peak position. After that distance, the surface effects of our finite system

starts to appear, thus contributing to different peaks.



4.3. Nanodiamonds under external pressure 45

4.3.2 Nanodiamond B

In this case we have considered the effects of external pressure applied on a nanodia-
mond without the central atom (440 atoms). We have also calculated the percentage
of coordination number which is shown in table 4.2.

We have performed dynamical simulations considering pressures of 100 GPa, 200

GPa and 300 GPa and temperatures of 300 K, 600 K and 900 K. As we can see, in

Table 4.2: Percentage of coordination number in Nanodiamond B
N  Initial 300 K 600 K 900 K

Pressure [GPa]

100 200 300 100 200 300 100 200 300

0.0 00 00 00|00 00 00700 00 00
0.0 00 00 06|02 00 02|10 08 14
5.5 11.8 109 116|145 15.1 13.1|20.0 18.7 15.8
38.2 51.4 509 51.0|62.5 52.6 49.6 | 67.1 649 60.1
26.3 36.8 382 36.8|22.7 323 36.5|11.8 14.9 21.5
0.0 00 00 0400 00 06|01 07 1.2

Tt = W N = O

this situation, hydrostatical pressure effects have been observed and they produces
a change of the percentage of coordination number 3 and a diminishing of coordi-
nation number 4 respect to the initial conditions (second column).

The temperature also favours an amorphization of nanodiamonds, thus altering the
changes of the carbon coordination numbers. The lack of a central atom reveals a
diminishing of the coordination number 4 respect to the nanodiamond A case (see
previous section), indicating that vacancies could help amophization. This result
could be attributed to an energetically instability produced by the vacancy located

in the centre of the structure.
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4.4 Onion-like carbon structures under external
pressure

In this section we have have considered a concentric fullerene system also called a
nano-onion. This cluster can be obtained by putting together several fullerens such
that the distance between two consecutives ones is of the order of 3.4 A.

The Figure 4.8 shows an example of these structures considering only 3 layers:
the inner layer is Cgp, the intermediate graphitic layer is a fullerene of 240 carbon
atoms with a diameter of 14 angs. and an external layer containing 500 atoms
(Co0@C40Q@QC500). All these structures possess icosahedral symmetry

The structural transformation of graphitic onions into diamond nanoclusters have
been previously reported by Banhart and Ajayan [43,44]. These nanocrystals were
obtained under electron irradiation from concentric carbon shells of many layers.
We have considered an onion structure of 800 carbon atoms (3 layers) and applied
an external hydrostatic pressure using the volume definition obtained with the gy-
ration radii (type III).

The systems has been considered in a dynamic simulation under pressure at different

Figure 4.8: Example of a concentric fullerene structure of 3 layers (these layers are

drawn with different colours).
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temperatures (300 K and 600 K).

Figure 4.9 shows the change of the percentage of coordination numbers in concen-
tric fullerenes and a final configuration of the nano-onion when 50 GPa of external
pressure is applied at 300 K. The second column of the table corresponds to the
initial coordination numbers where the graphitic structure is clear (all atoms with
coordination number 3). When the pressure is applied, a transition of the coordi-
nation number occurs. These effects are enhanced when the temperature is higher
and these changes favour an increase of the coordination numbers 2 and 4.

These results demostrate that the effect in this structure, due an external pressure,

N  Initial 300 K 600 K
Pressure [GPa]

50 100 50 100

0.0 09 09|12 14
0.0 124 126 | 17.3 15.1
100.0 | 64.4 475 |61.7 50.8
0.0 209 336|170 264
0.0 1.3 40 | 22 49
0.0 01 13|04 14

(o2 B S U I R

Figure 4.9: Coordination number percentage in concentric fullerenes and a snapshot

of the final structure of Cgg@QCl40@QC509 at 50 GPa and 300 K.

is the amorphization of the carbon structure. The situation occurs at both tempe-
rature (300 K and 600 K). These transitions can be seen when the reduced radial
distribution function is calculated (see fig. 4.10). This figure shows the pressure
effects at 50 GPa and 100 GPa. The amorphization of the structure is obtained
when the nano-onion is under an external pressure and obtained structures look
very similar at 300 K and 600 K. It is also clear that the nanodiamond considered
(441 atoms) has a RDF very different to these results, therefore, it is not possible
to detect the formation of diamond-like cluster using the definition type III.

One problem in our calculations, is the fact that only 3 graphitic layers were consi-

dered and Cpgg (the inner layer) is rather reluctant to break; a larger number of shells
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Figure 4.10: Radial Distribution of Onion Structure (800 atoms) under pressure
and temperature. Also it is compared with a nanodiamond of 441 atoms and a

amorphous carbon phase

should be used to make more general statements. Experiments have demostrated

that such onions contains several shells (more than 10).



4.5. Gold Clusters 49

4.5 Gold Clusters

4.5.1 Symmetries

In this section we study the effects of pressure on finite metallic systems. In par-
ticular we are interested in the structural transformations of mono-metallic clusters
under pressure.

These effects have important implications, because they could help to design nano-
sized objects with novel applications due to its surface properties or to stabilise
systems that are metastable under normal conditions. Finite systems such as metal-
lic clusters have interesting feature, for example, these structures exhibit symme-
tries (icosahedral—I, or decahedral—Dj) that are prohibited in standard crystal-
lographic systems where translational symmetry is essential (a brief introduction
about finite symmetries is in appendix 2).

Structural transitions in clusters have been experimentally reported by lijima et
al. [37]. These transformations were induced by irradiation of an electron beam on
gold particles, obtaining a transformation from single crystal to a twinned crystal
and viceversa. Since then, it is well stablished now [46], that structure fluctuations
are nevertheless thermally activated, due to its internal cluster temperature, which
is one of the most elusive experimental parameters. Temperature effects on gold
particles have been experimental and theoretically studied [47,51].

Some of these transitions could also be understood within the context of an applied
external pressure. The study of silver clusters under pressure has been recently re-
ported by Calvo and Doye [13]. In this case, they used an approach to the volume
system that depends of the convex volume [30] and they have found that structures
with fcc symmetry (Op) are more stable than structures with icosahedral (I,) or
decahedral (Dj) symmetries. The geometric characteristics of the clusters formed
by concentric layers can be considered, as formed by equivalent sites: sites located
at the same distance from the origin, which occupy the same geometric place and
have the same environment (the same number and type of neighbours). These layers
can be arranged in such a way that they group in shells forming clusters of different

sizes, retaining the original geometric structure. The number of shells in the cluster
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(a) Op, symmetry (b) I, symmetry

(c) Op symmetry (d) Op symmetry

Figure 4.11: The optimized structures and symmetry (Schoenflies notation) of gold
clusters studied in this work: (a) icosahedron and (b) cuboctahedron clusters both
with 561 atoms, (c) truncated octahedron with 490 atoms, and (d) octahedron with
670 atoms.

is called the order of the cluster. Now we know that clusters are atomic structures
formed by shells, and the concept of a magic number can be introduced [54, 55].

Several gold clusters are shown in Fig. 4.11. They correspond to the the icosahedron
(b) cluster that belongs to the icosahedral group; the most symmetrical point group
(see appendix B), whereas the cube-octahedron (a), the octahedron (c), and the
truncated octahedron (d) belong to the octahedral symmetry group. The symme-
tries of all of our final metallic structures under pressure studied here were verified
by means of a computational package [31], in order to determine accurately (and not
just visually) structural transitions. Alternatively, we have calculated the reduced
radial distribution function (RDF) curves with the same purpose (see Appendix A).
Figure 4.12 shows the G(r) functions for each considered cluster. The main infor-

mation we obtain from these curves is the average atomic distance (first, second
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and so on nearest neighbours). Therefore, changes or displacements of the main
peaks in the curves reflect different structural environments. In this case, due to the
fact that the octahedron, the cuboctahedron and the truncated octahedron have
all the same symmetry (Op; fcc packing), , and because the clusters are not still
under pressure, we observe two kind of curves, one corresponding to this fcc atomic
packing and another corresponding to a cluster with I, symmetry. In this figure,
note that, the significative differences start at the second and third nearest neigh-
bors peaks (between 5 and 6.5 A). We will use these G(r) curves as references to
detect structural transformations under pressure. First, we are going to discuss
the results for the icosahedron, the cuboctahedron, the truncated cuboctahedron,
and finally, the octahedron. As we mentioned before, besides a visual exploration
of the final structure, we performed an analysis of the structure by means of the
G(r) functions. Simulations were performed within the isobaric-isothermal ensem-
ble (NPT) with a time step 7 = 5 fs and a total simulation time of 100 ps. All the
simulations were performed at 300 K, though a more systematic study is necessary
and simulations in this direction are underway for these systems. Although in the
situations of nonperiodic compact systems, like the metallic clusters in this section,
the volume definition is not crucial (as in hollow systems). The volume definition
we have applied throughout all the simulations in this section, was definition III or

volume obtained from gyration radii.
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- CO 561
-—- ICO 561
— OCTA 670 —
—- OCTT 490

Figure 4.12: Summary of reduced radial distribution function (G(r)) of different
gold clusters studied at pressure P = 0. We have basically two curves corresponding

to icosahedral and octahedral (fcc) symmetries.

4.5.2 Icosahedral cluster

We have applied different pressure values to this cluster ranging from 0 GPa up
to 80 GPa, at temperature of 300 K and have not found any significant structural
transformations in this pressure range.

This result is expected in some way because clusters with icosahedral symmetry
are the most energetically stable at this size range [51], and Figure 4.13 shows the
G(r) function for this structure under an applied pressure value of 80 GPa, and the

only significant feature is the compactation of the cluster due to this high pressure.
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— Icosahedral
3 —- 80GPa; 300 K

Figure 4.13: (a)Radial Distribution Function of Icosahedral cluster under 80 GPa at
300K (561 atoms). Also we added the RDF of Initial configuration.(b) A snapshot

of the final configuration.

The main peaks that characterise the icosahedron cluster in the reduced RDF

curve still remain.

4.5.3 Cube octahedral cluster

The O, symmetry is the most competitive energetic atomic packing compared to
the Ij, atomic packing [55]. Both experimental [37] and theoretical [13] studies have
shown that these atomic arrangements compete between them in this small nanome-
ter range. However, for metallic nanoparticles, decahedral and icosahedral structures
are favoured in the very small size range (1-5 nm), after that the most stable struc-
ture exhibits fcc symmetry, unfortunately this structural size frontier has not been
yet precisely determined. Structural transformations from the cuboctahedron to
the icosahedron have been reported before by means of a myriad of theoretical
studies [50] and simulation methods like classical molecular simulations [45] and
experimental techniques [48,49]. In Fig. 4.14 we present structural transitions from

the cuboctahedral to the icosahedral cluster induced by pressure. We show two
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Figure 4.14: Two different symmetry axis viewpoints showing the initial cuboctahe-
dral clusters of Au (561 atoms) and at subsequent applied pressures of 5 GPa and
10 GPa at a temperature of 300 K. Note how the structural transition is induced
between these range of pressures. Third row shows their core structures (13 atoms)

that evidences the deep structural transition.

different symmetry axis snapshots of the cuboctahedral cluster showing the initial
configuration and the same for subsequent applied pressures of 5 GPa and 10 GPa
at a temperature of 300 K. Notice how the structural transition is induced between
these pressure ranges. We illustrate in the third row their core structures that ev-
idences this structural transition. Figure 4.15 shows the RDF curves that indicate
the effect of pressure within the structure. There is no doubt about the structural

transformation from cuboctahedral to icosahedal symmetry. The small shifts on the
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Figure 4.15: Radial distribution function of cuboctahedron under 40 GPa at 300K
(561 atoms). For comparison, we added the RDF of the initial configuration and
the icosahedral cluster with 561 atoms. It is evident the structural transformation

under pressure.

main peaks of the curves are consequences of the applied pressure which compacts

the structure. This transition is stable when the external pressure is removed.
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4.5.4 Truncated cuboctahedron cluster

We have performed simulations in this cluster (490 atoms) with different parame-
ters (like increasing the system temperature, increasing the pressure (0-80 GPa)
and slowly liberating the pressure down to return to 0 GPa) in order to explore if

transformations are induced changing these conditions.

Initial

b 0 . . R )
s b B B B b :
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Figure 4.16: Two different axial symmetry snapshots for the truncated cuboctahe-
dral cluster with 490 atoms at 300 K of temperature, as well as their core structures
(14 atoms). In this case, no significant structural changes are observed in the wide

range of pressures applied.
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The result of apply this simulation is presented in Fig.4.16. Although there are
not strictly structural changes on the cluster under pressure, visual exploration of
the final clusters shows some interesting features. For example, there is a surface
reconstruction on the cluster that resembles a cluster with icosahedral symmetry,
but the core of the particles still has the octahedral symmetry. Also, after relaxation
of the whole structure, it remains distorted and returns to the original configuration.
The analysis of the RDF (see Fig. 4.17)reflects only the usual shifts peaks because
of pressure effects, but not strictly structural changes in this cluster.

This transition is not stable when the external pressure is removed, and it returns
to a configuration that is similar to the truncated octahedral.

A more systematic study in this direction is underway.

4
i N == Qct. Trunc.
3 kS — 80 GPa; 600K
[y -— Icosahedral

Figure 4.17: RDF of Octahedral truncated under 80 GPa at 600K (490 atoms). Also
we added the RDF of Initial configuration and the RDF of Icosahedral cluster (561

atoms).
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4.5.5 The octahedron cluster

The last system is the octahedron cluster (670 atoms) and it doesn’t present a
significant structural change when the external pressure is applied.

Regarding the regular octahedron, after a wide range of pressures ( from 0 to 80
GPa) is applied, and at 300 K, the structure also remains with the same symmetry.
The reduced RDF and the final configuration are shwon in Fig. 4.18. We notice
some migration of surface atoms took place, creating surface vacancies and islands

and steps in other places on the surface.

— Octahedral
3 —- 80GPa; 300 K

r[Angs. ]

Figure 4.18: (a) RDF of Octahedral under 80 GPa at 300K (670 atoms) with
the RDF of Initial configuration. (b) A snapshot of the final octahedral cluster

configuration.



Chapter 5

Concluding remarks and future

work

5.1 Conclusions

We have analysed several finite systems with different models and approaches. The
objective was to obtain reliable methods that could be applied to other finite nano-
structures. These methods reveal the existence of new structures that could be
metastable under normal conditions and with different mechanical and electrical

properties under pressure conditions.

e We have used various methods to apply an external hydrostatic pressure to
finite systems. Some of these methods have been reported and others have
been introduced and tested in this work. Considering the method of extended
Lagrangian, we have found that the volume definition is important in order to

have appropriate description of the physical phenomenon.

e The study of a hollow system such as Cgy under external pressure, using all
models and volume definitions, reveals that some definitions like the atomic
volume approach is not suitable to study these kind of structures. We have
also found, that the classical description of the pressure reservoir and particle
interactions has to be carefully considered, in order to avoid the effects pro-

duced by non homogeneous liquid systems. This kind of simulation requires an

29
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enormous computational effort so it is restricted to study small finite systems.

We have also found that the Cgg is stable at pressures around 35-40 GPa.

e For single walled nanotubes, we have obtained that the average description of
volume is not suitable to study asymmetric systems. The hydrostatic pressure
effect could also be studied using the adapted convex volume definition, be-
cause it would provided a more precise description of the volume and surface
when compared to the volume obtained using the gyration radii. The stability

of these nanotubes is found at 5 GPa with no temperature restriction.

e The study of nanodiamonds applying definition IIT demostrates that an amor-
phisation process occurs when the pressure is larger than 50 GPa, and it is

more pronounced at higher temperatures.

e The study of concentric fullerene-like structures (Nanonions) reveals an amor-
phisation of the structure at 50 GPa. The process associated with this phe-
nomenon, using the volume from gyration radii, could not be precise and the

adapted convex volume would be more suitable in this tipe of structure.

e The study of gold clusters demostrates that the volume definition according
to the gyration radii allow us to detect structural transitions from octahedral
symmetry to a more stable phase with icosahedral symmetry. This transition
has been observed, considering a cube octahedral cluster de 561 atom, at 10
GPa of external pressure and 300 K. We have also found that the truncated
octahedral shows a change only in its surface, when an external pressure is
applied, due to an external pressure is applied, but these changes are not

stable when the pressure returns to zero.
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5.2 Summary of contributions

e Two suitable methods for studying finite systems under pressure are presented

and written in FORTRAN 90 code:

— The first one uses a volume definition derived from gyration radii to apply

in the total coordinates dependence algorithm.

— Considering an adapted convex volume definition, which allows us to
study concave structures. It can be applied on the surface coordinates

algorithm.

e Pressure effects on gold clusters have been sstudied using the classical mole-

cular dynamics approach.

e Structural changes on finite SWCNTs caused by external pressures have been

observed.

5.3 Future research

We have found that in order to apply an external pressure on finite systems, is
important to use an appropriated definition of the volume where the system is en-
closed.

In this work, we have analysed two kinds of structures, hollow and compact struc-
tures, obtaining that the adapted convex volume definition could be applied to
hollow structures.

In the case of the volume obtained from gyration radii definition, it has been shown
some applications in compact gold structures.

We will continue this work in the future, and some research directions are:

e Study the effects of external pressure on carbon nanotubes (finite and infinite

approach), considering the adapted convex volume definition.

e Study of structural transformation of concentric fullerene systems under pre-

ssure in order to find diamond-like structures formation.
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e The results obtained in gold clusters show the applicability of the volume
definition obtained from the gyration radii to study other metal cluster and

alloys.

e We have used a serial program code implemented in FORTRAN 90. The para-
llelisation of this program would enable us to study larger systems that have an

important computational cost using, for example, tight-binding calculations.
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Appendix A

Study on Noncrystalline Solids

We know that is very difficult to identify a kind of structure when we are considering
liquid, glass, disordered, amorphous or non-periodic systems.

In this situation, we can still extract some information. For example, we could obtain
information from diffraction patterns that can be obtained using X-ray or neutron
scattering. In both cases, we normally obtain diffuse rings on the normal incident
plane. This also ocurrs when the system has a small size so we obtain again a diffuse
pattern similar to an amorphous system. Instead of study this pattern, we can also
obtain the main structural order (for example, the distance at first neighbors).
Using a Fourier analysis of the experimental X-ray scattering curves, it is possible
to obtain a more specific information: The radial distribution function. This

could be applied to liquids, glasses, or a powdered crystalline material.

A.1 RDF

If we are considering a non-periodic system, we must express the structure factor in

its general expression:

S(Ak) =) frne ¥ (A.1)

where the sum runs over all atoms in the system, so Ak are arbitrary scattering
vectors, and f,, is the atomic form factor. The scattered instensity at scattering

vectors is expressed by:
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I=88=) " fufae®ktmrn) (A.2)

Taking the spherical average of the exponential term due to isotropic symmetry and

if we consider a monoatomic system (f,, = f, = f):

SEGEOYS =

where the sum runs over all atoms m with the exception of m = n case. After that,
we can obtain the intensity using the concentration of atoms p(r) at distance r from

a reference atom and integrating until a large radius R:

sin Kr

I=Nf? [1 + /OR drdmr?p(r) (A.4)

If we consider an average concentration py, we could separate this effect (scattering

T

from a uniform concentration) and rewrite this expression as:

R
K
I =Nf? [1 +/ dramr®[p(r) — po]sm T
0 Kr K

the second term may be neglected when R — oo(except for small angles).

R
drdmrsin Kr] (A.5)

The structure factor from a liquid monoatomic system can be defined now as

1
k)= A.
S =572 (A6)
and if we neglect the uniform concentration effect,
Sk)=1 +/ dramr?[p(r) — po]sm r (A.7)
0 Kr
at this point we define the radial distribution function g(r) as
T
otr) =27 (A8

Po
so this function is a spherically averaged distribution of interatomic distances(this

is also called two-atom correlation function). Sometimes, the function plotted is the

reduced function G(r) that is defined by

G(r) =4mrpo(g(r) — 1) (A.9)
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Also we can use again the spherical symmetry to write S(K) as a Fourier integral

of a function of g(r) and viceversa using the Fourier integral theorem.



Appendix B

Point Groups

A point group is a group of symmetry operations which leaves at least one point un-
moved. In this context, groups are classified by their symmetry operations. These
operations could be: identity, rotation respect of an axis, reflection in a plane of
symmetry, inversion and improper rotation.

Using this operations, molecules are classified in one of several point groups, and
this notation is called Schoenflies system. The symmetry in molecules can be orga-

nized as follows:

1. The groups C,C;,C;: systems that have only a plane of symmetry apart from
Identity.

2. The groups C,,: in this case n-fold axis of symmetry are possible (+ Identity).

3. The groups C,,: structures that have a C,, axis and n vertical reflection planes

o, (+ Identity).

4. The groups C),;,: These groups consider a C),, axis and a perpendicular hori-

zontal mirror plane .

5. The groups D,,: molecules that possess a C,, axis and n 2-fold axes that are

perpendicular to C,,.

6. The groups D,;: Objects that belong to D,, and consider a horizontal mirror

plane.
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7. The groups D,4: Objects that belong to D,, and consider vertical mirror planes

bisecting angles between all the neighbouring C axes.

8. The cubic groups T, O and their derivatives: sistems that have more than one
principal axis of symmetry. We have to consider the tetrahedral groups 7', T}

and T'h and the octahedral groups O and Oy,.

9. The Icosahedral groups: these molecules contain Icosahedral and dodecahedral

symmetries.

10. The full rotation group Rj3: this systems have the group of operations shown

by a spherical object.

The crystal symmetry is also classified and is given by the Hermann-Mauguin system.
If we want to consider translational periodicity, some point groups, like Icosehedrals,

are discarded and the new summary containing 32 groups is:

Type Symbol

Non Axial C;, C

Cyclic C4, Cy, C3, Cy, Cg
Cyclic with horizontal planes Con, Csp, Cup, Cep
Cyclic with vertical planes Coyy Csy, Cuyy Cey
Dihedral Dy, D3, Dy, Dg

Dihedral with horizontal planes Dy, D3y, Dyp, Deyp,
Dihedral with planes between axes Dyg, D3q4

Improper Rotation S, Se
Cubic Groups T, Ty Ty, O, Oy

Figure B.1: Crystallographic point groups.





