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Abstract

One of the most active areas of physics in the last decades has been that of critical phenomena,
and Monte Carlo simulations have played an important role as a guide for the validation and prediction
of system properties close to the critical points. The kind of phase transitions occuring for the Betts
lattice (lattice constructed removing 1/7 of the sites from the triangular lattice) have been studied
before with the Potts model for the values q = 3, ferromagnetic and antiferromagnetic regime. Here,
we add up to this research line the ferromagnetic case for q = 4 and 5. In the first case, the critical
exponents are estimated for the second order transition, whereas for the latter case the histogram
method is applied for the occurring first order transition. Additionally, Domany’s Monte Carlo based
clustering technique mainly used to group genes similar in their expression levels is reviewed. Finally,
a control theory tool –an adaptive observer– is applied to estimate the exponent parameter involved
in the well-known Gompertz curve. By treating all these subjects our aim is to stress the importance
of cooperation between distinct disciplines in addressing the complex problems arising in biology.
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Resumen

Una de las áreas más activas de la Fı́sica en las últimas decadas ha sido el tema de fenómenos
crı́ticos, y las simulaciones Monte Carlo han jugado un papel importante en la verificación de estudios
teóricos y la predicción de las propiedades de sistemas. Los tipos de transiciones de fase que ocurren
en la red de Betts (red construida al eliminar 1/7 de los sitios de la red triangular) fueron estudiados
con el modelo de Potts para los valores de q = 3, en el régimen ferromagnético y antiferromagnético,
y q = 4 y q = 5 en el caso ferromagnético. Los exponentes crı́ticos también fueron estimados para las
transiciones de segundo orden. Adicionalmente, una técnica de agrupamiento basada en el método
Monte Carlo y utilizada generalmente para agrupar genes con comportamiento similar fue revisada
y, finalmente, una herramienta de teorı́a de control –un observador adaptable– fue aplicada para
estimar algunos parámetros involucrados en la muy conocida curva de Gompertz. Estos últimos
temas fueron incluidos con el propósito de enfatizar la importancia de la cooperación entre distintas
áreas para poder atacar problemas desde una nueva perspectiva.

xix





Introduction

“Minerals grow, plants grow and live,
animals grow, live and have feeling.”
Linnaeus, “Systema Naturae”, 1735

Monte Carlo simulations have been used for many years to study the properties of physical mod-
els, and have also played a significant role in statistics, biology, computer science and other fields,
demonstrating its versality and powerful approach. Furthermore, many advances in computation al-
gorithms and computer technology have made possible to study systems which would be impossible
to examine only a few years ago. The first part of this thesis aims to give a brief explanation of the
Monte Carlo method, a review of the principal algorithms used, the study of phase transitions, finite
size scaling theory and finally, some results obtained with the Potts model for a recently proposed
lattice named Betts or Maple Leaf lattice.

Since the discovery of the helical structure of DNA and various complete genome sequences,
biology has seen also an enormous advance. However, it seems that the only way to solve the com-
plex problems raised in the study of biological systems is to share the challenge with other scientific
disciplines such as chemistry, physics, and computer science. Research on cancer is one of the most
important and interesting subjects in Biology. This terrible disease has received tremendous attention
in the last part of the XX century, because of the huge amount of cases and the technological ad-
vances in analysis and medical treatment of tumours. Despite the efforts of the international scientific
community, there are many unanswered questions related to the evolution of the cancer diseases,
the causes that trigger them, the prediction of drugs and treatments effects, and the development of
an effective cure. The introduction of the Monte Carlo method into biological problems has brought
interesting results including the modeling of the structure and evolution of a epidermis cell nuclei, re-
producing cancer growth.

The second chapter reviews the clustering techniques commonly used to group genes with similar
behaviour in their expressions across various experiments, which helps in the construction of genetic
networks and targeting of genes involved in diseases like cancer. The superparamagnetic gene clus-
tering algorithm is also explained as an example of a clustering technique that employs the Monte
Carlo method and is based on a physical phenomenom, leaving the subject to future implementation.

On the other hand, mathematical procedures, in particular models based on differential equations
whose terms can represent not only the growth rate of a tumour, but also the growth or inhibition rates
of substances existing in the medium or cell-cell interactions, provide an excellent tool to describe
biological processes. There also exist empirical models that have proved to be very useful in fitting
the experimental growth curves of tumours. The Gompertz model is a famous one, although there is
not a convincing explanation of why it works so well. The Gompertz growth law has been introduced

1



INTRODUCTION

by Benjamin Gompertz in 1825 in his demographical studies, and in mathematical terms is written:

λ(a) = h0eγa, (1)

where λ(a) is the mortality rate.

The main problem is that the biological interpretation of its characteristic parameters is not very
well settled. A link of these parameters with the biological phenomenology, if found, would make the
Gompertz model extremely valuable as a predictive tool. The third part of this thesis discusses some
of the most important models based on differential equations and gives a more complete idea about
the formulation and applications of the Gompertz model, and finally presents a method based on
control theory capable of accurately predict the first stages of Gompertz growth.

The main purpose of this work is to emphasize the importance of an interdisciplinary research.
Nowadays, it is clear that many problems inherent to the biology field need to be adressed with tools
coming from areas such as computational physics and applied mathematics.
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1.1. BRIEF HISTORY OF THE MONTE CARLO METHOD

1.1 Brief History of the Monte Carlo Method

The first electronic computer, ENIAC, was developed during the World War II period by a group of
scientists working at the University of Pennsylvania in Philadelphia. They had realized that if electronic
circuits could be made to count, then they could do arithmetic and hence, solve difference equations
at incredible speeds. This would lead to a scientific revolution because it would give the possibility to
study problems unsolved before due to the large amount of calculations needed.

In 1946, Stanislaw Ulam, a mathematician working in Los Alamos, attended a conference about a
preliminary computational model of a thermonuclear reaction probed in ENIAC as a test for the com-
puter. Like other scientists, he was impressed by the speed and versatility of the ENIAC. Additionally,
Ulam’s extensive mathematical background made him aware that statistical sampling techniques that
had fallen into disuse because of tediousness of calculations, could be resuscitated with ENIAC. The
basis of the Monte Carlo method has been proposed later by him as a consequence of his interest in
random processes. As Stan Ulam mentioned in 1983, his first thoughts and attempts to practice the
Monte Carlo method were suggested by a question that occurred to him in 1946 as he was playing
solitaires. The question was what were the chances that a Canfield solitaire laid out with 52 cards
will come out succcessfully? 1. After spending a lot of time trying to estimate them by pure com-
binatorial calculations, he wondered whether a more practical method might not be to lay it out say
one hundred times and simply observe and count the number of successful plays. He immediately
thought about how to change processes described by certain differential equations into an equivalent
form interpretable as a succession of random operations [1]. Ulam discussed his ideas with John von
Neumann, Professor of Mathematics at the Institute for Advanced Study at Princeton, who was also
a consultant to Los Alamos and one of the principals participating in the ENIAC probe conference in
1946. Von Neumann saw the importance of Ulam’s approach and thought that it seemed especially
suitable for exploring the behaviour of neutron chain reactions in fission devices. In March 1947, von
Neumann wrote to Robert Richtmyer, the Leader of the Theoretical Division at Los Alamos, describ-
ing a possible statistical method to solve the problem of neutron diffusion in fissionable material using
the newly developed electronic computing techniques. It was at that time when Nicholas Metropolis
suggested the name Monte Carlo for this statistical method. It was related to the fact that Stan had
an uncle who would borrow money from relatives because he “just had to go to Monte Carlo” [2] and
also because of the similarities between the method and the games of chance abundant in the capital
of Monaco, the european center of gambling.

Very similar methods, not fully developed, had been used earlier. An example is Buffon’s needle
problem, an experiment performed in the middle of the eighteenth century, which represents one of
the first problems in geometric probability. It consists in throwing a needle randomly on a board with
parallel lines, and inferring the value of π from the number of times the needle intersects a line [3];
nowadays, Buffon’s needle problem is practically solved by Monte Carlo integration. Descriptions of
several modern Monte Carlo techniques appear in a paper by Kelvin [4], written nearly one hundred
years ago, in the context of a discussion on the Boltzmann equation. In the 1940’s, Enrico Fermi
also used Monte Carlo in the calculation of neutron diffusion, and later designed the Fermiac, a Monte
Carlo mechanical device used in the calculation of criticality in nuclear reactors [5]. Ulam’s contribution
was to recognize the potential for the newly invented electronic computer to automate such sampling.

The approach proposed by von Neumann in his letter was the first formulation of a Monte Carlo
computation for an electronic machine. Von Neumann considered a spherical core of fissionable ma-
terial surrounded by a shell of normal material, and the idea was to trace out the development of

1Today is quite well known that the chance of winning is low: 3.3% (www.games.solitaire.com)
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CHAPTER 1: MONTE CARLO SIMULATION IN STATISTICAL PHYSICS

Figure 1.1: Stanislaw Ulam (1909-1984) [17].

neutrons using random digits to select the outcomes of the various interactions along the way, such
as scattering, absorption and fission. For example, once a neutron is selected to have an initial po-
sition with certain velocity, you have to decide the position of the first collision and the nature of the
collision. If you select a fission to occur, then the number of emerging neutrons must be chosen, and
each of the new neutrons is followed too. On the other hand, if you decide that the outcome of the
collision is scattering, the new momentum of the neutron must be determined. If the neutron crosses
a material boundary, the characteristics of the new medium must be taken into account. At the end, a
genealogical history of a neutron emerges. The same procedure is carried out for other neutrons until
a statistically valid picture is obtained. Each neutron history is analogous to a single game of solitaire,
and the use of random numbers to make the choices along the way is analogous to the random turn
of the card.

To take decisions, the computer must have an algorithm for generating a uniformly distributed set
of random numbers and these numbers must be transformed into the nonuniform distribution, say g,
desired for the property of interest. In a 1947 letter, von Neumann discussed two techniques for using
uniform distributions of random numbers to generate g. The first technique, which had already been
proposed by Ulam, shown that the function f needed to achieve this transformation is just the inverse
of the nonuniform distribution function, that is, f = g−1. For example, in the case of neutron physics,
the distribution of free paths (how far neutrons of a given energy in a given material go before colliding
with a nucleus) decreases exponentially with distance. If x is uniformly distributed in the open interval
(0,1), then f = − lnx will give us a nonuniform distribution g with just those properties. The rest of
von Neumann letter describes an alternative technique that works when it is difficult or computationally
expensive to form the inverse function, which is frequently true when the desired function is empirical.
In this approach, two uniform and independent distributions (xi) and (yi) are used. If two numbers xi
and yi are selected randomly from the domain and range, respectively, of the function f , then each
such pair of numbers represents a point in the function’s coordinate plane (xi,yi). When yi > f (xi) the
point lies above the curve for f (x), and xi is rejected; when yi ≤ f (xi) the point lies on or below the
curve, and xi is accepted (see Fig. 1.2). Thus the fraction of accepted points is equal to the fraction
of the area below the curve. In fact, the proportion of points selected that fall in a small interval along
the x-axis will be proportional to the average height of the curve in that interval, ensuring generation
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of random numbers that mirror the desired distribution [1].

Figure 1.2: Generation of random numbers that mirror a given distribution f (x) [1].

The first ambitious test of the Monte Carlo method consisted of nine problems in neutron trans-
port, each one corresponding to various configurations of materials, initial distributions of neutrons,
and running times. These problems did not include hydrodynamic and radiative effects, but complex
geometries and realistic neutron-velocity spectra were handled easily. Neutron histories were checked
with a variety of statistical analyses and comparisons with other approaches. Conclusions about the
efficiency of the method were quite favourable and gave rise to enthusiasm among scientists of dis-
tinct areas. At Los Alamos, the method was quickly adopted to study problems of thermonuclear and
fission devices. Already in 1948, Ulam was able to report to the Atomic Energy Commission about the
applicability of the method for cosmic rays and in the area of the Hamilton Jacobi partial differential
equation. Other laboratory staff members started to run Monte Carlo codes in ENIAC. Among them,
J. Calkin, C. Evans and F. Evans studied thermonuclear problems, and B. Suydam and R. Stark tested
the concept of artificial viscosity for time-dependent shocks. By midyear 1949, Ulam and Metropolis
published a paper describing the Monte Carlo method and its application to integro-differential equa-
tions [6] and the first symposium on the method was held in Los Angeles.

The construction of a new machine began later and N. Metropolis was the leader of the group
encharged of it. He called the new machine MANIAC wishing to stop the use of acronyms for ma-
chine names, but contrary to what he sought, it only stimulated it. In early 1952, the MANIAC became
operational at Los Alamos and soon after, Anthony Turkevich led a study of the nuclear cascades
resulting from the collision of accelerated particles with atomic nuclei. Another computational problem
run on the MANIAC was a study of equations of state based on the two-dimensional motion of hard
spheres. The results were published in a famous paper in 1953 [7] and describes a strategy leading
to greater computational efficiency for equilibrium systems obeying the Boltzman distribution function.
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Figure 1.3: John von Neumann (1903-1957) in front of the ENIAC [18].

The idea developed in that paper is that if a move of a particle in the system causes a decrease in
the total energy, the new configuration should be accepted. On the other hand, if there is an increase
in energy, the new configuration is accepted only if it passes through a game of chances biased by a
Boltzmann factor, otherwise, the old configuration is kept.

Since then, the Monte Carlo method has been proved to be a very powerful and useful tool. For
example, deterministic methods for numerical integration of functions with many variables are very
inefficient because with every additional dimension or variable, an exponential time increase takes
place. The alternative way provided by the Monte Carlo method is the following: the function in ques-
tion can be estimated by randomly selecting points in the many dimensional space and taking some
kind of average of the values of the function at these points. This method will display 1/

√
N conver-

gence i.e. quadrupling the number of sampled points will halve the error, regardless of the number
of dimensions. The use of Monte Carlo methods to model physical problems allows us to examine
more complex systems that otherwise we are not able to handle. Solving equations which describe
the interactions between two atoms is fairly simple but solving the same equations for hundreds or
thousands of atoms is impossible. With Monte Carlo methods, a large system can be sampled in a
number of random configurations, and those data can be used to describe the system as a whole.
There are currently many applications of the Monte Carlo method: stellar evolution [8], reactor design
[9], cancer therapy [10], traffic flow [11], finance [12], simulations of various systems of interacting par-
ticles (e.g. ferromagnetic materials), grain growth modeling in metallic alloys [13, 14], the behaviour
of nanostructures and polymers [15], and protein structure predictions [16].

1.2 Basics of the Monte Carlo Method

In statistical mechanics, the partition function Z(H,T ) contains all the necessary information to
calculate the thermodynamic properties of a system. The difficulty arise when the size of the system
and the number of degrees of freedom for each particle is large, something that occurs in almost all
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Figure 1.4: Nicholas Metropolis (1915-1999) [19].

cases. Then, summing over the large number of possible states to calculate Z(H,T ) is extremely
expensive and almost impossible even in a computational way. The result is that, in general, the
partition function can not be evaluated exactly [20].

The Monte Carlo approach consists of generating a series of possible states or configurations
X1,X2, ...,XN of a system (Xi = {x1,x2...} with xi being the position of the particles in the system), so
that the probability PXi of encountering the system in state Xi, is given by an appropriate probability
density function. Averages over phase space may be constructed by considering a large number of
identical systems which are held at the same fixed conditions. These are called ensembles, (Fig.
1.5), and depending on the parameters held fixed, one can have different types of ensembles. In the
case which T is maintained constant, the set of systems obtained is said to belong to the canonical
ensemble, in which the systems are allowed to have distinct energies. On the other hand, if the energy
is fixed, the ensemble is called the microcanonical ensemble. In both cases the number of particles is
also fixed, but if now we allow the number of particles to fluctuate, the ensemble is named the grand
canonical ensemble [20].

In the canonical approach, Z(H,T ) is calculated in the following way:

Z(H,T ) = ∑
all states

e−H/kBT , (1.1)

where kB is the Boltzmann’s constant, H denotes the Hamiltonian and T the temperature of the
system. By all states we mean taking into the sum all the available configurations for the system. The
probability distribution is called a canonical distribution if it is given according to the equation:

PX =
e−H(X)/kBT

Z(H,T )
. (1.2)

The general goal is to determine equilibrium properties of the canonical ensemble such as energy
and magnetization. If m(X) is the value of some physical property in a state X , and H(X) the energy
of this state, then the canonical ensemble average for the quantity m is given by:
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Figure 1.5: Graphical representation of a canonical ensemble: the positions of the particles and the
energy can change in each system, but the number of particles and the temperature is fixed.

〈m〉=
∑all states m(X)e−H(X)/kBT

Z(H,T )
. (1.3)

As mentioned before, the problem is how to calculate Z(H,T ) in an efficient way.

If we have a finite state space X , where X(t) is the state of the system at time t, that can only take
s discrete values X(i) ∈ X = {X1,X2, ...,Xs}, the stochastic process is called a Markov chain if the
following condition is fulfilled:

P(X(t)|X(t−1), ...,X(1)) = TM(X(t)|X(t−1)),

where P(X(t)|X(t−1), ...,X(1)) is the probability of the state X(t) to occur conditioned by the occurrence
of the past states X(t−1), ...,X(1). TM is known as the transition probability matrix. The chain is homo-
geneous if the transition probability TM = TM(X(t)|X(t−1)) is constant for all t, with ∑X(t)

TM(Xt |X(t−1)) =

1 for any t. That is, the evolution of the chain in the state space X depends solely on the current state
of the chain and a fixed transition (probability) matrix [21].

For any starting point, the chain will converge to an invariant distribution P(X), as long as TM is a
stochastic transition matrix with the following properties:

1. Irreducibility: for any state of the Markov chain, there is a positive probability of visiting all other
states. That is, the matrix TM can not be reduced to smaller matrices, which is also the same
as stating that the transition graph is connected.

2. Aperiodicity: the chain should not get trapped in cycles [21], i.e., the system should not be
limited to a subchain of states.

Consider now a large collection of copies of the same system in equilibrium. We allow each copy
to evolve in time and, at any instant, we will find each different copy in one possible configuration, an
all the copies will give a probability distribution over the configuration space. For each point Xi in the
configuration space, the probability P of finding a copy in X at time t satisfies the equation:
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d
dt

P(X , t) = ∑
i

[P(Xi, t)TM(Xi→ X)−P(X , t)TM(X → Xi)]. (1.4)

TM(X → Xi) and TM(Xi→ X) are the probabilities of making a transition from the configuration
X to Xi and viceversa. Because the collection is in equilibrium, the probability distribution is time
invariant, and in the last equation we must have dP(X , t)/dt = 0 for all t. At any instant, there is an
equal number of transitions to and from the configuration X . In fact, there exists an equation like (1.4)
for each point in the configuration space, and the set of all such equations forms the master equation
[22].

A sufficient (but not necessary) condition for an equilibrium (time independent) probability distri-
bution needed to simulate equilibrium systems is the so-called detailed balance condition for the
master equation that relates the transition between two configurations, Xn−1 and Xn through:

P(Xn)TM(X (n−1)|X (n)) = P(X (n−1))TM(X (n)|X (n−1)). (1.5)

This method can be used for any probability distribution of configurations. If we choose the Boltz-
mann distribution, for which the probability of finding a configuration X with energy H at equilibrium is
given by (1.2), and substitute it into (1.5), we get:

TM(X (n−1)|X (n))

TM(X (n)|X (n−1))
=

e−H(n−1)/kBT

e−H(n)/kBT
= e∆E/kBT . (1.6)

This is the detailed balance condition on the transition probabilities. It is very important to note
that Z(H,T ) does not appear in this expression; it only involves quantities that we know (kBT ) or that
can be easily calculated (E).

Thus, we have a valid Monte Carlo algorithm if we generate a new configuration X(n) from a previ-
ous one X(n−1) such that the transition probability satisfies the detailed balance condition, and the gen-
eration procedure is ergodic, i.e. every configuration can be reached from every other configuration in
a finite number of iterations [23].

1.3 Measurements Using the Monte Carlo Method

Systems generated using a valid Monte Carlo algorithm are often held at fixed values of intensive
variables, such as temperature, pressure, and so on. The corresponding conjugate extensive vari-
ables (energy, volume, etc.) will fluctuate in time; indeed these fluctuations will actually be observed
during the Monte Carlo simulations and will help us to measure quantities of interest such as:

Specific heat

CV =
1
V

(
∂E
∂T

)

V
= 〈(E−〈E〉)2〉= 〈E2〉−〈E〉2. (1.7)

Susceptibility

χ =
1
V

(
∂M
∂T

)

V
= 〈(M−〈M〉)2〉= 〈M2〉−〈M〉2. (1.8)

These and other similar quantities are measured for each configuration and the averages and sta-
tistical errors calculated [20].

Summarizing, the idea of Monte Carlo simulations is to create an independently and identically

10



CHAPTER 1: MONTE CARLO SIMULATION IN STATISTICAL PHYSICS

distributed set of N samples from a target density P(X) distribution function defined on a high dimen-
sional state space X (e.g., the set of possible configurations of a system). These N samples can be
used to approximate P(X) [21].

When P(X) has a standard form, e.g., Gaussian, it is straightforward to sample from it using eas-
ily available routines. However, when this is not the case, we need to introduce more sophisticated
techniques such as Markov Chain Monte Carlo (MCMC) briefly presented above, which is a strategy
of generating samples using a Markov chain mechanism while exploring the state space X . This
mechanism is constructed with the condition that the chain spends more time in the most important
regions. In particular, it is constructed so that the samples mimic samples drawn from the target
density distribution P(X) [21].

1.4 Ising and Potts Models

The Ising model was proposed in 1925, in the doctoral thesis of Ernst Ising, a student of Wilhelm
Lenz [24]. Using a model proposed by Lenz in 1920 [25], Ising tried to explain certain empirically
observed facts about ferromagnetic materials in his thesis. The model was referred to in a paper
by Heisenberg of 1928 in which he used the exchange mechanism to describe ferromagnetism [26].
After the publication of a paper by Peierls (1936) [27], in which he gave a non-rigorous proof that
spontaneous magnetization must exist, the Ising model became a well-established paradigm. In 1941,
Kramers and Wannier calculated the Curie temperature using a two-dimensional Ising model [28] and
three years later Onsager gave a complete analytic solution of the model [29].

As a paradigm of statistical mechanics, the Ising model tries to imitate systems in which individual
elements (e.g., atoms, animals, protein folds, biological membrane, social behaviour, etc.) modify
their behaviour so as to conform to the dynamics of other elements in their neighbourhood [30].

In most specific terms, the Ising model in statistical mechanics considers a system with spins
located at the sites of a D-dimensional lattice, where each spin can take the value +1, corresponding
to spin up, or the value -1, corresponding to spin down. The Hamiltonian of such a spin lattice system
is given by:

HI =−J ∑
〈i, j〉

σiσ j−B∑
i

σi, (1.9)

where J is the exchange constant, and σi and σ j are the spins of the ith and jth sites respectively.
The sites are usually a pair of nearest neighbours, though calculations for more distant neighbours
can also be carried out. B is an externally applied magnetic field with whom each spin interacts.

When J > 0, the model describes a ferromagnetic system where parallel spins are favoured and
antiparallel spins are discouraged.

In the case of J < 0, an antiferromagnetic system is modeled.

If J is randomly chosen to be 1 or -1 for each pair of nearest neighbours and remain fixed during
the course of observation, we obtain a model of a spin glass [31].

The energy associated with each state depends then on the exchange energy of the particles and
the interaction of the particles with the external magnetic field. However, in the absence of the external
field, the energy of the system depends only on the spin exchange energy:
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Figure 1.6: Lattice representations of Ising and Potts models. The red site interacts with his first
neighbours (in yellow). Notice that in the Potts model, being a generalization of the Ising model, more
than two possible directions for the spin are available.

HI =−J ∑
〈i, j〉

σiσ j. (1.10)

The Potts model is a generalization of the Ising model, in which spins can choose its value from
a discrete set of states (see Fig. 1.6). In 1952, C. Domb proposed it as a doctoral thesis for his
student R. Potts [32]. Without the presence of an external field the Potts model is defined through the
Hamiltonian:

HP =−J ∑
〈i, j〉

δσi,σ jσiσ j, (1.11)

where J denotes again the interaction exchange constant between nearest neighbours and the values
σi are characterized by an integer σi = 1,2, ...,q. If two spins are parallel they contribute with energy
J, otherwise their energy contribution is null.

1.5 Some Monte Carlo Algorithms: Metropolis, Swendsen-Wang
and Wolff

The Metropolis [7], Swendsen-Wang [33] and Wolff [34] algorithms satisfy the master equation
and the detailed balance condition for the Boltzmann distribution. Consequently, when the system
reaches equilibrium, the probability distribution of all possible configurations will be the Boltzmann
distribution.

The steps of the Metropolis algorithm for an Ising model are graphically represented in Fig. 1.7
and are the following:

1. Start with an arbitrary spin configuration C0 of a lattice with N sites.

2. Select a spin randomly and independently, and flip it.

3. Calculate the energy change ∆E which results if the spin is turned.
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4. Generate a random number r such that 0< r < 1.

5. If ∆E ≤ 0, accept the change; if ∆E > 0, the configuration is accepted with a probability
e−∆E/kBT . This is resumed as: if r < e−∆E/kBT the spin is flipped. If not, the new configuration
is rejected, and the system returns to the initial configuration C0.

6. Choose randomly another spin to flip and go to (3).

Figure 1.7: Metropolis algo-
rithm: If the energy decreases
with the spin flip, the new
configuration remains. If not,
is accepted or rejected with
certain probability.

It is important to discard some configurations at the beginning of the chain of configurations to
ensure that the system forgets C0 and that the configurations taken into account form a canonical en-
semble. Then, after a considerable number of spins have been updated, the properties of the system
are determined and added to the statistical average which is stored. The random number r must be
chosen uniformly in the interval [0,1] and all the successive random numbers should be uncorrelated.
Note that if a spin trial is rejected, the old state is counted again for the averages. For a q state Potts
model, the new value for the chosen spin is selected randomly among the other q−1 spin values [20].

In the Metropolis algorithm, spins are updated one at a time and this single spin flip is the reason
why this algorithm is inefficient at critical points where the phenomenon of slowing down occurs. The
standard measure of Monte Carlo time is the Monte Carlo step per site (MCS/site), which corresponds
to N trial flips, regardless of whether the trial is successful or not (N is the total number of spins in the
system) [22].

The Swendsen-Wang and Wolff algorithms are cluster algorithms, where groups of spins are
identified by establishing bonds between pairs of neighbouring spins. Once the clusters in the lat-
tice are identified, a whole spin cluster is updated, and in this way these algorithms are more efficient
near critical points.

The Swendsen Wang algorithm for a q state Potts model is (Fig. 1.8):

1. Initialize the lattice of N sites with an arbitrary spin configuration C0.

2. Examine every pair of neighbouring spins in the system. If neighbouring spins are not parallel,
nothing is done. If they are parallel, a bond is introduced between them with probability p =
1− e−K , where K = J/kBT . (If p < 1, a random number r is generated such that 0 < r < 1,
and if r < p a bond is introduced between sites i and j).

3. Once all clusters in the lattice have been formed, an arbitrary cluster is chosen.

4. Another random number R is generated such that 1≤ R≤ q.

5. All spins in the chosen cluster are assigned σi = R.
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6. Another cluster is selected randomly and return to (4).

7. When all clusters have been considered, erase the bonds, go to (2) and repeat the steps until
the desired number of configurations has been obtained.

Figure 1.8: Swendsen-Wang algorithm: Once the clusters are formed (each one is represented by a
diferent colour), their spin values are randomly modified. Some clusters maintain the same value (i.e.,
orange spin). After that, the cluster formation starts again.

One Monte Carlo cycle in the Swendsen-Wang algorithm is accomplished when all clusters have
been updated (steps 2-6), and is equivalent to one Monte Carlo step per site (MCS/site) in the
Metropolis algorithm [22].

The probability to set a bond between two sites depends on the temperature, which affects the re-
sultant cluster distribution. At very high temperature, the clusters will tend to be quite small, whereas
at very low temperature virtually all sites with nearest neighbours in the same state will belong to the
same cluster and therefore there will be a tendency for the system to oscillate back and forth between
quite similar structures. However, near a critical point, a quite rich array of clusters is produced and
the net result is that each configuration differs substantially from its previous one. That is the main
reason why the critical slowing down is reduced [20].

The Wolff algorithm is very similar to the Swendsen-Wang algorithm, the principal difference being
that it flips the spins of one particular cluster with the maximum probability of 1 in each Wolff MC cycle.
The Wolff algorithm was proposed to improve the Swendsen Wang algorithm in which significant effort
is required in dealing with small clusters as well as large ones. However, the small clusters do not
contribute to the critical slowing down [20] and can be disregarded. The Wolff algorithm is given by
the following procedure (a graphical representation is provided in Fig. 1.9):

1. Start with an arbitrary spin configuration C0 of a lattice with N sites.

2. Randomly choose a spin to be the seed of a cluster.

3. Examine all its neighbours and draw bonds with probability p = 1− e−Kδiδ j .

4. If bonds have been drawn to any nearest neighbour site j, draw bonds to all nearest neighbours
k of site j with probability p = 1− e−Kδ jδk .

5. Repeat step (4) until no more new bonds are created.

6. Flip all spins in the cluster to a different randomly chosen spin value.

7. Go back to (1).
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The measurement of Monte Carlo time is more complicated. The natural unit of time is the number
of cluster flips. However, in one cluster flip the number of spins visited is not equivalent to the total
number of spins in the system and hence one Wolff cluster flip is not equivalent to one MC step per
spin (MCS/site) or one MC cycle in the Metropolis and Swendsen-Wang algorithms. The generally
accepted method of converting to MCS/site is to normalize the number of cluster flips by the mean
fraction of sites 〈c〉 flipped at each step. The Monte Carlo time then becomes well defined if 〈c〉 is well
defined, and this happens only after enough flips have occurred [20].

Figure 1.9: Wolff algorithm: A spin is chosen randomly, and the cluster is formed from it by introducing
bonds to its neighbours and the neighbours of its neighbours with some given probability. The spin
value of the cluster is changed and then another spin is selected to start a new cluster.

Although all these algorithms satisfy detailed balance, they do not give the same results for M and
χ in a simulation. This difference is due to the very small probability for M to change sign using the
Metropolis algorithm for large systems, at low temperatures. This corresponds to a physical situation,
and one can calculate 〈M〉 and χ and obtain meaningful results. However in cluster algorithms, the
clusters become very large at low temperatures, and by flipping them, we effectively flip the whole
system, yielding 〈M〉 = 0; the variance in M is then simply 〈M2〉, a constant at low temperatures,
which in turn gives a diverging χM as T → 0. The solution is to use |M| instead of M, and define χ|M|
just as we defined χ earlier. In this way, all three algorithms give the same results for 〈M〉 and χ|M| at
all temperatures [22].

Notice that cluster algorithms become inefficient at low temperatures, because in that situation,
nearly all spins in the system are flipped when we flip the largest cluster, which is not helpful in
achieving statistically independent configurations. In comparison, the Metropolis algorithm will be
much more efficient [22].

Once an appropiate algorithm has been selected, one of the goals of Monte Carlo simulations is
the study of the behaviour of systems in phase transitions.

1.6 Phase Transitions and Critical Exponents

One of the most common physical problems studied in simulations are phase transitions. A phase
transition occurs when a thermodynamic system passes from one phase to another one with the
change of some external variable, such as temperature or pressure. Some examples are the transi-
tions between solid, liquid, and gaseous phases, the transition between the ferromagnetic and para-
magnetic phases of magnetic materials, and the emergence of superconductivity in certain metals
when they are cooled below a critical temperature [35].

When a system goes from one phase to another, there will be in general a stage where the free
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energy is not analytic. Due to this, the free energies on either side of the transition are two different
functions, so one or more thermodynamic properties will behave very differently after the transition. A
system near or at the critical point of a phase transition presents peculiar behaviours that are univer-
sal, like divergence of some quantities and critical slowing down phenomena, which will be explained
later. The most commonly examined property in this context is the heat capacity that in the transition
region may become infinite, jump abruptly to a different value, or exhibit a discontinuity in its derivative
[36]. This non-analytic behaviour stems generally from the interactions of an extremely large number
of particles in a system, and does not show up with the same strength in systems that are too small
[35].

Phase transitions are generally classified into first or second order transitions. A second order,
or continuous phase transition, can be defined as a point at which a system changes from one state
to another one without a discontinuity or jump in its density, internal energy, magnetization, or similar
properties. In the case of a first order transition, the above mentioned properties jump discontinuously
as the temperature or pressure passes through the transition point [37]. The name of different kind of
phase transitions comes precisely from the number of derivatives of the free energy that we have to
count before we can see a discontinuous behaviour. If the first derivative is discontinuous, we have a
first order transition, if not, it is a second order one [20].

The first-order phase transitions involve a latent heat. During such transition, a system either
absorbs or releases a fixed (typically large) amount of energy. Because energy can not be instan-
taneously transferred between the system and its environment, first-order transitions are associated
with “mixed-phase regimes” in which some parts of the system have completed the transition and
others have not. Continuous phase transitions, in many cases, are associated with a change of sym-
metry of the system and are easier to study than first-order transitions due to the absence of latent
heat. They have shown many interesting properties. The phenomena associated with continuous
phase transitions are called critical phenomena, because of their occurrence near critical points and
because it turns out that continuous phase transitions can be characterized by parameters known as
critical exponents [35].

In the case of many phase transitions a non-zero value of an order parameter appears, i.e., some
property of the system which is non zero in one phase (usually called the ordered phase) but identi-
cally zero in the other phase (disordered phase). Thus, the order parameter can not be an analytic
function at the transition point. The order parameter is defined differently in various kinds of physical
systems [20]. For systems such as the ferromagnet, where there is a broken symmetry below critical
temperature Tc, the order parameter is the magnetization. For systems without broken symmetry, one
chooses some quantity that is very sensitive to the difference between the two phases, and measures
the difference of this quantity from its value at the critical point and below it. For the liquid-vapor critical
point, we may choose the order parameter as the difference between the actual density of the fluid
and the density at the critical point. For liquid crystals the degree of orientational order is considered
as the order parameter [37].

Another quantity of interest near a phase transition is the correlation function. In general, there will
be microscopic regions in which the characteristics of the material are correlated. This is generally
measured through the determination of a two point correlation function, which is the probability of
finding that two sites separated by a distance r have the same value of a certain given quantity ρ [20]:

Γρ(r) = 〈ρ(0)ρ(r)〉. (1.12)

In the case of magnetic systems, the correlation function can be measured in neutron scattering
experiments, whereas near the liquid vapour transition it can be measured by light scattering or small
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angle X-ray-scattering experiments [37].

If the correlation for the appropriate quantity decays to zero as the distance goes to infinity, then
the order parameter is zero [20]. Close to the critical point, the correlation length ξ, which tells us
how far correlations are still present, becomes extremely large. This is directly related to the large
amount of long-wavelength fluctuations that occur in the system at the criticality [37]. The time taken
for the system to change configuration near the critical point also increase significantly because of
the divergence of the correlation length ξ. This phenomenon is called critical slowing down. For
example, in the case of the Ising model, spins tend to align with their neighbours due to the exchange
interaction, and regions or clusters of spins pointing in the same direction appear. These spins are
said to be correlated, and, generally, there are clusters of various sizes. The span of the largest one
is the correlation length ξ, while the time it takes to break up the existing conformation of spins and
form another arrangement of clusters is called the decorrelation time τ. At the critical point, there is a
low probability for a spin in the middle of a spin cluster to change its direction, therefore spin regions
are altered only at the boundary. This gives rise to a long decorrelation time which is related to the
correlation length by a power law:

τ ∝ ξz, (1.13)

where z is the dynamical critical exponent [22]. For simulations of a finite lattice of linear dimension L,
ξ is naturally bounded by L and then the basic assumption is that:

τ ∝ Lz. (1.14)

These two equations describe the critical slowing down. In an infinite system, as the critical point
is approached, the correlation length diverges (its value is ∞), and from (1.13), we see that the decor-
relation time also diverges. In finite systems ξ does not diverge as the critical point is approached,
however, it reaches its peak with a sharp slope. Due to the power law dependence of τ on ξ, τ will
also display a peak with a sharp slope, exhibiting critical slowing down [22].

Near the transition points, the critical slowing down phenomenon produces important effects that
complicate the implementation of the Monte Carlo method. This is the main reason why the scien-
tists introduced alternative approaches besides canonical Metropolis algorithm, such as Wolff and
Swendsen-Wang algorithms. The computational effect of critical slowing down near a critical point
can be understood in the following manner: when we simulate finite systems at the critical point, the
decorrelation time depends on the linear dimension L through a power law as L approaches infinity.
Take, for example, the 2D Ising model. The dynamical critical exponent z is known to be approxi-
mately 2 using the Metropolis algorithm. If the time it takes to obtain 100 statistically independent
configurations is t in a system with L = 32, then if L is increased by a factor of 2 to 64, the computa-
tional time needed to obtain 100 statistically independent configurations will increase to 42 t. A factor
of 4 is introduced because the number of spins is increased by 4, and another factor of 4 is due to the
fact that τ ∝ L2. In general, the amount of CPU time required to obtain a fixed number of statistically
independent configurations for a system with linear dimension L is proportional to Ld+z, where d is
the spatial dimension of the model, and z is the corresponding dynamical critical exponent [22].

Data from experiments, as well as results for a number of exactly solvable models, show that in
the vicinity of the critical point Tc, the thermodynamical properties can be described by a set of simple
power laws [20]. For example, for the determination of the way in which the magnitude of the order
parameter approaches zero as the critical point is reached, we may write (according to the classical
theories of phase transitions such as the van der Waals or mean field theories):

M = M0 εβ, (1.15)
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where M is the order parameter (i.e., the magnetization for a ferromagnet), M0 is a constant that will
vary from one system to another, ε = |1−T/Tc|, and the exponent β is called critical exponent [37].

The temperature variation of the order parameter is very important but not the only quantity of
interest. Another key quantity is the specific heat, defined as the derivative of the internal energy with
respect to the temperature. The specific heat is found to become infinite at the critical point in some
systems but also one can have cases in which the specific heat is finite with only a sharp cusplike
maximum at the critical point [37]. In either case, one may define an exponent α that characterizes
the anomalous behaviour of the specific heat at the critical point:

CV = C0 ε−α. (1.16)

Susceptibility χ is another quantity of interest. It is defined as the derivative of the order param-
eter with respect to the applied field to which it is coupled, under constant temperature condition.
For a magnetic system, this quantity is precisely the magnetic susceptibility. This quantity becomes
extremely large near the critical point, and we may write the zero field magnetic susceptibility as [37]:

χ = χ0 ε−γ. (1.17)

Finally, the correlation length ξ varies as:

ξ = ξ0 ε−ν, (1.18)

where, again, ν is termed as critical exponent.

Note that the last equations represent asymptotic expressions which are only valid if ε→ 0 and
more complete forms would include additional corrections to scaling terms which describe the devia-
tions from the asymptotic behaviour. The exact values of these critical exponents are known exactly
only for a small number of models, most notably for the 2D Ising square lattice [29], whose exact so-
lution shows that α = 0, β = 1/8, and γ = 7/4. Here, α = 0 corresponds to a logarithmic divergence
of the specific heat [20].

The power law behaviour near critical points is very general and many systems share the same
critical exponents. In particular, the Ising universality class refers to the class of critical phenomena
that share the same critical exponents as the Ising model [22].

Although the critical exponents, α, β, and γ defined above may be independent in principle, they
were found empirically, in the 1960’s, to be connected by the relationship:

α = 2− γ−2β. (1.19)

This equality is known as the Rushbrooke relation, and the following three relations are also known
[20], where η and δ are two additional critical exponents:

Josephson: νD = 2−α,
Widom: γ = β(δ−1) ,
Fisher: γ = ν(2−η) .

In Table 1.1 we provide the theoretical values of the critical exponents for q≤ 4 2D Potts model,
which of course fulfilles the latter relations.

The quantities discussed above are all equilibrium or static quantities; they can be measured in a
time-independent experiment in thermal equilibrium conditions, and any involved correlation function
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α β γ ν δ η
q=0 −∞ 1/6 ∞ ∞ ∞ 0
q=1 −2/3 5/36 27/18 4/3 18 1/5 5/24
q=2 0 1/8 7/4 1 15 1/4
q=3 1/3 1/9 13/9 5/6 14 4/15
q=4 2/3 1/12 7/6 2/3 15 1/2

Table 1.1: Some theoretical critical exponents for the 2D Potts model [38].

refers to the correlation of fluctuations at a single instant of time. The majority of theoretical stud-
ies and experiments on critical phenomena are concerned with these static measurements. Thus,
the usual division of systems into different universality classes is based on these static phenomena.
There are other properties of systems, known as dynamical properties, which require a more de-
tailed theoretical analysis. Moreover, they require a further subdivision of the universality classes.
Two systems that belong to the same universality class for their static properties could show quite
different behaviours in their dynamical properties. Some standard examples of dynamical proper-
ties are various relaxation rates of systems slightly disturbed from equilibrium, correlations involving
fluctuations at two different time instants, and transport coefficients, e.g., thermal and electrical con-
ductivities. Among the experiments used for studying dynamical properties we quote measurements
of sound-wave attenuation and dispersion, widths of nuclear and electron magnetic resonance lines,
and inelastic scattering experiments. Typically, one finds that the relaxation rate of the order parame-
ter becomes anomalously slow at a critical point. However, some other relaxation rates are found to
speed up and transport coefficients become large in a number of cases. In some cases, the results
of a dynamical experiment may be interpreted as an indirect measurement of a static property of the
system. As a matter of fact, some of the most precise measurements of static critical properties have
been obtained by dynamical means. Examples are the measurements of the superfluid properties
of liquid helium, the low-frequency sound velocity of a fluid, and the frequency of nuclear magnetic
resonance in a magnetic system [37].

1.7 The Histogram Method

The canonical Metropolis algorithm yields mean values of various thermodynamical quantities,
(energy, magnetization, etc) at particular values of the temperature T . Near a phase transition, many
thermodynamical quantities change rapidly, and we need to determine these quantities at closely
spaced values of T . If we use standard Monte Carlo methods, we will have to do many simulations
to cover the desired T range [39]. The use of histograms to overcome this problem became popular
after the publication of a paper by Ferrenberg and Swendsen in 1988 [40]. However, the histogram
technique is one of the oldest techniques proposed [41, 42]. Also often referred to as Ferrenberg-
Swendsen reweighting technique, is used in almost all Monte Carlo calculations of statistical physics,
especially when dealing with phase transition phenomena [43]. The idea is to use the knowledge of
the equilibrium probability distribution at one value of T (and other external parameters) to estimate
the desired thermodynamical averages at neighbouring values.

A Monte Carlo simulation performed at T = T0 generates configurations of the system with a
frequency proportional to the Boltzmann weight, e−β0H , where β0 = 1/kBT0, and H is the Hamiltonian
of the system being studied. In the case of a magnetic system, the probability of simultaneously
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observing the system with energy E and magnetization M is given by:

Pβ0(E,M) =
1

Z(β0)
W (E,M)e−β0E , (1.20)

where W (E,M) is the number of configurations (density of states) with energy E and magnetization
M, and Z(β0) is the partition function of the system. Because the simulation generates configurations
according to the equilibrium probability distribution, a histogram H(E,M) can be built during the sim-
ulation to provide an estimate for the equilibrium probability distribution that becomes exact in the limit
of infinite-length run. For a finite length-simulation, the histogram will present statistical errors, but
H(E,M)/N, where N is the number of measurements, still provides an estimate of Pβ0(E,M) over
the E and M values generated during the simulation [44]. Keeping this in mind, we modify (1.20) as
follows:

H(E,M) =
N

Z(β0)
W̃ (E,M)e−β0E , (1.21)

where W̃ (E,M) is an estimate of the true density of states, or number of configurations, W (E,M).

The probability distribution for any value of β has the same form as (1.20):

Pβ(E,M) =
1

Z(β)
W (E,M)e−βE . (1.22)

Comparing (1.21) and (1.22), we can note that it is possible to determine W̃ (E,M) from (1.21):

W̃ (E,M) =
Z(β0)

N
H(E,M)eβ0E , (1.23)

and replace W (E,M) in (1.22) with it. After normalizing the distribution, we find that the relationship
between the histogram measured at β = β0 and the (estimated) probability distribution for an arbitrary
β is:

Pβ(E,M) =
H(E,M)e−(β−β0)E

∑E,M H(E,M)e−(β−β0)E
. (1.24)

From Pβ(E,M), the average value of any function f (E,M) can be calculated as a continuous
function of β:

〈 f (E,M)〉β = ∑
E,M

f (E,M)Pβ(E,M). (1.25)

The histogram method is useful only when the configurations relevant to the range of temperatures
of interest occur with sufficient probability during the simulation at temperature T0. For example, if we
simulate an Ising model at low temperatures at which only ordered configurations occur (most spins
aligned in the same direction), we can not use the histogram method to obtain meaningful thermody-
namical averages at high temperatures for which most configurations are disordered, and viceversa
[39].

In the single histogram technique, the estimated P(E,β) is accurate only for β close to the refer-
ence value β0. By generating many histograms that overlap each other we can widen the range of
β. This is called the multiple histogram technique [45]. It is also clear that we can increase the range
of β by directly estimating the density of states W (E,M). Multicanonical sampling [46] is an early
technique proposed to do this. It is a very general and useful technique being often the method of first
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choice for a variety of problems that include critical slowing down near second order phase transition
points, nucleation in first order phase transitions, and trapping in the metastable minima in systems
with rugged energy landscapes.

1.8 Identifying the Nature of Transitions and Finite Size Scaling

The behaviour near phase transitions has been one of the main objectives of studies focusing
on the properties of physical systems but a correlation length ξ greater than the accessible size L of
the system may lead to many difficulties [47]. For systems close to a second order phase transition,
finite-size scaling is routinely used to extract thermodynamic information from similar systems of fairly
small size. An equivalent theory for first order phase transitions is clearly also of interest. A useful
theory of finite-size scaling should allow us to extract the couplings at which the transition occurs, as
well as other dimensional quantities like latent heat (or spontaneous magnetization) and specific heat
(or magnetic susceptibility) [48].

First order transitions are characterized by a discontinuity in the order parameter and thermody-
namic quantities, with an associated delta-peak behaviour in the susceptibility. As a matter of fact,
the jump in the energy density is equivalent to the latent heat. However, at finite size, thermodynamic
quantities become continuous and rounded. Instead of delta function behaviour in susceptibility there
is only a hump. In simulations, this behaviour is visible only if the simulation time τs is larger than the
decorrelation time τ at the transition point. τs is typically very large since τ ∝ e−σ2LD−1

, where σ is
the surface tension of the interface between the low temperature and high temperature phases [50].
It is the dimension D that now plays the key role rather than the critical exponents as in the case of
second order phase transitions [20].

At the transition temperature of a first-order phase transition, a mixed state can exist where two
different bulk phases are separated by an interface. The free energy densities of the two bulk phases
are equal and the free energy of the mixed state is higher than any of the coexisting pure phases by an
amount Fs = σA, where A is the area of the interface and σ is the interface tension [51]. In first order
phase transitions, the correlation length remains finite in both the ordered and disordered phases, i.e.,
the correlation length does not diverge. Thus, a different approach to finite size scaling must be used
[20].

From fairly general arguments about the nature of discontinuities at a first-order phase transition,
Fisher and Berker [52] obtained the infinite volume limit approached by measurements performed at
finite volumes. This conventional scenario is based on a smooth behaviour of the renormalization
group flow and the existence of a discontinuity fixed point whose attraction domain contains the transi-
tion surface and has relevant exponents of the form y = D [52]. The singularities associated with first
order transitions are generated by infinite iterations of renormalization group transformations in the
thermodynamic limit. Correction terms were later calculated in a particular phenomenological model
called the double-Gaussian model, in which the peaks in the probability distribution for the coexisting
phases were approximated by Gaussians [53, 54]. This model correctly predicts the first term in a
series of corrections in inverse powers of the volume V , around the leading term obtained by Fisher
and Berker [52].

More recent developments are due to Borgs, Kotecký and Miracle-Solé [55, 56]. The basic idea
is to decompose the partition function into a sum of the contributions, each due to one of the coex-
isting phases, and to neglect contributions due to phase mixtures. Each of these contributions to the
total partition function then yield quantities related to free energies in the pure phases. The analysis
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proceeds by power series expansions of these partial partition functions around the phase transition
point, leading to moments expressed in inverse powers of the volume [48]. According to this theory,
for periodic boundary conditions, the specific heats and Binder cumulants at the transition tempera-
ture can be represented by polynomials in 1/LD. If the L >> ξ, the contribution of the higher order
terms are negligible [57, 58]. The difficulty arises when ξ ≥ L. In this case, higher order corrections
are necessary and deciding the order of the transition becomes difficult. Even when large lattices are
used, higher order terms may create difficulties during the fitting procedure to the simulation data.
Such difficulties may be reduced by choosing the quantities for which the correction terms play less
important role. A good example for such quantity is the average energy measured at the infinite lattice
transition point, which has exponentially small correction term enabling one to determine the infinite
lattice critical point with great accuracy [56, 57, 59].

Finite size scaling ideas for first or second order transitions help to extract critical exponents and
other information, but this requires prior knowledge of at least the nature of the transition. When the
system undergoes a weak first order transition with ξ>> L, it becomes very difficult to identify its na-
ture even with large-scale computations. This problem is even worse when one encounters a system
for which nothing is known [47, 60].

Lee and Kosterlitz [60] proposed a method which exploits the finite size scaling properties of the
free energy ∆F(L). These properties are unambiguous even when ξ >> L and, more importantly,
can be implemented with reasonable computational effort. This method depends on two key ideas:
the identification of ∆F(L), which has a characteristic behaviour as a function of L at a first or second
order transition or in a single phase region, and the usage of histograms enabling this to be computed
accurately. They have shown that the positions of the peak free energies in a histogram should scale
as 1/L if the system is well into the first order region. The ratio of P(E) at its peaks and minimum
can be used to estimate an interface free energy ∆F(L), signaling a first order transition if it increases
with system size L.

This method uses the Helmholtz free energy F of a system. At low T , the low energy configurations
dominate the contributions to the partition function Z, even though there are relatively few such
configurations. At high T , the number of disordered configurations with high E is large, and hence
high energy configurations have a big contribution to Z. These considerations suggest that it is use-
ful to define a restricted free energy Fr(E) that includes only the main configurations at a particular
energy E:

Fr(E) =−kT
[

lng(E)
]
e−E/kT . (1.26)

For systems with a first-order phase transition, a plot of Fr(E) versus E will show two local minima
corresponding to configurations that are characteristic of the high and low temperature phases. At
low T , the minimum at the lower energy will be the absolute minimum, whereas at high T the higher
energy minimum will be the absolute minimum of FrE. At the transition temperature, the two minima
will have the same value of Fr(E). For systems with no transition in the thermodynamical limit, there
will only be one minimum for all T . How will Fr(E) behave for the relatively small lattices that we can
simulate? In systems with first-order transitions, the difference between low and high temperature
phases will become more pronounced as the system size is increased. If the transition is continuous,
there are domains at all sizes, and we expect that the behaviour of Fr(E) will not change significantly
while increasing the size. If there is no transition, there might be a fake double minima for small
systems that disappear for larger systems [39]. Lee and Kosterlitz proposed the following method to
clasify phase transitions:
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1. Perform a simulation at a temperature close to the suspected transition temperature and calcu-
late H(E). Usually, the temperature at which the peak in the specific heat occurs is chosen as
the simulation temperature.

2. Make use of the histogram method to calculate Fr(E) ∝− lnH0(E)+(β−β0)E at neighbouring
values of T . If there are two minima in Fr(E), vary β until the values of Fr(E) at the two minima
are equal. The corresponding temperature is an estimate of the possible transition temperature
Tc.

3. The difference between the maxima and the minimum between the two peaks is used to esti-
mate the free energy barrier ∆Fr(E) at Tc.

4. Repeat steps (1-3) for larger systems. If ∆Fr(E) increases with size, the transition is first order.
If ∆Fr(E) remains the same, the transition is continuous. If ∆Fr(E) decreases and goes to zero
with size, there is no thermodynamic transition.

The above procedure is applicable when the phase transition occurs by varying the temperature.
Transitions also can occur by varying the pressure or the magnetic field. These field-driven transi-
tions can be tested by a similar method. For example, consider the Ising model in a magnetic field
at temperatures below Tc. As we vary the magnetic field from positive to negative values, there is a
transition from a phase with magnetization M > 0 to a phase with M < 0. Is this a first-order or con-
tinuous transition? To answer this question, we can use the Lee-Kosterlitz method with a histogram
H(E,M) generated at zero magnetic field, and calculate Fr(M) instead of Fr(E). The quantity Fr(M)
is proportional to − ln∑E H(E,M)e−(β−β0)E . Because the states with positive and negative magneti-
zation are equally likely to occur for zero magnetic field, we should see a double minima structure for
Fr(M) with equal minima. As we increase the size of the system, ∆Fr should increase for a first order
transition and remain the same for a continuous transition [39].

Another way to determine the nature of a first order phase transition is to use the Binder cumulant
of energy defined by [61]:

UL = 1− 〈E
4〉

3〈E2〉2 . (1.27)

If various cumulants (each one corresponding to different lattice sizes) are plot in the same graph,
a behaviour characteristic of a first order transition appears as will be discussed in the next section.

It can be shown that the minimum value of UL is

UL,min =
2
3
− 1

3

(E2
+−E2

−
2E+E−

)2
+O(L−d), (1.28)

where E+ and E− are the energies of the two phases in a first order transition. These results are
derived by considering the distribution of energy values to be a sum of Gaussians about each phase
at the transition point, which become sharper and sharper as L→ ∞ [39].

On the other hand, equations (1.15) to (1.18) for second order transitions are valid only for infinite
systems and, as a matter of fact, we can simulate only finite systems. Quantities that diverge in the
infinite case now present peaks in the finite system. Furthermore, the peaks occur at a value Tc(L), for
a given linear dimension L, slightly different from the infinite-lattice critical temperature Tc. However,
at a second order phase change, the critical behaviour of a system in the thermodynamical limit can
be extracted from the properties of finite systems by examining the size dependence of the singular
part of the free energy density. This finite size scaling approach was first developed by Fisher [62].
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According to his theory, the free energy of a system of linear dimension L is described by the scaling
ansatz:

F(L,T,h) = L−(2−α)/νF0(tL1/ν, hL(γ+β)/ν), (1.29)

where t = (T −Tc)/Tc, h is the magnetic field and F0 is a scaling function. The critical exponents α,
β, γ, and ν all correspond to the values for the infinite system. Appropriate differentiation of the free
energy yields the various thermodynamic properties with their corresponding scaling forms:

m = L−β/ν m0 xt ,

C = Lα/ν C0 xt ,

χ = Lγ/ν χ0 xt ,

(1.30)

where xt = tL1/ν is the temperature scaling variable [44].

To determine the transition temperature accurately one find the location of the peak in a thermo-
dynamic derivative, for example, specific heat. For a finite lattice the peak occurs at the temperature
where the scaling function Z0(xt) is maximum, i.e., when

dZ0(xt)

dxt

∣∣∣∣∣
xt=x∗t

= 0.

This temperature is the finite lattice (or effective) transition temperature Tc(L), defined through the
condition xt = x∗t to vary with the lattice size, asymptotically, as:

Tc(L) = Tc + Tcx∗t L−1/ν.

These results for the scaling of thermodynamic quantities and Tc(L) are valid only for sufficiently
large L and temperatures close to Tc. Corrections to finite size scaling must be taken into account
for smaller systems. These are introduced as power law corrections with an exponent −w, such
that, for example, the magnetization at Tc would scale with system size like L−β/ν(1 + cL−w). As
we move away from Tc, corrections to scaling due to irrelevant scaling fields, or nonlinearities in the
scaling variables must be introduced. Corrections due to irrelevant fields are expressed in terms of
an exponent θ leading to additional terms like a1tθ + a2t2θ + ..., while nonlinearities in the scaling
variables give rise to corrections terms of the form b1t1 + b2t2 + ..., [44].

If we take one correction term into account, the estimate for Tc(L) is then modified in terms of the
coupling K = J/kBT as follows:

Kc(L) = Kc + λL−1/ν(1 + bL−w).

Before this equation can be used to determine Kc, it is necessary to have an accurate estimate for
ν and accurate values for Kc(L).

It has traditionally been difficult to determine ν from Monte Carlo simulation data because of a lack
of quantities which provide a direct measurement. This situation was greatly improved by Binder’s
introduction of the fourth order magnetization cumulant U [61] defined by:

U = 1− 〈m
4〉

3〈m2〉2 , (1.31)

where m is the magnetization per spin. Binder showed that the slope of the cumulant at Kc, or
anywhere in the finite size scaling region, varies with system size like L1/ν. In particular, the maximum
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value of the slope scales as L1/ν. If we take into account a correction to scaling term, the size
dependence of the peak becomes:

dU
dK
|max = aL1/ν(1 + bL−w).

The location of the maximum slope of U also serves as an estimate for an effective transition cou-
pling which can be used to determine Kc. In the same paper, Binder introduced the cumulant crossing
method which extracts a transition temperature by examining the behaviour of the magnetization cu-
mulant for different lattice sizes.

Additional estimates for ν can also be obtained by considering the logarithmic derivative of any
power of the magnetization, which has the same scaling properties as the cumulant slope. The loca-
tion of the maximum slope also provides an additional Kc(L):

∂
∂K ln〈mn〉 = 1

〈mn〉
∂

∂K 〈mn〉
=

〈mnE〉
〈mn〉 −〈E〉.

(1.32)

To this end, the methods of finite size scaling are very helpful to determine the behaviour of infinite
systems from data obtained on finite systems.

1.9 Monte Carlo Simulations on the Betts Lattice

Research of properties of lattices distinct from the commonly studied ones (square, triangular
lattice) is a key step in the development and prediction of the behaviour of possible new materials. A
different lattice proposed by Donald Betts is constructed removing 1\7 of the sites in a two dimensional
triangular lattice [68], accomplishing that each vertex has a coordination number of five and yielding
another translationally invariant lattice (see Fig.1.10). This structure is known as Betts or Maple Leaf
lattice, and lies between the kagomé and triangular ones, which have coordination numbers of four
and six, respectively. It has a hexagonal unit cell of six sites and fifteen bonds, it is invariant under
rotations through multiples of 60 ◦, and, contrary to the kagomé and honeycomb lattices, it has no
inversion symmetry [69]. To study the critical behaviour of this lattice, we performed Monte Carlo
simulations using the Potts model for q = 3, q = 4 and q = 5.

For the q-Potts model, the magnetization is defined as follows:

m =
Nmax−1/q

1−1/q
, (1.33)

where Nmax is the maximum number of equally oriented spins for certain configuration. We denote the
lineal size of the system studied as L, and this is related to the number of sites as nsit = L×L× 6.
Earlier work has been already done on this lattice for q = 3, using the Metropolis algorithm, by Wang
and Southern [70]. We applied Wolff algorithm instead, due to its proved better performance, and ob-
tained similar results for ferromagnetic and antiferromagnetic cases. As predicted, calculations shown
a second order transition for the ferromagnetic case and a first order transition for the antiferromag-
netic case. For q = 4 and q = 5 there is no published work. We focus on the ferromagnetic regime in
which the transition is found to be of second order for q = 4 and of first order for q = 5. In the latter
case, the transition is very weak and more calculations are needed to obtain better results.
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Figure 1.10: Maple Leaf lattice

1.9.1 q = 3, J < 0: Antiferromagnetic Case

We selected four lattice sizes L = 12, 18, 24 and 36 to perform Monte Carlo simulations. The
number of Monte Carlo steps used to equilibrate the system before making the average was of the
order of 2× 105, and the number of steps used for averaging was 6× 105. Binder cumulants of
the order parameter E as a function of temperature for all lattice sizes demonstrate that the system
undergoes a first order transition, as each curve shown a deep minima whose value moves to lower
temperature regions (Fig. 1.11). The critical temperature is obtained from the deep minimums showed
by all curves, and its near Tc = 0.444.

In Fig. 1.12, specific heats for each lattice size are plotted. There, the lattice size effect on the
results can bee clearly seen: the peaks are sharper and moves toward smaller temperatures at larger
lattice sizes. The transition temperature can be estimated as the temperature where the peaks have
their maximum values, and obviously, the best approximation is obtained for the largest lattice size.
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Figure 1.11: Energy cumulants suggesting a first order phase transition for q = 3, J < 0, Tc = 0.444
and four lattice sizes.
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Figure 1.12: Specific heats for q = 3, J < 0 and the same four lattice sizes.
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Realizing that the phase transition appears to be of first order, the next step is to calculate the
energy distribution histograms P(E) for various lattice sizes near the estimated critical temperature.
We used 1× 106 steps to equilibrate the system and 4× 106 steps for averaging. The histograms
always present two well-defined peaks, and while increasing L, the minimum between the peaks
becomes deeper. Moreover, the histograms are sharper when more sites are taken into account (see
Fig. 1.13). As explained in section 1.8, this is typical for first order phase transition, confirming the
nature of the transition for this case.
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Figure 1.13: Energy histograms for lattice sizes a) L = 12, b) L = 18, c) L = 24, and d) L = 36 for
q = 3, J < 0.

The results shown in the present subsection correspond well with the values reported by Wang
and Southern [70]. The transition temperature reported by them is Tc = 0.445 and their histograms
present a behaviour identical to ours.
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1.9.2 q = 3, J > 0: Ferromagnetic Case

In this case, the used lattice sizes are L = 18, 24, 30, 36, 48, 54 and 60. We considered a larger
number of lattice sizes in order to have more points available to estimate the critical exponents. The
number of Monte Carlo steps used to thermalize was 2×105, and the number of steps for averaging
was 6×105. Binder cumulants of the order parameter m as a function of temperature for the various
L values demonstrated that the system undergoes a second order transition. This is presented in Fig.
1.14. The critical temperature is obtained from the intersection of all curves, each curve corresponding
to a distinct lattice size. The obtained value for the critical temperature is Tc = 1.2275. In Fig. 1.15,
specific heats for different values of L are shown.

Figure 1.14: Magnetization cu-
mulant showing second order
transition at Tc = 1.2275. (q = 3,
J > 0).
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Figure 1.15: Specific heats for
distinct lattice sizes for q = 3,
J > 0.
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We used finite size scaling techniques (see section 1.9) to calculate the critical exponents. To
obtain ν, for example, we calculated the logarithmic derivative of the magnetization in a range near
the critical temperature for all lattice sizes selected, and the maximum value obtained for each curve
was plotted against lattice size in a log-log plot. A line was fitted to these points, and its slope gave an
estimate of the value of 1/ν. Fig. 1.16 illustrates the procedure. It is important to note that logarithmic
derivatives of higher orders of magnetization can be also used to obtain estimations of 1/ν.
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Figure 1.16: Values of the logarithmic derivatives of the magnetization for different sizes of Betts lattice
versus the logarithm of L. The slope of the fitted line y gives the value of ν for q = 3.

To calculate α, the quantities plotted as functions of lattice sizes are the maximum values of
specific heat Cv. Again, a linear fit gives the value of α/ν, from which α can be estimated using the
value of ν obtained earlier. The data and the linear fit are shown in Fig. 1.17.
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Figure 1.17: Log-log plot of the maximum values of CV for distinct sizes of Betts lattices. The fit gives
the value of α/ν for q = 3.
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The critical exponent β is extracted from the magnetization values at the critical temperature su-
ggested by the Binder cumulant of magnetization. The logarithm of these values (remember that each
value corresponds to a lattice size) are plotted versus the logarithm of L, and the slope of the line
fitting the data corresponds to −β/ν. If instead, the maximum values of the susceptibility are plotted
versus L, the critical exponent γ is obtained using the same procedure. (see Figs. 1.18 and 1.19).
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Figure 1.18: Logarithms of magnetization at the Tc value suggested by the magnetization cumulant
versus logarithms of L values. The fit gives −β/ν for q = 3.
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Figure 1.19: Logarithms of susceptibility at the critical temperature versus logarithms of different linear
sizes L. The fit gives γ/ν for q = 3.
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One of the common procedures used to obtain the transition temperature consists in plotting the
temperature at which the logarithmic derivatives of the magnetization for each lattice size have their
maxima versus L−1/ν. A line is fit to the data and the intersection of this line with the y-axis gives an
approximate of the true transition temperature. This can be seen in Fig. 1.20 from which one gets
Tc = 1.22676.

0 0.01 0.02 0.03 0.04

L  -1/v
1.21

1.22

1.23

1.24

1.25

1.26

Tc
m

ax
  M

1

MC results
linear fit

y = 1.0376x + 1.2268

Figure 1.20: Estimation of the transition temperature Tc (q = 3, J > 0).

In the next table, the critical exponents calculated by Wang and Southern [70], the values obtained
in this work, and the theoretical values are summarized. The values obtained with the Monte Carlo
simulations agree well to the 2D Potts classical values, but are not perfectly equal. This can be due
to numerical errors, lattice size effects and also because the Betts lattice can be seen as a triangular
lattice with a large number of defects. Something that is not so clear to us is why values obtained
with the Wolff algorithm are less similar to the universal values than those calculated by Wang and
Southern.

Wang & Southern Results Our Results Theory

α/ν 0.42±0.04 0.464068±0.00479 0.4
β/ν 0.132±0.002 0.118885±0.000203 0.13333
γ/ν 1.74±0.05 1.76294±0.01072 1.73333
1/ν 1.19±0.02 1.20723±0.004891 1.2

Table 1.2: Comparison of the reported critical exponent values with the universal values predicted for
the q = 3 2D-Potts model.
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1.9.3 q = 4, J > 0: Ferromagnetic Case

The used lattice sizes are once again in the range L = 18 to L = 60. The number of Monte Carlo
steps used to thermalize is 2× 105, and the number of steps for averaging is 6× 105. The Binder
cumulant of the order parameter m as a function of temperature shows that the system undergoes a
second order transition, and it is displayed in Fig. 1.21. The critical temperature is obtained from the
intersection of all curves, each curve corresponding to a distinct lattice size, and is near Tc = 1.126.
In Figs. 1.22 and 1.23, specific heats and susceptibilities for different values of L are shown.

Figure 1.21: The Binder magne-
tization cumulant for q = 4, J> 0.
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Figure 1.22: Specific heats for
different lattice sizes (q = 4, J >
0).
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Figure 1.23: Susceptibilities for
different lattice sizes (q = 4, J >
0).
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The critical exponents were obtained with the same procedures explained for q = 3. Different
thermodynamic quantities are calculated for each lattice size, and the values near critical temperature
are plotted against linear size in various log-log plots. A line is fit to the data and its slope is rep-
resentative of some critical exponent, depending on which thermodynamic quantity was selected to
be plotted (Fig. 1.24 to Fig. 1.27). The critical temperature is estimated in the same way explained
earlier, and is shown in Fig. 1.28.

Figure 1.24: Values of the
logarithmic derivatives of
magnetization for different
sizes of Betts lattice, ver-
sus logarithm of L. The fit
gives the value of 1/ν for
q = 4, J > 0.
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Figure 1.25: Logarithm of
the maximum value of Cv
for different sizes of Betts
lattice, versus logarithm of
L. The fit gives the value of
α/ν for q = 4, J > 0.
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Figure 1.26: Logarithms of
the magnetization values
at the critical temperature
of various lattice sizes ver-
sus logarithms of L. The
fit gives −β/ν for q = 4,
J > 0.
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Figure 1.27: Logarithms of
the susceptibilities at the
critical temperature of var-
ious lattice sizes versus
logarithms of L. The fit
gives γ/ν for q = 4, J > 0
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Figure 1.28: Estimation of
the critical temperature for
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The values obtained for the critical exponents are summarized in the next table, along with the
theoretical values expected. The value obtained for β is not near the expected value, and this can be
due to an effect of magnetic frustration on the lattice. More calculations need to be done in the future,
with larger lattice sizes, however it could be that this lattice does not belong to an universal group.

Our Results Theory

α/ν 0.644537±0.03695 1
β/ν 0.0562526±0.004001 0.125
γ/ν 1.75564±0.02506 1.75
1/ν 1.38519±0.03172 1.5

Table 1.3: Comparison of critical exponent values obtained by us with the universal values predicted
theoretically for q = 4 2D-Potts model.

1.9.4 q = 5, J > 0: Ferromagnetic Case

The lattice sizes considered once again are in the range L = 18 to L = 60. The number of Monte
Carlo steps used to thermalize is 2×105, and the number of steps for averaging is 6×105. The Binder
cumulant of the order parameter E as a function of temperature suggests that the system undergoes
a first order transition, and it is presented in Fig. 1.29. The critical temperature is obtained from
the deep of all curves, each curve corresponding to a different lattice size, and is near Tc = 1.0575.
Specific heats are shown in Fig. 1.30.

For the calculation of energy histograms, the number of Monte Carlo steps used for thermalization
is 1×106, and the number of steps for averaging varies from 3×106 for lattice sizes until L = 36, and
4×106 for the next lattice sizes. The results are shown in Fig. 1.31.

Energy histograms confirm that the transition is first order. The histograms are narrow at increased
lattice size, and the valleys also become deeper.
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Figure 1.29: Energy cumulant for q = 5, J > 0. The transition temperature is near 1.0575.
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Figure 1.30: Specific heats for q = 5, J > 0.
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Figure 1.31: Energy histograms for
lattice sizes a) L = 18, b) L = 24,
c) L = 30, d) L = 36, e) L = 48, f)
L = 54 and g) L = 60.
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1.9.5 Conclusion

The results obtained with Monte Carlo simulations and finite size scaling techniques show clearly
the kind of transition for each of the cases presented. The calculated critical exponents were near the
theoretical values for second order phase transitions, except for the exponent β in the case q = 4 that
requires a more detailed analysis. Remember that for J > 0 the transition is supposed to be of second
order for q≤ 4 and of first order for q > 4. As it lies at the border between the two, the case q = 4 is
difficult to assess. Another aspect that must be taken into account for further analysis is the type of
lattice, because it is quite probable that magnetic frustration effects could modify the magnetization-
related critical coefficients. For first order transitions, the values of the free energy barriers could be
estimated from the difference between the two peaks and the valley.

As we mentioned at the end of section 1.1, Monte Carlo simulations are a helpful tool in other
areas. Thus, in the next chapter we will move on and review a cluster identification technique that
involves Monte Carlo calculations for the analysis of biological data.
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Chapter 2

Monte Carlo Simulation in Biology
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2.1. PROTEINS, DNA AND GENE EXPRESSION

2.1 Proteins, DNA and Gene Expression

Proteins are the complex molecules that make life possible. Keratin, essential in the structural
conformation of our hair and nails, is one among the many proteins used as supporting materials in
biology. Cells are also made of proteins, and enzymes, which are responsible for all chemical reac-
tions inside living organisms, are proteins too. The information to produce the sequence of amino
acids conforming certain protein resides in the DNA molecule, making it of great importance for life.

A single strand of DNA is formed by unities named nucleotides. Each nucleotide is composed
by deoxyribose (a sugar formed by five carbons), a phosphate group, and one of the four possible
nitrogenous bases: adenine (A), cytosine (C), guanine (G) and thymine (G). Phosphodiester bridges
link the phosphate group of a nucleotide and the sugar of the next one, building in this way a chain
of nucleotides. The DNA molecule is formed when two of these linear chains are joined by hydro-
gen bonds connecting the nitrogenous bases standing out of the sugar-phosphate backbone of each
chain. All this chemical construction has a double helix structure envisioned in 1952 by Cricks and
Watson [1]. The diameter of the helix is of 2 nm, and adjacent bases are separated by 0.34 nm along
the helix axis. Hence, the helix repeats itself every 10 residues on each chain at intervals of 3.4 nm
(see Fig. 2.1). Only specific pairs of bases can form hydrogen bonds: the purine base A always pairs
with the pyrimidine base T through two hydrogen bonds, and the other pyrimidine base C always pairs
with the purine base G this time by three hydrogen bonds [2]. A possible explanation for this situation
is that two purines require more than 2 nm for connection, which does not fit within the diameter of
the helix. On the other hand, there is too much space for two pyrimidines to get close enough to form
hydrogen bonds between them[3]. The rules of base pairing tell us that if we can “read” the sequence
of nucleotides on one strand of DNA, we can immediately infer the complementary sequence on the
other strand. Thus, DNA looks like a chemical code based on four letters, each one corresponding to
the four nitrogenous bases, aligned along a double-helicoidal chain.

Figure 2.1: Structure of DNA.

At the same time, the genetic code is a universal translation table formed by three-bases words
called codons. Each codon codifies for a specific amino acid, so different sequences of codons build
distinct proteins, and they can also build RNA molecules with a functional role. One can obtain 64
distinct combinations mixing the four nitrogenous bases in clusters of three letters. This quantity is
enough to code for the 20 amino acids forming all proteins, and, as a matter of fact, almost all amino
acids have more than one codon to codify them. Three of these triplets are left apart to code for chain
termination to release proteins at the end of their production process. Moreover, one triplet is left as
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a signal to start the synthesis process. A segment of DNA sequence with the instructions to codify
for a functional product, protein or RNA, is named a gene, and the genome is the collection of all
the “recipes” for the products that an organism needs. The genome of a simple organism such as
yeast has around 7,000 genes and the latest estimate for the human genome is of 25,000 genes. It is
important to stress that not all chain segments codify for proteins or RNA molecules: an overwhelming
majority of human DNA (98%) contains non-coding regions (introns) that do not represent any partic-
ular functional product [4], although it is believed that they help to protect the genes.

Every cell of multicellular organisms has the entire set of information needed, but only some genes
are expressed depending on the function of the cell. For example, cells in our retina need photosen-
sitive molecules, whereas our liver do not. A gene is expressed in a cell when the protein or RNA
it codes for is synthesized. The large majority of abundantly expressed genes are associated with
common functions, such as metabolism, and hence are expressed in all cells. However, there will be
differences in the expression profiles of different cells, and even in a single cell, expression will vary
with time, in a manner dictated by external and internal signals that reflect the state of the organism
and the cell itself [4].

Although DNA molecule contains all the instructions to make a huge amount of diverse proteins,
DNA is not able to come out of the eucaryotic cell nucleus. Therefore, when certain protein is needed,
another molecule called messenger RNA (m-RNA) is formed from DNA in a fundamental process
called transcription, and is this molecule who travels outside the nucleus carrying the information.
RNA is also a nucleic acid but is formed by a single chain of nucleotides, and its sugar (ribose) is
slightly different from deoxyribose. Besides, RNA has uracil U instead of the base thymine T. In cells,
one can find three important types of RNA: messenger RNA (m-RNA), which transports the instruc-
tions to make a protein from the nucleus to the ribosomes, transfer RNA (t-RNA) which carries the
amino acids to the ribosomes where the proteins are assembled and is found in the cytoplasm, and,
finally, the r-RNA, or ribosomal RNA, which is one of the substances from what the ribosomes are
made out [5].

In the transcription process, the portion of DNA containing the sequence for the needed product
splits off, and then the free RNA nucleotides existing in the nucleus are attached to the exposed DNA
nucleotides forming a complementary chain of RNA. This m-RNA chain comes out of the nucleus
carrying a complementary sequence and arrives finally to the ribosome, where the sequence is trans-
lated into a protein(translation process); this is represented in Fig. 2.2.

A cell may need a large number of some proteins and a small number of others, i.e. every gene
may be expressed at a different level. The manner in which the instructions to start and stop tran-
scription are given for a certain gene is governed by regulatory networks. Transcription is regulated
by special proteins, called transcription factors, which bind to specific locations on the DNA, upstream
from the coding region. Their presence at the right site initiates or suppresses transcription. The
basic paradigm of gene expression analysis states that the biological state of a cell is reflected by its
expression profile: the expression levels of all the genes of the genome. These in turn are reflected
by the concentrations of the corresponding m-RNA molecules [4].

Several genomes of diverse organisms have been completed in the last years, the human genome,
published on 2002, among them. Now, the main focus is to understand the underlying function and
mechanisms behind these genomes. Some of the questions that remain unanswered included what
are the functional roles of different genes, how genes are regulated, how do genes and gene prod-
ucts interact, how does gene expression level differ in various cell types and states, and how is gene
expression changed by various diseases or compound treatments[6].
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Figure 2.2: Transcription and translation processes in cells.

2.2 DNA Microarrays

Although m-RNA is not the ultimate product of a gene, transcription is the first step in gene reg-
ulation, and information about the transcript levels is needed as a first approach for understanding
gene regulatory networks. DNA microarrays or DNA chips are one of the latest breakthroughs in ex-
perimental molecular biology precisely because they allow to monitor the expression of thousands of
genes at the same time. The potential of this technology is tremendous: monitoring gene expression
levels in different developmental stages, tissue types, clinical conditions and different organisms can
help understanding gene function and gene networks, assist in the diagnosis of disease conditions
and reveal effects of medical treatments.

There are currently two main technologies that generate large-scale gene expression data: cDNA
and oligonucleotide microarrays. CDNA microarrays contain large sets of complementary DNA se-
quences several hundred bases long, each set representing a gene, immobilized on a solid substrate.
In oligonucleotide microarrays, each gene is represented on the array by a set of 15-20 different
oligonucleotide probes designed to hybridize perfectly to some particular sequence, and some mis-
match control oligonucleotides, identical to the perfect match probes except for a single base-pair
mismatch. These mismatch control oligonucleotides allow estimation of cross-hybridization, improv-
ing reproducibility and accuracy of RNA quantification, and reducing the rate of false-positives. In
general, oligonucleotides used consist about 20-25 nucleotides, and are synthesized in situ with pho-
tolithography techniques [7], [8]. In brief, functioning of microarrays is based on the preferential binding
of complementary single stranded nucleic acid sequences, and a single microarray may contain tens
of thousands of spots.

One of the most popular experiments involving cDNA microarrays consists in compare m-RNA
abundance in two samples. The m-RNA molecules are extracted from cells taken from two tissues
of interest (e.g. tumour and normal tissues)[9]. They are reverse transcribed from RNA to DNA and
their concentration is enhanced. The resulting DNA is transcribed back into fluorescently marked
single strand RNA. For example, tumour tissue is labeled with a red dye and normal tissue with a
green one. The solution of marked and enhanced m-RNA molecules (“targets”) that are copies of
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Figure 2.3: Hybridization on each spot of complementary DNA chains.

the m-RNA molecules originally extracted from the tissue, is placed on the chip and diffuses over the
collection of single strand DNA probes. When an m-RNA encounters a part of the gene of which it
is a perfect copy, it hybridizes to it with a high affinity (considerably higher than with a bit of DNA of
which it is not a perfect copy) and when the m-RNA solution is washed off, only those molecules that
found their perfect match remain stuck to the chip. Next, the chip is illuminated with a laser, and the
stuck targets fluoresce. If RNA from tumour tissue is in abundance, the spot will emit red light, but
if instead RNA from normal tissue is in abundance, it will appear green. If tumour and normal RNA
bind equally, the spot will be yellow, while if neither binds, it will not fluoresce and appear black [6].
Therefore, by measuring the light intensity emanating from each spot, one obtains a measure of the
number of targets that stuck, which, in turn, is proportional to the concentration of these m-RNA in
the investigated tissues. Figs. 2.3 and 2.4 are simplified representations of these procedures. CDNA
microarrays are a differential technique because only ratios between both fluorescence wavelengths
give meaningful information and hence, only relative expressions levels are obtained. On the other
hand, with oligonucleotide arrays, absolute expression levels are measured [10].

Figure 2.4: Comparing normal and tumour gene expression levels with microarrays. Genes expressed
only on tumour tissue appear red, while genes expressed only on normal tissue appear green. If the
gen is expressed equally on both, the spot is yellow.
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The characterization of genes expressed differently in normal and their corresponding tumour cells
has been particularly important [11]. Arrays have also being used to discover transcribed regions in
genomic DNA [12]; to detect polymorphism in copy number of regions of the genome[13], which may
be a new and important class of mutation; and to analyze amplifications and deletions that are asso-
ciated with oncogenic transformation and some inherited conditions [14], [15]. A number of diagnostic
applications for arrays have been suggested. The first to be granted approval by the US Food and
Drug Administration is the Roche AmpliChip for cytochrome P450. This test will help doctors de-
termine an individual’s genotype to determine appropriate drugs and doses to prescribe, minimizing
harmful drug reactions [16].

2.3 Gene Clustering

Microarray data analysis can be divided into two general classes: supervised and unsupervised
analysis. The supervised approach assumes that for some (or all) profiles we have additional infor-
mation, such as functional classes for the genes, or diseased/normal states attributed to the samples.
We can viewed this additional information as labels attached to the rows or columns. Having this
information, a typical task is to build a classifier able to predict the labels from the expression profile. If
a clasiffier that is able to distinguish between two different, but morphologically closely related tumour
tissues, can be constructed, such a classifier can be used for diagnosis. Classifiers are trained on a
subset of data with a priori given classification and tested on another subset with known classification.
After assessing the quality of the prediction they can be applied to data with unknown classification [6].
Unsupervised data analysis consists on clustering expression profiles to find groups of co-regulated
genes or related samples. An example of these two kind of clustering combined to predict clinical
outcome of breast cancer can be seen at [17].

Some short DNA sequences in or around the gene, specifically in the promoter region, serve as
switches that control gene expression. Special proteins (transcription factors) interact with these bind-
ing sites, and represses or activates the transcription process of the gene [10]. Various genes that
share common functions or the same regulatory mechanism at the sequence level, can have the same
binding site sequence. As a result, similar expression patterns can correspond to similar binding site
patterns. Then, a key step in the analysis of gene expression data is the detection of groups of genes
that exhibit similar behaviour of expression patterns (i.e. are coexpressed), based on the idea that
these genes share common regulatory or functional roles, assumption that has proved right in many
experiments (see for example [18]).

The challenge is then transformed into the problem of clustering genes into groups based on their
similarity in expression profiles. Instead of clustering genes, experimental conditions can also be
clustered, the task being now to find groups of experimental conditions (which can be, for example,
tumour samples) across which all the genes behave similarly. This type of clustering can be helpful
for diagnosis. In gene expression, elements to be clustered are usually genes and the vector of each
gene is its expression pattern; similarity between genes can be measured in various ways that are
problem dependent, for example by the correlation coefficient between vectors. The goal is to partition
the elements into subsets, i.e. clusters, so that elements in the same cluster are highly similar to each
other and elements from different clusters have low similarity to each other.

An essential step to obtain an effective cluster analysis is the preprocessing of the initial data.
Although this work does not attempt to give a detailed explanation of the various preprocessing steps,
the most common ones are mentioned in the following. The first step is the normalization of the hy-
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bridization intensities within a single experiment or across experiments. Besides, expression ratios
are not symmetrical in the sense that upregulated genes have expression ratios between one and
infinity, while downregulated genes have expression ratios squashed between one and zero. Tak-
ing the logarithms of these expression ratios results in symmetry between expression values of up-
and downregulated genes. This preprocessing step is called nonlinear transformation of the data.
Other, but uncommonly used transformations, include square, square root, and inverse transforma-
tions. Missing value replacement is another step, and is made only in the case of using a clustering
algorithm that are not able to handle missing values due to technical reasons in the data. Some genes
do not really contribute to the biological process because their expression values show little variation
over the different experiments, and another problem are expression profiles with a considerable num-
ber of missing values. This non desirable data is removed in the filtering process. Biologists are mainly
interested in grouping gene expression profiles that have the same relative behaviour, i.e. genes that
are up- and downregulated together. Genes showing the same relative behaviour but with diverging
absolute behaviour will have a relatively high Euclidean distance, and cluster algorithms based on
this distance measure will therefore wrongfully assign the genes to different clusters. This can be
prevented by applying standardization or rescaling to the gene expression profiles so that they have
zero mean and unit standard deviation. ([10]).

In a typical experiment to monitor gene expression levels several DNA chips are used, and since
each DNA chip contains thousands of spots, a huge amount of information is obtained. These results
are summarized in a G× S expression table, in which G represents the number of genes placed on
every chip and S is the number of DNA chips used (each chip accounting for different conditions,
experiments, time points or samples). Therefore, each row on this matrix corresponds to one par-
ticular gene and each column to a different sample. Each element Egs of the matrix represents the
expression level of gene g in sample or condition s. Each column is called the profile of that condition,
and each row vector is the expression pattern of a gene across all the conditions, commonly named
expression profile. If the input data for a clustering problem is given in this form, it said to be as
fingerprint data. Other type of input data is similarity data, where pairwise similarity values between
elements are used. These values can be computed from fingerprint data. Alternatively, the data can
represent pairwise dissimilarity. Fingerprints contain more information than similarity values, but the
latter can be used to represent the input to clustering in any application. Moreover, the fingerprint
matrix is of order G×S while the similarity matrix is of order G×G. It is important to note that in gene
expression applications typically G>> S, while in tissue classification applications often G<< S [19].

We need a way to measure the similarity (or distance) between the genes or samples being com-
pared and clustered. We can regard these rows or columns in the matrix as points in n-dimensional
space or as n-dimensional vectors, where n is the number of samples for gene comparison, or number
of genes for sample comparison. The natural, so called Euclidean distance between these points in
the n-dimensional space may be the most obvious, but not necessarily the best choice. There is no
theory how to choose the best distance measure. Possibly one right distance measure in the expres-
sion profile space does not exist, and the choice should depend on the problem studied [6]. Some
distance metrics commonly applied are the following:

1. Pearson correlation. The Pearson correlation r is the dot product of two normalized vectors
(i.e. the cosine between two vectors). It measures the similarity in the shapes of two profiles,
while not taking the magnitude of the profiles into account, and therefore suits well the biological
intuition of coexpression.

2. Squared Pearson correlation. This is the square of the Pearson correlation, which considers
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two vectors pointing in the exact opposite directions to be perfectly similar, which might also be
interesting for biologists (because repression is a form of coexpression).

3. Euclidean distance. Euclidean distance measures the length of the straight line connecting
the two points. It measures the similarity between the absolute behaviours of genes, while the
biologists are more interested in their relative behaviours. Thus, a standardization procedure
is needed before clustering using Euclidean distance. Importantly, after standardization, the
Euclidean distance between two points x and y is related to the Pearson correlation by |x−y|2 =
2(1−|r|).

4. Jackknife correlation. The jackknife correlation is an improvement for the Pearson correlation
(which is not robust to outliers). Jackknife correlation increases the robustness to single outliers
by computing a collection of all the possible leave-one-(experiment-)out Pearson correlations
between two genes and then selecting the minimum of the collection as the final measure for
the correlation.

The first generation of cluster algorithms used for gene expression profiles were developed for
purposes did not related with biological research (e.g. hierarchical clustering, K-means and self orga-
nizing maps(SOM)). Although it is possible to obtain biologically meaningful results with these algo-
rithms, some of their characteristics often complicate their use for clustering expression data. More
recently, new algorithms have been developed specifically for gene expression profile clustering to
overcome some of the limitations of earlier methods. These algorithms include, among others, model-
based algorithms, the self-organizing tree algorithm (SOMA), quality-based algorithms, and bicluster-
ing algorithms. Also, some procedures have been developed to help biologists estimate some of the
parameters needed for the first generation of algorithms, such as the number of clusters present in
the data. While it is impossible to give an exhaustive description of all clustering algorithms developed
for gene expression data, we try here to illustrate some of them.

2.3.1 Hierarchical Clustering

Agglomerative or hierarchical clustering algorithms ([20]) are among the oldest and most widely
used clustering methods applied to gene expression data. Typically, the algorithm takes each ex-
pression profile as one cluster at the beginning. Then computes the distance between every pair of
clusters, and the pair of clusters with the minimum distance is merged; the procedure is carried on
iteratively until all elements ends into one single cluster. The whole clustering process is presented as
a tree called a dendrogram and the original data are often reorganized in a heat map demonstrating
the relationships between genes or conditions. After the full tree is obtained, the determination of the
final clusters is achieved by cutting the tree at a certain level or height, which is equivalent to putting
a threshold on the pairwise distance between clusters. The decision of the final clusters is arbitrary,
because it is difficult to predict which level will give the best biological results. Note that the memory
complexity of hierarchical clustering is quadratic in the number of gene expression profiles, which can
be a problem due to the large number of genes involved in experiments.

As in every step of agglomerative clustering, the two subsets that are closest or more similar to
each other are merged, the distance between two clusters has to be defined. There are four common
options:

1. Single linkage. The distance between two clusters is taken as the distance between the two
closest data points, each point belonging to a different cluster.
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2. Complete linkage. The distance between the two furthest data points, each one in a different
cluster.

3. Average linkage. Both single linkage and complete linkage are sensitive to outliers. Average
linkage provides an improvement by defining the distance between two clusters as the average
of the distances between all pairs of points in the two clusters.

4. Wards method. At each step of agglomerative clustering, instead of merging the two clusters
that minimize the pairwise distance between clusters, Wards method ([21]) merges the two
clusters that minimize the “information loss” for the step. The “information loss” is measured by
the change in the sum of squared error of the clusters before and after the merge. In this way,
Wards method assesses the quality of the merged cluster at each step of the agglomerative
procedure.

These methods yield similar results if the data consist of compact and well separated clusters.
However, if some of the clusters are close to each other or if the data have a dispersed nature, the
results can be quite different. Wards method, although less well known, often produces the most sat-
isfactory results [22].

Eisen et al. developed a clustering software package based on average linkage hierarchical clus-
tering [18]. The clustering program is called Cluster, and the accompanying visualization program is
called TreeView. Both programs are available at http://rana.lbl.gov/EisenSoftware.htm.

2.3.2 K-Means Clustering

K-means clustering ([23], [24]) is a simple and popular partitioning method for data analysis. The
number of clusters K in the data is needed as an input for the algorithm. K-means starts by assigning
at random all gene expression profiles to one of the K clusters. Iteratively, the center, which is nothing
more than the average expression vector of each cluster, is calculated and then the gene expression
vectors are reassigned to the cluster with the closest cluster center. The initial mean vectors are
called the seeds. The iterative procedure converges when all the mean vectors of the clusters remain
stationary or the given number of iterations is exceeded. Since it is difficult to predict the number of
clusters in advance, the predefinition of the number of clusters by the user is arbitrary. In practice, this
implies the use of a trial-and-error approach where a comparison and biological validations of several
runs of the algorithm with different parameter settings are necessary ([10]). Another parameter that
influence the result of K-means clustering is the choice of the seeds. The algorithm suffers from the
problem that with different seeds the algorithm can yield very different result.

2.3.3 Self-Organizing Maps

SOM ([25]) is a technique developed by Kohonen for fitting a number of reference vectors to the
distribution of gene data, by means of a set of nodes. The nodes are the intersections of a two-
dimensional grid (usually of hexagonal or rectangular geometry). In the high-dimensional input space
(with the gene expression vectors), each node represents a reference vector (similar to the mean
vectors in the K-means algorithm). The dimension of the grid (e.g. lattice of 6x5 nodes) needs to
be specified a priori. The initial position of the reference vectors is randomly chosen, and then the
algorithm selects a random data vector p, identifies the node np whose reference vector is closest
to p, and updates the position of all reference vectors towards p according to a predefined learning
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function. The amount of position adjustment determined by the learning function decreases as the
distance between n and np (in the grid) and the iteration number grow. The intuition for this learning
process is that the reference vectors that are close enough to p will be pulled towards it, and the
stiffness of the grid structure will propagate some of impact to neighbouring nodes. As a result, a
reference vector is pulled more towards input vectors that are closer to the reference vector itself and
is less influenced by the input vectors located further away. In the meantime, this adaptation procedure
of reference vectors is reflected on the output nodes (nodes associated with similar reference vectors
are pulled closer together on the output grid). The algorithm terminates when convergence of the
reference vectors is achieved or after completing a pre-defined number of training iterations.

Because of the advantage in visualization, choosing the geometry of the output grid is not as
crucial a problem as the choice of the number of clusters for a K-means method. Like the K-means
method, the initial choice of reference vectors remains a problem that influences the final clustering
result of SOM clustering. A good way to seed the reference vectors is to use the result from a principal
component analysis(PCA) [22].

Tamayo et al. [26] devised a gene expression clustering software, GeneCluster, which uses the
SOM algorithm. The software is available at
http://www.broad.mit.edu/cancer/software/genecluster2/gc2.html.

2.3.4 Self-Organizing Tree Algorithm

SOTA combines SOM and hierarchical clustering techniques. As in SOM, SOTA maps the input
gene profiles to an output space of nodes. However, the nodes in SOTA, instead of being in a two-
dimensional grid, are in the topology (or geometry) of a binary tree. The number of nodes in SOTA
is not fixed from the beginning (in contrast to SOM) because the tree structure of the nodes grows
during the clustering procedure.

The initial system is composed of two external elements, denoted as cells, connected by an inter-
nal element that its called node, like a tree with two leaves. Each cell (or node) is a reference vector
with the same size as the gene profiles. In the beginning, the entries of the two cells and the node
are randomly initialized. The series of operations performed until a cell generates two descendants
is called a cycle. During a cycle, cells and nodes are repeatedly adapted by the input gene profiles.
Adaptation in each cycle consists on the presentation of all expression profiles to the network, and
this implies two steps: first, each gene profile is associated with the cell whose reference vector is lo-
cated closest to it, and second, the reference vector of this cell and its neighbouring nodes, including
its parent node and its sister cell, are updated based on some neighbourhood weighting parameters
(which perform the same role as the neighbourhood funcion in SOM). Thus, a cell is moved into the
direction of the expression profiles that are associated with it. The network follows its growing process
by replicating the cell whose associated profiles exhibits the highest heterogeneity, i.e., the largest
variability (defined by the maximal distance between two profiles that are associated with the same
cell). This cell gives rise to two new descendants cells and become a node. The values of the two new
cells are identical to the node that generate them and the whole procedure starts again. The growing
process ends when the heterogeneity of the system falls below a threshold. This threshold can be
set to zero for a fully resolved dendogram similar to that provided by hierarchical clustering. If the
threshold is obtained from the randomized distribution of data, SOTA will provide the cluster hierarchy
that minimizes the probability of having missassigned genes to them [27].

SOTA has two crucial advantages: the topology is that of a hierarchical tree, and the clustering
obtained is proportional to the heterogeneity of the data, instead of the number of items (this is due
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to the fact that SOTA is distribution preserving while SOM is topology preserving). In both SOM and
SOTA, the training process changes the vectors in the nodes to weighted averages of the gene ex-
pression patterns associated to them. The advantage in the case of SOTA is that the binary topology
produces a nested structure in which nodes at each level are averages of items below them (items
that can be nodes or in the case of terminal nodes, genes). This makes it straightforward to compare
average patterns of gene expression at different hierarchical levels even for large data sets [27].

2.3.5 Model Based Clustering

Model Based Clustering assumes that the data is generated by a finite mixture of underlying
probability distributions such as multivariate normal distributions. In this case, each cluster Ci is
represented by a multivariate Gaussian model pi in d dimensions:

pi(y j|µi,∑
i

) =
1

(2π)d/2|∑i |1/2 e(−1/2(y j−µi)
T
−1

∑
i

(y j−µi), (2.1)

where y j is an expression profile and µi and ∑i the mean and covariance matrix of the multivariate
normal distribution respectively [10].

The covariance matrix ∑i can be represented by its eigenvalues decomposition, which in general
takes the following estructure:

∑
i

= λiDiAiDT
i , (2.2)

where Di is the orthogonal matrix of the eigenvectors of ∑i, Ai is a diagonal matrix whose elements are
proportional to the eigenvalues of ∑i, and λi is the constant of proportionality. This decomposition im-
plies a nice geometric interpretation of the clusters: Di controls the orientation, Ai controls the shape,
and λi controls the volume of the cluster. Note that simpler forms of the covariance structure can
be used (e.g., by having some of the parameters take the same values across clusters), thereby de-
creasing the number of parameters that have to be estimated but also decreasing the model flexibility
(capacity to model more complex data structures).

The mixture model p itself takes then the following form:

p(y j) =
K

∑
i=1

πipi(y j|µi,∑
i

), (2.3)

where K is the number of clusters and πi is the prior probability that an expression profile belongs to
cluster Ci so that:

K

∑
i=1

πi = 1. (2.4)

In practice we would like, given a collection of expression profiles y j( j = 1, ...,n), to estimate all
the parameters (πi,µi,∑i(i = 1, ...,K), and K itself) of this mixture model. In a first step πi,µi,∑i(i =
1, ...,K) are estimated with an EM algorithm using a fixed value for K and a fixed covariance structure
[10]. In the EM algorithm, the Expectation steps and Maximization steps alternate. In the E step,
the probability of each observation belonging to each cluster is estimated conditionally on the cur-
rent parameter estimates. In the M step the model parameters are estimated given the current group
membership probabilities. When the EM algorithm converges, each observation is assigned to the
group with the maximum conditional probability [28]. This parameter estimation is then repeated for
different values for K and different covariance structures. The result is thus a collection of different

51



2.3. GENE CLUSTERING

models fitted to the data and all having a specific value for K and a specific covariance structure. In
a second step the best model in this group of models is selected (i.e., the most appropiate number of
parameters and a covariance structure is chosen here). This model selection step involves the calcu-
lation of the Bayesian Information Criterion (BIC) for each model [29], which is not further discussed
here.

A good implementation for model based clustering (called MCLUST) is available at
www.stat.washington.edu/fraley/mclust. Yeung et al. reported good results using this software on sev-
eral synthetic data sets and real expression data sets. McLachlan et al. [30] have also implemented
model-based clustering in a Fortran program called EMMIX, which is also freely available from the
web at http://www.maths.uq.edu.au/g̃jm/emmix/EMMIX.f.

2.3.6 Quality-Based Algorithms

Quality-based algorithms produces clusters with a quality guarantee that ensures that all mem-
bers of a cluster are coexpressed (this property is called transitivity). This concept was introduced
by Heyer, Kruglyak and Yooseph, ([31]) and their implementation is called QT Clust. The quality of
a cluster C is defined as a diameter (equal to 1−mini, j ∈ si j, where si j is the jackknife correlation
between expression profile i and j), but the method can be easily extended to other definitions.

The algorithm considers every expression profile in the data set as a cluster seed (one could also
call this a cluster center) and iteratively assigns the expression profiles to these clusters that cause
a minimal increase in diameter until the diameter threshold, i.e., quality guarantee, is reached. Note
that at this stage every expression profile is made available to every candidate cluster and that there
are as many candidate clusters as there are expression profiles. At this point, the candidate cluster
that contains the most expression profiles is selected as a valid cluster and removed from the data
set where after the whole process starts again. The algorithm stops when the number of points in the
largest remaining cluster falls below a threshold. Note that this stop criterion implies that the algorithm
will terminate before all expression profiles are assigned to a cluster.

This approach has some advantages, for example it is possible to find clusters containing highly
coexpressed genes, and these clusters might therefore be good seeds for further analysis. Moreover,
genes not really coexpressed with other members of the data set are not included in any of the clus-
ters. Some disadvantages are that the quality guarantee of the clusters is a user defined parameter
hard to estimate, it is hard to use by biologists, needs extensive parameter fine-tuning, and produces
clusters all having the same fixed diameter not optimally adapted to the local data structure [10].

2.3.7 Adaptive Quality-Based Clustering

Adaptive quality-based clustering ([32]) consist of a two-step approach. In the first step, a quality-
based approach is performed to locate a cluster center in an area where the density of gene expres-
sion profiles is locally maximal using a preliminary estimate of the radius (i.e. the quality) of the cluster.
In the second step, called adaptive step, the algorithm re-estimates the radius of the cluster so that
the genes belonging to it are, in a statistical sense, significantly coexpressed. To this end, a bimodal
and one-dimensional probability distribution (the distribution consists of two terms: one for the cluster
and one for the rest of the data) describing the Euclidean distance between the data points and the
cluster center is fitted to the data using an expectation-maximization (EM) algorithm.

Finally, step one and two are repeated, using the re-estimation of the quality as the initial esti-
mate needed in the first step, until the relative difference between the initial and re-estimated quality
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is sufficiently small. The cluster is subsequently removed from the data and the whole procedure is
restarted. Note that only clusters whose size exceeds a predefined number are presented to the user.

In adaptive quality-based clustering, users have to specify a threshold for quality control. This
parameter has a strict statistical meaning and is therefore much less arbitrary (in contrast to the case
in QT Clust). It can be chosen independently of a specific data set or cluster and it allows for a mean-
ingful default value (95%) that in general gives good results. This makes the approach user friendly
without the need for extensive parameter fine-tuning. Furthermore, with the ability to allow the clusters
to have different radius, adaptive quality-based clustering produces clusters adapted to the local data
structure[10]. An application of Adaptive Quality- Based Clustering to nervous system is found in [33].

However, the method has some limitations like it does not converge in every situation. A server
running the program is available at http://homes.esat.kuleuven.be/t̃hijs/Work/Clustering.html

2.3.8 Biclustering and Some Physics Related Algorithms

Clustering can be applied to either the rows or the columns of the data matrix, separately. Biclus-
tering, on the other hand, performs clustering in these two dimensions simultaneously. This means
that clustering derives a global model while biclustering produces a local model[34]. The term biclus-
tering was first used by Cheng and Church [35] in gene expression data analysis. It refers to a distinct
class of clustering algorithms that perform simultaneous row-column clustering. One of the earliest
biclustering formulations is the direct clustering algorithm introduced by Hartigan [23], also known as
block clustering.

The goal of biclustering techniques is thus to identify subgroups of genes and subgroups of condi-
tions, by performing simultaneous clustering of both rows and columns of the gene expression matrix,
instead of clustering these two dimensions separately. We can then conclude that, unlike clustering
algorithms, biclustering algorithms identify groups of genes that show similar activity patterns under a
specific subset of experimental conditions [34].

There are also several physics related clustering algorithms, e.g. Deterministic Annealing [36] and
Coupled Mass [37]. Deterministic Annealing uses the same cost function as K-means, but rather than
minimizing it for a fixed value of clusters K, it performs a statistical mechanics type analysis, using
a maximum entropy principle as its starting point. The resulting free energy is a complex function
of the number of centroids and their locations, which are calculated by a minimization process. This
minimization is done by lowering the temperature variable slowly and following minima that move and
every now and then split (corresponding to a second order phase transition). Since it has been proven
[38] that in the generic case the free energy function exhibits first order phase transitions, the deter-
ministic annealing procedure is likely to follow one of its local minima [4].

Finally, it is important to stress that clustering methods have been used in a large variety of
scientific disciplines and applications that include pattern recognition [39], learning theory [40], as-
trophysics [41], medical images and data processing [42], machine translation of text [43], satellite
data analysis [44], as well as speech recognition [45].
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2.4 Superparamagnetic Gene Clustering: Monte Carlo Simula-
tions

This method takes the data points generated by gene expression profiles as sites of an inhomo-
geneous Potts ferromagnet, and was first proposed by Eytan Domany et al. [46]. The presence of
clusters in the data gives rise to magnetic grains, and working in the superparamagnetic phase, the
SPC algorithm decides if a data point belong to the same grain using the pair correlation function of
the Potts spins. Additionally, temperature controls the level of resolution obtained.

A Potts system is said to be homogeneous when its spins are on a lattice and all nearest neighbour
couplings are equal, Ji j = J. This system exhibits two phases, at high temperatures is paramagnetic
or disordered, and at low temperatures is ordered. In the disordered phase the correlation function
Gi j decays to 1/q when the distance between points vi and v j is large (remember from last chapter,
that q is the number of possible states in the Potts model). This is the probability to find two completely
independent Potts spins in the same state. At very high temperatures even neighbouring sites have
Gi j ≈ 1/q. As the temperature is lowered, the system undergoes a sharp transition to an ordered,
ferromagnetic phase, meaning that one Potts state dominates the system. At very low temperatures
Gi j ≈ 1 for all pairs vi,v j, i.e. all spins have the same q [47].

In strongly inhomogeneous Potts models, spins form magnetic grains with very strong couplings
between neighbours that belong to the same grain, and very weak interactions between all other pairs.
At low temperatures such a system is also ferromagnetic, but as the temperature is raised the sys-
tem may exhibit an intermediate, super-paramagnetic phase. In this phase strongly coupled grains
are aligned (i.e. are in their respective ferromagnetic phases), while there is no relative ordering of
different grains. This is illustrated in Fig. 2.5.

Figure 2.5: At high T all sites have different spin values, but as T is lowered, regions of aligned spins
appears (superparamagnetic phase). At low T, the system is completely ordered.

At the transition temperature from the ferromagnetic to super-paramagnetic phase a pronounced
peak of χ is observed [46]. As the temperature is further raised, the super-paramagnetic to paramag-
netic transition is reached; each grain disorders and χ abruptly diminishes by a factor that is roughly
the size of the largest cluster. Thus the temperatures where a peak of the susceptibility occurs and the
temperatures at which χ decreases abruptly indicate the range of temperatures in which the system
is in its super-paramagnetic phase. In principle, one can have a sequence of several transitions in the
super-paramagnetic phase: as the temperature is raised the system may break first into two clusters,
each of them in turn breaks into more (macroscopic) sub-clusters and so on. Such a hierarchical
structure of the magnetic clusters reflects a hierarchical organization of the data into categories and
sub-categories [48].
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In concreteness, SPC method consists on three stages. First, to specify the Hamiltonian which
governs the system. Second, find the temperature range where the superparamagnetic phase take
place, taking into acount the susceptibility behaviour. Finally, the correlation of neighbouring pairs of
spins, Gi j is measured and, taking into account these values, the clusters are formed.

2.4.1 Detailed Description of SPC

Each expression profile is represented as a point in a D dimensional space, and a random spin
value σi, i = 1,2, ...,q is assigned to it. A small value q hinders the identification of the SPM clusters
since different clusters are then forced to point into the same Potts direction. Too large q makes the
calculations more cumbersome. However, the results depend only weakly on the value of q. In the
next step, the neighbours of each spin vi are calculated using the K mutual neighbour criterion. This
criterion initially calculates the K nearest points of each site. If vi has v j among its K nearest points,
and v j, in turn, has vi as one of its K nearest points, then vi and v j are considered as neighbours.

The average number of neighbours K̂ and the average of all distances a between neighbour-
ing pairs vi and v j are then computed, and finally the interaction couplings which will appear in the
Hamiltonian will be calculated as follows:

Ji j =





1
K̂

e−
d2
i j

2a2 if vi and v j are neighbours

0 otherwise

(2.5)

Choosing Ji j in this way creates strong interactions between spins associated with the data from
high density regions, and weak interactions between neighbours that are in low density regions [49].

Any different assignment of spins to data points S has an energy cost given by:

H(S) = ∑
i, j

Ji jδσi,σ j , (2.6)

where the sum is over neighbouring sites. The function δσi,σ j is the Kroenecker symbol taking the
value 1 when σi = σ j and 0 otherwise. The lowest possible energy cost, H(S) = 0 is attained when
we assign the same spin to all points, which corresponds to all data points being assigned to the same
cluster. Moreover, as one chooses interactions that are a decreasing function of the distance di j, then
the closer two points are to each other, the more likely is for them to be in the same state. In summary,
this Hamiltonian procedure penalizes placing spins at points i, j in different clusters, and this penalty
decreases with the distance between the points [48].

The next step is the calculation of magnetization, susceptibility and correlation function for pairs of
neighbours Gi j over a range of temperatures using Monte Carlo technique. The original creators of
SPC used the Swendsen Wang algorithm.

As the temperature increases, M varies from 1 to 0 via sharp phase transitions. At low temper-
atures the system is fully magnetized and the fluctuations in m are negligible. As T increases to the
point where the single cluster breaks into subclusters (or become completely disordered), fluctuations
become very large. Hence, one expect to identify the transitions at which clusters break up by the
sharp peaks of the susceptibility [50].

The strategy is to vary T and measure χ(T ). Transitions show up as peaks of χ. At temperatures
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between transitions, we expect to observe relatively stable phases that correspond to some clusters
being ordered internally and uncorrelated with other clusters. Within each such phase, Gi j is mea-
sured. The value of Gi j is the probability to find the two Potts spins σi and σ j in the same state, i.e.
the probability to find them in the same cluster. By the relation to granular ferromagnets we expect
that the distribution of Gi j is bimodal; if both spins belong to the same ordered grain (cluster), their
correlation is close to 1; if they belong to two clusters that are not relatively ordered, the correlation is
close to 0. Rather than thresholding the distances between pairs of points to decide their assignment
to clusters, we use the pair correlations, which reflect a collective aspect of the data’s distribution [48].

Clusters are identified in three steps:

1. Build the cores of the clusters using a thresholding procedure. If Gi j> 0.5, a link is set between
the neighbour data points vi and v j. The resulting connected graph depends weakly in the value
used in this thresholding, as long as it is bigger than 1/q and less than 1−2/q [48]. The reason
is that the distribution of the correlations between two neighbouring spins peaks strongly at
these two values and is very small between them.

2. Capture points lying in the periphery by linking each point to its neighbour of maximal correla-
tion. Of course, some points were already linked in step one.

3. Data clusters are identified as the linked components of the graph obtained in the previous
steps.

The temperature controls the resolution at which the data are clustered.
It is intuitively clear that if a set of data points form a dense cloud, isolated from the rest of the

data, the corresponding spins will form a ferromagnetic domain at some low temperature, which will
become paramagnetic and lose its correlations only at a high temperature. Hence the size of the
temperature interval dT in which such a ferromagnetic domain exists can be used as a measure of
the stability and significance of the corresponding data cluster.

Some of the demonstrated useful properties of SPC are the following: (a) the number of clusters is
determined by the algorithm itself and not externally prescribed (as is done by SOM and K-means); (b)
presents stability against noise; (c) generates a hierarchy (dendrogram) and provides a mechanism
to identify in it robust, stable clusters (by the value of dT ); (d) ability to identify a dense set of points
forming a cloud of an irregular (non-spherical shape) as a cluster [4].

The SPC method has been used in various contexts, like computer vision [51], speech recognition
[48] and identification of clusters of companies in stock indices [52]. Its first direct application to
gene expression data has been for analysis of the temporal dependence of the expression levels in
a synchronized yeast culture [53], identifying gene clusters whose variation reflects the cell cycle.
Subsequently, the SPC was used to identify primary targets of p53 [54], the most important tumour
suppressor that acts as a transcription factor of central importance in human cancer. SPC has been
used also to cluster protein sequences [55], and to classify or identify new genes associated with
colon and skin cancer [56].

2.4.2 Future Directions

The location of the superparamagnetic phase in the SPC algorithm is closely related to the phase
transitions ocurring in the system. The introduction of the Wolff algorithm instead of the originally used
Swendsen-Wang algorithm will probably improve the efficiency of the method, and this is left for future
investigations, as well as a comparison of different methods with the SPC algorithm.
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3.1. HISTORY OF GOMPERTZ EQUATION

3.1 History of Gompertz Equation

In 1724 Moivre presented his hypothesis of uniform decrement, summarized in the expression
y(x) = K(w− x), where y(x) represents the surviving persons with age x, K is the slope or veloc-
ity with wich the population diminishes in the mortality table, and w is the maximum survival age for
the population. The Moivre straight line was recommended for an age range between 12 and 86, in
which it adjusted better. This linear hypothesis was exceeded by Benjamin Gompertz, who believed in
the existence of two general causes of mortality: chance and the increasing inability of men to avoid
death. Gompertz took into account only the biological causes, and his hypothesis was based on the
following idea: “Men resistance to death diminish with time in a proportional rate” [1].

Benjamin Gompertz was a British mathematician interested, besides other subjects as astronomy,
in the problem of life insurances and mortality rates in the nineteenth century. He worked with death
and population records of people in England, Sweden and France between ages 20 and 60 and noted
that the arithmetic increases in age were consistently accompanied by geometric increases in morta-
lity, and that this law of geometrical progression appeared in large portions of the different tables of
mortality. Nowadays, the simple formula describing the exponential rise in death rates between sexual
maturity and extreme old age, γ(t) = eγt is better known as Gompertz equation. In his first paper about
this subject published in 1820 [2], Gompertz identified this peculiar pattern among different european
populations for a limited portion of the age range. For his second paper, Gompertz used equal inter-
vals of longer periods of time than in his previous work and found, for example, that the differences in
the natural logarithm between successive 10 year age intervals between ages 15 and 55 in a morta-
lity table for Deparceaux, France, were all nearly identical. Gompertz believed he had discovered a
general law of mortality after observing similar patterns of geometrical progression in other tables of
mortality, and published it in 1825 in the Philosophical Transactions of the Royal Society, in a paper
whose title was “On the Nature of the Function Expressive of the Law of Human Mortality”[3]. In his
third paper he improved his original notation and finally presented the last one in 1860, published after
his death, where he noted that in his primary equation for geometric progression, the parameters were
supposed to represent constant quantities for a very long term of years[4].

From 1825 to 1862 Gompertz was involved on the subject of what was called vital statistics in an
effort to understand why there were consistent age patterns of death among people. Gompertz as-
sumed that human beings have certain powers of integration and that those powers could be divided
into a principal or fundamental part and an auxiliary part responsible for the maintenance of the prin-
cipal power of integration. This auxilar force is some kind of recuperative force, a power to opposse
destruction that the organisms lose in equal proportions in equal small intervals of time. Gompertz
also believed on the presence of powers destroying this auxiliar force and multiplied this hypothetical
force against life by the population alive to estimate the number of deaths in the age interval. Gom-
pertz realized that if the force to destroy life operated equally on everyone, then all individuals should
have the same length of life, something he knew could not be true. As a possible explanation, Gom-
pertz emphasized the importance of chance in the timing with which death occurrs. At that time the
concept of genetic heterogeneity was not known, instead, Gompertz invoked chance to explain why
members of a presumed homogeneus cohort die at different times [5].

After Gompertz death, the subject remained mostly unknown in the scientific community. In 1860,
W. M. Makeham improved Gompertz law of mortality incorporating a term due to chance in the equa-
tion. He noted that the logarithms of the probabilities of living from Gompertz’s formula increased at
a faster pace at higher age than at younger ages, so he developed a theory of partial forces of mor-
tality that intended to explain this. Makeham linked the diseases associated with the diminution of the
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Figure 3.1: Benjamin Gompertz (1779-1865)

vital power to specific organ systems -the lungs, heart, kidneys, stomach and liver, and brain. These
diseases represented a significant portion of total mortality at that time and worked well in solving the
observed problem of greater increased forces of mortality at older ages than at younger ages. His
formula accurately portrayed the mortality experience of various human populations between ages 10
and 95 [6].

Gompertz and Makeham recognized that the original Gompertz equation did not apply to the entire
age range, the formula was intended to apply only between the ages of 20 and 60. In fact, Gompertz
suggested in his last paper that there are four distinct periods in the life span between which separate
laws of mortality apply: birth to 12 months, 12 months to 20 years, 20 years to 60 years, and 60 years
to 100 years. Even within this range he recognized that his formula worked best “provided the intervals
be not greater than certain limits.” The applicability of the Gompertz function to only a specified range
within the life span have been recognized by many researchers but still nowadays some researchers
reject the entire Gompertz paradigm after finding that it does not apply to older ages for some orga-
nisms [5].

Scientists started searching biological explanations for Gompertz’s law of mortality until the first
years of the twentieth century, motivated in part by the fact that increases in mortality among nonhu-
man species also followed Gompertz’s law for a large portion of their life span. Differences among
species were assumed to be just a matter of scale.

Brownlee (1919) suggested that mortality due to senescent causes should be expressed first at
about age 12, become the dominant force of total mortality by age 30, and advance at an exponential
rate from ages 12 to 85. He also recognized that a law of mortality was likely to be obscured by
nonsenescent mortality. Brownlee identified a formula that accurately describes the rate of decay of
substances subject to the action of organic ferments (i.e., bacteria exposed to a disinfecting solution)
which he believed produced a time dependent decay analogous to the loss of vital power. He found
that his formula corresponded to Makeham’s adjustment of Gompertz’s equation, leading him to the
conclusion that life depends on the energy of certain substances in the body, an energy which is grad-
ually being destroyed throughout life [7].

59



3.1. HISTORY OF GOMPERTZ EQUATION

Figure 3.2: Raymond Pearl (1879-1940)

Wright(1926)[8] appears to have first suggested the use of the Gompertz curve for biological
growth. Following Wright, Davidson(1928) used the Gompertz curve to represent the growth in body
weight of cattle [10]. Weymouth, McMillin and Rich(1931) used the Gompertz curve to represent the
growth in shell size of the razor clam [9]. They stated that the curve also gives good fits for the guinea
pig and the rat. It must be noted that they have found necessary in their most extensive series, the use
of two different curves to graduate the first and second halves of their data. Weymouth and Thomp-
son(1931) also applied the Gompertz curve to the growth of the Pacific cockle [11]. Since then, a
number of authors fitted Gompertz formula to growth data for animals and organisms with remarkable
success.

Already in 1934, Casey fitted the Gompertz model to tumour growth data and was followed by
numerous authors [12]. The general conclusion has been that the Gompertz law very well describes
tumor growth, but a biological explanation for this success has not been found.

The first person who attempted to perform an interspecies comparison of mortality, in this case, the
mortality schedules of Drosophila and humans, was Raymond Pearl. Pearl (1921) plotted the survival
curves of US males in 1910 on a scale with those of the longwinged male Drosophila[13]. Although
Pearl acknowledged the arbitrary nature of this comparison, particularly in the choice of the beginning
age interval for both species, he demonstrated a remarkable similarity in the curves. In his second
study (1922), Pearl refined his interspecies approach and found that the form of the distributions was
fundamentally the same[14]. In addition, he found that humans had a higher life expectancy at every
age relative to the Drosophila, a discovery that he attributed to humans’ control over their environment.
Pearl was the first to manipulate experimentally the living conditions of his study populations to test the
importance of accidental deaths on the survival curves. He was convinced that his research would
reveal a “fundamental biological law” of mortality for more than one species, but after two decades
of research using this scaling approach on an expanded repertoire of species, Pearl and Minor [15]
emphatically declared that a universal law of mortality did not exist. Pearl and Minor identified what
Makeham had identified 68 years before as the main problem -the inability to partition total mortality
into its intrinsic and extrinsic causes of death.

In the 50’s, researchers turned to the use of radiation, which they thought was a method to accel-
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erate senescence, for understanding aging and making interspecies extrapolation of mortality risks.
George Sacher (1950), a pioneer in this field, assumed that the effects of radiation combined addi-
tively with natural aging, without introducing new pathology [16]. Under this assumption, the Sacher
model accounted for natural aging by the inclusion of a simple linear time dependent term to the in-
tegral lethality function for radiation injury. He observed that at low daily dose rates, the reciprocal
difference in mean survival times for a control and for an irradiated population was proportional to the
intensity of exposure. In 1952 Austin Brues and George Sacher envisioned injury as a process that
disrupts the normal physiological oscillations about a mean homeostatic state within an organism, and
that there were lethal injuries that an organism could not tolerate. Brues and Sacher noted that this
biological model of injury and failure lead directly to the formulation Gompertz derived to describe his
law of human mortality [17]. Using mean survival times, Sacher estimated cumulant lethality functions
to compare empirically the similarities and differences in species’ responses to radiation injury within
phases of the injury process. Sacher and Trucco, however, noted that they had insufficient knowledge
about the fluctuation process in real systems and that the very fact of performing an observation in-
troduced a disturbance in the study [18].

Like Brody before him, Failla (1958) defined vitality as the reciprocal of the age specific mortality
rate [19]. After expressing the Gompertz function in terms of vitality, he suggested that the resulting
equation described the loss of vitality from a one hit random process acting on the cell population.
Failla concluded that the vitality curve must describe a deterioration in the function of cells with age.
He attributed the deterioration of function to somatic mutations, and interpreted the Gompertz aging
parameter (derived from mortality data) as an estimate of the spontaneous somatic gene mutation
rate per cell per year. With some assumptions about generation lenght and the number of genes in
diploid cells, Failla (1960) calculations suggested that the mutation rate per generation was similar
across species [20]. This would imply that the somatic mutation rate per unit time is higher in short-
lived animals than in animals with longer life span.

Szilard (1959) also developed a theory on the nature of the aging process based on the concept
of accumulated somatic damage [21]. Inherited mutations in somatic genes whose function is critical
late in the life span was viewed as the major explanation for the different lenghts of human beings’
life. Like Sacher’s lethal bound, Szilard envisioned death occuring when the fraction of somatic cells
unaffected by mutation reached a critical threshold. He suggested that the magnitude of life short-
ening following exposure to radiation should be inversely related to the square root of the number of
chromosomes of a species. As such, mice and humans should experience a similar radiation-induced
life shortening when expressed as a fraction of the life span.

The quantitative as well as the biological importance of the Gompertz distribution was further en-
hanced by the work of Bernard Strehler and Albert Mildvan (1960)[22], these investigators presented
a Gompertz-based theory of mortality and aging that was based on disruptions of the homeostatic
state of an organism. Their approach differed from that of Sacher in the functional form of the equa-
tions used to describe the disturbances of the “ energetic environment” of an organism challenged by
stress. Strehler also made several important observations of the biological effects of radiation com-
pared to the effects of aging. He noted that (1) aging effects are typically associated with post-mitotic
cell whereas radiation primarly affects dividing cells; (2) radiation damage is primarly genetic whereas
the effects of aging appear to be more broad spectrum; (3) some species (e.g., Drosophila) do not
exhibit life shortening even after large doses of radiation; and (4) the dose required to double the
mortality rate (i.e., Gompertz slope) produces a much larger increase in the mutation rate. Based on
this observations, Strehler rejected the notion that radiation acts through a general acceleration of the
normal aging process.
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Studies of radiation effects continued to make extensive use of the Gompertz distribution through-
out the 1960s. Like Greenwood (1928) before him [23], Grahn (1970) proposed to use the ratio
of Gompertz slopes to adjust for life span differences when making mortality comparison between
species [24]. Grahn successfully used this scaling approach to predict reductions in human life ex-
pectancy following radiation exposure from doses response relationships observed in mice.

It seems that within the field of radiation, extrapolation between especies had some success, but
this differs from Pearl’s conclusion that a fundamental law of mortality applying to various species does
not exist. The reason lies on the environmental conditions of the animals being compared, because
Pearl’s studies were based on the comparison with species that experienced high levels of exogenous
mortality, and the laboratory animals used in radiation studies came from controlled environments
without predation and where infectious diseases were minimized. These environmental conditions
are far more similar to the sheltered environment and medical attention received by humans, leading
to a better comparison between species [5].

The modern development of biodemography originated with a series of articles published by Weiss
and colleagues [25]. Weiss (1990) recognized that the field of genetic epidemiology could provide in-
sights into the biological constraints influencing the shape of the mortality function in populations.
Weiss’s merging of the fields of demography and genetics and his subsequent elaboration using prin-
ciples of evolutionary biology served as a launching point for the latest developments in the field of
biodemography.

For most species survival beyond the age of reproduction is an extremely rare event with most
deaths for a cohort occuring just after birth. At these ages the vast majority of deaths result from
forces of mortality that are unrelated with senescence (e.g., predation or diseases). In this hostile en-
vironments, early reproduction has become an essential element in species’ reproductive strategies
([26]). Consistent patterns of growth and development observed within species suggest that the repro-
ductive biology of organisms alive today represents a genetic legacy of responses to environmental
conditions that prevailed during early evolutionary history of each species. The modern evolutionary
theory of senescence is based on the premise that selection is effective in altering gene frequencies
until the time before the end of the reproductive period. When the normally high force of external mor-
tality is controlled and survival beyond the end of reproductive period becomes a common occurence,
senescence and senescent-related diseases and disorders have the opportunity to be expressed. Be-
cause there are common forces (i.e., extrinsic mortality) responsible for molding species’reproductive
strategies, a common pattern of intrinsic mortality, an evolutionary imprint, may become visible when
species are compared on a biologically comparable time scale. Carnes et al. [27] have argued that the
timing of genetically determined processes such as growth and development are driven by a repro-
ductive biology, molded by the necessity of early reproduction, which in turn is driven by the normally
high external force of mortality. If individual senescence is an inadvertent consequence of these de-
velopmental processes as predicted from the evolutionary theory of senescence, then age patterns of
intrinsic mortality in a population should also be calibrated to some element(s) of a species’s repro-
ductive biology. These ideas have been introduced in various computational models.

Recent mortality schedules reveal a more pure biological influence because the external causes of
death have been dramatically reduced by medical and technological advances and almost everyone
now lives to his biological potential. At the same time, a greater understanding of biological processes
has also allowed the modification of intrinsic mortality (e.g. medicine, treatments and operations) al-
tering the survival trajectories of individuals whose intrinsic diseases have already been expressed.
From this perspective, the biological life span of a specie is one based on a mortality schedule that
would prevail in the abscence of survival time manufactered by medical or pharmaceutical intervention
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of any kind - a view consistent with that of Raymond Pearl. When enough members of a population
benefit from these medical interventions, it is possible that the life span of the population will exceed
its biologically based limits. All past research on mortality suggests that Gompertz was right all along:
there are biological reasons for why death occurs when it does, and a law of mortality for many species
may very well exists. Which is the limit imposed by this law of mortality for humans, and the degree to
which these limits can be manipulated is still subject of great interest.[5]

The Gompertz equation was developed exclusively for human beings both as an empirical tool to
describe the age pattern of death from all causes during a limited time frame, and as representing
a law of mortality that arises from inherent biological processes. Gompertz never imagined that his
equation would become a tool used in the analysis not only of failure time of organisms but also of
failure time of mechanical devices and in the description of biological and tumour growth.

3.2 Tumour Growth Equations

A mathematical model of tumour growth is a mathematical expression of the dependence of tu-
mour size in time. The common feature is that growth follows a sigmoid curve with three distinct
phases: the initial exponential phase, the linear phase and the plateau. The most widely used frame-
work is consider tumour growth as a dynamical system described by ordinary differential equations,
although some growth models are formulated successfully also by partial differential equations.

The simple tumour growth model is described by a single, first order, autonomous differential
equation:

y(t) = f (y) y(0) = y0 > 0, (3.1)

where y(t)> 0 is tumour size at time t and f (y) is a function describing the growth rate. The solution
of (3.1) has the remarkably property of a monotonic ascending function of time when f (y0)> 0, or a
monotonic descending function of time when f (y0)< 0. In the case of an ascending function, this im-
plies that the stationary (critical) point corresponds to the maximum possible tumor size, ym, achieved
for t → ∞. Similarly, in the case of a descending function, the stationary point achieved for t → ∞ is
ys ≥ 0. The model given by Eq. (3.1) describes continuous tumour growth which asymptotically ap-
proaches the finite value ym or infinity (that corresponds to the unattainable unrestricted growth). On
the other hand, (3.1) can describe continuous tumour regression from size y = y0 to extinction (y = 0)
at some finite time or when t→ ∞. However, the solution of (3.1) can not describe oscillatory tumour
growth with regressions and relapses. The solution y(t) represents a sigmoidal ascending curve cha-
racteristic of tumour growth if a unique point of inflection exists. This condition can be achieved for
some simple functions f (y). It is conceivable that functions f (y) exist which yield solutions with mul-
tiple inflection points resulting in “multisigmoidal” curves. Such curves would describe tumor growth
with recurrent stagnation phases[28].

More complex models of tumour growth kinetics are described by systems of ordinary autonomous
first-order differential equations:

{ dy
dt = f (y,x1, . . . ,xn),

dxi
dt = fi(y,x1, . . . ,xn),

(3.2)

for i = 1, . . . ,n and with initial conditions y(0) = y0 > 0, xi(0) = x0. Here xi, . . . ,xn are variables
describing various factors responsible for tumour growth (e.g., levels of available nutrients, growth
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factor activity, size of quiescent cell population, etc.). The functions f and fi and the variables xi are
chosen to represent growth mechanisms of particular interest. Unlike the simple model given by Eq.
(3.1), the system of two differential equations (n = 1 in Eq. (3.2)) can describe smooth oscillatory
tumor growth[28].

There is no further advance without specifying model functions f (y) that represent tumor growth
mechanisms. The first approach is to consider the classical chemical kinetics paradigm, based on
mass conservation. For tumour growth this paradigm can be expressed in its simplest form by:

y(t +4t) = y(t) + G(y(t))4t−D(y(t))4t. (3.3)

The tumor size (mass) at time t +4t is equal to the size at time t enlarged by G(y(t))4t (generation
of mass) during the small time interval4t, and diminished by D(y(t))4t (degradation of mass) during
the same time interval. The functions G(y) > 0 and D(y) > 0 are the growth and degradation rates
respectively, assumed to depend on tumor size only. Within the limit of t → 0, (3.3) becomes a
differential equation:

dy
dt

= G(y)−D(y), y(0) = y0 > 0. (3.4)

Necessary conditions for the establishment of a sigmoidal (ascending) growth curve includes:

• G(y0)> D(y0);

• Only one solution ym > y0 of G(y) = D(y) exists as does only one solution yi > 0 of dG(y)
dy =

dD(y)
dy , and

• yi < ym.

In the latter case, ym is the maximal tumor size achieved asymptotically and yi is the tumor size at
the inflection point. The stated conditions can be met easily if both G(y) and D(y) are monotonic
ascending functions. In a typical kinetics paradigm, these functions are given by the power function,
kyn, where k is the rate constant and n is the order of the process.

The second approach takes a fundamental idea: tumor growth results from exponential cell prolif-
eration (often called “Malthusian growth”) described by:

dy
dt

= αy, α> 0. (3.5)

This equation describes unrestricted growth leading to infinite tumor size, a notion not supported
by observation. Initially tumor growth behaves approximately according to (3.5), but eventually it
becomes stagnant due to restrictions within the tumor itself and those imposed by the environment.
Thus, exponential growth must be modified to include terms that restrict growth. This can be achieved
by multiplying y on the right-hand side of (3.5) with a function F(y) > 0 satisfying limy→ym F(y) = 0.
The corresponding differential equation is:

dy
dt

= αyF(y). (3.6)

Biologically, the function F(y) can be interpreted as a growth function, i.e. as the ratio of proliferating
cells in tumour versus total cell population, or more generally, the ratio of growing tumour mass versus
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total tumour mass. The consequence of this interpretation requires that F(y)≤ 1 and that parameter
α be interpreted as the growth rate constant for the hypothetical unrestricted growth.

The maximal tumor size, ym, predicted by the model is often designated as carrying capacity,
S> 0, of the environment for tumors in vitro or of the host for tumors in vivo. It is useful to introduce S
explicitly into the growth fraction model:

dy
dt

= αyg
( y

S

)
, y(0) = y0 > 0. (3.7)

Mathematically, both considered approaches [yielding Eq. (3.4) or Eq. (3.7)] are equivalent and
one can easily transform one equation into the other. However, on the vantage point of modeling
and interpretation, the two approaches are quite different. The same differential equation can yield
an intuitively acceptable interpretation in one approach, while it can lack a transparent interpretation
in the other. The paradigms of mass conservation and growth fraction can obviously be used in
development of more elaborated models yielding systems of equations Eq. (3.2) [28].

3.2.1 Exponential Growth

If the number of cells in a tumour at time t is denoted by y(t), then, at time t + ∆t, the number of
cells would be expressed as y(t + ∆t). The number of cells added to the tumour in the time interval
∆t can be found sustracting y(t +∆t)−y(t), but this number is proportional to the duration of the time
interval (i.e. more cells arrive in a long interval than in a short one) so:

y(t + ∆t)− y(t) = N∆t,
y(t+∆t)−y(t)

∆t = N.
(3.8)

Suppose that the increase in number of the cell population is due entirely to cells being born. As
time progresses the division or birth rate may be altered so that more or less divisions occur, so the
number of cells born in the interval ∆t may vary with time. Moreover, if there are more cells at time t,
more divisions are likely to occur and N will also depend on y(t). Letting ∆t→ 0, the left-hand side of
Eq. (3.8) becomes the derivative of y with respect to t, and we have:

dy(t)
dt

= N{t,y(t)}, (3.9)

where we show explicitly the quantities on which N depends. The expression (1/y)(dy/dt) is known
as the specific growth rate. Therefore, another way of describing Eq. (3.9) is to say that the specific
growth rate is N(t,y)/y.

It is plausible to assume that, in a short time interval, there will be about twice as many births
as in a time interval of half its length. Thus, one could expect that the number of births would be
proportional to y(t)∆t when ∆t is small. If the birth rate does not change in the time interval, ∆t can
be expressed as αy(t)∆t with α a suitable constant. Then Eq. (3.9) becomes:

dy(t)
dt

= αy(t), (3.10)

which states that the specific growth rate is α, the same for all times and all sizes of tumour. This
equation has the same form of the expression found in Eq. (3.5) and its solution can be realized by
the following procedure:
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α
R t

0 dt =
R y(t)

y(0)
dy
y ,

αt = ln{y(t)/y(0)},
(3.11)

leading to:

y(t) = y0eαt , (3.12)

where y0 is any constant that can be fixed by putting t = 0 in Eq. (3.12), and evidently is the size of
the tumour at t = 0.
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Figure 3.3: Exponential growth, with y0 = 1, α = 1. See Eq. (3.12)

The behaviour of a tumour, or a population, as time increases according to (3.12) is displayed in
figure (3.3). The size grows steadily, and the increase becomes dramatic as time goes on. Of course,
in any real situation, there will be a limit to the growth because of a shortage of essential supplies or
insufficient food. Nevertheless, many organisms exhibit exponential growth in their initial stages[29].

Notice that Eq. (3.10) has been derived on the assumption that only births can occur. In the event
that there are deaths but no births the same equation can be reached. However, α is now a negative
number since the population or cell number decreases in the time interval ∆t. It follows from (3.12)
that the population decays exponentially with time from its size at t = 0.

More facets of the population problem can be incorporated in this equation. For instance, we may
postulate that the number of deaths in the short time interval ∆t is βy(t)∆t. Similarly, individuals may
enter the given area from outside, say I(t)∆t immigrants in the interval ∆t. Likewise, some may depart
from the area giving rise to E(t)∆t emigrants. We can model this population facets via the following
equation:

y(t + ∆t)− y(t) = αy(t)∆t−βy(t)∆t + I(t)∆t−E(t)∆t, (3.13)

leading to:
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dy(t)
dt

=
(
α−β

)
y(t) + I(t)−E(t), (3.14)

when ∆t→ 0. More generally, I and E could be made to depend on y so that Eq. (3.14) (often called
Verhulsts differential equation) can be difficult to solve. Notwithstanding, it is transparent that, if we
hope to predict the size of a population at a given time, to find the solution of a differential equation
will be an essential requirement[29].

3.2.2 Logistic Growth

A characteristic that must be taken into account is that the multiplication in cell numbers is re-
stricted by crowding effects. Biochemically, these may be due to lack of nutrients, shortage of oxygen,
change in pH or the production of inhibitors, for example. Whatever the cause, the cells are interact-
ing between them. Since each cell can interact with y others, there are y2 possibilities in total. This
suggests that, in Eq. (3.9), we should put:

N{t,y(t)}= αy(t)−βy(t)2, (3.15)

where α and β are positive constants. The term involving α is the same as before and takes into
account the increase due to division. The term containing β represents the inhibition on growth causes
by crowding. With the substitution of Eq. (3.15) toward Eq. (3.9) we have:

dy
dt

= αy−βy2, (3.16)

which is called the differential equation of logistics. In the growth fraction paradigm Eq. (3.7), the
equation equivalent to Eq. (3.16) is:

dy
dt

= αy(1− y/S), (3.17)

where S = α/β.

If we integrate Eq. (3.16) from 0 to t, we obtain:

R t
0 dt =

R y(t)
y(0)

dy
αy−βy2 ,

t = 1
α
R y(t)

y(0)

(
1
y −

β
βy−α

)
dy,

= 1
α ln
(

y
βy−α

)
|y(t)
y(0)

,

= 1
α ln
(

y(t){βy(0)−α}
y(0){βy(t)−α}

)
.

(3.18)

Hence, solving for y(t), we have:

y(t){βy(0)−α}= {βy(t)−α}y(0)eαt

y(t) =
αy(0)

βy(0)+{α−βy(0)}e−αt ,
(3.19)

which is known as the logistic law of growth. In terms of the carrying capacity S = α/β, Eq. (3.19)
takes the next form:

y(t) =
Sy(0)

y(0)+{S−y(0)}e−αt . (3.20)
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The logistic curve is used to model a great variety of physical situations in which growth of a quan-
tity is “self-limited”, that is, the growth rate of the quantity depends on the size of the quantity in such
a way that if the quantity grows beyond a certain level, the growth rate decreases. The logistic model
nicely describes the behaviour of certain types of growth in business, economics, populations and
sales forecasts[29].
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Figure 3.4: Logistic curve with α = 3, β = 1, y(0) = 1.

The curve of logistic growth is shown in figure (3.4), assuming that α > βy(0). The curve rises
steadily from the value y(0) at t = 0 to an eventual value of α/β, there being neither maxima nor
minima in the curve. There is, however, a point of inflexion where the curve crosses its tangent at
t = t0 where:

t0 =
1
α

ln
( α

βy(0)
−1
)
, (3.21)

and y(t0) = α/2β.

Observe that the final value α/β of y does not involve y(0), so that, no matter what the initial size
of the population, its final size is always the same and does not depend on the starting size of the
population.

In 1838, Verhulst proposed this model as a description of population growth. The model had been
virtually forgotten until Pearl “rediscovered” it years later. Since then it has been often used as a
point of departure for more advance population models. In 1945, Rashevsky, one of the founders of
modern mathematical biology, arrived to the logistic model by considering tumor growth. Interestingly,
the logistic model was used for fitting to tumor growth data much less frequently than the Gompertz
model. On the other hand, the logistic model has been used in kinetics models describing immune
response to tumor, where it has served as a mathematically simple description of immunologically
unaffected tumor growth. Similarly, the logistic model has been used in models for chemotherapy
optimization [28].

It is important to remember that the logistic law assumes that all cells divide at the same rate, and
this is not always true. There are types in which some cells divide faster than others. Whether the
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logistic law can be applied still depends upon the differences between the various rates of division
present. If the rates are not too far apart it is probably feasible to take α as their average. For greater
deviations may be necessary to adopt a model in which the statistics of the number of cells of a given
age and type at a given time play a part [29].

The immediate generalization of the logistic model Eq. (3.16) is:

dy
dt

= αy−βyν, ν> 1, (3.22)

with solution

y =
[
k−
(

k− y1−ν
0

)
eα(1−ν)t

] 1
(1−ν)

, k =
α
β
. (3.23)

Function (3.23) is often designated as the Richard function. The solution of Eq. (3.22) has been
thoroughly discussed by Fletcher. Interestingly, when this model was fitted to tumor growth data with
y0, α, β, and ν as free parameters, in most cases it was found that ν ≈ 1. Clearly, ν cannot be
exactly 1, because then (3.22) would describe unrestricted exponential growth. However, if (3.22) is
reparametrized somewhat peculiarly as:

dy
dt

=
(

a +
b

ν−1

)
y− b

ν−1
yν = ay−by

yν−1−1
ν−1

, (3.24)

then in the limit ν→ 1 one obtains the Gompertz model dy/dt = ay−by lny, using the general result:
limx→0

cx−1
x = lnc.. The result that fitting to data yielded ν≈ 1 can be interpreted as a clear indication

that the Gompertz model is a much more adequate description of tumor growth kinetics than is the
logistic model[28].

3.2.3 Von Bertalanffy Growth

The combination of the chemical kinetics paradigm and the principle of allometry led von Bertalanffy
to formulate the model of organismic growth represented by the equation:

dy
dt

= αyµ−βyν, µ> 0, ν> 0. (3.25)

It was shown that for any µ and ν the solution of Eq. (3.25) can not be expressed in terms of
elementary functions, but in terms of the modified beta-function,

β(x,r,s) =
Z x

1/2
(1−u)r−1us−1 du (3.26)

and its inverse.

The model characterized by µ = 2/3 and ν = 1 is based on the so called “surface rule”, which
is often named von Bertalanffy model. The underlying notion is that the anabolic growth rate is pro-
portional to the surface area (expressed as y2/3 where y is interpreted as volume), and the catabolic
growth rate is proportional to the volume itself. Another especial case of Eq. (3.25) is the generalized
logistic model with µ = 1, presented by Eq. (3.22), and its counterpart with ν = 1:

dy
dt

= αyµ−βy, µ< 1. (3.27)
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The solution of this equation is of the same form as Eq. (3.23), because Eq. (3.27) can be formally
transformed into Eq. (3.22) by parameter redefinition, as clearly presented by Fletcher. Obviously,
model Eq.(3.27) contains the von Bertalanffy “surface rule” model.

Returning to the general model Eq. (3.25), we wish to point out its not obvious relationship to the
Gompertz model. Similarly to the generalized logistic model, Eq. (3.25) can be reparametrized into:

dy
dt

= ayµ− 1
ε

byµ(yε−1). (3.28)

In the limit ε→ 0, one then obtains the so called “generalized Gompertz model”:

dy
dt

= ayµ−byµ lny, (3.29)

which for µ = 1 reduces to the original Gompertz model. In practice, this means that tumor growth
data described by the generalized von Bertalanffy model with µ≈ 1, ν≈ 1, are described also by the
Gompertz model[28].

3.2.4 Gompertz-Makeham Growth

In the paradigm of chemical kinetics (see Eq. (3.4)), the equation

dy
dt

= αy−βy lny, y(0) = y0 > 0, (3.30)

has the Gompertz growth formula as the unique solution. The growth rate αy reflects the Malthusian
law with clear interpretation, but the degradation rate lacks any such interpretation.

In the growth fraction paradigm (Eq. (3.7)), the equation equivalent to Eq. (3.30) is obtained for
g(z) =− ln z, i.e.

dy
dt

=−γy ln
( y

S

)
, y(0) = y0 > 0. (3.31)

Thus the growth fraction g(z) is the simplest possible elementary transcendental function which obeys
g(z) ∈ [0,1) for z ∈ (0,1] with g(1) = 0. Besides the simplicity argument, there is not an obvious
interpretation of the growth fraction function. The solution of Eq. (3.31) and Eq. (3.30) reads:

y = y0e(α/β−lny0)(1−e−βt)

y = y0eln(S/y0)(1−e−γt )

= Se− ln(S/y0)e−γt
.

(3.32)

Comparison of (3.30) and (3.31) yields interesting relations among parameters:

β = γ, α = γ lnS. (3.33)

These relations suggest that the inherent growth rate constant γ (the rate constant for unrestricted
growth, i. e. S→ ∞ ) is equal to the degradation rate constant β and yet γ is also proportional to the
Malthusian growth rate constant α. This indicates that the Gompertzian growth is regulated by the
parameter γ which controls both growth and degradation [28].

If we start from Eq. (3.31) and declare the growth fraction a new time dependent variable:

x = g(
y
S

) = ln
(S

y

)
. (3.34)
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The solution (3.32) satisfies also the system of equations:

dy
dt = γxy,
dx
dt =−γx,

(3.35)

with initial conditions y(0) = y0 and x(0) = ln(S/y0). From here, it is clear that the parameter γ is at
the same time the inherent growth rate constant and the rate constant for the temporal decrease of the
growth fraction. This certainly is a peculiarity of the Gompertz model which supports the idea that the
single parameter α controls an inhibitory feedback mechanism operating in tumors. Beyond this and
beyond the transparent structure of Eq. (3.35), that has a simple interpretation, other fundamental
insights are not apparent. Another possibility to present the Gompertz model as a system of two
differential equations is based on the introduction of the effective growth rate x′1 = γx as a variable:

{ dy
dt = x1y,
dx1
dt = γx1.

(3.36)

This system of equations is interpreted as describing exponential growth with exponential retardation.
However, this can be inferred directly from Eq. (3.30).

3.2.5 Mathematical Properties and Comparison Between Logistic and Gom-
pertz Growth

It is convenient to write equation Eq. (3.32) as:

y = ce−ea−bx
, (3.37)

in which c and b are essentially positive quantities. From Eq. (3.37) it is clear that as x becomes nega-
tively infinity y will approach zero, and as x becomes positively infinity y will approach c. Differentiating
Eq. (3.37) we have:

dy
dx

= cbea−bxe−ea−bx
= byea−bx, (3.38)

and it is apparent that the slope is always positive for finite values of x, and approaches zero for infinite
values of x. Differentiating again:

d2y
dx2 = b2yea−bx(ea−bx−1), (3.39)

and we obtain the point of inflection in:

x =
a
b

; y =
c
e
, (3.40)

or approximately, when 37 % of the final growth has been reached. Therefore, when we desire to
fit growth data which show a point of inflection in the early part of the growth cycle, we may use the
Gompertz curve with the expectation that the approximation to the data will be good. Notice Figure 1,
which shows the form of the curve for the case c = 1, a = 0, b = 1; there are also shown the logistic
and the first derivative of the Gompertz curve [30].

The logistic possesses the same number of constants as the Gompertz curve, but has the point
of inflection mid-way between the asymptotes. It is described by the following equation:
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Figure 3.5: Gompertz curve and its first derivative, and the logistic curve, with c = 1, a = 0, b = 1.

y =
c

1 + ea−bx . (3.41)

It has been found useful to add a constant term to the logistic, giving it a lower asymptote different
from zero:

y = d +
c

1 + ea−bx . (3.42)

This procedure is equally applicable to the Gompertz curve giving:

y = d + ce−ea−bx
. (3.43)

The Gompertz curve and the logistic possess similar properties which make them useful for the
empirical representation of growth phenomena. Each curve has three arbitrary constants, which cor-
responds essentially to the upper asymptote, the time origin, and the time unit or rate constant”. In
each curve, the degree of skewness, as measured by the relation of the ordinate at the point of inflec-
tion to the distance between the asymptote, is fixed [30].

To illustrate the mathematical properties of the Gompertz and logistic curves, the table from [30]
has been reproduced on the next page.

The Gompertz equation is used as a predictive tool in demography [31], however, the Gompertz
Law of exponential increase in mortality rates with ages is observed in many other biological species,
such as rats, mice, fruit flies and flour beetles[32], not only on humans, and, therefore, some general
theoretical explanation for this phenomenon is required. Furthermore, it often fits growth of organisms,
organs and tumours. Despite numerous attempts, no consensus has been forged about the biological
foundation of the broad applicability of the model[33].
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CURVE GOMPERTZ LOGISTIC

Equation y = ce−ea−bx
y = 1

1+ea−bx

Number of Constants 3 3
Asymptotes y = 0,y = c y = 0,y = c
Inflection x = a

b ,y = c
b x = a

b ,y = c
2

Straight line of equa-
tion

loglog c
y = a−bx log c−y

y = a−bx

Symmetry Assymetrical Symmetrical about
inflection

Growth rate dy
dx = byea−bx =
bylog c

y

dy
dx = b

c y(c− y)

Maximum growth rate bc
e

bc
4

Relative growth rate as
function of time

1
y

dy
dx = bea−bx 1

y
dy
dx = b

1+e−a+bx

Relative growth rate as
function of size

1
y

dy
dx = b(logc− logy) 1

y
dy
dx = b

c (c− y)

Table 3.1: Mathematical properties of Gompertz and logistic curves.

3.3 Robust Estimation of the Exponent Function in the Gom-
pertz Law.

If the size z(t) of a growing structure evolves according to the next equation [29]:

Ż1 = K2Z1 ln
(

S
Z 1

)
, (3.44)

we say that its growth is of Gompertz type (growth fraction paradigm). The evolution is continuous
from a given initial stage to a plateau value S. In a Nature letter on the growth of tumours, Norton et
al [34] wrote the Gompertz law, introducing the variable Z2 = K2/K1ln(S/Z1), as the system of the
following two first order differential equations:

Ż1 = K1Z1Z2 (3.45)

Ż2 = −K2Z2 , (3.46)

where Z = (Z1,Z2) ∈ R2, Ki > 0, Z1 is the volume of the tumour at time t, and Z2 is a function
entirely described by the second equation (3.46) that gives the difference in growth with respect to a
pure exponential law. According to Norton, K2Z2 gives the fraction of the volume that doubles in size
during instant dt. Thus, Z2, that we call for obvious reasons the Gompertzian exponent function, is of
special interest and we would like to determine it with high accuracy even though we know neither the
initial conditions for Z1 and Z2 nor K2.

Norton et al wrote the solution of the system in the following form

Z1(t) = Z1(0)exp
[(

K1

K2

)
Z2(0){1− exp(−K2t)}

]
, (3.47)

(3.48)
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Z2(t) =

(
K2

K1

)
ln
[

S
Z1(∞)

Z1(t)
]

= Z2(0)exp(−K2t) . (3.49)

We will treat Z1 and Z2 as states of a dynamical system that in our case is the evolution of a tumour.
A brief explanation of basic concepts used in control theory is given in appendix A. The fundamental
concept of state of a system or process could have many different empirical meanings in biology and
in our case the first state Z1 is just the size of the tumour whereas Z2 is the deviation of the growth
rate from the pure exponential growth. In general terms, a potentially useful tool in Biology is the
reconstruction of some specific states under conditions of limited information. For animal tumours, it is
not trivial to know their initial moment and most often we do not know the instant of nucleation that can
be determined only by extrapolation of the fitting to the analytic solutions of growth models, such as
Eqs. (3.47) and (3.49). The main goal is to show that an excellent alternative procedure for estimating
the phenomenological quantities of the tumour growing process in the frequent case in which we do
not know the initial conditions and the parameter K2 is the recent adaptive scheme for state estimation
proposed by Besançon and collaborators [35]. In addition, what is generally measured, i.e., the output
y, is a function of states that we denote by h(Z) and in the particular case of tumours one usually
measures their volume. Then:

y = h(Z) = Z1 . (3.50)

The mathematical formalism of the adaptive scheme that follows relies entirely on the Lie deriva-
tives of the function h(Z) that are defined in the next paragraphs. By a Lie mapping, we are able to
write the Gompertz-Norton system in Besançon’s matrix form (system F below) that allows to write
the corresponding adaptive algorithm (the dynamical system F̂ and its explicit Gompertz form F̂G
below). It is worth mentioning that the following results have been accepted for publication in Physica
A [36].

Taking into account the fact that rarely one can have a sensor on every state variable, and some
form of reconstruction from the available measured output data is needed, an algorithm can be con-
structed using the mathematical model of the process to obtain an estimate, say X̂ of the true state X .
This estimate can then be used as a substitute for the unknown state X . Ever since the original work
by Luenberger [37], the use of state ‘observers’ has proven useful in process monitoring and for many
other tasks. The engineering concept of observer means an algorithm capable of giving a reasonable
estimation of the unmeasured variables of a process using only the measurable output. Even more
useful are the so-called adaptive schemes that mean observers that are able to provide an estimate
of the state despite uncertainties in the parameters. The so-called high gain techniques proved to
be very efficient for state estimation, leading in control theory to the well-known concept of high gain
observer [38]. The gain is the amount of increase in error in the observer’s structure. This amount
is directly related to the velocity with which the observer recovers the unknown signal. The high-gain
observer is an algorithm in which the amount of increase in error is constant and usually of high val-
ues in order to achieve a fast recover of the unmeasurable states. [38]. In case of dynamical systems
depending on unknown parameters, the design of the observer has to be modified appropriately in
order that the state variables and parameters could be estimated. This leads to the so called adaptive
observers, i.e., observers that can change in order to work better or provide more fit for a particular
purpose. Recently, observers that do not depend on the initial conditions or the estimated parameters
from the standpoint of asymptotic exponentially fast convergence to zero of the errors have been built
for many systems. They are called globally convergent adaptive observers and have been obtained
from a non trivial combination of a nonlinear high gain observer and a linear adaptive observer, see
[39] and [35]. In this work, we present an application of the high gain techniques in the context of state
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estimation whatever the unknown parameter is.

The assumption on the considered class of systems are basically that if all of the parameters were
known, some high-gain observer could be designed in a classical way, and that the system are “suf-
ficiently excited” in a sense which is close to the usually required assumption on adaptive systems,
that is, signals should be dynamically rich enough so that the unknown parameters can indeed be
identified. In this particular case, the lack of persistent excitation of the system could impede the
reconstruction of the parameters. However, the recent scheme of Besançon and collaborators [35]
guarantees the accurate estimation of the states according to rigorous arguments in their paper.

To make this mathematically precise we have to introduce first some terminology. Let us construct
the jth time derivative of the output. This can be expressed using Lie differentiation of the function h
by means of the vector field f given by the right hand sides of Norton’s system. We will denote the jth
Lie derivative of h with respect to f by L f

j (h)(Z(t)). These Lie derivatives are defined inductively as
functions of Z

L f
0 (h)(Z) = h(Z)

L f
j (h)(Z) =

∂
∂Z

(
L f

j−1 (h)(Z)
)

f (Z) .

When the system is observable, i.e., from the knowledge of the output one can build the states of the
system, the Lie map Φ : Z→Φ(Z) given by

ξ = Φ(Z) =

(
h(Z)

L f (h(Z))

)
=

[
Z1

K1Z1Z2

]
(3.51)

is a diffeomorphism. For Φ(Z) to be a diffeomorphism on a region Ω, it is necessary and sufficient
that the Jacobian dΦ(Z) be nonsingular on Ω and that Φ(Z) be one-to-one from Ω to Φ(Ω), see [40].

Since Φ(Z) is a diffeomorphism, one can write the global coordinate system defined by X = Φ(Z)
in the following form

ϒ :





Ẋ1 = X2

Ẋ2 = X2
2

X1
−K2X2

y = X1

.

Following [35], we assume that the ϒ system can be written in the matrix form as follows

Ẋ = AX + ϕ(X) + Ψ(X)θ
y = CX

}
≡ F ,

where X ∈Rn, A =

[
0 1
0 0

]
, ϕ(X) = (0, X2

2
X1

)T , y is the measured output, Ψ(t)∈Rn×p is the matrix of

known functions and θ∈Rp is the vector of unknown parameters that should be estimated through the
measurements of the output y. We are here in the particular case n = 2, p = 1, i.e., Ψ(t) = [0,−X2]T

and θ ∈ R1 = K2. In addition, the algorithm we develop is a particular case of that presented in [35],
since we can not meddle in the system, in other words, there is no control input. We use as adaptive
observer the following system [35]

˙̂X = AX̂ + ϕ(σ(X̂)) + Ψ(σ(X̂))σ(θ) + Λ−1 [ρK + ΓΓTCT
](

y−CX̂
)

˙̂θ =
[
ρnΓTCT

](
y−CX̂

)

Γ̇ = ρ(A−K C)Γ + ρΨ(σ(X̂))




≡ F̂ ,
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where σ(·) is a saturation function, Γ ∈ Rn×p is the so-called gain vector, K is a vector that makes
A−K C a stable matrix, Λ = diag[1,ρ−1, . . . ,ρ−(n−1)] where ρ ∈R+ is a constant to be chosen. The
saturation function is a map whose image is bounded by chosen upper and lower limits, B and b,
respectively. It is customary to introduce such functions of simple forms, e.g., we used

σ(s) =





B s> B
s b≤ s≤ B
b s< b ,

to avoid the over and/or under estimation and in this way to increase the chance of the quick conver-
gence to the true value [41].

In [35], it is proven that the dynamical system F̂ is a global exponential adaptive observer for the
system F , i.e., for any initial conditions X(t0), X̂(t0), θ̂(t0) and ∀θ ∈ Rp, the errors X̂(t)−X(t) and
θ̂(t)−θ(t) tend to zero exponentially fast when t→∞. Taking K = [K1,K2], the matrix A−K C have
the following eigenvalues

λ1,2 =−1/2K1±1/2
√

K1
2−4K2 . (3.52)

Selecting K2 = (1/4)K1
2, we get equal eigenvalues λ1 = λ2 =−(1/2)K1, and choosing K1 > 0 we

turn A−K C into a stable matrix. Thus, the explicit form of the observer system F̂ is given by

F̂G =





˙̂X1 = X̂2 +
(
ρK1 + Γ1

2)(X1− X̂1)

˙̂X2 =
(σ(X̂2))

2

σ(X̂1)
−σ(X̂2)σ(θ̂) + ρ

(
ρK1

2

4 + Γ1Γ2

)
(X1− X̂1)

˙̂θ = ρ2Γ1(X1− X̂1)
Γ̇1 = ρ(−K1Γ1 + Γ2)

Γ̇2 =−ρK1
2Γ1

4 + ρσ(X̂2) .

Being global, this observer system does not depend on the initial conditions. Therefore, any initial
conditions chosen at random from a set of physical values will not affect the correct estimation; merely
the convergence time could be longer or shorter. Thus, in practice, it is useful to start with initial
conditions that are close to the real phenomenological initial conditions in a given framework.

Finally, to recover the original states, we use the inverse transformation Φ−1(X̂), which is given
by:

Ẑ = ξ−1 = Φ−1(X̂) =

(
Ẑ1
Ẑ2

)
=

(
X̂1
X̂2

2
K1X̂1

)
. (3.53)

With the aim of better illustrating the adaptive scheme proposed here, we present numerical sim-
ulations. We use the following values of the parameters: K1 = 1, K2 = 0.5, ρ = 100 and K1 = 1.
In Figs. (3.6) and (3.7), the solid lines represent the evolution of the true states and the dotted lines
stand for the evolution of the estimates, respectively. We mention that short convergence time is what
really matters in order to have efficient numerical simulations. This can be accomplished by starting
with arbitrary initial conditions that are guessed to be close to the real initial ones as we already com-
mented. If one is interested in the evolution of the iterative scheme, this can be readily glimpsed from
the difference Ẑi−Zi between the curves in the figures.
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Figure 3.6: Numerical simulation for the first state: (a) the solid line represents the time evolution of
the true states Z1 and the dotted line represents the estimate Ẑ1. Plot (b) is a detail of (a) to appreciate
the variation of Ẑ1 in the beginning.

0 5 10 15
time

0

1

2

3

4

5

6

Z 2,Z^ 2

0.0 0.5 1.0 1.5
time

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Z 2,Z^ 2

(a) (b)

Figure 3.7: Numerical simulation for the second state: (a) the solid line represents the true state Z2
and the dotted line represents the estimate Ẑ2. Plot (b) is a detail of (a) in order to appreciate better
the variation of Ẑ2 in the beginning.
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3.4. CONCLUSION

To this end, we would like to illustrate the robustness of the present adaptive scheme. Figs. (3) and
(4) show what happens when an impulsive type perturbation(i.e., of high value acting in a very short
span of time) is added to the output signal h(Z) = Z1 which is fed to the observer at t = 4 (arbitrary
units). As can be seen from these graphics, the adaptive scheme has the ability to recover the “true”
signal immediately after the perturbation disappears. In general, this robustness is due to the fact that
the scheme is designed in the closed-loop way and additionally not the full range of the parameters
need to be known.

Figure 3.8: Behaviour of Z1, Ẑ1 un-
der an impulse-type perturbation at
t = 4 (arbitrary units).
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Figure 3.9: Behaviour of Z2, Ẑ2 un-
der the same perturbation at t = 4
(arbitrary units).
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3.4 Conclusion

In summary, the robust adaptive scheme we used here for the interesting case of Gompertz growth
functions is a version of that due to Besançon et al. The results of this work indicate that this scheme
is very efficient in obtaining the Gompertz functions without knowing both initial conditions and pa-
rameter K2. The method may be useful in more general frameworks for models of self-limited growth
such as in the construction of a specific growth curve in biology, or as a managerial tool in livestock
enterprizes, as well as in the detailed understanding of the growth of tumours. We also notice that the
reconstruction of the unknown states by this method allows the possibility to obtain important missing
parameters by standard fitting procedures.
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Appendix A: Control Theory Fundamentals

Control theory deals with the behaviour of dynamical systems over time. In a few words, is the ma-
thematical study of how to manipulate the parameters affecting the behaviour of a system to produce
the desired or optimal outcome. Control theory plays an important role in the design of manufacturing
processes in industry, robotics, transportation, and biology, among other applications. Some of its
basic concepts are the following:

System: set of elements that act in coordination to perform some objective.

Plant, P: is the physical element that one desires to control. Some examples are motors, ovens,
navigation systems, bioreactors, etc.

Output signal, y(t): is the variable that one wishes to control (position, velocity, pressure, tem-
perature, etc). Is also called control variable.

Reference Signal, r(t): is the desired value for the output signal to reach.

Error, e(t): the difference between the reference signal and the real output signal.

Control signal, c(t): is the signal produced by the controller C in order to modify the control vari-
able in such a way that the error decreases.

Process: steps that drive us to certain result.

Perturbation: a signal affecting the output of the system, deviating it from the desired value.

Sensor: device that turns the value of certain physical quantity (pressure, temperature, flow, etc.)
into an electrical signal codified in analogic or digital forms.

Closed-loop controller: the output of the system y(t) is compared to the reference value r(t),
through the measurement performed by a sensor. The controller then takes the difference between
the reference and the output, the error e(t), to change the inputs u(t) to the system under control. Is
known as feedback control.

Open-loop controller: the output signal y(t) is not monitored to generate a control signal c(t).
There is no direct connection between the output of the system and its input u(t). One of the main
disadvantages of this type of controller is the lack of sensitivity to the dynamics of the system under
control.

Stability: means that for any bounded input over any amount of time, the output will also be
bounded. This is known as BIBO stability. If a system is BIBO stable then the output cannot diverge if
the input remains finite.

The most simple closed-loop controller is a so-called single-input-single-output (SISO) control sys-
tem, and is presented in Fig. 3.10. Examples where one or more variables can contain more than
a value (MIMO, i.e. Multi-Input-Multi-Output - for example when outputs to be controlled are two or
more) are frequent. In such cases variables are represented through vectors instead of simple scalar
values.

If we assume the controller C and the plant P are linear and time-invariant (i.e.: elements of their
transfer function C(s) and P(s) do not depend on time), we can analyze the system shown in the Fig.
3.10 by using the Laplace transform on the variables. This gives us the following relations:

Y (s) = P(s)U(s) (3.54)
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Figure 3.10: A simple feedback control loop.

U(s) = C(s)E(s) (3.55)

E(s) = R(s)−Y (s) (3.56)

Solving for Y(s) in terms of R(s), we obtain:

Y (s) =

(
P(s)C(s)

1 + P(s)C(s)

)
R(s) (3.57)

The term P(s)C(s)
1+P(s)C(s) is referred to as the transfer function of the system. If we can ensure P(s)C(s)>>

1, i.e. it has very great norm with each value of s, then Y (s) is approximately equal to R(s). This means
we control the output by simply setting the reference.

Controllability and observability are main issues in the analysis of system before decide the
best control strategy to be applied. Controllability is related to the possibility to force the system in a
particular state by using an appropriate control signal. If a state is not controllable, then no signal will
ever be able to force the system to reach a level of controllability. Observability instead is related to
the possibility to“observe”, through output measurements, the system occupying a state. If a state is
not observable, the controller will never be able to correct the closed-loop behaviour if such a state is
not desirable.

Every control system must guarantee first the stability of the closed-loop behaviour. For linear
systems, this can be obtained directly placing the poles. The behaviour of a non-linear system is
not expressible as a linear function of its state or input variables, so non-linear control systems used
instead specifical theories (normally based on Lyapunov Theory) to ensure stability without regard to
inner dynamics of the systems. The possibility to fulfill different specifications varies from the model
considered and/or the control strategy chosen.

Solutions to problems of uncontrollable or unobservable system include adding actuators and
sensors.

An observer is an auxiliary dynamical system which uses the available measurement on the
system in order to provide an estimate x̂ of the state of the system. The dynamical nature of an
observer means that the estimates of the state variable are provided on line. By an adaptive scheme
we mean an observer that is able to provide an estimate state even in face of parameter uncertainties.

http://en.wikipedia.org/wiki/Control theory
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