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Resumen

Palabras clave: Sistema regular, restricción no holonómica, punto singular, álgebra

de Lie, álgebra de Lie libre.

En este trabajo se aborda el problema de planeación de movimiento (MPP por sus

siglas en inglés) en modelos cinemáticos de robots móviles tipo carro con restricciones

no holonómicas, también conocido como state steering. En particular, se toma en

consideración la posible existencia de puntos singulares en dichos modelos y se estudia

un algoritmo de desingularización propuesto en [Chitour et al., 2013], el cual grantiza

que las señales de control que resuelven el MPP en el sistema desingularizado también

lo resuelven en el sistema singular y son presumiblemente menos complejas que las

que se obtendŕıan resolviendo el mismo problema para el sistema singular. Además se

presentan aplicaciones a sistemas particulares tanto del algoritmo de desingularización

como de una metodoloǵıa de control propuesta en [Chitour et al., 2013] para sistemas

sin deriva regulares y nilpotentes.
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Abstract

Key words: Singular system, nonholonomic constraint, singular point, free Lie alge-

bra, Lie algebra.

This work addresses the motion planning problem (MPP) for kinematic models of

car-like mobile robots with nonholonomic constraints, also known as the state steer-

ing problem. In particular, the possible existence of singular points for these models

is considered and a desingularization algorithm, proposed in [Chitour et al., 2013], is

studied. This algorithm ensures that the control signals that solve the MPP for the

“desingularized” system also solve it for the singular system and are presumably less

complex than those that would be obtained by solving the same problem for the singu-

lar system. In addition, we present applications of both the desingularization algorithm

and a control methodology proposed in [Chitour et al., 2013] for particular examples

of regular, nilpotent, driftless systems.

vii



Notations and conventions

R Set of real numbers

N Set of natural numbers (without incuding {0})

Z Set of integer numbers

R>0 Set of strictly positive real numbers

LX Lie algebra generated by X

LXY Lie derivative of Y in the direction of X

LB Free Lie algebra benerated by B

Γ(B) Set of smooth sections of a bundle B

Xp Vector field X evaluated at a point p

∆ Smooth distribution

Υ Smooth co-distribution

TpM Tangent space to a manifold M at p ∈M

T ∗
pM Co-tangent space to a manifold M at p ∈M

TM Tangent bundle to a manifold M

T ∗M Co-tangent bundle to a manifold M

Q Configuration manifold

MPP Motion planing problem

LARC(x) Lie algebra rank condition at x
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Chapter 1

Introduction

One of the problems frequently studied in control is the motion planning problem

(MPP), whose solution consists in obtaining admissible control inputs for a system

such that these signals bring the system from an initial state x0 to a desired final state

xf , generally in a finite time T .

Commonly, when designing control laws for a dynamical system, one works with a

model or “mathematical description”of the evolution over time of the system, some-

times simplified by various assumptions. In the case of mechanical systems, this model

usually represents the dynamics of the system and is obtained by using Newton’s laws of

motion; for this reason the inputs for this kind of systems are usually given in the form

of “generalized forces or torques”, which act instantaneously upon the accelerations.

The dynamic model of a mechanical system is in general a second order system;

however, in many cases a mechanical system can be described in some sense by a first-

order driftless control-affine system, called a “kinematic reduction”, with velocities as

inputs. This “reduction” is a mathematical representation of the kinematics of the sys-

tem, such that every controlled trajectory for the kinematic model can be implemented

as a trajectory of the full second-order system under some appropriate control input.

The kinematic reduction is sometimes a justifiable step that makes certain con-

trol task, especially motion planning, considerably simpler. However, it is natural

to ask when can be a mechanical system kinematically reduced? References like

[Bullo and Lewis, 2005], [Lewis, 1999], and [Choset et al., 2005] establish necessary and

sufficient conditions that mechanical systems must satisfy in order to be kinematically

reducible, among which, if a system is a kinematic reduction of a mechanical system,

then all feasible trajectories for the kinematic system are also feasible for the second-

order system.

Due to the properties exhibited by this reductions, for mechanical systems that
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are kinematically reduced one can model their kinematics and solve the MPP in this

model (with velocities as inputs), to consequently obtain, using control techniques

such as backstepping, control acceleration inputs that solve the MPP in the dynamical

model of the system.

An interesting case of mechanical systems that can be kinematically reduced and

described by driftless control-affine systems are car-like mobile robots. There exist

many structural configurations of these systems, two of which are the car with N trailers

and the cart with N trailers; their kinematic modeling and some structural properties

such as controlabillity and stabilizability have been studied in some references, e.g.,

[Jean, 1996].

Regarding the MPP for the kinematic models of the car an the cart with N trail-

ers, and for driftless control-affine systems in general, several algorithms to calcu-

late control laws that solve it have been developed over the years; some of them

are focused to solve the MPP for a specific type of driftless system, which makes

them rather restrictive. There exist, for example, methods for nilpotentizable sys-

tems ([Lafferriere and Sussmann, 1991]), sinusoidal controls for chained form systems

([Murray and Sastry, 1993]), techniques for left invariant systems defined on Lie Groups

([Bullo et al., 2000]), etc.

Other steering techniques have been developed in order to solve the MPP in general

driftless control-affine systems. Nevertheless, these and the techniques mentioned in

the previous paragraph usually side step a drawback that some systems may have: the

existence of singular points. The term singular point will be defined below in terms

of differentiable manifolds, Lie algebras and free Lie algebras; however in the following

paragraph an intuitive interpretation of the meaning of this concept is presented.

A driftless control-affine system is usually given in the form

ẋ =
m

∑
i=1
Xi(x)ui, (1.1)

where Xi, for i = 1, . . . ,m, are vector fields defined on a differentiable manifold Q,

and ui, for i = 1 . . . ,m, are control inputs. A singular point of (1.1) is a point q ∈ Q

such that the growth vector of {X1, . . . ,Xm} is not constant at any neighborhood of q.

The concept of growth vector of {X1, . . . ,Xm} may be thought of as a measure of the

number of dimensions that the vector fields of {X1, . . . ,Xm} and their Lie brackets of

certain “length” can span when evaluated at a point belonging to Q.

Usually, the length of Lie brackets necessary to span the tangent space to Q at a

singular point is larger than those necessary to span it at a point that is not singular

(called a regular point). This, from the control viewpoint, has the disadvantage that the
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control laws necessary to steer the system from or to a singular point are somewhat

more “involved” or “complex” than those control laws necessary to solve the same

problem for regular points.

Taking into account the possible existence of singular points in driftless control-

affine systems, the authors of [Chitour et al., 2013] propose control algorithms to solve

the MPP in regular chained form and nilpotent systems such as (1.1), and a control

algorithm for driftless control-affine systems in general. For these algorithms it is

assumed that the system to be controlled is regular, thus the authors also propose

a “desingularization algorithm” that allows one to obtain a “lifting” of systems with

singular points (singular systems), such that the system obtained does not have any

singular point (is a regular system) and the control laws that solve the MMP for the

lifted system also solve the MPP for the original singular system as well.

As a useful feature in the control algorithm, some steps of the desingularization

algorithm ensure that the system obtained is in “privileged coordinates”, which repre-

sents an advantage in the design of control laws for the system. However, the authors

mention that is not necessary to obtain the lifting in these coordinates, i.e., if these

steps are omitted, the system obtained is still a regular system in some other coordi-

nates.

The work presented in this thesis has the following main goals:

1. The study of the desingularization algorithm proposed in [Chitour et al., 2013].

Since privileged coordinates is a topic widely studied in many references, and

there exist several methodologies to obtain them, this work does not take into

account the steps that ensure the system obtained is in privileged coordinates.

2. The application of the desingularization algorithm to a particular kinematic

model of a car-like mobile robot. The search of a singular system in which apply

the desingularization algorithm was focused in the kinematic models of the car

and the cart with N trailers.

3. The application of the control algorithm for nilpotent regular systems, proposed

in [Chitour et al., 2013], to a nilpotent system.

The content of this thesis is organized as follows: Chapter 1 gives a brief intro-

duction to the subject matter along with some motivation for this work. In Chapter

2 we present some preliminary aspects about differentiable manifolds and constrained

systems that will be used in the ensuing developments. Chapter 3 is an explanation of

the type of systems that were modeled and to which the desingularization algorithm is

applied along with the modeling methodology used. Chapter 4 is a brief introduction

to Lie algebra and free Lie algebra theory; here we explain some concepts defined for
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the algorithm, such as the growth vector and the multimonomial P associated with a

growth vector. The desingularization algorithm of [Chitour et al., 2013] is presented

and explained in Chapter 5; in Chapter 6 the desingularization of a car-like mobile

system is developed. In chapter 7 the aplication of the control methodology proposed

in [Chitour et al., 2013] for nilpotent systems is presented. Finally, chapter 8 contains

our conclusions and future work.
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Chapter 2

Preliminaries

This chapter is a brief introduction to some concepts in differentiable manifolds that

will be used throughout this document; the reader may wish to consult [Warner, 1983]

for detailed definitions of such concepts. In the second part of the chapter, holonomic

and non holonomic constraints will be defined, and the use of the term “holonomy” in

different contexts will be discussed.

2.1 Differentiable Manifolds. Definitions and con-

ventions.

As defined, e.g. in [Warner, 1983], a d-dimensional differentiable manifold of class

Ck is an ordered pair (M,F), where M is a locally Euclidean space of dimension d,

and F is a differentiable structure of class Ck on M . Elements in F are coordinate

systems (or “charts”) (U,ϕ), where U is a connected open set and ϕ ∶ U Ð→ Rd is a

coordinate map. For each i = 1, . . . , d, the functions xi = ri ○ϕ are called coordinate

functions , where, for a ∈ Rd, ri(a) = ai. One shall use p to refer to a point in M and

x to refer to a point p ∈M expressed in coordinates ϕ, i.e., x = ϕ(p), and hence x can

be seen as the “representative” of p in coordinates ϕ.

Hereafter, TpM and T ∗
pM will denote respectively the tangent space to M at

p ∈ M and the cotangent space of M at p ∈ M . Let (U,ϕ) be a coordinate chart

of M , with ϕ = (x1, . . . , xn); it is well known (e.g. [Warner, 1983]) that for every

p ∈ U , a natural basis for TpM is { ∂
∂x1

∣
p
, . . . , ∂

∂xn
∣
p
} and a natural basis for Tp

∗M is

{dx1∣p, . . . , dxn∣p}, where for every f ∈ C∞(U,R), the mappings ∂
∂xi

∣
p

and dxi∣p are given

by ∂
∂xi

∣
p
(f) = ∂

∂ri
∣
ϕ
(p)(f ○ ϕ−1) and dx1∣p(

∂
∂xi

∣
p
) = δij, respectively.

Let M be a topological space. A real vector bundle of rank k over M is a triple

(M,E,π), with E a topological space and π ∶ E Ð→ M a surjective continuous map,
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satisfying the following conditions:

1. For each p ∈M , the fiber Ep = π−1({p}) over p is endowed with the structure of

a k-dimensional real vector space.

2. For each p ∈ M , there exist a neighborhood U of p and a homeomorphism φ ∶

π−1(U) Ð→ U × Rk, called a local trivialization of E over U , satisfying the

following conditions:

� Let πU be the natural projection of U ×Rk in U , i.e. πU(U ×Rk) = U . Then

πU ○ φ = π .

� For each q ∈ U , the restriction of φ to Eq is a vector space isomorphism from

Eq to {q} ×Rk ≅ Rk.

By an abuse of notation, a vector bundle (E,M,π) is usually denoted by E alone.

If M and E are smooth manifolds, π is a smooth map, and the local trivializations

can be chosen to be diffeomorphisms, then E is called a smooth vector bundle . In

this case, the local trivializations that are diffeomorphisms onto their images are called

smooth local trivializations . The space E is called the total space of the bundle,

M is called the base , and π is called the projection (ref. [Lee, 2003]).

Let M be a differential manifold and let us define TM ∶= ⊔p∈M TpM and T ∗M ∶=

⊔p∈M Tp
∗M , with ⊔ the disjoint union. Let π1 ∶ TM Ð→ M and π2 ∶ T ∗M Ð→ M be

respectively the canonical projection of TM on M which assigns to an element in TpM

the point p for every p ∈M , and the canonical projection of T ∗M on M which assigns

to an element in Tp
∗M the point p for every p ∈ M . TM and T ∗M are differential

manifolds since both can be equipped with a differential structure inherited by the

differential structure of M (ref. [Warner, 1983]). The triple (M,TM,π1) is a smooth

vector bundle of rank 2 dimM over M with fiber TpM , called the tangent bundle and

denoted by TM . The triple (M,T ∗M,π2) is a smooth vector bundle of rank 2 dimM

over M with fiber Tp
∗M , called the cotangent bundle.

A vector field X on M is a section of TM , that is, a mapping X ∶M Ð→ TM such

that π1 ○X is the identity map on M . One shall use Γ(B) to denote the set of smooth

sections of a bundle B. The evaluation X(p) of a vector field X at a point p ∈M will

often be denoted by Xp; Xp is a tangent vector in TpM . Let X and Y be smooth vector

fields, let f ∈ C∞(M) and p ∈M . One writes X(f) to denote the function whose value

at p is Xp(f). A vector field [X,Y ], called the Lie bracket of X and Y , is defined

by setting [X,Y ]p(f) =Xp(Y (f)) − Yp(X(f)), for every f ∈ C∞(M).

A smooth curve x ∶ [a, b] → M , with a, b ∈ R, is an integral curve of the vector

field X if ẋ(t) = X(x(t)) for each t ∈ [a, b]. A distribution ∆ ∶ M → TM of rank c
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on a d-dimensional manifold M is the specification of a c-dimensional subspace ∆(p)

of TpM for each p in M . A vector field X on M is said to lie in the distribution ∆ if

Xp ∈ ∆(p) for each p ∈ M . A distribution ∆ is said to be smooth if, for each p ∈ M ,

there exists a neighborhood U of p and vector fields X1, . . . ,Xc of class C∞ on U which

span ∆ at every point of U . A smooth distribution ∆ is called involutive if Γ(∆) is

closed under the Lie bracket operation, i.e., if [X,Y ] takes values in ∆ whenever X and

Y are smooth vector fields lying in ∆. A c-dimensional codistribution Υ ∶M → T ∗M

on a d-dimensional manifold M is the specification of a c-dimensional subspace Υ(p)

of T ∗
pM for each p in M . The annihilator of a codistribution Υ, denoted Υ⊥ is the

distribution defined as Υ⊥(x) = {v ∈ TxM ∶ (∀ω ∈ Υ(x))(ω(v) = 0)}.

Let ψ ∶ N Ð→ M be of class C∞; the mapping ψ is said to be an immersion if

the tangent mapping Tpψ (which is linear by definition) is injective for each p ∈ M .

The pair (N,ψ) is said to be a submanifold of M if ψ is an injective immersion.

A submanifold (N,ψ) of M is an integral manifold of a distribution D on M if

Tpψ(TnN) = D(ψ(n)) for each n ∈ N (cf. [Warner, 1983]).

Let Λk
∗M = ⋃Λk(Tp

∗M) be the exterior k-bundle over the differentiable mani-

fold M , whose construction is detailed in [Warner, 1983]. A differential k-form on

a manifold M is a C∞ mapping α ∶M Ð→ Λk
∗M whose composition with the canonical

projection is the identity map, i.e., α is a section of Λk
∗M . In that sense, a 0-form is

just a smooth real-valued function, and a 1-form is a covector field , i.e., a section

β ∶M Ð→ T ∗M of T ∗M .

2.1.1 “Local representatives”

In many cases it is useful to use “local representatives” to express some of the concepts

defined in the preceding paragraphs. For example, one usually refers to a vector field

X ∶M Ð→ TM through its local “representative” in certain coordinates. Let (U,ϕ) be

a coordinate system and let Ω = ϕ(U). The local representative of X in coordinates ϕ

is defined as X̂ = Tϕ ○X ○ϕ−1. Note that ϕ−1 exists since ϕ is an homeomorphism. In

this case, X̂ is said to be the push forward of X by ϕ, denoted by ϕ∗X = X̂, and the

following diagram commutes:

TM TΩ

N Ω

Tϕ

X

ϕ

X̂

Let (U,ϕ), with ϕ = (x1, . . . , xn) be a coordinate chart for M and let p ∈ U . Let X

be a vector field on M and α be a differential 1-form on M . Since { ∂
∂x1
, . . . , ∂

∂xn
} and

{dx1, . . . , dxn} yield bases for TpM and T ∗
pM , respectively, there exist f1, . . . , fn, g1, . . . ,
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gn ∈ C∞(M) such that X(p) = f1(p)
∂
∂x1

∣
p
+ ⋅ ⋅ ⋅ + f1(p)

∂
∂xn

∣
p

and α(p) = g1(p)dx1∣p + ⋅ ⋅ ⋅ +

gn(p)dxn∣p. As a consequence, distributions and co-distributions may also be described

through local representatives. In a similar sense, the mathematical representations of

control systems used in this work are local representatives of the system in certain

coordinates.

2.2 Constrained mechanical systems

When the dynamics or the kinematics of a mechanical system is mathematically repre-

sented, a configuration manifold or space of configurations is usually defined.

This space of configurations is a differential manifold Q, where each point in Q rep-

resents a specific position of the system, i.e., the points in Q are in a one-to-one

correspondence with the set of positions and orientations that the system may attain.

In many interesting cases, the motion of the system is “limited” or “restricted” in

some way, i.e., the system is subject to constraints that may arise from the system’s

structure itself, or from the way in which it is actuated upon.

Some constraints restrict the system’s motion in the sense that they reduce the

number of degrees of freedom of the system, i.e., they restrict the set of possible con-

figurations of the system. This type of constraints are called holonomic constraints

and, as is explained in the following, they also restrict the speed of the system in-

directly. An example of holonomic constraint is present in any rigid body, which is

a system of “material” points whose positions are constrained so that the distance

between any two points remains constant along the system’s motion. Some other con-

straints restrict the possible values of the velocities of the parts of the system without

restricting positions, they are called nonholonomic constraints . An example of

this kind of constraint is the “no-slip”condition in the motion of a rolling body, which

requires that the relative velocity of the point of contact of the rolling body with the

contact surface vanishes identically, i.e., at all times during the motion. Although

not explicitly considered in this work, there exist other classification schemes for con-

straints. For instance, according to [Jarzbowska and Pietrak, 2014], in control there

are usually four constraint sources: kinematic constraints, conservation laws, design

and control constraints (which often come from “under actuation”), and task-based

constraints (such as a trajectory to follow). For the development of this thesis only

holonomic and nonholonomic constraints are considered.
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2.2.1 Holonomic constraints

The mathematical representation of a holonomic constraint on a system is equivalent

to specifying one or more functions fi ∶ Q Ð→ R, for i = 1, . . . , s, and defining the

intersection of the sets {x ∈ Q ∶ fi(x) = 0} as the set of allowed configurations of the

system. Let c ∶ R Ð→ Q be an admissible trajectory of the system, i.e., for every t ∈ R
one has fi(c(t)) = 0. Let g be a C∞ function on a neighborhood of f(c(t)) and let

v ∈ Tc(t)Q; the differential dfi∣c(t) ∶ Tc(t)QÐ→ R, is given by dfi∣c(t)(v)(g) = v(g○fi), thus

ċ(t) must lie in the kernel of the differential dfi∣c(t), i.e., dfi∣c(t)(ċ(t)) = 0. It follows that

the intersection of all the sets {v ∈ TQ ∶ dfi(v) = 0}, for i = 1, . . . , s, is the set of allowed

velocities of the system, furthermore this intersection is a subset of the annihilator of

the co-distribution Υ generated by all the 1-forms dfi.

Let ∆ be the distribution generated by {v ∈ TQ ∶ dfi(v) = 0, i = 1, . . . , s}. From

the point of view of the theory of differentiable manifolds, a constraint is said to be

holonomic if the distribution ∆ is involutive, which implies, by the Frobenius theorem

(ref.[Warner, 1983]), that ∆ is integrable, i.e., each q ∈ Q is contained in an integral

manifold N of ∆, with N a submanifold of Q such that TnN = ∆(n), for every n ∈ N .

Example 1. (Holonomic constraint). Let us consider the rigid pendulum shown in

Figure 2.1. Suppose that one regards R2 as the configuration manifold and that Σ is

a reference frame of some coordinate system in R2. The position of a point (x, y) is

limited by the lenght L since, at any time, (x, y) must be such that x2 + y2 = L2. Let

f ∶ R2 Ð→ R ∶ (x, y) z→ x2 + y2 − L2. The set {x ∈ R2 ∶ f(x) = 0} is the set of allowed

positions. Therefore, the simple pendulum may be viewed as a circle holonomically

constrained by a rigid rod.

θ

(x, y)

L

j

iΣ

1

Figure 2.1: Simple pendulum

One way to deal with holonomic constraints is by choosing a suitable configuration

manifoldQ, whose points represent the set of allowable configurations after the effects of

the constraints have been considered. Thus the allowable configurations are implicitly

restricted by the nature of Q. For example, suppose that, for the pendulum mentioned

9



in Example 1, one chooses Q = {(x, y) ∈ R2 ∶ x2 + y2 = L2} as the configuration space.

Since Q represents a circle and is a differentiable manifold, every possible position of the

system belongs to a circle of radius L, hence one need not constrain the configuration

space R2 via the zero set of the function f .

2.2.2 Nonholonomic constraints

The mathematical representation of a nonholonomic constraint for a system is equiv-

alent to specifying one or more differential forms αi ∶ TQ Ð→ R, for i = 1, . . . , s, and

declaring that the set {v ∈ TQ ∶ v ∈ ann(Υ)}, with Υ the codistribution generated by

the functions αi, is the set of allowed velocities.

In the theory of differentiable manifolds, a constraint is said to be nonholonomic if

the distribution ∆, generated by the set {v ∈ TQ ∶ v ∈ ann(Υ)} is noninvolutive, which

implies that not every point of Q is contained in an integral manifold of ∆.

Example 2. (Nonholonomic constraint). Consider the rolling disk of radius R shown

in Figure 2.2, where P is an arbitrary point of the periphery of the disk, P0 is the

contact point of the wheel with the xy−plane, and (x, y) are the coordinates of the

point in the plane where the disk touches the plane. Assume that the disk is allowed

to roll on the plane without slipping. Let Q = R2×(S1)2 be the space of configurations

selected for the rolling disk, then a point q ∈ Q is a 4-tuple (x, y, θ,ϕ). To satisfy the

no slipping condition, the velocity of the point P0 on the direction of j1 must be equal

to zero, with P0 and j1 expressed with respect to the coordinate frame Σ0 = (i0, j0).

Thus the no slipping condition may be modeled by defining the differential form α ∶

TQ → R ∶ (ẋ, ẏ, ϕ̇, θ̇) ↦ dy − R sin(ϕ)dθ, where α represents the velocity of P0 in the

direction of j1. Furthermore, every velocity that this system can attain belongs to the

aninhilator of the co-distribution Υ = span{α}.

i0

i1

j1

θ

P0

ϕ

j0

k0

P

1

Figure 2.2: Rolling disk
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In the sequel, a constraint distribution will be understood as the distribution

∆ generated by the subset of TQ in wich Υ vanishes.

2.3 Holonomy in a more general context

Let us consider the mathematical representation of the kinematics of a mechanical

system

ẋ(t) =
m

∑
i=1
Xi(x)ui, (2.1)

defined on Ω, with Ω a non empty open subset of Rn, where m and n are integers,

u = (u1, . . . , um) are control inputs that take values in R, and Xi is a vector field on Ω.

Let ∆ be the distribution spanned by vector fieldsX1, . . . ,Xm. The distribution ∆ is

said to be an integrable or holonomic distribution if ∆ is involutive. As explained

previously in this chapter, the involutivity of a distribution is a necessary and sufficient

condition for the existence of integral manifolds of ∆ through each x ∈ Ω. From the

point of view of control theory, the involutivity of ∆ implies that, for system (2.1), all

trajectories that start in a point belonging to an integral manifold of ∆ cannot leave it,

i.e., there are directions in which the system’s state cannot be steered regardless of the

control input. The distribution ∆ is said to be nonintegrable or nonholonomic

if ∆ is not involutive. Nonholonomic distributions are especially interesting in control

theory since the noninvolutivity of a distribution associated to a system implies that

this system can be steered indirectly in some directions, i.e., one may control some

state varibles indirectly.

Example 3. (Nonholonomic Distribution) Let us consider the following two-input

system on R3:

ẋ =

⎛
⎜
⎜
⎝

1

0

x2

⎞
⎟
⎟
⎠

u1 +

⎛
⎜
⎜
⎝

0

1

0

⎞
⎟
⎟
⎠

u2 =X1(x)u1 +X2(x)u2 (2.2)

Let ∆x = span{X1(x),X2(x)}, by simple computation one has:

[X1,X2](x) =

⎛
⎜
⎜
⎝

0

0

1

⎞
⎟
⎟
⎠

. (2.3)

Since for each x ∈ R3, the tangent vector [X1,X2](x) is linearly independent from

X1(x) and X2(x), i.e., [X1,X2](x) does not lie in the distribution ∆, it follows that

∆ is not involutive.
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In mechanics there also exists the concept of nonholonomy but seen from a differ-

ent approach: the nonholonomic mechanical systems. In general, what makes a

mechanical system nonholonomic is the presence of nonholonomic constraints. Non-

holonomic systems are present in a great variety of environments; ranging from Engi-

neering to Robotics, wheeled vehicle and satellite dynamics, manipulation devices and

locomotion systems.

Altough there is an extensive theory on the definition and study of mechani-

cal systems, particularly nonholonomic systems, this work only addresses issues re-

lated to the kinematics of a particular class of nonholonomic systems; namely car-like

wheeled mobile robots. The reader may refer to, e.g., [Bloch, 2003], [Jean, 2014] or

[Monforte, 2004] for more comprehensive studies of nonholonomic systems.

Remark 1. It is important to remark that there exists the concept of the nonholonomy

of a system for general systems that are not necessarily mechanical. For example the

authors of [Chitour et al., 2013] define a nonholonomic system as a driftless control-

affine system in the sense that it is usually the case that one has more state variables

that control inputs; therefore some variables are controlled indirectly. Since the present

work is focused on the study and implementation of a desingularization algorithm for

car-like wheeled mobile robots, hereafter the term nonholonomic system will be reserved

only for mechanical systems with nonholonomic constraints, and the nonholonomic

systems in the sense of [Chitour et al., 2013] will be called simply driftless control-

affine systems.
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Chapter 3

Car-like wheeled mobile robots and

their kinematic modeling

One of the objectives of this chapter is to recall an established methodology for the

kinematic modeling of nonholonomic car-like wheeled robots, in which the kinematic

model is derived from the nonholonomic constraints of the system. The other ob-

jective is to present three models obtained through this methodology, for which the

desingularization procedure may be applied.

3.1 Car-like mobile robots with nonholonomic con-

straints

The mobile robots modeled in this work are systems capable of locomotion on a surface

solely through the actuation of wheels mounted on the system that are in contact with a

surface. There exist several types of car-like robot structures; for this work we consider

only two of these structures: the cart with N trailers and the tricycle with N trailers.

The cart pulling N trailers is shown in Figure 3.1. Two wheels of the car N + 1

are fixed-direction wheels, i.e., the point where the shaft connects with these wheels

is the center of the wheel and the orientation of the wheel plane with respect to the

shaft is constant; the third is a “caster wheel” and its function is to provide support.

The wheels of the N trailers are fixed-direction wheels. For modeling purposes, in this

work it will be assumed that the cart with N trailers moves on a surface R2 and that

each wheel touches the surface only at a point. It is also assumed that the fixed wheels

rotate without slipping; as explained below, nonholonomic constraints of this system

arise precisely by virtue of this last assumption. Finally, it is assumed that lengths Ci
and Lj, for i = 2, . . . ,N + 1 and j = 1, . . . ,N + 1,. . . are constant.

The car pulling N trailers is shown in Figure 3.2. Two wheels of the tricycle N + 1
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θ1

P0

L1

j0

i0

P1

L2

P2

θN+1

C2

LN+1

PN+1

CN+1

θ2

1

Figure 3.1: Graphic representation of a cart with N trailers.

are fixed wheels; the third wheel is an orientable wheel. Assumptions made for the fixed

direction wheels of the cart with N trailers are also made for the two fixed-direction

wheels of the tricycle and for the wheels of the N trailers. It is also assumed that

the orientable wheel rotates without slipping. As for the cart with N trailers, it is

supposed that the tricycle with N trailers moves on a surface R2 and that lengths Ci
and Lj, for i = 2, . . . ,N + 1 and j = 1, . . . ,N + 1 are constant.

θ

P0

α2

P2

L2

L1

C2

j0

i0

P1

αN+1

PN+1

LN+1

CN+1

αN+2

1

Figure 3.2: Graphic representation of a car with N trailers.
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3.2 A methodology for modeling the kinematics of

car-like mobile robots

Mathematically, modeling the kinematics of a mechanical system consists in defining

the space of configurations Q for the system and defining a distribution ∆ on Q, which

represents the allowable values that the instantaneous speeds of the system may take at

each point of Q. The purpose of this section is to outline an established methodology

which allows one to obtain mathematical approximations of the kinematics of car-like

robots by considering their nonholonomic constraints. The reader may wish to refer to

a robotics reference, for example [Spong et al., 2005], for an extended explanation of

this and other modeling procedures.

Roughly speaking, the kinematic modeling of car-like robots presented here involves

the definition of the nonholonomic constraints considered for the concerned system; it

is from these constraints that one can construct an approximate model of the system

kinematics.

3.2.1 Affine spaces and moving frames of reference

As the reader may see in, e.g., [Siciliano et al., 2008], when modeling the kinematics

of a rigid body, its position on the plane is expressed in terms of the position of a

suitable point P on the body with respect to a fixed reference frame Σ0 = (i0, j0), while

its orientation is expressed in terms of the components of the unit vectors of a mobile

frame whose origin is p. When the rigid body has links, it is necessary to know the

relative angles formed between these links too; for example, to determine the exact

position in the space of the cart with N trailers shown in figure 3.1, it is sufficient to

know the position (x, y) with respect to a fixed reference frame Σ0 = (i0, j0) of a selected

point p on the cart, and the angles θ1, α2, . . . , αN+2, where (x, y, θ1, α2, . . . , αN+2) are

coordinates of the configuration manifold Q.

Altough for simplicity, when modeling the kinematics of a system, fixed and mobile

reference frames are frequently studied from the physics point of view, they have an

interesting mathematical formulation that will be addressed in this section.

In general, the fixed frame Σ0 is chosen such that {i0, j0} is the canonical basis for

R2. Let P be an arbitrary point of a rigid body. For modeling terms, it is frequently

supposed that P is moving on R2, thus the position of P on the (i0, j0)-plane is variant

over the time. Let P ∶ RÐ→ R2 ∶ tz→ P(t), where P(t) is the position of a point P at

time t. The following definition proves useful to define a moving frame.
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In [Gallier, 2012], an affine space over a field K is defined as a triple (V,E, +̄),

where E is a non-empty set, V is a vector space over K, and +̄ is a mapping +̄ ∶

E × V Ð→ E satisfying, for every a, b ∈ E and every u, v ∈ V , the following:

1. a+̄0 = a.

2. (a+̄u)+̄v = a+̄(u+̄v).

3. There exists w ∈ V such that, for every w̄ ∈ V , a+̄w = b and a+̄w̄ = b if and only

if w = w̄, i.e., w is unique.

An affine space may be seen as a vector space “without its origin”, i.e., without

additive identity. One “forgets” about the origin by adding translations to a class of

maps defined on the affine space. Nevertheless, there is a simple way to set an origin

for E that endows it with the structure of a K-vector space: Let e ∈ E, and define

ϕe ∶ V Ð→ E as the map given, for every v ∈ V , by ϕe(v) = e+̄v. Let u, v ∈ V and let us

suppose that ϕe(u) = ϕe(v); it follows that e+̄u = e+̄v and, by definition of +̄, one has

u = v, therefore ϕe is injective. Let ē ∈ E. By definition of +̄, there exists w ∈ V such

that e+̄w = ē, therefore ϕe is surjective. Define +̃ ∶ E ×E Ð→ E, for every e1, e2 ∈ E, by

setting e1+̃e2 = ϕe(ϕ−1e (e1) + ϕ−1e (e2)), where + is the sum defined on V . If one defines

the multiplication by scalars ∗̃ on E in a similar way, it is easy to prove that (E, +̃, ã)

is a vector space; moreover e is the additive identity of +̃. Thus ϕe is a vector space

homomorphism, i.e., a linear map.

Let V a real vector space, and let o ∈ V . It follows from the previous definition

that the triple (V,V,+), with + the sum on V , is an affine space over R. Moreover, ϕo

is an homomorphism between (V,+,∗) and (V, +̃, ∗̃), with ∗ the scalar multiplication

defined on V . In that sense, Σk = (ik, jk), is said to be a moving frame in R2, if and

only if ik and jk are the image by ϕo of a basis on R2, i.e., if there exists v1, v2 ∈ R2

such that {v1, v2} is a basis of R2 and (i1, j1) = (ϕo(v1), ϕo(v2)). It is easy to prove

that {i1, j1} is a basis for (V, +̃, ∗̃).

Since P(t) ∈ R2, for every t ∈ R, P(t) is a linear combination P(t) = p1(t)i0+p2(t)j0,

that may be represented by the vector (
p1(t)

p2(t)
). Since P ∶ R Ð→ R2, one has Ṗ(t) ∈

TP(t)R2 for every t ∈ R. To obtain the kinematic model of a car-like robot one may

consider the position of the robot at an arbitrary instant of time t; for that reason from

here P will be used to denote P(t) and Ṗ will be used to denote Ṗ(t) for t ∈ R. In

that sense a point P will ve represented by a vector (
p1

p2
)
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3.2.2 Homogeneous transformation

The topology of R2, and the differential structure on R2 and TR2, allow one to define

an homomorphism betwen R2 and TR2. Due to the existence of this homomorphism,

in Robotics, P and Ṗ are frequently represented in the canonical basis {e1, e2, e3} of

R3 with the following notation:

� A position vector P = (p1, p2) ∈ R2 will be represented by:

P =

⎛
⎜
⎜
⎝

p1

p2

1

⎞
⎟
⎟
⎠

� A velocity vector Ṗ = (ṗ1, ṗ2) ∈ R2 will be represented by:

Ṗ =

⎛
⎜
⎜
⎝

ṗ1

ṗ2

0

⎞
⎟
⎟
⎠

As the reader may read in [Spong et al., 2005], homogeneous transformations are

affine functions that may represent the change of coordinates between two reference

frames; in other words, a homogeneous transofrmation is the matrix representation of

the mapping ϕo defined previously in order to set an origin on an affine space. The

homogeneous transformation that represents the change of coordinates from Σ1 to Σ0,

which sets P0 as the origin of the space generated by i0 and j0, is given by the matrix

0M1 = (
R(θ) d

0 1
) (3.1)

where R(θ) = (
cos(θ) − sin(θ)

sin(θ) cos(θ)
) is a 2×2 rotation matrix that represents the rotation

of Σ1 with respect to Σ0 and d = (
p1

p2
) is the vector that represents the position of P

with respect to Σ0.

By convention, a point P ∈ R2 expressed with respect to a frame of coordinates Σi

will be refered to as “P in coordinates i”, denoted by iP . The same notation will be

used for Ṗ .

Example 4. Let us consider Figure 3.3 and let Q ∈ R2 and suppose that 1Q = (q1, q2).

One changes from 1Q to 0Q by

0Q =

⎛
⎜
⎜
⎝

cos(θ) − sin(θ) p1
sin(θ) cos(θ) p2

0 0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

q1

q2

1

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

q1 cos(θ) − q2 sin(θ) + p1

q1 sin(θ) + q2 cos(θ) + p2

1

⎞
⎟
⎟
⎠

.
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The velocity 0Q̇ of 0Q is given by

0Q̇ =

⎛
⎜
⎜
⎝

−q1 sin(θ)θ̇ − q2 cos(θ)θ̇ + ṗ1

q1 cos(θ)θ̇ − q2 sin(θ)θ̇ + ṗ2

0

⎞
⎟
⎟
⎠

.

P0

P1

Q

p1

p2

θ

i1j1

j0

i0

1

Figure 3.3: Graphic representation of P , Σ0 and Σ.

3.2.3 Steps of the modeling methodology

� Establish a reference frame fixed on the floor, and “moving frames” fixed to each

of the articulated bodies. Compute the corresponding coordinate change matrix

between each pair of contiguous frames.

� Define all the differential forms that represent nonholonomic constraints for the

system. For the systems modeled in this thesis, the nonholonomic constraints

derive from the “no slipping” assumption as follows: since the wheel is rolling on

the floor without slipping, the velocity of the contact point of the wheel with the

floor is equal to zero, which implies that the components of this velocity parallel

and orthogonal to the wheel are equal to zero as well.

� Let Υ be the co-distribution spanned by the set {α1, . . . , αs} of all differential

forms that represent a nonholonomic constraint. Let {v1, . . . , v2} be a basis for

the constraint distribution ∆ = Υ⊥ of Υ. A mathematical representation of the

kinematics of the system in coordinates x will then be given by ẋ = v1u1+⋅ ⋅ ⋅+vsus,

where each ui is a control input.

To illustrate this methodology, these steps will be detailed through an example in

the following section.
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3.3 Example: Modeling of the kinematics of the

cart with 2 Trailers

Let us consider the cart with 2 trailers, whose graphic representation is shown in figure

3.4. Consider for this system the same assumptions made for the cart with N trailers

in Section 3.1. Note that in order to determine the exact position of this system on the

plane, it is enough to know x, y, θ1, θ2 and θ3; therefore Q = R2×(S1)3 is an admissible

configuration space for this system and (x, y, θ1, θ2, θ3) are coordinates on Q.

Σ1

P0

L1

j0

i0

P1

L2

P2
θ2

C2

L3

P3 θ3

C3

θ1

Σ0

Σ2

Σ3

1

Figure 3.4: Cart with 2 trailers.

Let us suppose that {i0, j0} is the canonical basis of R2. Let kTl be the homogeneous

transformation matrix that represents the change of coordinates from frame k to frame

l, for k ∈ {0, . . . ,3} and l ∈ {1, . . . ,3}. Therefore one has the following homogeneous

transformation matrices:

0T1 =

⎛
⎜
⎜
⎜
⎝

R(θ1)
x

y

0 1

⎞
⎟
⎟
⎟
⎠

1T2 =

⎛
⎜
⎜
⎜
⎝

R(θ2 − θ1)
C +L

0

0 1

⎞
⎟
⎟
⎟
⎠

(3.2)

2T3 =

⎛
⎜
⎜
⎜
⎝

R(θ3 − θ2)
C +L

0

0 1

⎞
⎟
⎟
⎟
⎠

Let, for s = 1, . . . ,3, 0is ∶= es1,
0js ∶= es2 and e3 ∶= es3. Let Es = span{es1, e

s
2, e

s
3}.

From subsection 3.2.1 it is easy to see that Es = (R2, +̃, ∗̃), where P1, P2 and P3 are
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respectively the origin of E1, E3 and E5. Since Es is a vector space, it is a basic fact of

linear algebra (e.g. [Strang, 1988]) that there exists the dual space E∗
s of Es, spanned

by the dual basis {γ1s , γ
2
s , γ

3
s} of {es1, e

s
2, e

s
3}, where γ1s γ

2
s and γ3s are linear maps from

Es onto R, such that γis(e
s
j) = δ

i
j, with i, j ∈ {1,2,3}. In other words γrs is the function

that extracts the esr-th component of a vector v ∈ Es, i.e., “γrs projects v onto esr”.

To satisfy the no slipping conditions on the wheels, it is sufficient to establish that
˙0P1 satisfies the following:

�
˙0P1 projected in the direction of 0j1 vanishes.

�
˙0P2 projected in the direction of 0j3 vanishes.

�
˙0P3 projected in the direction of 0j5 vanishes.

In other words, v =

⎛
⎜
⎜
⎝

v1

v2

0

⎞
⎟
⎟
⎠

is an admissible velocity for this system, only if v satisfies

γ21(v) = 0, γ23(v) = 0 and γ25(v) = 0, with γ2r , for r ∈ {1,3,5}, expressed in terms of the

dual basis of {i0, j0, e3}, i.e., in coordinates 0. Let {e1, . . . , e3} be the canonical basis

of R3 and {γ1, . . . , γ3} its dual basis.

Example 5. By definition of 0T1, one has

0P1 =

⎛
⎜
⎜
⎝

x

y

1

⎞
⎟
⎟
⎠

, ˙0P1 =

⎛
⎜
⎜
⎝

ẋ

ẏ

0

⎞
⎟
⎟
⎠

, 0i1 =

⎛
⎜
⎜
⎝

cos(θ1)

sin(θ1)

0

⎞
⎟
⎟
⎠

and 0j1 =

⎛
⎜
⎜
⎝

− sin(θ1)

cos(θ1)

0

⎞
⎟
⎟
⎠

.

According to the previous notation, e11 = cos(θ1)e1 + sin(θ1)e2 , e12 = − sin(θ1)e1 +

cos(θ1)e2 and e13 = e3. Since {e11, e
1
2, e

1
3} is a basis for R3, and {γ11 , γ

2
1 , γ

3
1} is its dual

basis, it is well known from linear algebra that

e1j = (0T1
−1
)ijei and γj1 = (0T1)

j
iγ

i,

where (0T1
−1
)ij is the (i, j)-th component of 0T1

−1, the inverse matrix of 0T1. Therefore

γ11 = cos(θ1)γ
1 + sin(θ1)γ

2

γ21 = − sin(θ1)γ
1 + cos(θ1)γ

2

γ31 = γ3

By simple computations one has that every admissible velocity v ∈ R3 satisfies

γ2j (v) = 0, for j = 1,2,3, which translates into the following conditions:
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γ21(v) = − sin(θ1)v
1 + cos(θ1)v

2 = 0

γ22(v) = − sin(θ2)v
1 + cos(θ2)v

2 + (C +L) cos(θ2 − θ1)v
3 = 0

γ23(v) = − sin(θ3)v
1 + cos(θ3)v

2 + (L +C) cos(θ3 − θ1)v
3 + (L +C) cos(θ3 − θ2)v

4 = 0

Let (x, y, θ1, θ2, θ3) = (x1, . . . , x5), therefore x = (x1, x2, x3, x4, x5) are coordinates

for Q. In order to define the nonholonomic constraints of the system, let us define,

from γsr , with r = 1,2 and s = 1,2,3, the six following 1-forms on Q by:

α1(x) = sin(x3)dx1 + cos(x3)dx2

α2(x) = − sin(x4)dx1 + cos(x4)dx2 + (C +L) cos(x4 − x3)dx3

α3(x) = − sin(x5)dx1 + cos(x5)dx2 + (L +C) cos(x5 − x3)dx3 + (L +C) cos(x5 − x4)dx4

Let Υ be the co-distribution spanned by α1, . . . , α3. Therefore w ∈ TQ is an ad-

missible speed for the system only if w belongs to the constraint distribution ∆ = {v ∈

TQ ∶ v ∈ ann(Υ)}, i.e., if w simultaneously satisfies αs(w) = 0, for s = 1, . . . ,3.

To obtain a mathematical representation of the system one starts by finding a basis

for the distribution ∆. Let

V1(x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos(x3) cos(x4 − x3) cos(x5 − x4)

sin(x3) cos(x4 − x3) cos(x5 − x4)
1

C+L sin(x4 − x3) cos(x5 − x4)
1

C+L sin(x5 − x4)

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, V2(x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.3)

Since {V1, V2} is free and spans ∆, {V1, V2} is a basis of ∆, i.e., ∆ = span{V1, V2}. A

mathematical representation of the kinematics of the system shown in Figure 3.4, is

given by:

ẋ = V1(x)u1 + V2(x)u2, (3.4)

with u1 and u2 considered as arbitrary control inputs.

3.4 Kinematic models for the tricycle and the tri-

cycle with 1 trailer

The tricycle (car without trailers) and the tricycle with one trailer (car with one trailer)

are systems of interest for the development of this work and the desingularization algo-

rithm will be applied to one of their models. In this section we recall the mathematical
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representation of the kinematics of both systems, described in [Lizárraga et al., 2001],

and obtained by the modeling methodology previously explained.

Figure 3.5 shows a kinematic representation of the tricycle. Note that an appropri-

ate space of configurations for this system is Q1 = R2 × (S1)2. Let x = (x1, x2, x3, x4)

be coordinates for Q1, with x1 and x2 representing the orthogonal projection of point

P1 on the floor, x3 representing the angle θ and x4 representing the angle α.

If one assume that the wheels roll on the floor without slipping, the nonholonomic

constraints for this system are imposed via the following conditions:

�
˙0P1 projected in the direction of j1 vanishes.

�
˙0Q projected in the direction of j2 vanishes.

Following the methodology of the previous section, one obtains the kinematic model

for the tricycle:

ẋ =

⎛
⎜
⎜
⎜
⎜
⎝

cos(x3) cos(x4)

sin(x3) cos(x4)
1
L1

sin(x4)

0

⎞
⎟
⎟
⎟
⎟
⎠

u1 +

⎛
⎜
⎜
⎜
⎜
⎝

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎠

u2, (3.5)

where u1 represents the velocity of point P1 and u2 represents the rotation speed α̇.

θ

P0

α

L

j0

i0

P1

j1 i1

i2

j2 Q

1

Figure 3.5: Graphic representation of a tricycle.

The kinematic representation of the tricycle with 1 trailer is shown in Figure 3.6.

It is clear that Q2 = R2 × (S1)3 is a configuration manifold for this system. Let x =

(x1, x2, x3, x4, x5) be coordinates for Q2; assume that x1 and x2 represent the position

of point P1 on the floor, and that x3, x4 and x5 represent respectively the angles θ1, α2

and α3.

The nonholonomic constraints for this system arise from the following assumptions:
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�
˙0P1 projected in the direction of j1 vanishes.

�
˙0P2 projected in the direction of j2 vanishes.

�
˙0Q projected in the direction of j3 vanishes.

By applying the modeling methodology described in this chapter one obtains the

following kinematic model for the tricycle with 1 trailer:

ẋ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
L2

cos(x3) (L2 cos(x4) cos(x5) +C2 sin(x4) sin(x5))
1
L2

sin(x3) (L2 cos(x4) cos(x5) +C2 sin(x4) sin(x5))
1

L1L2
(L2 sin(x4) cos(x5) −C2 cos(x4) sin(x5))

1
L1L2

(L1 sin(x5) −L2 sin(x4) cos(x5) +C2 cos(x4) sin(x5))

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

u1 +

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

u2, (3.6)

where u1 represents the magnitude of the velocity of point P1, and u2 represents the

speed of rotation α̇3 of the steering wheel.

θ1

P0

α2

P2

α3

L2

L1

C2

j0

i0

P1

j1 i1

i2j2

j3

i3

Q

1

Figure 3.6: Graphic representation of a tricycle with 1 trailer.
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Chapter 4

Lie algebras and free Lie algebras

This chapter gives a brief description of two mathematical structures that play an

important role in the ensuing development of this work: Free Lie algebras generated

by finite sets, and Lie algebras generated by a set of m vector fields. These related

concepts are key elements in the desingularization algorithm explained in Chapter 4.

The information presented in this section is mainly taken from references [Serre, 1992a]

and [Warner, 1983].

4.1 Lie Algebras

A Lie algebra g over R is a real vector space g together with a R-bilinear operator

[⋅, ⋅] ∶ g × g→ g (called the Lie bracket) such that, for all x, y, z ∈ g:

(a) [x, y] = −[y, x] (skew symmetry or anti-commutativity).

(b) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi Identity).

Let M be a differential manifold of dimension n and let X1, . . . ,Xm ∈ Γ(TM). As

can be seen for example in [Warner, 1983], if (U,ϕ = (x1, . . . , xn)) is a coordinate system

on an open subset U ⊆M , then each vector field Xi can be expressed in coordinates ϕ

as Xi∣U = ∑
n
j=1 aj

∂
∂xj

, with aj ∈ C∞(U) for each j = 1, . . . , n, i.e., aj is a C∞ function on

U .

Let X = {X1, . . . ,Xm}, g = spanR{X} ⊆ Γ(TM), and define operators + and ⋆ as:

+ ∶ Γ(TM) × Γ(TM) Ð→ Γ(TM) ∶ (X,Y ) z→
n

∑
j=1

(aj + bj)
∂

∂xj
,

⋆ ∶ C∞(M) × Γ(TM) Ð→ Γ(TM) ∶ (f,X) z→
n

∑
j=1

(faj)
∂

∂xj
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with X = ∑
n
j=1 aj

∂
∂xj

and Y = ∑
n
j=1 bj

∂
∂xj

. The definitions of + and ⋆ imply that for all

p ∈ M , X,Y ∈ Γ(TM), and f ∈ C∞(M), one has (X + Y )p = Xp + Yp and (f ⋆X)p =

f(p)Xp. It is easy to prove that the triple (g,+,⋆), with the domain of ⋆ restricted to

the set of constant functions, is a vector space over R.

Consider [⋅, ⋅] ∶ g×gÐ→ g ∶ (X,Y ) z→ [X,Y ], with [X,Y ] denoting the Lie Bracket

of vector fields X and Y defined in Section 2.1. It is easy to see that Lie bracket defined

in that way satisfies the Jacobi identity and is skew-symmetric. Let X,Y,Z ∈ g, a ∈ R,

p ∈M and f ∈ C∞(M). By definition:

[a ⋆X,Y ]p(f) = (a ⋆X)p(Y f) − Yp((a ⋆X)f)

= a(p)Xp(Y f) − (Yp(a)Xp(f) + a(p)Yp(Xf))

= a(p)(Xp(Y f) − Yp(Xf)) − Yp(a)Xp(f)

= a ⋆ [X,Y ]p(f),

[X + Y,Z]p(f) = (X + Y )p(Zf) −Zp((X + Y )f)

= Xp(Zf) + Yp(Zf) −Zp(Xf + Y f)

= Xp(Zf) + Yp(Zf) −Zp(Xf) −Zp(Y f)

= [X,Z]p(f) + [Y,Z]p(f),

hence [⋅, ⋅] is linear with respect to its first argument. Similarly [X,a ⋆ Y ]p(f) =

a ⋆ [X,Y ]p(f) and [X,Y + Z]p(f) = [X,Y ]p(f) + [X,Z]p(f), therefore [⋅, ⋅] is linear

with respect to its second argument too. Thus, [⋅, ⋅] is bilinear and the real vector space

(g,+,⋆) together with [⋅, ⋅] is a Lie Algebra over R. The Lie Algebra generated by X

will be denoted by LX .

A function D ∶ g Ð→ g is a derivation if D is R-linear and has the property that,

for every X,Y ∈ g, D([X,Y ]) = [D(X), Y ] + [X,D(Y )]. Let X ∈ g and let us define a

map LX ∶ gÐ→ g by LX(Y ) = [X,Y ], for every Y ∈ g. Let Z ∈ g, then:

LX([Y,Z]) = [X, [Y,Z]]

= −[Y, [Z,X]] − [Z, [X,Y ]] (by Jacobi identity of [ , ])

= [[X,Y ], Z] + [Y, [X,Z]]

= [LX(Y ), Z] + [Y,LX(Z)];

it follows that LX is a derivation and LX(Y ) is called the Lie derivative of Y in the

direction of X.
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4.1.1 Further examples of Lie Algebras

The following is a list of other examples of Lie algebras:

� Any vector space V over a field K trivially becomes a Lie Algebra over K if one

defines the Lie bracket, for all v1, v2 ∈ V , as [v1, v2] = 0. It is clear that the Lie

bracket defined in this way is bilinear, skew-symmetric and satisfies the Jacobi

identity. A Lie algebra with an identically vanishing Lie Bracket is said to be

commutative or Abelian.

� The vector space g(n,R) of all n × n real matrices forms a Lie algebra over R
with the Lie bracket defined by [A,B] = AB − BA. Let A,B,C ∈ g(n,R) and

k ∈K. By definition of the sum and multiplication of matrices one has:

a) [A,B] = AB −BA = −(BA −AB) = −[B,A],

b) [[A,B],C] + [[B,C],A] + [[C,A],B] = [AB −BA,C] + [BC −CB,A] = 0,

c) [kA +B,C] = kAC +BC − kCA −CB = k[A,C] + [B,C],

d) [A,kB +C] = k(AB −BA) +AC −CA = k[A,B] + [A,C],

therefore the Lie bracket is skew symmetric, satisfies the Jacobi identity and is

bilinear.

4.2 Free Lie algebras

This section seeks to explain the construction of the free Lie algebra generated by a set

with m elements. Hereafter, K will denote a commutative and associative ring with a

unit. Modules and algebras mentioned here are taken over K.

A set M with a map M ×M Ð→ M ∶ (x, y) z→ xy is called a magma. Let

B = {1, . . . ,m} and let us define inductively a family of sets Bn, for n ≥ 1, as follows:

1. B1 = B.

2. Bn = ⋃(p,q)∈Cn
Xp ×Xq, where Cn = {(p, q) ∈ N ×N ∶ p + q = n}. (n ≥ 2)

Let us set MB ∶= ⋃
∞
n=1Bn, and define a multiplication ● ∶MB ×MB Ð→MB on MB

as follows: For all x, y ∈MB, there exists p, q ∈ N such that x ∈ Bp and y ∈ Bq; one sets

x ● y = (x, y) ∈ Bp+q. The magma MB with the multiplication thus defined is called the

free magma on B. An element w of MB is called a non-associative word on B; its

length, denoted `(w), is the unique n ∈ N such that w ∈ Bn.
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Example 6. (Free magma) Let B = {1,2}, following the construction of the free

magma MB on B, the first four sets in the sequence (Bn)n∈N are:

B1 = B = {1,2}

B2 = B1 ×B1 = {(1,1), (1,2), (2,1), (2,2)}

B3 = (B1×,B2)⋃(B2 ×B1) = {(1, (1,1)), (1, (1,2)), (1, (2,1)), (1, (2,2)), (2, (1,1)),

(2, (1,2)), (2, (2,1)), (2, (2,2)), ((1,1),1), ((1,2),1), ((2,1),1), ((2,2),1),

((1,1),2), ((1,2),1), ((2,1),2), ((2,2),2)}

B4 = (B1 ×B3)⋃(B3 ×B1)⋃(B2 ×B2).

Let N be a magma, B be a set and f ∶ B Ð→ N be any map. Then there exists

a unique magma homomorphism F ∶MB Ð→ N which extends f . This magma homo-

morphism is defined inductively by F (u, v) = F (u) ●F (v) if u, v ∈ Bp ×Bq. This means

that F is the unique function that maps MB into N , preserving the magma structure

and making the following diagram commute:

B MB

N

id

f
F

where id (identity map) is the natural inclusion of B into MB.

Let AB be the K-algebra constructed from the free magma MB as follows. Let

AB = {f ∶MB Ð→ K}, i.e., AB is the set of all functions of MB into K. Addition “+”

and multiplication by an scalar “∗” in AB are defined from the sum and multiplication

of functions as follows:

+ ∶ AB ×AB Ð→ AB ∶ (x, y) z→ x + y

∗ ∶K ×AB Ð→ AB ∶ (k, x) z→ kx

where x + y ∶ MB Ð→ K is the function that maps each x ∈ MB to x(b) + y(b) and

kx ∶MB Ð→K is the function that maps each x ∈MB to kx(b).

Every b ∈ B is naturally included in AB as the function fb defined by

fb(b̄) =

⎧⎪⎪
⎨
⎪⎪⎩

1, if b̄ = b

0, otherwise.

Therefore, the multiplication ●̄ on AB extends the multiplication ● of elements in MB.

Hence every element a ∈ AB may be uniquely written as a finite sum a = ∑m∈MB
cmm,

with cm ∈ k.
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The algebra AB is called the free algebra generated by B and it satisfies the

following “universal” property: Let D be a K-algebra and let f ∶ B Ð→ D be a map.

There exists a unique k−algebra homomorphism F ∶ AB Ð→ D which extends f . To

see a proof of this property the reader may refer to [Serre, 1992b]. The fact that AB
satisfies the above property means that the following diagram commutes:

B AB

D

id

f
F

where, for every b ∈ B, one has id(b) = fb. Intuitively, the only relations that hold among

elements of the free algebra AB are the ones imposed by the definition of algebra, i.e.,

those that derive from the properties of the sum and the multiplication by scalars.

Example 7. Since Z is a commutative ring, Z is an algebra over itself with the usual

addition and multiplication of integers. Each property that operations in Z must

satisfy (+, ● and multiplication by scalars) generates a relation in Z; for example,

3 ● (4 + 5) is related with 3 ● 4 + 3 ● 5 by the distributivity property of ● and +, since

3 ● (4 + 5) = 3 ● 4 + 3 ● 5. In addition, there are other relations given by the nature

of Z itself, for example (5 ● 3) is related with 10 + 5. On the other hand, in the free

algebra AB generated by B = {1}, none of the relations among elements of AB, other

than these strictly imposed by the algebra operation, hold valid.

By construction, the free Lie algebra AB is a graded algebra, with homogeneous

elements of degree n being those equal to linear combinations of words m ∈ MB of

length n.

Let I be the two-sided ideal of AB generated by the elements of the forms a ● a,

and J(a, b, c) = (a ● b) ● c+ (b ● c) ● a+ (c ● a) ● b, with a, b, c ∈ AB. The quotient algebra

AB/I is called the free Lie algebra on B. This algebra is denoted by LB(K) and,

when the ring K is clear from the context, LB(K) is simply denoted LB. Since AB is

a graded algebra and I is a sub-algebra of AB, it follows that I is a graded ideal of AB,

which implies that LB has a natural structure of graded algebra.

Note that by the definition of the ideal I, and by the definition of quotient algebra,

elements of the form a●a and J(a, b, c) = (a●b)●c+(b●c)●a+(c●a)●b, with a, b, c ∈ AB,

belong to the “zero” equivalence class in AB/I. Let a, b ∈ AB, then [a], [b] ∈ LB, and the

sum +̄ and multiplication ●̄ in LB are defined in terms of the sum + and multiplication

● in AB by:

[a]+̄[b] = [a + b]
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[a]●̄[b] = [a ● b].

Hence, for [a], [b], [c] ∈ LB one has [a]●̄[a] = [a●a] = 0 and ([a]●̄[b])●̄[c]+([b]●̄[c])●̄[a]+

([c]●̄[a])●̄[b] = [(a●b)●c+(b●c)●a+(c●a)●b] = 0. Thus, the multiplication ●̄ of elements

of the free Lie algebra LB is skew symmetric and satisfies the Jacobi identity. Since ●

is bilinear, it is easy to prove that ●̄ is bilinear too, so ●̄ is a Lie bracket operation.

From here on [⋅, ⋅] will be used interchangeably to denote both the operation ●̄ in

LB and the Lie bracket of vector fields defined in Section 2.1.

Remark 2. As in free algebras and algebras, the difference between Free Lie Algebras

and Lie algebras is in the relationships between the elements of each one. In addition

to the relations generated in a free algebra by the properties of the sum, multiplication

and multiplication by an scalar, in a free Lie algebra there exist another two relations:

one arising from the skew-symmetry, the other generated by the Jacobi identity of the

Lie Bracket operation.

By contrast, in a Lie algebra there may also be other relations arising from the

nature of the set upon which operations are defined. Consider for example the Lie

algebra generated by the vector fields X1 and X2, defined on a differential mani-

fold M by X1(x) = ∂
∂x1

∣
x
+ x2

∂
∂x3

∣
x
, X2(x) = ∂

∂x2
∣
x
. Lie brackets [X1, [X1,X2]] and

[X1, [X1, [X1,X2]]] are “related”by an equation that must hold true, since [X1, [X1,X2]] =

[X1, [X1, [X1,X2]]] = 0. Therefore the concept of “length of an element” does not make

sense in a Lie algebra, unlike the case of a free Lie algebra.

4.2.1 P. Hall Basis of Free Lie Algebras

Let B be a totally ordered set. A P. Hall Family in MB, the free magma on B, is

a totally strictly ordered subset H of MB, such that:

1. B ⊆H.

2. If u, v ∈H with `(u) ≺ `(v) and ≺ the order in N, then u < v.

3. An element u = v ● w with v,w ∈ MB belongs to H if and only if one of the

following conditions is satisfied:

(a) v ∈H, w ∈H and v < w;

(b) either w ∈ B, or there exists w′,w′′ ∈H such that w = w′ ●w′′ and w′ ≤ v.

As shown, for example in [Serre, 1992a], there exists a P. Hall family for any ordered

set B, constructed, by induction, by defining H1 = B and Hn = H ∩Bn for n ≥ 2. For
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instance, let B = {1,2}; then the sets H1, . . . ,H5 of the P. Hall basis for B are:

H1 = {1,2}

H2 = {1 ● 2}

H3 = {1 ● (1 ● 2), 2 ● (1 ● 2)}

H4 = {1 ● (1 ● (1 ● 2)), 2 ● (1 ● (1 ● 2)), 2 ● (2 ● (1 ● 2))}

H5 = {1 ● (1 ● (1 ● (1 ● 2))), 2 ● (1 ● (1 ● (1 ● 2))), 2 ● (2 ● (1 ● (1 ● 2))), 2 ● (2 ● (2 ● (1 ● 2))),

(1 ● 2) ● (1 ● (1 ● 2)), (1 ● 2) ● (2 ● (1 ● 2))}

If H is a P. Hall family in MB, then the natural inclusion (identity map) of the

elements h ∈ H in LB form a basis of LB, called a P. Hall basis of LB. Elements in

H are called Lie monomials.

4.3 Relationship Between Lie Algebras and free Lie

Algebras

In the following subsections the reader will find a description of concepts that relate

the free Lie algebra generated by m elements with the Lie algebra generated by m

vector fields, which will be important to describe the desingularization algorithm in

the next chapter.

4.3.1 Evaluation map EX

Suppose that Q is a differentiable manifold and (Ω, ϕ) is a coordinate chart of Q. Let

X = {X1, . . . ,Xm}, with X1, . . . ,Xm ∈ Γ(TΩ) and set I = {1, . . . ,m}. Recall that LI
denotes the free Lie algebra generated by I and LX denotes the Lie algebra generated

by X .

Let us define the function e ∶ I Ð→ LX by e(i) = Xi for i ∈ I. By the “universal

property”of free Lie algebras, there exists an algebra homomorphism EX ∶ LI Ð→ LX
that extends e, called the evaluation map of LI in LX . Thus, for instance, EX (1) =

X1, EX ([1, [2,3]]) = [X1, [X2,X3]] and EX ([[1,2], [2,3]]) = [[X1,X2], [X2,X3]].

4.3.2 Descendants

The definitions in this section were taken from [Chitour et al., 2013] and [Jean, 2014].

By definition, the P. Hall Basis H of LX has a strict and total order, which allows one

to define a surjective sequence (Ii)i∈N on H. In the sequel, we will use Ij to denote

the j-th element of H. Let H1 ∶= H1 and Ht ∶= ⋃ti=1H
i, for t ≥ 2. Every Lie monomial
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Ij ∈H can be expanded as

Ij = [Ik1 , [Ik2 , . . . , [Ik`−1 , Ik`] . . . ]],

with ` ∈ N, Ik1 , . . . , Ik`−2 ∈ H
∣Ij ∣−2, and Ik`−1 , Ik` ∈ H

1 such that Ik`−1 < Ik` . One says that

Ij is a direct descendant of Ik` . Let us define the mapping φ ∶ H → H1 that maps

an element of H to the element in H1 from which it descends, i.e., φ(Ij) = Ik` .

Example 8. Let A = {1,2}, and let u = [[1,2], [1, [1,2]]]. By construction of the

P. Hall basis for the free Lie algebra generated by A, one has u ∈ H. Therefore

u = [Ik1 , [Ik2 , [Ik3 , Ik4]]], with Ik1 = [1,2], Ik2 = 1, Ik3 = 1 and Ik4 = 2. Thus, u is a direct

descendant of 2, i.e., φ(u) = 2.

4.3.3 Monomial Pj(x) associated to Ij

One will associate to Ij the (j − 1)-tuple αj = (α1
j , . . . , α

j−1
j ), where αij is the num-

ber of occurrences of Ii (the i-th element in H) among Ik1 , . . . , Ik`−1. The authors of

[Chitour et al., 2013] define the monomial Pj(x) associated with Ij by:

Pj(x) =
x
α1
j

1 . . . x
αj−1
j

j−1

α1
j ! . . . α

j−1
j !

Example 9. Let us consider again [[1,2], [1, [1,2]] = [Ik1 , [Ik2 , [Ik3 , Ik4]]] ∈ H. Since

u is the 13th element in H (according to the total order in H), it has associated the

12-tuple α13 = (α1
13, . . . , α

12
13), where α1

13 = 2 is the number of occurrences of 1 among

Ik1 , . . . , Ik3 , α
2
13 = 0 is the number of occurrences of 2 among Ik1 , . . . , Ik3 , α

3
13 = 1 is the

number of occurrences of [1,2] among Ik1 , . . . , Ik3 , and α4
13 = ⋅ ⋅ ⋅ = α

12
13 = 0. Thus, one

has the monomial

P13(x) =
x
α1
13

1 . . . x
α12
13

12

α1
13! . . . α

12
13!

=
x21x3

2
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Chapter 5

The desingularization algorithm

One of the objectives of this thesis was the study of the “desingularization algorithm”

proposed in [Chitour et al., 2013]. This chapter presents the importance and the steps

of the algorithm and its application to a simple system.

5.1 Regular and singular systems

Let us consider the driftless control-affine system

ẋ =
m

∑
i=1
Xi (x)ui (5.1)

where ϕ = (x1, . . . , xn) are coordinates for the configuration manifold M , X1, . . . ,Xm

are local representations of some vector fields X̂1, . . . , X̂m in Γ(TM), and u1, . . . , um
are control inputs that take values in the real numbers. Let U ⊆M be the domain of

the coordinate chart ϕ. Hereafter, Ω will denote ϕ(U) so that X1, . . . ,Xm are elements

of Γ(TΩ).

As the reader may read, e.g. in [Nijmeijer and van der Schaft, 1991], if one assumes

that the control inputs u1, . . . , um belong to a set of “admissible inputs” U , then there

exists a unique solution of (5.1) at time t, for these control inputs u1, . . . , um ∈ U , with

x0 and t0 as initial conditions, denoted by x(t, t0, x0, u1, . . . , um) or, more simply as

x(t), when the rest of the arguments (t0, x0, u1, . . . , um) are clear from the context.

The authors in [Nijmeijer and van der Schaft, 1991] justify to consider U as the

set of admissible control inputs by the following reasoning that follows from standard

results on the continuity of solutions of differential equations: If one has an approxima-

tion of a more general control input ū(⋅) ∶ [0,∞] Ð→ Rn by piecewise constant functions

in some suitable sense, then the solutions of (5.1) for these piecewise constant functions

will be an approximation of the solution of (3.1) for ū(⋅).
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Let X = {X1, . . . ,Xm} and let A = {1, . . . ,m}. Recall that LA denotes the free Lie

Algebra generated by A, LX denotes the Lie algebra generated by X and one has the

evaluation map EX of LA into LX . As in Chapter 3, H denotes the P. Hall basis of LA.

Let ∆ be the distribution generated by the elements in X and let s ∈ N; in the following,

∆s will denote the distribution spanned by the image by EX of all the elements in H

the lengths of which are less than or equal to s, i.e., the elements in Hs.

The involutive closure of the distribution ∆ is the intersection of all the involu-

tive distributions that contain ∆, i.e., the “smallest” involutive distribution in which ∆

is contained. From here on, ∆ will denote the involutive closure of ∆. The distribution

∆ is said to satisfy the Lie Algebra Rank Condition at x ∈ Ω (for short LARC(x))

if and only if ∆(x) = TxΩ, i.e., if and only if dim(∆(x)) = n. System (5.1) is said to

satisfy the LARC if the LARC is satisfied at every x ∈ Ω.

Let us suppose that (5.1) satisfies the LARC and let x ∈ Ω. Therefore there exists

a smaller integer r such that dim(∆r)(x) = n. This integer r is called the degree of

nonholonomy of X at x. The degree of nonholonomy of X on a set B ⊆ Ω is defined

by max{r ∈ Z ∶ (∃x ∈ B)(r is the degree of nonholonomy of X at x)}.

Let x ∈ Ω and let r be the degree of nonholonomy of X at x. Define ns(x) ∶=

dim(∆s)(x)), for s = 1, . . . , r. The r-tuple (n1(x), . . . , nr(x)) is called the growth

vector of X at x.

A point x ∈ Ω is said to be a regular point of (5.1) if there exists a neighborhood

V of x such that the growth vector of X is the same at every y ∈ V , otherwise x is said

to be a singular point of (5.1). System (5.1) is said to be a regular system if every

point x ∈ Ω is regular, otherwise (5.1) is said to be a singular system.

Example 10. Let us consider the system

ẋ =

⎛
⎜
⎜
⎝

1

0

x2

⎞
⎟
⎟
⎠

u1 +

⎛
⎜
⎜
⎝

0

1

0

⎞
⎟
⎟
⎠

u2 =X1(x)u1 +X2(x)u2, (5.2)

defined on R3. Since [X1,X2] = ∂
∂x3

, it is easy to prove that at every x ∈ R3,

∆x = span{X1(x),X2(x), [X1,X2](x)} is the involutive closure of the distribution

∆x = span{X1(x),X2(x)}. Therefore one has dim(∆(x)) = 3 for every x ∈ R3, i.e.,

∆x spans TxR3. It follows that the degree of nonholonomy r of {X1,X2} at R3 is equal

to 2. By definition one has n1(x) = 2 and n2(x) = 3 for every x ∈ R3, i.e., the growth

vector of {X1,X2} at x ∈ Ω is (2,3). Thus, (5.2) is a regular system. An example of

singular system is presented in Section 5.4.

Let us define, for s ∈ N, ñs = #(Hs). A family of vector fields {V1, . . . , Vm} defined

33



on a differential manifold M is said to be free up to step s if for every m ∈M , the

growth vector (n1(x), . . . , ns(x)) is equal to (ñ1, . . . , ñs).

5.2 Interest of the algorithm

Driftless control affine systems have been under study in control theory partly because

they constitute mathematical representations of many real systems including kinematic

models of mechanical systems with nonholonomic constraints. Among the problems

often addressed for this type of systems is the motion planing problem (for short

MPP), also called “state steering problem”. Solving the MPP for a system consists

in associating to every pair of points (x, y) ∈ Ω × Ω, an admissible control input u(⋅),

defined on some interval [0, T ], such that the solution starting from x at a t = 0 reaches

y at t = T . In other words, solving the MPP boils down to driving a system from an

initial position x to an ending position y, using an admissible control input u(⋅) in a

“finite” time T .

In control references, for example [Nijmeijer and van der Schaft, 1991], the distri-

bution ∆ is called the accessibility distribution generated by the accessibility algebra

LX , and the LARC is called the accessibility rank condition. In that sense, (5.1) is said

to be locally accessible on a set B ⊆ Ω if the LARC is satisfied at every b ∈ B.

System (5.1) is said to be controllable on a set B ⊆ Ω if, for any two points x, y ∈ B,

there exists a finite time T ∈ R and an admissible control input u ∈ U such that

x(T,0, x1, u) = y. The reader may wish to refer to [Nijmeijer and van der Schaft, 1991]

to check that in the case of systems like (5.1), which has the drift term absent, when Ω

is connected one has that if the LARC is satisfied on a set B then (5.1) is controllable

on B.

Over the years, various methodologies have been developed in order to solve the

MPP in driftless control-affine systems, many of which are applicable only in cases

when one has more information about th system that the mere satisfaction of the

LARC. For instance, the authors of [Lafferriere and Sussmann, 1991] and the authors

of [Lafferriere and Sussman, 1992] propose a method for nilpotentizable systems, based

on Lie brackets taken within the Lie algebra generated by the system’s vector fields;

[Murray and Sastry, 1993] propose sinusoidal controls for systems in chained form; and

in [Bullo et al., 2000] one finds techniques applicable for left invariant systems defined

on Lie groups.

The aforementioned methods have proved efficient in some applications; however,

it is important to keep in mind that they are focused on solving the MPP for specific

types of systems, which makes them rather restrictive. A clear example of this includes
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chained form systems: car-like wheeled mobile robots with more that one trailer cannot

be transformed into chained-form unless each trailer is hooked to the midpoint of the

previous wheel axle (ref. [Chitour et al., 2013]).

For this reason, many steering techniques have been developed in order to solve the

MPP in general driftles systems. To mention only a few of these steering techniques, one

has the iterated Lie brackets method ([Lafferriere and Sussmann, 1991, Sontag, 1995]),

the generic loop method ([Sontag, 1995, Alouges et al., 2010]) and the continuation

method ([Chitour and Sussmann, 1993, Sontag, 1995]).

The authors of [Chitour et al., 2013] propose an algorithm to solve the MPP in

systems like (5.1) whose novelty, compared to the existing procedures, is that for the

development of this algorithm the authors do not rule out the existence of singular

points in (5.1). Let us suppose that x is a singular point of some system Σ. Therefore

there does not exist any neighborhood of x on which the growth vector is constant,

which implies that the degree of nonholonomy is not constant either. From a control-

theoretic point of view, the above entails that the control inputs necessary to steer

the system from one point to another may be rather intricate in the sense that their

expressions are somewhat involved and their nature is highly oscillatory.

The previously mentioned algorithm is based on the assumption that the system

for which one wants to solve the MPP is regular. For this reason the authors of

[Chitour et al., 2013] have proposed a “desingularization algorithm” for singular sys-

tems in the form of (5.1). The construction of this algorithm ensures that the suitable

signals used in order to control the “desingularized system” will also be suitable control

inputs to solve the MPP in the original singular system.

As in Chapter 1, among the goals of the present work is to acquire a thorough

understanding of the desingularization algorithm proposed by [Chitour et al., 2013],

followed by an application of this method to a particular system.

It should be mentioned that the algorithm in [Chitour et al., 2013] ensures that

the system obtained via desingularization (the “desingularized system”) is expressed

in special coordinates called privileged coordinates. However, as mentioned in that

reference, it is possible to apply the desingularization algorithm in a way that does not

necessarily yield a system in privileged coordinates.

5.3 Desingularization Algorithm

Let us suppose that (5.1) is a driftless control-affine system with a nonempty set

of singular points. Also, suppose that r ∈ N is the degree of nonholonomy of X =
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{X1, . . . ,Xm} on Ω. The main idea of the desingularization procedure is to construct

a manifold Ω̃ = Ω×Rñr−n and “lift” the control vector fields X1, . . . ,Xm to vector fields

ξ1, . . . , ξm on Ω̃ such that:

� For i = 1, . . . ,m, the vector fields Xi and ξi are π-related by the canonical pro-

jection π ∶ Ω̃ Ð→ Ω that maps (x1, . . . , xñr) ∈ Ω̃ onto (x1, . . . , xn) ∈ Ω, that is,

Tπ ○ ξi = Xi ○ π. This property guarantees that one retrieves X1, . . . ,Xm by

projecting ξ1, . . . , ξm on TΩ, and that the following diagram commutes:

T Ω̃ TΩ

Ω̃ Ω

Tπ

ξi

π

Xi

� The family of vector fields {ξ1, . . . , ξm} is free up to step r. This fact guarantees

that the nonholonomic system defined by ξ1, . . . , ξm is regular, since its growth

vector is constant on Ω̃.

Suppose that the following is a “lifted”version of (5.1) obtained as result of its

desingularization:

˙̃x =
m

∑
i=1
ξi(x̃)ui. (5.3)

Let us consider a trajectory x̃(⋅, x̃0, u(⋅)) of (5.3). Since Xi and ξi are π-related,

π(x̃( ⋅ , x̃0, u(⋅))) = x( ⋅ , π(x̃0), u(⋅)) is a trajectory of (5.1) associated to the same con-

trol input function. Therefore, any control function u(⋅) that steers (5.3) from a point

x̃0 ∶= (x0,0) to a point x̃1 ∶= (x1,0) also steers (5.1) form x0 to x1.

Starting with vector fieldsX1, . . . ,Xm expressed in some coordinates x = (x1, . . . , xn),

the algorithm below yields a regular system with vector fields ξ1, . . . , ξm expressed in

the extended coordinates x̃ = (x1, . . . , xñr) of x.

Consider again System (5.1) and let C be a compact subset of Ω. Let us assume

that the LARC is satisfied at every point of C. Let r denote the degree of nonholonomy

of X on C, note that r exists since C is compact.

Let B = {1, . . . ,m} and let H be the the P. Hall basis for LB. For every n-tuple

I = (I1, . . . , In) of elements of Hr, define the set

VI ∶= {p ∈ Ω ∶ dim(span{XI1(p), . . . ,XIn(p)}) = n} (5.4)
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where XIj = EX (Ij), i.e., XIj is the image of Ij by the evaluation map EX .

Lemma 1. For every I = (I1, . . . , In) ∈ (Hr)n, the set VI given by (5.4) is open.

Proof: Let p ∈ VI and let Ip ∈ Rn×n denote the matrix whose columns are given

by the components of XIi(p), for i = 1, . . . , n. The set {0} is closed in R, so R/{0}

is open. The function det ∶ Rn×n Ð→ R being polynomial in the entries of its argu-

ment, is continuous, therefore the set det−1(R/{0}) is open. Let f ∶ Ω Ð→ Rn×n be

given by f(p) = (XI1(p), . . . ,XIn(p)). Since XIi(p), i = 1, . . . , n is continuous, so is f .

Therefore, f−1(det−1(R/{0})) is open. Because p ∈ VI , det(Ip) is nonzero and one has

p ∈ f−1(det−1(R/{0})). Let x ∈ f−1(det−1(R/{0})), therefore there exists y ∈ R/{0}

such that det(f(x)) = y, thus dim(span{XI1(x), . . . ,XIn(p)}) = n and x ∈ VI . It is

easy to prove that VI = f−1(det−1(R/{0})), therefore VI is open.

Let x ∈ C. Since the LARC is satisfied at x, there exists Ix = (I1, . . . , In) such that

dim(span {XI1(p), . . . ,XIn(p)}) = n, therefore, there exists VIx such that x ∈ VIx . It

follows that ⋃x∈C VIx is an open cover of C. Since C is compact, that open cover admits

a finite subcover of ⋃x∈C VIx , i.e., there exists a finite family of n-tuples I1, . . . ,IM of

elements of Hr such that C ⊆ ⋃
M
i=1 VIi .

Lemma 2. For every compact set K and every finite cover ⋃Ni=1Bi of K, there exists

a compact subcover ⋃Ni=1B
c
i of ⋃Ni=1Bi, such that, for i = 1, . . . ,N , Bc

i ⊆ Bi.

Proof: Let y ∈K and ⋃Ni=1Bi be a finite cover of K. There exists Bj, i ∈ {1, . . . ,N}

such that y belongs to Bj. Let ∂Bj be the boundary of Bj and x ∈ ∂Bj ⋂K. Since

x ∈K, there exists Bk ∈ ⋃
N
i=1Bi such that x ∈ Bk and, since Bk is open, there exists an

open set Wx,j,k ⊆ Bk such that x belongs to Wx,j,k. Let Bc
i = K⋂Bj/⋃x∈∂Bj ⋂KWx,j,k.

It follows that Bc
i is a closed subset of K and, since closed subsets of compact sets

are compact, Bc
i is compact. Furthermore, K ⊆ ⋃

N
i=1B

c
i , and it is clear that Bc

i ⊆ Bi.

Therefore, ⋃Ni=1B
c
i is a compact subcover of ⋃Ni=1Bi.

From Lemma 2, there exists a compact cover of C in the form ⋃
M
i=1 V

c
Ii where, for

i = 1, . . . ,M , the set V c
Ii ⊆ VIi is compact.

Let I = (I1, . . . , In) with Ii ∈ {I1, . . . ,IM}. The authors of [Chitour et al., 2013]

construct, by induction on the length of elements in a free Lie algebra, a family of m

vector fields ξ = {ξ1, . . . , ξm} defined on VI × Rñr−n (recall that ñr = #(Hr)), which

is free up to step r and has its projection onto VI equal to X . In the following, an

alternative explanation to the aforementioned desingularization algorithm is presented.

Desingularization Algorithm steps:

37



� Define Is ∶= {Ij ∈ I ∶∣Ij ∣ = s}, for s ≥ 1 and ks ∶= #(Hs/Is). Let x ∈ VI and let

a ∈ VI .

� s = 1 Initialization step:

1. Set V 1 ∶= VI ×Rk1 . Define k̃1 ∶= n. Let x̄1 = (xk̃1+1, . . . , xk̃1+k1) be coordinates

on Rk1 . Then a point x1 ∈ V 1 is in the form x1 = (x, x̄1) = (x1, . . . , xn+k1).

2. Define {ξ11 , . . . , ξ
1
m} on V 1 as follows:

∀x1 ∈ V 1, ξ1i (x
1) ∶=Xi(x) +

⎧⎪⎪
⎨
⎪⎪⎩

0, if i ∈ I1

∂xi+k̃1
, if i ∈H1/I1

(5.5)

Note that H1 = B = {1, . . . ,m} and I1 ⊆H1, therefore i ∈ I1 or i ∈H1/I1.

3. Define K1 ∶= H1⋃(I/I1) and a1 ∶= (a,0) ∈ V 1. Compute coordinates y1 on

V 1 such that ∂y1j = ξ
1
Ik
(a1) and y1(a1) = 0, where Ik is the j-th element in

K1 and the k-th element in H, according to the order in H, and ∂y1j ∶=
∂
∂y1j

.

� s = 2, . . . , r Iteration steps:

1. Set V s ∶= V s−1 × Rks . Let vs = (vs1, . . . , v
s
ks
) be coordinates on Rks . Then

xs ∈ V s is in the form xs ∶= (ys−1, vs).

2. Define {ξs1, . . . , ξ
s
m} as the vector fields on V s which, written in coordinates

(ys−1, vs), are viewed as:

ξsi (y
s−1, vs) = ξs−1i (ys−1) + ∑

Ik∈Es
i

Pord(k)(y
s−1)∂vs

k
(5.6)

where Es
i = {Ij ∈ Hs/Is ∶ φ(Ij) = i}, Ik is the k-th element in Hs/Is and the

j-th element in H, ord ∶ {1, . . . ,#(Hs/Is)} → N is the mapping defined by

ord(k) = j and Pj(v) is the multi-monomial defined in Chapter 4:

Pj(v) =
vα

1

1 . . . vα
j−1

j−1

α1! . . . αj−1!
(5.7)

with (α1, . . . , αj−1) the first j−1 elements of the (ñs−1)-tuple α = (α1, . . . , αñs−1)

associated with Ij.

3. Define Ks ∶= Ks−1⋃(Hs/Is) and a1 ∶= (a,0) ∈ V s. Compute coordinates ys

on V s such that ∂ysj = ξ
s
Ik
(as) and ys(as) = 0, where Ik is the j-th element in

Ks and the k-th element in H, according to the order in H, and ∂ysj ∶=
∂
∂ysj

.

� Final step

Define ξi ∶= ξsi , for i = 1, . . . ,m, and yr = y. The vector fields {ξ1, . . . , ξm} are

the “lifted”vector fields whose projection on Ω is X , and the system given by

ẏ = ∑
m
i=1 ξi(y)ui is regular.
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Remark 3. It is important to remark that, since vector fields {ξ1, . . . , ξm} of System

(4.3) are “lifted”vector fields of {X1, . . . ,Xm} of System (4.1), if the LARC is not

satisfied at a point x = (x1, . . . , xn) ∈ Ω, then the LARC is not satisfied at any point

in Ω̃ of the form (x1, . . . , xn, xn+1, . . . , xñr). This, together with the fact that Xi is

π-related with ξi, ensures that both the singular system and the desingularized system

have the same controllability properties.

5.4 Application example

Let us consider the system

ẋ =

⎛
⎜
⎜
⎝

1

0

0

⎞
⎟
⎟
⎠

u1 +

⎛
⎜
⎜
⎝

0

1
x21
2

⎞
⎟
⎟
⎠

u2 =X1(x)u1 +X2(x)u2. (5.8)

For System (4.8), one has n = 3 and m = 2, and the vector fields X1 and X2 are defined

for all R3, i.e., Ω = R3. By direct computation one gets:

[X1,X2](x) =

⎛
⎜
⎜
⎝

0

0

x1

⎞
⎟
⎟
⎠

[X1, [X1,X2]](x) =

⎛
⎜
⎜
⎝

0

0

1

⎞
⎟
⎟
⎠

As mentioned in the previous section, to apply the desingularization algorithm, one

must select a compact set of Ω on which the LARC is satisfied. Let C = {x ∈ R3 ∶∥x∥ ≤

1}. Since C is closed and bounded, C is compact. Consider the sets C1 = {x ∈ C ∶ x1 ≠ 0}

and C2 = {x ∈ C ∶ x1 = 0}. Clearly C1 ∪C2 = C.

Proposition 1. The LARC is satisfied at every x ∈ C.

Proof: Let x ∈ C. Let us suppose that x ∈ C1. Then, X1(x), X2(x) and [X1,X2](x)

are linearly independent, and X1(x), X2(x), [X1,X2](x) ∈ D̄, hence dim(D̄) = n. It

follows that LARC is satisfied at x. Suppose that x ∈ C2. Then, X1(x), X2(x)

and [X1, [X1,X2]](x) are linearly independent. Therefore, by a similar reasoning, the

LARC is satisfied at x.

For x ∈ C1 one has dim(D1) = 2 and dim(D2) = 3; therefore, the degree of

nonholonomy of X = {X1,X2} on C1 is r1 = 2, and the growth vector at x ∈ C1

is (n1(x), n2(x)) = (2,3). For x ∈ C2 we have dim(D1) = 2, dim(D2) = 2, and

dim(D3) = 3; therefore, the degree of nonholonomy of X on C2 is r2 = 3, and the

growth vector at x ∈ C2 is (n1(x), n2(x), n3(x)) = (2,2,3). Therefore, the degree of

nonholonomy of X at C is r = max{r1, r2} = 3. Let ε ∈ (0,1) ⊆ R>0, and let U be a ball

of radius ε centered at x ∈ C2. It is easy to prove that theere exists y ∈ C1 such that
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y ∈ U , and since the growth vector of X at x is different from the growth vector of X

at y, it follows that x is a singular point. Thus, C2 is a set of singular points of System

(4.8).

Let B = {1,2} and set 1 ≺ 2. Recall that LB denotes the free lie algebra generated

by B, H denotes the P. Hall basis of LB, and Hr is the set of elements of LB whose

length is smaller than or equal to r. Let I = (1,2, [1, [1,2]]); it is clear that I is a

triple of elements of Hr. Define VI = {p ∈ R3 ∶ dim(span{EX (1),EX (2),EX (3)}) = 3},

so that VI = R3. It is clear that C ⊆ VI and, since VI is open, it is an open cover of C.

By definitions from Chapters 4 and 5, one has the following sets and scalars:

� For i = 1,2,3, the sets H i of the P. Hall basis of H are:

H1 = {1,2}

H2 = {[1,2]}

H3 = {[1, [1,2]], [2, [1,2]]}

� For i = 1,2,3, the sets Hi are given by:

H1 = {1,2}

H2 = {1,2, [1,2]}

H3 = {1,2, [1,2], [1, [1,2]], [2, [1,2]]}

� For i = 1,2,3, one has:

I1 = {1,2}

I2 = ∅

I3 = {[1, [1,2]]}

� By simple calculations, for i = 1,2,3, one obtains:

k1 = 0

k2 = 1

k3 = 1

Let x = (x1, x2, x3) be coordinates on VI and let a = (0,0,0).

� Step s = 1

1. V 1 ∶= VI ×R0 = VI , k̃1 ∶= 3, x1 ∶= x = (x1, x2, x3).
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2. Define, for x1 ∈ V 1:

ξ11(x
1) ∶=X1(x)

ξ12(x
1) ∶=X2(x)

3. Define a1 ∶= a and K1 ∶= {1,2, [1, [1,2]]} = {I1, I2, I4}. Let (x1, . . . , x3) ∶=

(y11, y
1
2, y

1
3) ∶= y

1, therefore y1(a1) = 0 and after straightforward computa-

tions, one obtains ξ11(a
1) = ∂y1 , ξ

1
2(a

1) = ∂y2 and ξ14(a
1) = ∂y3 .

� Step s = 2

1. V 2 ∶= V 1 ×R1, v2 ∶= (v21)

2. Since H2/I2 = {[1,2]}, and φ([1,2]) = 2, one has E1
2 = ∅, therefore, for

(y1, v2) ∈ V 2:

ξ21(y
1, v2) ∶= ξ11(y

1)

By definition, E2
2 = {[1,2]}. Since [1,2] is the first element of E2

2 and the

third element of H, let us define, for (y1, v2) ∈ V 2:

ξ22(y
1, v2) ∶= ξ12(y

1) + P3(y
1)∂v21

The Lie monomial [1,2] is associated with the pair α = (α1, α2) = (1,0);

therefore, P3(x) = x1. It follows from (5.9) that:

ξ22(y
1, v2) = ξ12(y

1) + x1∂v21

3. Define a2 ∶= (a1,0) = (0,0,0,0) andK2 ∶= {1,2, [1,2], [1, [1,2]]} = {I1, I2, I3, I4}.

Let (y1, v2) ∶= (y21, . . . , y
2
4) ∶= y

2. It follows that y2(a2) = 0, ξ21(a
2) = ∂y1 ,

ξ22(a
2) = ∂y2 . ξ

2
3(a

2) = ∂y3 and ξ24(a
2) = ∂y4 .

� s = 3

1. V 3 ∶= V 2 ×R1, v3 ∶= (v31).

2. Since H3/I3 = {[2, [1,2]]}, and φ([2, [1,2]]) = 2, E1
3 = ∅, therefore, for

(y2, v31) ∈ V
3:

ξ31(y
2, v31) ∶= ξ

2
1(y

2)

By definition, E3
2 = {[2, [1,2]]}, therefore [2, [1,2]] is the first element of E3

2

and the fifth element of H. Define, for x3 ∈ V 3:

ξ32(y
2, v31) ∶= ξ

2
2(y

2) + P5(y
2)∂v31

The 4-tuple β = (β1, β2, β3, β4) = (1,1,0,0) is associated with the Lie mono-

mial [2, [1,2]], thus P5(x2) = x1x2. Therefore one has:

ξ32(x
3) ∶= ξ32(x

2) + x1x2∂v31
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3. By definition one hasK3 ∶= {1,2, [1,2], [1, [1,2]], [2, [1,2]]} = {I1, I2, I3, I4, I5},

and a3 = (0,0,0,0,0). Let (y21, . . . , y
2
4, v

3) ∶= (y31, . . . , y
3
5) ∶= y

3. Simple calcu-

lations yield y3(a3) = 0, ξ31(a
3) = ∂y1 , ξ

2
2(a

3) = ∂y2 , ξ
2
3(a

3) = ∂y3 , ξ
2
4(a

4) = ∂y4
and ξ25(a

4) = ∂y5 .

� Define y3 ∶= y, ξ1 ∶= ξ31 and ξ2 ∶= ξ32 . Then the domain of ξi is Ω̃ = Ω ×R2.

Let y ∈ R5; in coordinates y one has:

ξ1(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ξ2(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1
y21
2

y1
y1y2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

ξ3(y) ∶= [ξ1, ξ2](y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

y1
1

y2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ξ4(y) ∶= [ξ1, [ξ1, ξ2]](y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ξ5(y) ∶= [ξ2, [ξ1, ξ2]](y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Let s be a positive integer such that 1 ≤ s ≤ r = 3 and y ∈ R5. Since (n1(y), n2(y), n3(y)) =

(2,3,5) = (ñ1, ñ2, ñ3), the family of vector fields {ξ1, ξ2} is free up to step r = 3.

Since for all y ∈ R5 the growth vector is the same, no point is singular for the sys-

tem defined by ξ1, ξ2. Let π denote the canonical projection of R5 onto R3 given by

π((y1, y2, y3, y4, y5)) = (y1, y2, y3) and let y ∈ Ω̃; one has Tπ○ξ1(y) =
∂
∂y1

, X1○π(y) =
∂
∂y1

.

Therefore, Tπ ○ ξ1 =X1 ○ π and, by a similar reasoning, one has Tπ ○ ξ2 =X2 ○ π.

5.5 An elementary procedure to desingularize a sim-

ple system

The nature of System (5.8) allows one to apply a “rudimentary” desingularization

procedure. This procedure is helpful to shed light on the underlying mechanism of
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[Chitour et al., 2013]’s algorithm. Additionally, this elementary procedure shows that

there is no “unique” desingularization for System (5.8).

The desingularization algorithm mentioned in the previous section involves the ex-

tension of Ω to Ω̃ and the definition of extended vector fields on Ω̃. Let E = {ξ1, . . . , ξm}

be the set of vector fields obtained by the desingularization algorithm; since E is free

up to step 3, ξ1, . . . , ξm are defined such that, for any e1, e2 ∈Hr, the image of e1 by EE
is linearly independent from the image of e2 by EE .

In order to obtain a desingularization of (5.8) and may be of other simple systems,

one can apply the following desingularization procedure. Let us define ξ1, ξ2 for x ∈ R5

as lifts of X1,X2, as follows:

ξ1(x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

ξ2(x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1
x21
2

a(x)

b(x)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.9)

where a, b ∈ C(R5,R). Recall, from Chapter 4, that the triple (spanR{ξ1, ξ2},+,⋆), with

+ the sum of vector fields and ⋆ the multiplication of vector field by scalars, is a vector

spacer over R; in that sense, it is easy to prove that ξ1 and ξ2 are linearly independent.

One has:

ξ3(x) = [ξ1, ξ2](x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

x1
∂a(x)
∂x1
∂b(x)
∂x1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Note that in order for ξ3 to be linearly independent form ξ1 and ξ2, it suffices to have
∂a(x)
∂x1

= 1 or ∂b(x)
∂x1

= 1. Let us propose a(x) = x1, so that ∂a
∂x1

= 1, and by computation:

ξ4(x) = [ξ1, [ξ1, ξ2]](x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0
∂2b(x)
∂x21

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

In this case, ξ4 is already linearly independent form ξ1, ξ2 and ξ3 independently of the

value of ∂2b(x)
∂
x2
1

. Finally:
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ξ5(x) = [ξ2, [ξ1, ξ2]](x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0
∂b(x)
∂x1∂x2

+
x21
2

∂b(x)
∂x1∂x3

+ x1
∂b(x)
∂x1∂x4

+ b ∂b(x)
∂x1∂x5

− x1
∂b(x)
∂x3

−
∂b(x)
∂x4

−
∂b(x)
∂x1

∂b(x)
∂x5

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

To ensure that ξ5 is linearly independent form ξ1, ξ2, ξ3 and ξ4, it is enough to

require that ∂b
∂x1∂x2

+
x21
2

∂b
∂x1∂x3

+x1
∂b

∂x1∂x4
+ b ∂b

∂x1∂x5
−x1

∂b
∂x3

− ∂b
∂x4

− ∂b
∂x1

∂b
∂x5

= 1. It is easy to

prove that either b(x) = x1x2, or b(x) = −x4, satisfies that condition.

As one may anticipate, if one selects a(x) = x2 instead of a(x) = x1, the system

obtained by desingularization may be different. Moreover it is reported in [Jean, 2014]

that system

˙̃x =

⎛
⎜
⎜
⎜
⎜
⎝

1

0

0

0

⎞
⎟
⎟
⎟
⎟
⎠

u1 +

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0

1
x22
2

x1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= ξ1u1 + ξ2u2 (5.10)

results form a desingularization of (5.8).

However this intuitive and elementary desingularization of (5.8) was possible thanks

to the relatively simple nature of the system. However, this need not be the case for

more general driftless control-affine systems. Hence the importance of the algorithm

proposed in [Chitour et al., 2013].
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Chapter 6

Application example

In this chapter we present the application of the desingularization algorithm proposed

in [Chitour et al., 2013] to the kinematic model of the tricycle with one trailer; the

existence of singular points in the configuration manifold of this system will also be

discussed here.

6.1 Singular points of the tricycle with one trailer

One of the objectives in this work was to apply the desingularization algorithm on

the kinematic model of a car-like robot with nonholonomic constraints. It is worth

mentioning that there exist reports in the literature on the existence or not of singular

points in kinematic models of some car-like robots. For example, in [Jacquard, 1993]

there is a classification for the singular points of the cart with 2, 3 and 4 trailers; the

authors of [Jean, 1996] proved that a point p belonging to the configurations manifold

of a cart with N trailers that satisfies θk−θk−1 = ±
π
2 , for k = 2, . . . ,N , is a singular point

of this system.

Before studying the singular points of the tricycle with 1 trailer, it is important to

stress that there exist other singularities that do not necessarily have to do with the

existence of singular points, nevertheless, in this work we refer to a singular point in

the sense of the definition given in Chapter.

Let us consider the tricycle with 1 trailer, whose graphic representation is shown

in Figure 3.6, and recall that Q = R2 × (S1)3 is a valid configuration manifold for

this system. Let us define K1 ∶= {x ∈ R2 ∶ ∥x∥ ≤ 1}, K2 ∶= [0, 9π10 ], K3 ∶= [0, 9π10 , π] /

{±arctan( C2√
L2
1−C2

2

)}, K4 ∶= [0, 9π10 ] and K ∶=K1 ×K2 ×K3 ×K4. Since K1, K2, K3 and

K4 are closed and bounded, it follows that K is closed and bounded, therefore K is

compact.
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Let

f(x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
L2

cos(x3) (L2 cos(x4) cos(x5) +C2 sin(x4) sin(x5))
1
L2

sin(x3) (L2 cos(x4) cos(x5) +C2 sin(x4) sin(x5))
1

L1L2
(L2 sin(x4) cos(x5) −C2 cos(x4) sin(x5))

1
L1L2

(L1 sin(x5) −L2 sin(x4) cos(x5) +C2 cos(x4) sin(x5))

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

g(x) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0

1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Let X = {f, g} and let us define the matrices:

M1(x) = (f(x) g(x) [f, g](x) [f, [f, g]](x) [f, [f, [f, [f, g]]]](x))

M2(x) = (f(x) g(x) [f, g](x) [f, [f, g]](x) [f, [f, [f, g]]](x))

By simple computation one checks that A = {y ∈ Ω ∶ y4 = ±arctan( C2√
L2
1−C2

2

)} and B =

{y ∈ Ω ∶ y5 = −arctan (
L2(C2 cosy4+L1)

C2
2 siny4

)} are the zero sets of det(M1(x)) and of det(M2(x))

respectively.

Lemma 3. The LARC is satisfied at every x ∈K.

Proof: Let x ∈ K. By definition of K, x4 ∈ [0, 9π10 ]/ ± arctan( C2√
L2
1−C2

2

). There-

fore, x4 ≠ ±arctan( C2√
L2
1−C2

2

), which implies that f(x), g(x), [f, g](x), [f, [f, g]](x),

[f, [f, [f, [f, g]]]](x) ∈ D̄(x) are linearly independent. Thus, dim(D̄(x)) = 5 and the

LARC is satisfied at x.

Lemma 4. The set K ∩B consists of singular points for System (3.6).

Proof: Let x ∈ K ∩B. As was proved in Lemma 3, for every x ∈ K, f(x), g(x),

[f, g](x), and [f[f, g]](x) are linearly independent; since [g, [f, g]](x) = f(x) one

has dim(D̄3
x) = 4, i.e., n3(x) = 4. Given that [g[f, [f, g]]](x) = 0, [g, [g, [f, g]]](x) =

−[f, g](x), and x ∈ B, one has dim(D̄4
x) = 4, i.e., n4(x) = 4. As was proved in Lemma

3, since x ∈ K, dim(D̄5
x) = 5, therefore, the growth vector for x is n(x) = (2,3,4,4,5)

and the degreee of nonholonomy of X at x is 5. Let U be a neighborhood of x. By

definition of product topology, there exists U ′ ⊆ S1 such that U ′ is a neighborhood of x4,

and by definition of neighborhood, there exists ε ∈ R>0 such that (x4 − ε, x4 + ε) ⊆ U ′.

Let y = x4+ε
2 , it is easy to see that y belongs to (x4 − ε, x4 + ε). Therefore y ∉ B

and n4(y) = 5 ≠ n4(x). It follows that the growth vector is not constant on any

neighborhood of x, which means that x is a singular point of System (5.4).
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6.2 Desingularization of the tricycle with one trailer

As proved in Lemma 4, the degree of nonholonomy at x ∈K ∩B is 5. Let y ∈K/(K ∩

B). Since [g, [f, g]](y) = f(y), one has dim(D̄3
x) ≤ 4, therefore n3(y) ≤ 4. Since

y ∉ B, the vectors f(y), g(y), [f, g](y), [f, [f, g]](y) and [f, [f, [f, g]]](y) are linearly

independent, which implies that dim(D̄4
y) = 5, therefore n(y) = (n1(y), n2(y), n3(y),5),

i.e., the degree of nonholonomy of X at y is 4. Since K = (K ∩B) ∪ (K/(K ∩B)), the

maximum degree of non holonomy of X in K is r = 5.

Given that System (3.6) is defined by two vector fields, the free Lie algebra generated

by the set of two elements A = {1,2} and its P. Hall basis H will be used in the

application of the desingularization algorithm to this system.

Recall that Ii denotes the i−th element in H according to the order in H. Let I1 =

(I1, I2, I3, I4, I6) and I2 = (I1, I2, I3, I4, I9). Define VI1 = {p ∈ Ω ∶ dim(span{X(I1)(p),X(I2)
(p),X(I3(p),X(I4)(p),X(I6)(p)}) = 5} and VI2 = {p ∈ Ω ∶ dim(span{X(I1)(p),X(I2)(p),

X(I3)(p),X(I4)(p),X(I9)(p)}) = 5}. It follows from lemma 4 that K ⊆ VI1 ⋃VI2 . Let

I = I2. From chapter 5 one has, for i = 1, . . . ,5, the following:

� The sets H i of the P. Hall basis H of the free Lie algebra generated by {1,2} are

given by:

H1 = {1,2}

H2 = {[1,2]}

H3 = {[1, [1,2]], [2, [1,2]]}

H4 = {[1, [1, [1,2]]], [2, [1, [1,2]]], [2, [2, [1,2]]]}

H5 = {[1, [1, [1, [1,2]]]], [2, [1, [1, [1,2]]]], [2, [2, [1, [1,2]]]], [2, [2, [2, [1,2]]]],

[[1,2], [1, [1,2]], [[1,2], [2, [1,2]]}

� The sets H, which are unions of elements Hj of H with j ≤ i, are given by:

H1 = {1,2}

H2 = {1,2, [1,2]}

H3 = {1,2, [1,2], [1, [1,2]], [2, [1,2]]}

H4 = {1,2, [1,2], [1, [1,2]], [2, [1,2]], [1, [1, [1,2]]], [2, [1, [1,2]]], [2, [2, [1,2]]]}

H5 = {1,2, [1,2], [1, [1,2]], [2, [1,2]], [1, [1, [1,2]]], [2, [1, [1,2]]], [2, [2, [1,2]]]

[1, [1, [1, [1,2]]]], [2, [1, [1, [1,2]]]], [2, [2, [1, [1,2]]]], [2, [2, [2, [1,2]]]],

[[1,2], [2, [1,2]], [[1,2], [2, [1,2]]}
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� The sets I i, which contain the elements of I whose length is smaller than or equal

to i, are given by:

I1 = {1,2}

I2 = {[1,2]}

I3 = {[1, [1,2]]}

I4 = ∅

I5 = {[1, [1, [1, [1,2]]]]}

� The scalars ki, which denote the cardinalities of H i/I i, i = 1, . . . , r, are given by:

k1 = 0

k2 = 0

k3 = 1

k4 = 3

k5 = 5

For simplicity in the computations, let us suppose C1 = C2 = 1 and L1 = L2 = 2. Let

x = (x1, x2, x3, x4, x5) ∈ VI =K be coordinates on VI , and let a = (0,0,0, π2 ,−arctan(4));

thus a is a singular point of the tricycle with 1 trailer. The following are the steps of

the desingularization algorithm applied to this system:

� Step s=1

1. V 1 ∶= VI ×R0 = VI , k̃1 ∶= 5.

2. For x ∈ V 1:

ξ11(x) ∶= f(x)

ξ12(x) ∶= g(x)

3. By definition a1 = a and K1 = {I1, I2, I3, I4, I9}. Let y1 = (y11, . . . , y
5) coordi-

nates on V 1 given, for every x ∈ V 1, by:

y11(x) = x1

y12(x) = x5 + arctan(4)

y13(x) = −2x3 − 2x4 + π

y14(x) = 2x2 + 6x3 + 2x4 − π

y15(x) = −8x2 − 8x3 −
8

3
x4 +

4

3
π (6.1)

Simple computing yields y1(a1) = 0, ξ11(a
1) = ∂y11 , ξ12(a

1) = ∂y12 , ξ13(a
1) =

∂y13 ,ξ14(a
1) = ∂y14 and ξ19(a

1) = ∂y15 .
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� Step s=2

1. V 2 ∶= V 1 ×R0 = VI .

2. Since H2/I2 = ∅, one has E1
2 = E

2
2 = ∅. Therefore, for y1 ∈ V 2:

ξ21(y
1) ∶= ξ11(y

1)

ξ22(y
1) ∶= ξ12(y

1)

3. Define a2 = a1 and K2 = {I1, I2, I3, I4, I9}. Since K2 = K1, there no change of

coordinates is required in this step.

� Step s=3

1. V 3 ∶= V 2 ×R1 = VI ×R, v3 = (v31).

2. Since H3/I3 = {[2, [1,2]]} and φ([2, [1,2]]) = 2, E3
1 = ∅, therefore, for

(y1, v3) ∈ V 3:

ξ31(y
1, v3) ∶= ξ21(y

1)

By definition, E3
2 = {[2, [1,2]]}. Since [2, [1,2]] is the first element of E3

2

and the fifth element of H, for (y1, v3) ∈ V 3:

ξ32(y
1, v3) ∶= ξ22(y

1) + P5(y
1)∂v31

The Lie monomial [2, [1,2]] is associated with the 4-tuple β = (β1, β2, β3, β4) =

(1,1,0,0); hence P5(x2) = x1x2 and, for (y1, v3) ∈ V 3:

ξ32(y
1, v3) ∶= ξ32(y

1) + y11y
1
2∂v31

3. By definition a3 = (a,0) and K3 = {I1, I2, I3, I4, I5, I9}. Let y3 = (y31, . . . , y
3
6)

be coordinates on V 3 given, for every (y1, v3) ∈ V 3, by:

y31(y
1, v3) = y11 − v

3
1

y32(y
1, v3) = y12

y33(y
1, v3) = y13

y34(y
1, v3) = y14 −

π

2
y35(y

1, v3) = v31

y36(y
1, v3) = y15 + arctan(4) (6.2)

By computing one obtains y3(a3) = 0, ξ11(a
3) = ∂y31 , ξ12(a

3) = ∂y32 , ξ13(a
3) = ∂y33 ,

ξ14(a
3) = ∂y34 , ξ15(a

3) = ∂y35 and ξ19(a
3) = ∂y36 .

� Step s=4
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1. V 4 ∶= V 3 ×R3 = VI ×R3, v4 ∶= (v41, v
4
2, v

4
3).

2. Since H4/I4 = H4 = {[1, [1, [1,2]]], [2, [1, [1,2]]], [2, [2, [1,2]]]}, E4
1 = ∅,

and for (y3, v4) ∈ V 4:

ξ41(y
3, v4) ∶= ξ31(y

3)

By definition, E4
2 = {[1, [1, [1,2]]], [2, [1, [1,2]]], [2, [2, [1,2]]]}. Therefore,

∑Ik∈E4
2
Pk(x3)∂x6+k = P6(x3)∂x7 + P7(x3)∂x8 + P8(x3)∂x9 = x31∂x7 + x

2
1x2∂x8 +

x1x22∂x9 , and for (y3, v4) ∈ V 4:

ξ42(y
3, v4) ∶= ξ32(y

3) + y31
3
∂v41 + y

3
1
2
y32∂v42 + y

3
1y

3
2
2
∂v43

3. Define a4 = (a3,0,0,0) and K4 = {I1, I2, I3, I4, I5, I6, I7, I8, I9}. Let y4 =

(y41, . . . , y
4
9) coordinates on V 4 given, for every (y1, v3) ∈ V 4, by:

y41(y
3, v4) = y31

y42(y
3, v4) = y32

y43(y
3, v4) = y33 +

1

2
v43

y34(y
3, v4) = y34 −

π

2
y35(y

3, v4) = y35 + arctan(4)

y36(y
3, v4) =

1

6
v41

y37(y
3, v4) =

1

2
v42

y38(y
3, v4) =

1

2
v43

y39(y
3, v4) = y36 −

1

3
v41 (6.3)

� Step s=5

1. V 5 ∶= V 4 ×R5, v5 = (v51, . . . , v
5
5)

2. Since H5/I5 = {[2, [1, [1, [1,2]]]], [2, [2, [1, [1,2]]]], [2, [2, [2, [1,2]]]],

[[1,2], [1, [1,2]], [[1,2], [2, [1,2]]}, E5
1 = ∅, and for (y4, v5) ∈ V 5:

ξ51(y
4, v5) ∶= ξ41(y

4)

By definition, E4
2 =H

5/I5. Therefore, for (y4, v5) ∈ V 5:

ξ52(y
4, v5) ∶= ξ42(y

4) + y41
3
y42∂v51 + y

4
1
2
y42

2
∂v52 + y

4
1y

4
2
3
∂v53 + y

4
1
2
y43∂v54 + y

4
1y

4
2y

4
3∂v55

50



3. By definition one has a5 = (a4,0,0,0,0,0) and K5 = {I1, I2, I3, I4, I5, I6, I7, I8,

I9, I10, I11, I12, I13, I14}. Let y4 = (y41, . . . , y
4
9) coordinates on V 4 given, for

every (y1, v3) ∈ V 4, by:

y51(y
4, v5) = y41 −

1

12
v51 −

5

6
v53 −

1

8
v54

y52(y
4, v5) = y42

y53(y
3, v4) = y43

y54(y
4, v5) = y44 + v

5
2 + v

5
5 −

π

2
y55(y

4, v5) = y45 + v
5
3 + arctan(4)

y56(y
4, v5) = y46

y57(y
4, v5) = y47

y58(y
4, v5) = y48

y39(y
4, v5) = y49

y310(y
4, v5) =

1

6
v51

y311(y
4, v5) =

1

4
v52

y312(y
4, v5) =

1

6
v53

y313(y
4, v5) =

1

2
v51 +

1
2v54

y314(y
4, v5) = v52 + v

5
5

� Final Step

Define y ∶= y5, ξ1 ∶= ξ51 and ξ2 ∶= ξ52 . Since the domain of X1,X2 is Q, the domain

of ξi is Ω̃ = Q ×R9.

Let y ∈ Ω̃; in coordinates y one has:
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ξ1(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2 cos(Ay) (2Ey − Fy)

0

− sin(y2)

sin(Ay)(2Ey − Fy) −Gy −Hy + sin(y2)

0

0

0

0

−4 sin(Ay)(2Ey − Fy) +
8
3Gy +

4
3Hy −

4
3 sin(y2)

0

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

ξ2(y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Cyy2 −
1
12D

3
yy2 −

5
6Dyy23 −

1
8D

2
yy3

1
1
2Dyy22

D2
yy2

2 +Dyy2y3
−Cyy2 +Dyy23

1
6D

3
y

1
2D

2
yy2

1
2Dyy22

−1
3D

3
y

1
6D

3
yy2

1
4D

2
yy2

2

1
6Dyy23

1
2D

3
yy2 +

1
2D

2
yy3

D2
yy2

2 +Dyy2y3

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where
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Ay =
3

16
y6 +

3

32
y9 −

1

4
y8 +

1

4
y3 −

3

8
y14 +

3

8
y4

By =
3

16
y6 +

3

32
y9 −

3

4
y8 +

3

4
y3 −

3

8
y14 +

3

8
y4

Cy = −y12 + y5 + y1 −
1

4
y10 +

1

4
y13

Dy = y1 −
1

4
y10 + 5y12 +

1

4
y13

Ey = cos(B) cos(y2)

Fy = sin(B) sin(y2)

Gy = sin(B) cos(y2)

Hy = cos(B) sin(y2)

Thus, the system obtained by applying the desingularization procedure to System

(3.6) is

ẏ = ξ1(y)u1 + ξ2(y)u2 (6.4)

Having obtained System (6.5), the next natural step is to check that indeed the

family of vector fields ξ = {ξ1, ξ2} is free up to step 5, which would ensure that System

(6.5) is regular. To achieve this, it is necessary to calculate the growth vector at an

arbitrary y ∈ Ω̃ and verify that the growth vector at this point is constant and equal

to (ñ1, ñ2, ñ3, ñ4, ñ5) = (2,3,5,8,14).

To calculate the growth vector at y one may consider all the elements in the P. Hall

basis H of the free Lie algebra generated by the set {1,2}, whose length is less that or

equal to 5, i.e., consider the set H5. Let E = Eξ(H5). If the elements in E , evaluated at

y, are all linearly independent, then the growth vector at y will be (2,3,5,8,14), i.e.,

if the matrix M(y), whose columns are the elements in E evaluated at y, has complete

rank, then the family ξ is free up to step 5.

In general, the computations required to calculate det(M(y)) for an arbitrary point

y ∈ Ω̃ are overly complicated given the complexity of the matrix M(y). Nevertheless,

we numerically compute the rank of M(a5) to be equal to 14 and moreover, the growth

vector of ξ at a5 is (2,3,5,8,14). We obtained the same result for other points in a

neighborhood of a5.

In order to support the desingularization algorithm, the authors of [Chitour et al., 2013]

have proven that if ξi, i = 1, . . . ,m, are the vector fields given by the desingularization
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procedure, then the family {ξ1, . . . , ξm}, defined on Ω̃, is free up to step r. The conclu-

sions about the application of this algorithm to the tricycle with one trailer and about

the results obtained will be discussed on chapter 8.
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Chapter 7

A solution to the motion planning

problem for a desingularized system

The objective of this chapter is to address the construction of a control law to solve

the motion planing problem for System (5.8). This control law is constructed from the

method of sinusoidal controls for regular nilpotent systems given in [Chitour et al., 2013],

whose extended explanation the reader may find in [Jean, 2014].

7.1 Approach to the problem

As mentioned in Chapter 5, the vector fields X1 and X2 associated to System (5.8) are

defined on Ω = R3 and the LARC is satisfied at every x ∈ C = {x ∈ R3 ∶ ∣∣x∣∣ ≤ 1}, i.e.,

(5.8) is controllable on C.

Solving the MPP for (5.8) on C consists in finding a control input u(⋅) ∶ [0, T ] Ð→

R2, with T ∈ R>0, such that for each pair of points (xi, xf) ∈ C ×C, the corresponding

solution of (5.8) starting from xi at t = 0 reaches xf at t = T , i.e., x(T ) = xf .

A system in the form of (5.1) is said to be a nilpotent system of degree k ∈ N if

the vector fields X1, . . . ,Xm generate a nilpotent algebra of degree k, i.e., if for every

I ∈H, with length equal to or larger than k, the image by EX of I vanishes.

From the order in the P. Hall basis of the free Lie algebra generated by {1, . . . ,m},

there is a natural way to associate I1, . . . , In ∈ H with the coordinates (x1, . . . , xn) of

System (5.1) as follows:

x1 ∶= xI1

x2 ∶= xI2

⋮

xn ∶= xIn ,
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with I1 = 1, I2 = 2, I3 = [1,2], etc.

System (5.1) is said to be in canonical form in coordinates x if (5.1) is written

in the form

ẋi = ui, if i = 1, . . . ,m;

ẋIj =
1

k!
xIj1 ẋIj2 , if j =m + 1, . . . , n, if Ij = LkIj1

Ij2 , with Ij1 , Ij2 ∈H,

where LkIj1
Ij2 is the k-th Lie derivative of Ij1 in the direction of Ij2 , i.e., the Lie bracket

[I1j1 , [I
2
j1
, [. . . , [Ikj1 , Ij2]]]].

One of the contributions in [Chitour et al., 2013] is a methodology to solve the MPP

for systems in the form of (5.1) satisfying the following assumptions:

1. The family {X1, . . . ,Xm} is free up to step r.

2. The Lie algebra generated by X1, . . . ,Xm is nilpotent of degree k ∈ N, i.e., the

system is nilpotent of degree k.

3. The vector fields X1, . . . ,Xm are given in the canonical form in some coordinates

x.

System (5.8) does not satisfy the previous assumptions since, as mentioned in Chap-

ter 5, the Lie algebra generated by the vector fields associated to this system is not

free up to step r. However, by applying the desingularization algorithm to (5.8) one

obtains the following system:

ẋ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

u1 +

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1
x21
2

x1
x1x2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

u2 = ξ1(x)u1 + ξ2(x)u2, (7.1)

where x = (x1, x2, x3, x4, x5) are coordinates for Ω̃ = R3 × R2. By construction of Ω̃,

the family {ξ1, ξ2} is free up to step r and, since ξ1 and ξ2 are liftings of X1 and X2,

respectively, the control inputs u1, u2 that solve the MPP for (7.1) will also solve the

MPP for System (5.8).

It is easy to see that System (7.1) is not in canonical form, nevertheless by a the

change of coordinates y = ϕ(x), with ϕ given by ϕ(x) = (x1, x2, x4, x3, x5), one obtains

that
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ẏ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

u1 +

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

1

y1
y21
2

y1y2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

u2 = Y1(y)u1 + Y2(y)u2 (7.2)

is the canonical form in coordinates y of (7.1). By direct computations it is easy

to check that the Lie algebra generated by {Y1, Y2} is nilpotent of degree 4. Thus,

(7.2) satisfies the conditions previously mentioned to solve the MPP by applying the

methodology in [Chitour et al., 2013].

Let yin = (yin1 , . . . , yin5) and yf = (yf1 , . . . , yf5) be, respectively, the initial and final

conditions in the MPP of (7.2). The control functions u1(t), u2(t) obtained by this

method will be linear combinations of sinusoids with integer frequencies. To achieve

the control objective one uses auxiliary control inputs uj = (uj1, u
j
2), for i ∈ {1, . . . ,4},

such that the following conditions are satisfied:

� (C1) By the action of u1(t), yin1 and yin2 reach respectively yf1 and yf2 at t = 2π.

� (C2) For j = 2,3,4, the action of uj(t) during an interval of length 2π makes

yinj+1
reach yfj+1 .

� (C3) For j = 2,3,4, every yIk such that k < j returns at the end of the action of

uj(t) to its value taken at the end of the action of uj−1, i.e., uj does not modify

yIk .

Thus, u = (u1(t), u2(t)) is given by the concatenation of all the control signals uj,

defined by

u(t) = u1 ∗⋯ ∗ u4(t) = uj(t − 2(j − 1)π), (7.3)

for t ∈ [2(j − 1)π,2jπ] and j ∈ {1,2,3,4}.

7.2 Definition of uj

As mentioned previously, u1 = (u11, u
1
2) steers (7.2) from yin1 to yf1 and from yin2 to

yf2 at a time T = 2π. Since there are not previous components to y2 and y1, is not

necessary to check that u1 satisfies (C3). Let us define

u11(t) =
yf1 − yin1

2π
and u12(t) =

yf2 − yin2

2π
. (7.4)

Since ẏ1 = u1(t) and u1(t) = u11(t), for t ∈ [0,2π], it follows by integration that y1(t) =

yin1 +
yf1−yin1

2π , therefore y1(2π) = yf1 . By a similar reasoning one has y2(2π) = yf2 .
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the control functions uj, for j = 2,3,4, will be defined by

uj1(t) = cos(ω1t) and uj2(t) = cos(ω2t) + aj+1 cos(ω3t − ε
π

2
) , (7.5)

where ε ∈ {1,0}, a ∈ R is the coefficient ensuring Condition (C2), and ω1, ω2, ω3 ∈ N are

the frequencies that guarantee Condition (C3).

7.2.1 Choice of ω1, ω2, ω3 and ε

Let us denote by ∣I ∣i, the number of times i occurs in I ∈ H, for i = 1,2. For example,

for I = [1, [1,2]], one has ∣I ∣1 = 2 and ∣I ∣2 = 1. Define, for yIj , m
j
1 = ∣Ij ∣1 and mj

2 = ∣Ij ∣2.

Let j ∈ {1,2,3,4}. In [Chitour et al., 2013] it is proved, by induction, that for every

i ≤ j, the dynamics ẋi is a linear combination of cosine functions in the form

cos((`1ω1 + `2ω2 + `3ω3)t − (`3ε + `1 + `2 + `3 − 1)
π

2
) , (7.6)

where `1, `2, `3 ∈ Z satisfy ∣`1∣ ≤m
j
1 and ∣`2∣ + ∣`3∣ ≤m

j
2.

Note that the function that results from integration of a function in the form cos(γt+

επ2 ), with γ ∈ Z and ε ∈ N equals zero except if γ = 0 and ε = 0 mod 2. Thus, in order to

obtain a nontrivial contribution in the component xIj , its derivative ẋIj should contain

at least one cosine function in the form (7.6) verifying the following conditions:

`1ω1 + `2ω2 + `3ω3 = 0

`3ε + `1 + `2 + `3 − 1 ≡ 0 mod 2. (7.7)

Moreover, for every i < j, this condition shall not be satisfied by any cosine function

appearing in ẏIi , in order to ensure that contribution in the component yIi during the

action of uj is trivial.

Among all the cosine functions in the form of (7.6) that appear in ẏIj , the one with

`1 =m1, `2 =m
j
2 − 1, and `3 = −1 is the only one that satisfies (7.7). Therefore, ω1, ω2,

ω3 and ε are chosen so that they satisfy the following:

ω3 =m
j
1ω1 + (mj

2 − 1)ω2

ε =mj
1 +m

j
2 − 1 mod 2

ω2 > (mj
1 +m

j
2)m

j
1ω1 (7.8)

Thus the values shown in Table 7.1 are acceptable values for ω1, ω2, ω3 and ε that

ensure (7.8) is satified for every uj with j = 2,3,4, which implies in turn that (7.7) is

satisfied for uj.
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Table 7.1: Proposed values for ω1, ω2, ω3 and ε, for every uj.
j mj

1 mj
2 ω1 ω2 ω3 ε

2 1 1 1 3 1 1

3 2 1 1 7 2 0

4 1 2 1 4 5 0

Therefore control functions uj1 and uj2 are given by

u21(t) = cos(t)

u22(t) = cos(3t) + a3 cos(t −
π

2
)

u31(t) = cos(t)

u32(t) = cos(7t) + a4 cos(2t)

u41(t) = cos(t)

u42(t) = cos(4t) + a5 cos(5t) (7.9)

7.2.2 Computing the coefficients aj

The coefficients aj+1 that guarantee that yinj+1
reaches yfj+1 at a time 2jπ are obtained

by solving the equation yj+1(2π) = yfj+1 . Thus one obtains:

a3 =
yf3 − y3(2π)

π

a4 =
2(y4(4π) − yf4)

π

a5 =
40(y5(6π) − yf5)

π

It is noteworthy that the authors of this procedure assume that one wants to steer

a system in the form of (7.2) from any point yin ∈ C, with C a set in which (7.2) is

controllable, to the origin yf = (0,0,0,0,0). This last assumption is not restrictive

since, for a different ỹf , one may employ a linear change of coordinates z such that

z(ỹf) = yf .

7.3 Simulation results

In this section we present the simulation of System (7.2) with u1 and u2 given by

concatenation of u11, . . . , u
4
1 and u12, . . . , u

4
2, respectively. Initial conditions yin and final

conditions yf for this simulation were defined as follows:
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yin = (0,3,
π

3
,
π

8
,
6π

7
)

yf = (0,0,0,0,0).

Define for 8π < t, u1(t) = u2(t) = 0. Figures 7.1-7.5 show the trajectories of y1, . . . , y5
respectively, in a numerical simulation of system (7.2) during on the interval [0,9π].
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Figure 7.1: Plot of y1 with respect to the time t.
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t
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2
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Figure 7.2: Plot of y2 with respect to the time t.

Let xin = (xin1 , . . . , xin5) and xf = (xf1 , . . . , xf5) be the initial and final conditions

for the MPP for System (7.1), respectively. The control functions u1 and u2 can be

used to steer (7.1) by replacing yin by ϕ(xin) and yf by ϕ(xf) in the expressions for

the scalars a3, a4, a5, i.e., by redefining:
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Figure 7.3: Plot of y3 with respect to the time t.
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Figure 7.4: Plot of y4 with respect to the time t.

a3 =
xf4 − x4(2π)

π

a4 =
2(x3(4π) − xf3)

π

a5 =
40(x5(6π) − xf5)

π

Figures 7.6-7.10 show the trajectories of x1, . . . , x5 in a numerical simulation of

system (7.1), during on the interval [0,9π], with control inputs u1 and u2 as defined in

the previous paragraph, and initial and final states given by xin = (0,3, π8 ,
π
3 ,

6π
7
) and

xf = (0,0,0,0,0), respectively.
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Figure 7.5: Plot of y5 with respect to the time t.
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Chapter 8

Conclusions and future work

The main interest in this work was the study of the desingularization algorithm pro-

posed in [Chitour et al., 2013], which roughly speaking consists on the lifting of the

vector fields X1, . . . ,Xm of a driftless system, defined on Ω, to vector fields ξ1, . . . , ξm,

defined on an extended configuration manifold Ω̃ = Ω×Rñr , with ñr ∈ N. This algorithm

guarantees that the control inputs that solve the MPP for the “lifted system” will also

solve it for the original system.

The desingularization procedure studied in this paper may be applied to driftless

systems in general, even if they do not have singular points, and ensures that the family

{ξ1, . . . , ξm} is free U up to step r. Nevertheless, the generality as to the type of systems

for which this algorithm can be applied entails, as trade-off, that the “desingularized”

system is not necessarily the “smallest” regular system whose vector fields are liftings of

X1, . . . ,Xm. For example, in [Jean, 2014] it is reported that System (5.10), defined on

a manifold of dimension 4, is regular and its vector fields are liftings of the vector fields

X1 and X2 of the singular system (5.8); however, by applying the desingularization

algorithm to (5.8), one obtains System (7.1), defined on a manifold of dimension 5.

The above trade-off may result in an increased difficulty when designing control

laws for some systems obtained via the desingularization algorithm. A clear example

of this can be seen on System(3.6) (a kinematic model of the tricycle with one trailer),

in this case the difference between the dimensions of Ω and Ω̃ is 9, which implies an

increase in the difficulty of designing u1 and u2. For instance, if one tries to design

these inputs as a concatenation, in a similar way as performed in Chapter 7 for the

system (7.1), it would be necessary to concatenate at least 13 auxiliary control inputs

to steer all of the state variables, which would entail a large number of computations,

otherwise unnecessary if one could find a “smaller dimensional” desingularization of

(3.6).

An alternative procedure was proposed in Chapter 5, which could be further devel-
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oped to deal with the significant difference in dimensions mentioned in the preceding

paragraphs, for some particular systems: When the system to be controlled is rela-

tively simple, one can use a straightforward desingularization approach, such as the

elementary desingularization mentioned in Chapter 5. This approach would guarantee

at least the linear independence of as many Lie brackets as dimensions in the original

system, i.e., it would provide an elementary desingularization ensuring that the system

obtained is the “smallest-dimensional” desingularization of the original system.

It should be emphasized that this alternative is not intended as a replacement of

the algorithm proposed in [Chitour et al., 2013], since this alternative would lack the

generality and systematic nature of that algorithm.

We propose, as future work, the in-depth study of the proposed alternative, which

would include, for example, the definition of the set of systems for which the elemen-

tary desingularization can be applied, i.e., to define under what circumstances a system

could be considered “relatively simple” to apply this procedure. Once is this set de-

fined, we might endeavor to give a formal definition of the steps of such alternative

desingularization procedure.

A fringe benefit of this work is that it may be considered as a starting point to

solve the local asymptotic point-stabilization problem, via continuous time-varying

feedback, for singular systems. Nevertheless, given the additional difficulties in the

control design that the application of the desingularization algorithm would imply, a

research direction to be explored before addressing feedback stabilization would be the

assessment, in terms of actual computational complexity, of the benefits of applying

the desingularization algorithm to solve the steering problem for more general driftless,

singular systems.
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