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The aim of this paper is to propose a differential braking rollover mitigation strategy for wheeled vehicles. The strategy makes use
of a polytopic (piecewise linear) description of the vehicle and includes translational and rotational dynamics, as well as suspension
effects.The braking controller is robust and the system states are predicted to estimate the rollover risk up to a given time horizon. In
contrast to existing works, the switched predictive nature of the control allows it to be applied only when risk of rollover is foreseen,
interfering a minimum with driver’s actions. The stability of the strategy is analyzed and its robustness is illustrated via numerical
simulations using CarSim for a variety of vehicles.

1. Introduction

Vehicle rollover is a serious problem that commonly involves
sport utility vehicles (SUVs), trailers, trucks, and, in general,
vehicles with a high center of gravity (CoG). Many quantifi-
cations of rollover risk exist in the literature [1–5]. The most
commonly used is the load transfer ratio (LTR), also known
as rollover index (RI) proposed by National Highway Traffic
Safety Administration (NAFTA) [1], which is an index that
measures the balance of vertical forces at the tire-road contact
points:

RI = LTR =

∑𝐹ZL − ∑𝐹ZR
∑𝐹ZL + ∑𝐹ZR

, (1)

where 𝐹ZL, 𝐹ZR are the sum of left and right side tire-
road vertical forces, respectively. RI is dimensionless and
constitutes a balance between right and left vertical forces,
with RI = ±1 indicating imminent rollover (the whole weight
of the vehicle is on its left or right side) and RI = 0 indicating
a perfect balanced vehicle. The RI is used to describe rollover
risk in any four-wheeled vehicle since it is related to a balance
of vertical forces. |RI| values below 0.6 are considered safe [1].
SinceRI is a force balance, it is directly related to the car lateral
inclination and it can bemeasured as a function of chassis roll

angle (𝜑) and chassis roll angle velocity (�̇�). Although𝜑, �̇� can
be measured it is not the case of the tire-road contact point
forces. The estimation of these forces is complex to obtain
since it depends nonlinearly on the vehicle’s roll angle and
speed and also on the type of terrain, tires, suspension, driver
behavior, type of vehicle, and so forth; accordingly, there are
several works in the literature dealing with the estimation of
these forces [5–8].

Unfortunately, the RI estimation and a detonation of a
warning of rollover cannot be used alone to mitigate the
rollover phenomenon since human reaction delay and driver
experience are limiting factors. Rollover can be avoided only
by using effective timely actions on either active suspension,
active steering, active differential, or differential braking [9–
13]. Among the aforementioned actuators, perhaps the differ-
ential braking strategy is the easiest to implement since only
antilock braking system (ABS) is necessary, contrasting to
the other actuators which require costly and/or nonstandard
devices. Since the aim of this work is to propose a differential
braking control strategy, the literature review will be focused
on these works only.

There exist in the literature works dealing with robust,
switched, and/or predictive differential braking controllers.
In particular, robustness of a control is a desired property
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since nonlinearities of the dynamics, particularly those of
tires and suspension, are hard to describe. Furthermore,
exhaustive nonlinear models cannot be used for control
design purposes since the problem becomes hardly tractable.
Instead, approximated (linear) models are used to describe
the vehicle dynamics and to simplify control synthesis. Since a
single linearmodel cannot reproduce the system’s complexity,
polytopic or piecewise linear models are better options that
guarantee tractability of the control design and of the stability
analysis problem [14–16].

Robust differential braking controllers are proposed in
[17–19]. In [17], a parametric uncertainty robust control
strategy is proposed using a linear description of the vehicle
including the suspension dynamics, leading to control actions
that are applied continuously at all times. In [18], a robust
control design based on linear matrix inequalities (LMIs)
is proposed. The control is based on a vehicle description
that uses the speed as uncertain parameter. The controller
is shown to be robust to parameter uncertainty, but it is
not clear if it can deal with the uncertainty in the whole
operation domain and with the nonlinearities of the system.
An adaptive switching controller is proposed in [19]. Least
squares and Kalman filtering techniques are employed to
estimate the height of the center of gravity in face of speed
variations.

Since timely control actions depend on driver’s decisions
aswell as on systemand actuator inner dynamics,more recent
works use the prediction of system states to compensate
for such dynamics. In [20] a predictive RI strategy based
on the present values of RI and steering angle is proposed.
The resulting controller displays good performance avoid-
ing rollover; however, the control action is applied at all
times, interfering adversely with the driver’s commands, even
when no rollover risk is foreseen. Other works focusing on
predictive and robust control actions are [21, 22]. In [21] a
nonlinear inverted pendulum-like vehicle model is used to
design a model predictive controller that is able to be applied
in real-time. Even if the controller is not shown to be robust,
the contribution of the authors is to take into account some
of the nonlinearities of the system. In [22] a back-stepping
observer is designed to estimate a lateral sliding and rollover
indicator online. A maximum velocity tracking is obtained
using predictive functional control.

Although these works constitute important advances,
either they interfere with the drivers commands expending
control actions even when no imminent risk of rollover is
detected, or the robustness of the control in face of nonlin-
earities is not clear.

In this work we are focused on developing a noninvasive
braking control that allows the driver to manipulate freely
the vehicle until a rollover risk is foreseen. The controller
is predictive and robust and guarantees stability in face
of uncertainties using a polytopic linear model that takes
into account different behaviors at a variety of operation
conditions. The control is switched and its on-off control
actions are performed using simple time/state dependent
criteria based on the prediction.These three features: robust-
ness, prediction, and switching make the controller versatile

and its structure and proof of stability constitute the main
contribution of this paper.

The prediction of the states is obtained using a set of
linear models and an estimation of the future steering input.
The steering prediction is obtained using a zero-order model
of the driver. The predicted vehicle dynamics are used to
estimate the RI behavior up to the time horizon in order
to determine whether or not a rollover risk exists. If such
possibility is present, a switched controller is used to mitigate
the rollover phenomenon. The controller has a supervisory
structure and it is comprised of a set of time- and state-
dependent switching rules and a feedback braking control
action.

The effect of the prediction horizon on system perfor-
mance, as measured with the RI, is studied and compared
against another nonswitched scheme. The proposed strategy
has the feature of being simple for implementation purposes
and it uses ABS braking technology. Moreover, it does not
make use of GPS for driving prediction.

This document is organized as follows: in Section 2 the
vehicle model is derived. Sections 3 and 4 introduce, respec-
tively, the problem statement and the main contribution of
this paper. The performance of the proposed controller is
illustrated using numerical simulations in Section 5. Finally,
in Section 6 some conclusions are presented.

2. Vehicle Model

Consider the nonlinear model of the vehicle given by

V̇CoG =

sin (𝛽)

𝑚

(∑𝐹Sij + (𝐹LFL + 𝐹LFR) 𝛿 + 𝐹YT)

+

cos (𝛽)

𝑚

(∑𝐹Lij − (𝐹SFL + 𝐹SFR) 𝛿 + 𝐹XT) ,

̇
𝛽 =

cos (𝛽)

𝑚VCoG
(∑𝐹Sij + (𝐹LFL + 𝐹LFR) 𝛿 + 𝐹YT)

−

sin (𝛽)

𝑚VCoG
(∑𝐹Lij − (𝐹SFL + 𝐹SFR) 𝛿 + 𝐹XT) ,

�̈� = (𝐹SFR + 𝐹SFL + (𝐹LFL + 𝐹LFR) 𝛿)

𝐿V

𝐽
𝑍

− (𝐹SRR + 𝐹SRL)
𝐿
ℎ

𝐽
𝑍

+ (𝐹LRR + 𝐹LFR − 𝐹LFL − 𝐹LRL + (𝐹SFL − 𝐹SFR) 𝛿)

𝑏

2𝐽
𝑍

,

�̈� =

1

𝐽
𝑥

(ℎCoG (∑𝐹Sij + (𝐹LFL + 𝐹LFR) 𝛿 + 𝐹YT) − 𝑘𝜑 − 𝑐�̇�) ,

(2)

where 𝐹Sij are the lateral tire forces, 𝐹Lij are the brak-
ing/acceleration forces with 𝑖 = {Front,Rear}, 𝑗 = {Left,

Right}, 𝛿 is the front wheels angle, and𝐹XT,𝐹YT are terms that
account for the gravity, rolling resistance, and other forces.𝐿V,
𝐿
ℎ
, 𝐽
𝑧
, andℎ are suitable constants. SeeNomenclature section.
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Forces 𝐹Sij are highly nonlinear and dependent on the
front and rear tire side slip angles (𝛼V, 𝛼ℎ), as well as on road
and tire parameters [23, 24]. Let

𝛼V = 𝛿 − 𝛽 −

𝐿V�̇�

VCoG
,

𝛼
ℎ

= −𝛽 +

𝐿
ℎ
�̇�

VCoG
,

𝐹LFL + 𝐹LRL = {

𝑢, 𝑢 < 0,

0, 𝑢 ≥ 0,

𝐹LFR + 𝐹LRR = {

−𝑢, 𝑢 > 0,

0, 𝑢 ≤ 0.

(3)

Let 𝑥


= [𝛽 �̇� �̇� 𝜑] (where 𝑥

 denotes the transpose of
𝑥); the linearized vehicle dynamics about a speed dependent
operation point becomes

�̇� = 𝐴𝑥 + 𝐵
𝛿
𝛿 (𝑡) + 𝐵

𝑢
𝑢, (4)

with

𝐴 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−

𝜎𝐽
𝑥eq

𝑚V̂CoG𝐽
𝑥

𝜌𝐽
𝑥eq

𝑚V̂2CoG𝐽
𝑥

− 1 −

ℎ𝑐

𝐽
𝑥
V̂CoG

ℎ (𝑚𝑔ℎ − 𝑘)

𝐽
𝑥
V̂CoG

𝜌

𝐽
𝑧

−

𝜅

𝐽
𝑧
V̂CoG

0 0

−

ℎ𝜎

𝐽
𝑥

ℎ𝜌

V̂CoG𝐽
𝑥

−

𝑐

𝐽
𝑥

𝑚𝑔ℎ − 𝑘

𝐽
𝑥

0 0 1 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐵
𝛿

= [

𝑐V𝐽𝑥eq

𝑚𝐽
𝑥
V̂CoG

𝑐V𝐿V

𝐽
𝑧

ℎ𝑐V

𝐽
𝑥

0]



,

𝐵
𝑢

= [0 −

𝑏

2𝐽
𝑧

0 0]



,

(5)

𝜎 ≜ 𝑐V + 𝑐
ℎ
,

𝜌 ≜ 𝑐
ℎ
𝐿
ℎ
− 𝑐V𝐿V,

𝜅 ≜ 𝑐
ℎ
𝐿

2

ℎ
+ 𝑐V𝐿
2

V,

𝐽
𝑥eq

≜ 𝐽
𝑥
+ 𝑚ℎ

2
,

(6)

where V̂CoG is the nominal velocity value and 𝑢 represents the
differential braking force. Using this model, the RI is given by
(see [25])

RI (𝑡) = −

2

𝑏𝑚𝑔

(𝑐�̇� + 𝑘𝜑) . (7)

2.1. Nonlinearities and Parametric Uncertainty. The linear
model (4)-(5) has been derived as an approximation of the
nonlinear dynamics (2), about a given operation point. In

Vertexes

Operation domain

Local linear modelΞp

Figure 1: Schematic diagram of the operation domain D. The
domain is divided into finite sets Ξ

𝑝
and, associated with each one,

there is a linear approximation of the system.The description of the
system inside D can be performed using a convex combination of
the parameters of the models.

the following, we will derive a polytopic linear model of the
system such that not only small deviations of the operation
point are allowed to describe the system dynamics, but also
large ones, as long as they occur in a closed operation domain.
To this end, assume that the operation domain D is divided
into a finite number of sets Ξ

𝑝
for 𝑝 = 1, 2, . . . , nd, each one

linked to a unique linearmodel expression (see Figure 1). Sets
Ξ
𝑝
satisfy

(1) ⋃

nd
𝑝=1

Ξ
𝑝

= D,

(2) Int(Ξ
𝑝
)⋂ Int(Ξ

𝑙
) = 0 for 𝑝 ̸= 𝑙,

(3) Ξ
𝑝

̸= 0,

where Int stands for the interior of the set. If the description
of the system inside D can be performed using a convex
combination of the parameters of every linear model associ-
ated with Ξ

𝑝
then a robust continuous control can be derived

to guarantee the stability in D [26]. The convex parameter
combination leads to a so-called polytopic model. In order
to describe such a model, let us introduce the following
definitions.

Definition 1. The set

Θ = {𝜃 ∈ 𝑅 |

nv
∑

𝑖=1

𝜃
𝑖
= 1, 𝜃
𝑖
≥ 0} (8)

is called simplex and nv is called the number of vertexes.

Definition 2. Thematrix 𝐴 is called polytopic if

𝐴 = {𝐴 (𝜃) |

nv
∑

𝑖=1

𝐴
𝑖
𝜃
𝑖
= 𝐴, 𝜃

𝑖
≥ 0} . (9)

Using the notations above, the model of the vehicle can be
rewritten as

�̇� = 𝐴 (𝜃) 𝑥 + 𝐵
𝛿 (

𝜃) 𝛿 + 𝐵
𝑢 (

𝜃) 𝑢, (10)

where 𝐴(𝜃), 𝐵
𝛿
(𝜃), and 𝐵

𝑢
(𝜃) are polytopic matrices of suit-

able dimensions and 𝛿(𝑡) : R+ → R, the front wheels angle
generated by the steering input, is a piecewise continuous
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function of time. According to Definitions 1 and 2, the
parameters in the polytopic matrices vary within closed and
bounded ranges, where each extremum is characterized by
the simplex vertexes 𝜃

𝑖
= 1. As a result, it is possible to divide

the domainD in an arbitrary finite number of subsetsΞ
𝑝
(see

Figure 1). In other words, model (10) is actually a multilinear
model that can be constructed using a finite number of linear
approximations (4) at different operating conditions (e.g.,
vehicle speed, tire pressure, type of terrain, etc.). In Section 5
we illustrate the derivation of the multilinear model for a
Cherokee Jeep 2000.

3. Controller Structure

In the literature, the differential braking control problem has
been stated as follows.

Problem 3. Consider the vehicle model (10) and assume that
the state 𝑥 is available for measurement; design a control law
𝑢(𝑡) such that

|RI (𝑡)| ≤ RIref, (11)

for all time 𝑡 and all parameters in the simplex Θ, where RIref
stands for a reasonable value of RI such that the vehicle has
no rollover risk.

The control objective (11) can be attained using robust
control theory if the pair (𝐴(𝜃), 𝐵

𝑢
(𝜃)) is completely control-

lable and if it is possible to solve linear matrix inequalities
(LMIs) associatedwith a Lyapunov equation [26]. In this case,
a suitable vector 𝐾 can be found, such that the control law

𝑢 (𝑡) = 𝐾𝑥, (12)

makes system (10) 𝐿
∞

stable for all |𝛿| ≤ 𝛿
𝑠
, where 𝛿

𝑠
stands

for the maximum magnitude of the front wheels angle to
avoid violating the restriction |RI(𝑡)| ≤ RIref. By solving the
LMI it is ensured that 𝐴

2
(𝜃) = 𝐴(𝜃) + 𝐵

𝑢
(𝜃)𝐾 is Hurwitz in

the simplex Θ.
This approach has been discussed in the past, for a

simpler model in [17, 25]. However, the said approach has
the disadvantage of being continuously applied in the vehicle,
consuming braking force and interfering constantly with the
velocity path set by the driver, even when no risk of rollover
exists. To avoid such disadvantages the problem addressed in
this paper can be formulated as follows.

Problem 4. Consider the vehicle model (10) with 𝑥 available
for measurement; design a differential braking control that
guarantees

|RI (𝑡)| ≤ RIref, (13)

for all time 𝑡 and all parameters in the simplex Θ, such that
the controller is applied only when a predicted value of RI
satisfies RI > RIref.

To solve Problem 4, a two-mode switched, noninvasive
approach is proposed in this work. The first mode (Mode 1)

coincides with the vehicle dynamics as conducted by the
driver (open-loop), while the other one (Mode 2) applies
the robust control (12) when necessary to attain the control
objective (13).

If the Mode 2 is activated once the boundary |RI(𝑡)| =

RIref is reached, there is no guarantee of the accomplishment
of (13). An alternate solution would be to set a lower bound
of RI(𝑡) to compensate for system dynamics. In this work, we
use a prediction of the state vector up to a time horizon (𝑇) to
switch toMode 2. If a rollover risk is detected within the time
interval [𝑡, 𝑡 +𝑇], thenMode 2 is activated (i.e., RI(𝑡

𝑇
) ≤ RIref

with 𝑡
𝑇

∈ [𝑡, 𝑡 + 𝑇]).
The rollover risk prediction is a tool that allows us to

take corrective actions before the risk is imminent, and as the
prediction horizon 𝑇 becomes larger, it is expected that the
control becomes more invasive. The operation modes of the
proposed methodology are described below with the help of
a switching law:

�̇� = 𝐴
𝑖 (

𝜃) 𝑥 + 𝐵
𝛿 (

𝜃) 𝛿,

𝑖 = {

1, if 




RI (𝑡
𝑇
)






≤ RIref ∧ 𝑡
𝑟
> 0 (Mode 1) ,

2, if 




RI (𝑡
𝑇
)






> RIref (Mode 2) ,

𝑡
𝑇

∈ [𝑡, 𝑡 + 𝑇] , 𝑇 > 0,

(14)

where 𝐴
1
(𝜃) = 𝐴(𝜃), 𝐴

2
(𝜃) = 𝐴(𝜃) + 𝐵

𝑢
(𝜃)𝐾, and 𝑡

𝑟
is a

minimumresidence time ofMode 2.Theblock diagramof the
proposed controller and the switching algorithmare shown in
Figures 2 and 3, respectively.

To predict the behavior of the vehicle using the model
(14), the prediction of the driver behavior is needed. Although
modeling driving behavior constitutes a relevant and actual
topic of research, it is out of the scope of this work. In
this paper, we will assume that such model is available.
For convenience, the approach in [27] will be used, with a
zero order dynamics since it is simple and still adaptive to
changing environments.

The proposed control works as follows. The driver pro-
vides the front wheels angle and the braking force through
the steering wheel and the brake pedal, respectively. At every
instant 𝑡, RI is compared with RIref along the prediction
interval fixed by the prediction horizon. The RI estimation is
performed using the vehicle model (14), (7), and themodel of
the driver behavior. If the threshold RIref is exceeded at some
instant along the interval [𝑡, 𝑡 + 𝑇], the Mode 2 is activated
(i.e., a future rollover risk is detected); otherwise the Mode
1 is preserved. Once Mode 2 is activated, it continues being
active until the rollover risk for the entire prediction horizon
has disappeared and a minimum dwell time 𝑡

𝑟
is elapsed.

This dwell time prevents fast switching actions (chattering)
improving the performance. The stability of the proposed
control is studied in the following section, where stability
properties of the switching actions are given.

4. Main Result

Let us denote the solution of (14) at time 𝑡 with initial
condition𝑥

0
= 𝑥(𝑡
0
), uncertain parameter within the simplex
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Vehicle
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𝛿(t)
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+

+

!

𝛿(tT), t ≤ tT ≤ t + T

RI(tT)
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Figure 2: Block diagram of control strategy.

Yes

YesNo

No

Start

i = 1 (Mode 1)

i = 2 (Mode 2)

tr ≥ 0&&

t ≤ tT ≤ t + T

|RI(tT)| > RIref

|RI(tT)| ≤ RIref

Figure 3: Algorithm of the switching criterion.

Θ, and initial time 𝑡
0
as𝑥(𝑡
0
, 𝑡, 𝑥
0
, 𝜃).𝐵
𝜉
(𝑧) is the ball centered

at 𝑧 with radius 𝜉 (i.e., 𝐵
𝜉
(𝑧) = {𝑥 | ‖𝑥 − 𝑧‖ ≤ 𝜉}).

For 𝑖 = 1, the unperturbed system (14) (i.e., 𝛿 = 0) has
an open-loop equilibrium in 𝑥


= [𝛽eq, �̇�eq, �̇�eq, 𝜑eq] = 0.

By vehicle design, 𝐴
1
(𝜃) is Hurwitz for all 𝜃 ∈ Θ; otherwise,

the unperturbed vehicle would spin or rollover by following
a straight line. On the other hand, the existence of a robust
controller (12) such that 𝐴

2
(𝜃) is also a Hurwitz matrix is

guaranteed by the controllability of the pair (𝐴(𝜃), 𝐵
𝑢
(𝜃)).

The control objective (13) can be expressed from the
stability point of view, as the property of positive invariance

in some suitable set (Ω). The trajectories 𝑥(𝑡
0
, 𝑡, 𝑥
0
, 𝜃) are

positively invariant in Ω; that is, 𝑥(𝑡
0
, 𝑡, 𝑥
0
, 𝜃) ∈ Ω, for all

𝑡 ≥ 0.
Consider system (14) with initial conditions within 𝐵

𝜀
(0)

with 𝜀 > 0. Since for each mode 𝐴
𝑖
is Hurwitz, then for each

‖𝑥(𝑡
0
)‖ ≤ 𝜀 there exists a maximum value of |̂𝛿|max such that

the system trajectories will remain within 𝐵
𝜌
(0); that is, the

system is input-output stable. The first step in deriving our
main contribution is the quantification of such perturbation
|
̂
𝛿|max under system commutation.

Problem 5. Consider the system

�̇� = 𝐴
𝑖 (

𝜃) 𝑥 + 𝐵
𝛿 (

𝜃) 𝛿, (15)

with 𝑖 = 1, 2 and let

Ω ≜ {𝑥 (𝑡
0
, 𝑡, 𝑥
0
, 𝜃) | |RI (𝑡)| ≤ RIref} . (16)

Establish switching conditions for the system (15) such that
𝑥 (𝑡
0
, 𝑡, 𝑥
0
, 𝜃) ∈ Ω for all 𝑡 ≥ 0.

Let 𝑖 = 2 and 𝑡
0
= 0 be the switching instant fromMode 1

to Mode 2. Then, the solution of (15) while evolving in Mode
2 is

𝑥 (0, 𝑡, 𝑥
0
, 𝜃) = 𝑒

𝐴
2
(𝜃)𝑡

𝑥
0
+ ∫

𝑡

0

𝑒

𝐴
2
(𝜃)(𝑡−𝜏)

𝐵
𝛿 (

𝜃) 𝛿 (𝜏) 𝑑𝜏, (17)

RI (𝑡) = 𝐶 (𝜃) 𝑒

𝐴
2
(𝜃)𝑡

𝑥
0
+ 𝐶 (𝜃) + ∫

𝑡

0

𝑒

𝐴
2
(𝜃)(𝑡−𝜏)

𝐵
𝛿 (

𝜃) 𝛿 (𝜏) 𝑑𝜏,

(18)

with

𝐶 (𝜃) = [0 0 −

2𝑐 (𝜃)

𝑏 (𝜃)𝑚 (𝜃) 𝑔

−

2𝑘 (𝜃)

𝑏 (𝜃)𝑚 (𝜃) 𝑔

] . (19)



6 Mathematical Problems in Engineering

Computing the norm of (18) we have

‖RI (𝑡)‖ ≤ ‖𝐶 (𝜃)‖







𝑒

𝐴
2
(𝜃)𝑡










𝑥
0






+ ‖𝐶 (𝜃)‖







[𝐼 − 𝑒

𝐴
2
(𝜃)𝑡

]













𝐴

−1

2
(𝜃) 𝐵
𝛿 (

𝜃)







|𝛿|

≤ ‖𝐶 (𝜃)‖ 𝛽
2 (

𝜃) 𝑒

𝑟
2
(𝜃)𝑡

𝜀

+ ‖𝐶 (𝜃)‖ [1 + 𝛽
2 (

𝜃) 𝑒

𝑟
2
(𝜃)𝑡

]







𝐴

−1

2
(𝜃) 𝐵
𝛿 (

𝜃)







|𝛿|

≤ ‖𝐶 (𝜃)‖ 𝛽
2 (

𝜃) 𝜀

+ ‖𝐶 (𝜃)‖ [1 + 𝛽
2 (

𝜃)]







𝐴

−1

2
(𝜃) 𝐵
𝛿 (

𝜃)







|𝛿| ≤ RIref,
(20)

where Euclidean norm is denoted as ‖ ⋅ ‖, ‖𝑥
0
‖ ≤ 𝜀, and

‖𝑒

𝐴
2
(𝜃)𝑡

‖ ≤ 𝛽
2
(𝜃)𝑒

𝑟
2
(𝜃)𝑡 with 𝑟

2
(𝜃) < 0.

From (20) the maximum perturbation that allows 𝑥(0,

𝑡, 𝑥
0
, 𝜃) ∈ Ω is

|𝛿|max < 𝜋 (𝜃, 𝜀) ≜

RIref − ‖𝐶 (𝜃)‖ 𝛽
2 (

𝜃) 𝜀

‖𝐶 (𝜃)‖ [1 + 𝛽
2 (

𝜃)]






𝐴

−1

2
(𝜃) 𝐵
𝛿 (

𝜃)






.

(21)

Let

𝜃
𝑟2

= arg min(

RIref − ‖𝐶 (𝜃)‖ 𝛽
2 (

𝜃) 𝜀

‖𝐶 (𝜃)‖ [1 + 𝛽
2 (

𝜃)]






𝐴

−1

2
(𝜃) 𝐵
𝛿 (

𝜃)






) ,

(22)

then

|𝛿|max (𝜀) = 𝜋 (𝜃
𝑟2

, 𝜀) . (23)

Notice that there exists a maximum bound for the initial
conditions, 𝜀, such that |𝛿|max ≥ 0 and it is given by

RIref





𝐶 (𝜃
𝑟2

)






𝛽
2
(𝜃
𝑟2

)

= 𝜀max. (24)

If the initial conditions are at the origin, the maximum
perturbation |

̂
𝛿|max is







̂
𝛿





max ≤ 𝜋 (𝜃

𝑟2
, 0)

=

RIref





𝐶 (𝜃
𝑟2

)






[1 + 𝛽
2
(𝜃
𝑟2

)]






𝐴

−1

2
(𝜃
𝑟2

) 𝐵
𝛿
(𝜃
𝑟2

)






.

(25)

From expression (23) the maximum bound of perturba-
tion 𝛿 depends on the initial conditions, being maximum
at the origin (i.e., |

̂
𝛿|max). Using this fact one can define a

switching criterion using the boundary ‖𝑥
0
‖ ≤ 𝜀

∗
≤ 𝜀 as

a switching surface, which will be stable for perturbations
satisfying 0 < |𝛿

∗
| < |

̂
𝛿|max. That is

𝜀

∗
=

RIref −





𝐶 (𝜃
𝑟2

)






[1 + 𝛽
2
(𝜃
𝑟2

)]







𝐴

−1

2
(𝜃
𝑟2

) 𝐵
𝛿(

𝜃)𝑟2












𝛿

∗









𝐶 (𝜃
𝑟2

)






𝛽
2
(𝜃
𝑟2

)

,

(26)

where 𝛿

∗
< |

̂
𝛿|max is a design value that is chosen to compute

𝜀

∗. In other words, the computation of (26) only requires the
(nominal) parameters of vertexes 𝜃

𝑟2
.

Let the switching criterion from Mode 1 to Mode 2 be as
follows:

if ‖𝑥‖ ≥ 𝜀

∗ then Mode 2 is active, (27)

with 𝜀

∗ given by (26); then |RI(𝑡)| ≤ RIref for |𝛿| ≤ |
̂
𝛿|max.

Until now we have proved that the switching criterion
from Mode 1 to Mode 2 keeps the trajectories of the system
within Ω. However, to obtain a noninvasive property of
the controller, the control must switch back to open-loop
conditions as soon as the risk has passed. Since 𝐴

2
(𝜃) is

Hurwitz and |𝛿| ≤ |
̂
𝛿|max, the trajectories of Mode 2 as 𝑡 →

∞ will tend to

lim
𝑡→∞






RI(𝑡)Mode 2





≤







𝐶 (𝜃) 𝐴

−1

2
(𝜃) 𝐵
𝛿 (

𝜃)













̂
𝛿





max = Λ

2
,

(28)

while in Mode 1 the norm of the RI tends to

lim
𝑡→∞






RI(𝑡)Mode 1





≤







𝐶 (𝜃) 𝐴

−1

1
(𝜃) 𝐵
𝛿 (

𝜃)













̂
𝛿





max = Λ

1
.

(29)

From the controllability property of (𝐴(𝜃), 𝐵(𝜃)) there exists
a sufficiently large value of 𝐾, such that Λ

1
> Λ
2
for all 𝜃 in

the simplex. Let Ω
Λ
1

≜ {𝑥(𝑡
0
, 𝑡, 𝑥
0
, 𝜃) | |RI(𝑡)| < Λ

1
} and

Ω
Λ
2

≜ {𝑥(𝑡
0
, 𝑡, 𝑥
0
, 𝜃) | |𝑅𝐼(𝑡)| < Λ

2
}; then it is satisfied that

Ω
Λ
1

⊃ Ω ⊃ Ω
Λ
2

. That Ω ⊃ Ω
Λ
2

is a consequence of (25). On
the other hand, the maximum perturbation |

̂
𝛿|max,la such that

trajectories remain in Ω at open-loop conditions is

|𝛿|la < 𝜋la (𝜃, 𝜀) =

RIref − ‖𝐶 (𝜃)‖ 𝛽
1 (

𝜃) 𝜀

‖𝐶 (𝜃)‖ [1 + 𝛽
1 (

𝜃)]






𝐴

−1

1
(𝜃) 𝐵
𝛿 (

𝜃)






(30)

with ‖𝑒

𝐴
1
(𝜃)𝑡

‖ ≤ 𝛽
1
(𝜃)𝑒

𝑟
1
(𝜃)𝑡, 𝑟
1
< 0. Let

𝜃
𝑟1

= arg min{

RIref − ‖𝐶 (𝜃)‖ 𝛽
1 (

𝜃) 𝜀

‖𝐶 (𝜃)‖ [1 + 𝛽
1 (

𝜃)]






𝐴

−1

1
(𝜃) 𝐵
𝛿 (

𝜃)






} ,

(31)

then

|𝛿|max,la (𝜀) < 𝜋la (𝜃
𝑟1

, 𝜀) , (32)

whichmeans that the larger value of the perturbation that can
be tolerated is at 𝜀 = 0; that is,







̂
𝛿





max,la < 𝜋la (𝜃

𝑟1
, 0)

=

RIref





𝐶 (𝜃
𝑟1

)






[1 + 𝛽
1
(𝜃
𝑟1

)]






𝐴

−1

1
(𝜃
𝑟1

) 𝐵
𝛿(

𝜃)𝑟1






.

(33)

From (33) and (25) we have that |
̂
𝛿|max,la < |

̂
𝛿|max, for

a sufficient large value of 𝐾. Therefore if |
̂
𝛿|max is applied at

Mode 1 the trajectories can be outsideΩ. Now, since𝐴
𝑖
(𝜃) are
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Hurwitz, the setΩ
Λ
𝑖

is attractive for theMode 𝑖; therefore, any
switching surface ‖𝑥‖ < 𝜀

∗ with 𝑥 ∈ Ω serves as a switching
surface fromMode 2 toMode 1 to ensure the control objective
(13); that is,

if ‖𝑥‖ < 𝜀

∗ then Mode 1 is active. (34)

Since the condition to switch from Mode 2 to Mode 1
(34) is arbitrarily smaller than that to switch from Mode 1
to Mode 2 (27), fast switching actions may be present. To
avoid this phenomenon aminimum residence time (𝑡

𝑟
> 0) at

Mode 2 can be used to avoid performance degradation. That
is, if |𝛿| ≤ |

̂
𝛿|max and the switching criterion is defined as

follows:
if ‖𝑥‖ ≥ 𝜀

∗ then Mode 2 is active

if ‖𝑥‖ < 𝜀

∗ and Mode 2 has been active at least a time

𝑡
𝑟
> 0 then Mode 1 is active,

(35)

where 𝜀

∗ is given by expression (26), then |RI(𝑡)| ≤ RIref, for
all time 𝑡 > 0.

4.1. Predictive Switching Criterion. The result in the section
above establishes sufficient conditions for stability under
switching. In the following we will establish a criterion
to define the switching surface 𝜀

∗, which depends on the
prediction of the rollover risk, which constitutes a time
varying switching surface. Without loss of generality let the
present time 𝑡 = 0; now let us compute the required initial
conditions such that |RI(𝑇)| = RIref; since the rollover
prediction risk must be performed in open-loop conditions
only Mode 1 is analyzed (see Figure 3):






RIref





=






𝐶 (𝜃
𝑟1

)






𝛽
1
(𝜃
𝑟1

) 𝑒

𝑟
1
(𝜃
𝑟1
)𝑇

𝜀

+






𝐶 (𝜃
𝑟1

)






[1 + 𝛽
1
(𝜃
𝑟1

) 𝑒

𝑟
1
(𝜃
𝑟1
)𝑇

]

×







𝐴

−1

1
(𝜃
𝑟1

) 𝐵
𝛿
(𝜃
𝑟1

)







|𝛿| ,

(36)

with |𝛿| ∈ [0, |
̂
𝛿|max] hence 𝜀 is the value of the switching

surface at present time to avoid the imminent risk ‖RI(𝑇)‖ =

‖RIref‖. Consider

𝜀 = RIref −





𝐶 (𝜃
𝑟1

)






[1 + 𝛽
1
(𝜃
𝑟1

) 𝑒

𝑟
1
(𝜃
𝑟1
)𝑇

]

×







𝐴
1
(𝜃
𝑟1

)

−1
𝐵
𝛿
(𝜃
𝑟1

)







|𝛿|

× (






𝐶 (𝜃
𝑟1

)






𝛽
1
(𝜃
𝑟1

) 𝑒

𝑟
1
(𝜃
𝑟1
)𝑇

)

−1

.

(37)

Let |𝛿| = |
̂
𝛿|max; hence substituting (25) in (37)

𝜀 =

RIref [1 − 𝑄 (𝜃
𝑟1

, 𝜃
𝑟2

)]






𝐶 (𝜃
𝑟1

)






𝛽
1
(𝜃
𝑟1

) 𝑒

𝑟
1
(𝜃
𝑟1
)𝑇

, (38)

with

𝑄 (𝜃
𝑟1

, 𝜃
𝑟1

) =

[1 + 𝛽
1
(𝜃
𝑟1

) 𝑒

𝑟
1
(𝜃
𝑟1
)𝑇

]







𝐴
1
(𝜃
𝑟1

)

−1
𝐵
𝛿
(𝜃
𝑟1

)







[1 + 𝛽
2
(𝜃
𝑟2

)]







𝐴
2
(𝜃
𝑟2

)

−1
𝐵
𝛿
(𝜃
𝑟2

)







.

(39)

Table 1: 2000 Cherokee nominal parameters.

𝑐 4000N⋅m⋅s/rad
𝑐V 90240N/rad
𝑐
ℎ

180000N/rad
ℎ 0.375m
𝐽
𝑧

1280 kg⋅m2

𝐽
𝑥

362.6 kg⋅m2

𝑘 36075 n⋅m/rad
𝐿V 1.102m
𝐿
ℎ

1.25m
𝑚 1224 kg
𝑏 1.51m

Notice that 1 − 𝑄(𝜃
𝑟1

, 𝜃
𝑟2

) can be either positive or
negative. Negative values mean that no predicted risk of
rollover exists and it is not necessary to switch to Mode 2 at
present time.However, as 1−𝑄(𝜃

𝑟1
, 𝜃
𝑟2

) becomes positive, the
switching is possible with

𝜀 ≥ 𝜀max, (40)

with 𝜀max given by (24). From this point, stability can be
derived as in the section above using 𝜀

∗
= 𝜀.

5. Numerical Simulations

In this section, numerical evaluations of the proposed control
strategy are used to illustrate the controller performance.
Firstly, a numerical sensitivity analysis is performed to deter-
mine the vertexes of the polytope corresponding to (10).
Afterward, the evaluation of the proposed controller using
CarSim and three different vehicles is performed.

5.1. Numerical Sensitivity Analysis and Vertexes Computation.
In order to keep to a minimum the number of the vertexes
of the polytopic matrix, it is convenient to determine which
parameters are more significant in the system description.
To this end, a sensitivity study is performed. One of the
simplest methods to determine parameter sensitivity is to
compute the output response for a variety of maneuvers, in
face of parameter variations. The parameters are perturbed
using fixed steps of 5%, from a lower to an upper bound. The
sensitivity index (SI) is defined as [28]

SI =

𝑦max − 𝑦min
𝑦max

⋅ 100, (41)

where 𝑦 is the measured variable, 𝑦max = max{𝑦max(lower),
𝑦max(lower+0.05lower), 𝑦max(lower+0.1lower), . . . , 𝑦(upper)},
where lower and upper are the lower and upper
bound of the parameters. On the other hand, 𝑦min =

min{𝑦max(lower), 𝑦max(lower + 0.05lower), 𝑦max(lower +

0.1lower), . . . , 𝑦(upper)}. In this paper, 𝑦 is the rollover index.
Nominal parameters are displayed in Table 1, while

Table 2 shows the maximum SI values of the each parameter.
It can be observed that the vehicle dynamics are very sensitive
to the design dependent values 𝑐V (related with the tire),
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Table 2: Sensitivity index.

Parameter SI
𝑐V 11.65%
ℎ 10.88%
𝐿
ℎ

9.01%
𝐿V 6.84%
VCoG 6.76%
𝑚 5.37%
𝑐
ℎ

5.06%
𝑐 1.83%
𝐽
𝑥

1.12%
𝑘 0.62%
𝐽
𝑧

0.2%

ℎ (distance of the CoG from the road), 𝐿V and 𝐿
ℎ
(distance

fromCoG to the front, rear axles resp.), and the vehicle speed
VCoG. Let us fix 𝐿

ℎ
and 𝐿V at their nominal values since their

variation is usually small; then the vertexes of the matrices
are defined with respect to the parameters 𝑐V, ℎ, and VCoG
for simplicity. 𝐴(𝜃) and 𝐵

𝛿
(𝜃) can be expressed as a convex

function of the time-varying parameter vector:

𝜃 = [𝜃
1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
, 𝜃
6
, 𝜃
7
, 𝜃
8
] , (42)

as described as follows:

𝐴 (𝜃) =

8

∑

𝑖=1

𝜃
𝑖
𝐴
𝑖
,

𝐵
𝛿 (

𝜃) =

8

∑

𝑖=1

𝜃
𝑖
𝐵
𝛿
𝑖

,

(43)

where

𝐴
1
= 𝐴 (𝑐V, ℎ, VCoG) , 𝐴

2
= 𝐴 (𝑐V, ℎ, VCoG) ,

𝐴
3
= 𝐴 (𝑐V, ℎ, VCoG) , 𝐴

4
= 𝐴 (𝑐V, ℎ, VCoG) ,

𝐴
5
= 𝐴 (𝑐V, ℎ, VCoG) , 𝐴

6
= 𝐴 (𝑐V, ℎ, VCoG) ,

𝐴
7
= 𝐴 (𝑐V, ℎ, VCoG) , 𝐴

8
= 𝐴 (𝑐V, ℎ, VCoG) ,

𝐵
𝛿
1

= 𝐵
𝛿
(𝑐V, ℎ, VCoG) , 𝐵

𝛿
2

= 𝐵
𝛿
(𝑐V, ℎ, VCoG) ,

𝐵
𝛿
3

= 𝐵
𝛿
(𝑐V, ℎ, VCoG) , 𝐵

𝛿
4

= 𝐵
𝛿
(𝑐V, ℎ, VCoG) ,

𝐵
𝛿
5

= 𝐵
𝛿
(𝑐V, ℎ, VCoG) , 𝐵

𝛿
6

= 𝐵
𝛿
(𝑐V, ℎ, VCoG) ,

𝐵
𝛿
7

= 𝐵
𝛿
(𝑐V, ℎ, VCoG) , 𝐵

𝛿
8

= 𝐵
𝛿
(𝑐V, ℎ, VCoG) .

(44)

In this paper VCoG = 25m/s = 90Km/h, and VCoG =

40m/s = 144Km/h. A controller gain vector that
guarantees stability for all vertexes is K =

mg [−7.1287 0.9842 0.3271 −0.0944].
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Figure 4: Steering wheel angle real versus predicted.
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Figure 5: Rollover index real versus predicted (open loop).

5.2. The Predictive Controller. The first step to implement the
predictive controller in Figures 2 and 3 is to predict the front
wheels angle (𝛿) given by the driver’s behavior. In this work
a zero-order model is used to perform the prediction as in
[27]. Afterward, the RI at open-loop conditions is computed
along a given prediction horizon. The results are displayed
in Figures 4 and 5 for a double lane-change maneuver with
rollover risk.

Secondly the predicted RI is used to perform the switch-
ing, using the algorithm in Figure 3. Two double lane-change
maneuvers are chosen to illustrate the performance of the
switched controller: (i) a first one with rollover risk along the
[3, 3.8] seconds interval in open loop (see Figure 6) and (ii) a
second one without rollover risk (see Figure 7).

The comparison of the proposed strategy with respect to a
robust nonswitched linear action and open loop dynamics is
performed.Theproposed controller is able to prevent rollover
and to maintain the RI within the specified values. Moreover,
the control action is reduced significantly with respect to the
nonswitched alternative and it is used only when necessary to
avoid rollover (in Figure 7 the braking control actions are not
performed).

The effect of the prediction horizon is evaluated in the
proposed scheme for a given maximum value of |𝛿| <

|
̂
𝛿|max; the results are displayed in Figure 8. As the prediction
horizon is increased the controller becomes more invasive;
however the actual values of RI are smaller. In every case, RI
is kept within the required values.
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Figure 6: Rollover index and braking force evolution for a double
lane-change maneuver with rollover risk.
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Figure 7: Rollover index and braking force evolution for a double
lane-change maneuver without rollover risk.

To illustrate the robustness of the proposed scheme, the
controller is evaluated using models from CarSim of three
vehicles: a 2000 Porsche 911 sport car, a 2002 Mitsubishi
Mini U62T utility truck, and a Jeep Cherokee 2000 SUV.The
nominal parameters for these vehicles are shown in Table 3.
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Figure 8: Effect of prediction horizon on system performance.

Table 3: Nominal parameters.

Value Cherokee Porsche U62T Units
ℎ 0.375 0.010 0.200 m
𝐽
𝑧

1280 1270 686 kg⋅m2

𝐽
𝑥

362.6 614 384 kg⋅m2

𝐿V 1.102 1.525 0.550 m
𝐿
ℎ

1.25 0.825 1.373 m
𝑚 1224 1278 600 kg
𝑏 1.51 1.72 1.26 m

An aggressive double lane-change is performed at
120Km/h and the open loop behaviors of the three vehicles
are shown in Figure 9. Since the Porsche has a smaller ℎ

(among other differences), the maneuver does not lead to
rollover but to lateral slip, while for the Cherokee and the
U62T the rollover is present. In Figure 10 the proposed
controller is applied to the three cars. In this case, the
controller that uses the model of the Jeep Cherokee is used
also for the Porsche and the utility truck. The controller is
able to prevent rollover in the JeepCherokee, and surprisingly
the same controller is able to prevent rollover in the case
of the truck, even if considerable differences exist. As can
be observed the controller leads to a further decrement on
the velocity to compensate for the higher CoG, among other
differences. On the other hand, it is also surprising that the
skid and 180∘ spin of the sport vehicle can be prevented.
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Figure 9: Dynamic response comparative in open loop for an aggressive double lane-change maneuver.
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Figure 10: Dynamic response comparative with the proposed controller active for an aggressive double lane-change maneuver.
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6. Conclusions

In this paper a robust switched controllerwith a commutation
dependent on the RI prediction is proposed. The stability of
the controller is derived in two steps. Firstly, by noticing that
a state-dependent switching criterion ensures the invariance
of a suitable set Ω for a given |

̂
𝛿|max, and secondly using RI

prediction to define a time-varying state-dependent switch-
ing criterion. The results are illustrated with simulations and
the robustness of the proposed scheme is verified for different
vehicle models. The proposed controller is robust and it has
displayed an unexpected capacity of preventing skidding; this
last feature must be further analyzed.

Nomenclature

𝛼V, 𝛼ℎ: Front, rear tire side slip angle
𝛽: Vehicle side slip angle
𝛿: Front wheels angle
𝜓: Vehicle yaw angle
𝜑: Chassis roll angle
𝑏: Track width
𝑐: Damping coefficient
𝑐V, 𝑐ℎ: Front, rear tire stiffness coefficient
𝐹ZL, 𝐹ZR: Left, right contact point vertical forces
𝑔: Gravity
ℎ: Distance of CoG from the road
𝐽
𝑧
, 𝐽
𝑥
: Moment of inertia about the vertical,

longitudinal axis
𝑘: Spring stiffness coefficient of the

suspension
𝐿V, 𝐿ℎ: Distance from CoG to the front, rear axle
𝑚: Vehicle mass
RI: Rollover index
𝑇: Prediction horizon
𝑢: Differential braking force
𝑢max: Maximum differential braking force
VCoG: Vehicle speed of the CoG relative to the

inertial coordinate system as seen in the
vehicle.
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