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In this paper, we present a class of 3-D unstable dissipative systems, which are stable in two

components but unstable in the other one. This class of systems is motivated by whirls, comprised of

switching subsystems, which yield strange attractors from the combination of two unstable “one-spiral”

trajectories by means of a switching rule. Each one of these trajectories moves around two hyperbolic

saddle equilibrium points. Both theoretical and numerical results are provided for verification and

demonstration. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742338]

Biologic systems, weather systems, technology devices,

and so on, generate oscillations and many of them have

been mathematically modeled by a pair of first-order

ordinary differential equations with suitable parameters

to ensure oscillatory behaviors. Many of such nonlinear

phenomena observed in nature or man-made devices

have been described by piecewise-linear (PWL) systems

due to the richness of their dynamical behaviors: limit

cycles, homoclinic and heteroclinic orbits, strange attrac-

tors, etc. PWL systems are based on switching systems

consisting of a set of subsystems and a switching signal

which selects a subsystem to be active during an interval

of time. Switching systems can properly characterize the

structural variations of many practical systems through

their operating processes. Also, the solutions of this class

of systems can be integrated in closed forms when they

are restricted to a region of the phase space. However,

the analysis of the corresponding dynamics is never

trivial. This paper is devoted to studying a mechanism of

constructing chaos-generating systems based on PWL

systems. This chaos generation mechanism may find

useful applications in biologic systems and technological

systems when chaos is desirable.

I. INTRODUCTION

Consider a system of nonlinear autonomous differential

equations, capable of displaying chaotic behavior,

_x ¼ f ðxÞ; (1)

where x 2 Rn and f : E! A with E � A, in which E and A
are open subsets of Rn. Under well-posed conditions on f, sys-

tem (1) has a unique solution starting from each point x0 2 Rn

defined on a maximal interval of existence, ða; bÞ � R. In

general, it is not possible to solve the nonlinear system (1)

analytically; however, a great deal of qualitative information

about the local behaviors of its solutions can be determined

near the equilibrium point x� satisfying f ðx�Þ ¼ 0. The local

behavior is determined by the Jacobian D f ðx�Þ of Eq. (1) and

specifically its eigenvalues K ¼ fk1; k2;…; kng.
An inverse problem is to generate chaos with strange attrac-

tors from linearly coupled systems. This contribution is devoted

to such an inverse problem for a specific class of systems.

Definition 1. (Ref. 1) An equilibrium point x� of Eq. (1)
is called a sink if all the eigenvalues of the matrix Df ðx�Þ
have negative real parts; it is called a source if all the eigen-
values of Df ðx�Þ have positive real parts; it is called a sad-
dle if it is a hyperbolic equilibrium point in the sense that
Df ðx�Þ has at least one eigenvalue with a positive real part
and at least one with a negative real part but no eigenvalues
have zero real parts.

Saddle equilibrium points, which connect to a stable

manifold Ws and an unstable manifold Wu, are responsible of

successive stretching and folding therefore play an important

roll in generating chaos. The stretching causes the system tra-

jectories to exhibit sensitive dependence on initial conditions

whereas the folding creates the complicated microstructure.2

The saddle points of a chaotic system in R3 can be character-

ized into two types according to its eigenvalues

K ¼ fki; kj; kkg 2 C: (i) The saddle points that are stable in

one of its components but unstable or oscillatory in the other

two.3 That is, the stable component is corresponding to a neg-

ative real eigenvalue; i.e., Refkig < 0; Imfkig ¼ 0, whereas

the unstable components are related with two complex conju-

gate eigenvalues; i.e., Refkkg > 0, Imfkkg 6¼ 0. (ii) The sad-

dle points that are stable in two of its components but unstable

in the another one. That is, the dissipative components are

oscillatory: Imfkkg 6¼ 0 and Refkkg < 0, while the unstable

component corresponds to the real positive eigenvalue

Refkig > 0, Imfkig ¼ 0. The Hartman-Grobman theorem

and the stable manifold theorem show that the local behavior

of nonlinear system (1), near an equilibrium point x�, is topo-

logically determined by the behavior of a linear system,

_x ¼ Ax; (2)

where A ¼ Df ðx�Þ 2 Rn�n and x 2 U ¼ N�ðx�Þ � Rn. When

there are multiple x� 2 Rn, satisfying f ðx�Þ ¼ 0, the same
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form of linear system given by Eq. (2) is related with each x�

in the corresponding neighborhood. If the system given by

Eq. (2) has a saddle equilibrium point responsible for unsta-

ble and stable manifolds and the sum of its eigenvalues is

negative, then the system is called an unstable dissipative

system (UDS).

According to the above discussion, it is possible to

define two types of UDS, and two types of corresponding

equilibria.

Definition 2. A system given by Eq. (2) in R3 with
eigenvalues ki, i¼ 1,2,3, is said to be an UDS Type I, ifP3

i¼1 ki < 0 and one eigenvalue ki is negative real and the
other two are complex conjugate with a positive real part.

Definition 3. A system given by Eq. (2) in R3 with eigen-
values ki, i¼ 1,2,3, is said to be an UDS Type II, ifP3

i¼1 ki < 0 and one eigenvalue is positive real and the
other two are complex conjugate with a negative real part.

For the corresponding equilibria, their two types are

defined accordingly. The above definitions imply that the

UDS Type I is dissipative in one of its components but

unstable in the other two, which are oscillatory. The con-

verse is the UDS Type II, which are dissipative and oscilla-

tory in two of its components but unstable in the other one.

Some hyperbolic chaotic dynamical systems in R3 may be

related to these two types of UDS around equilibria; for

instance, Chua’s system4 has two UDS Type I equilibria,

symmetrically distributed, and another UDS Type II at the

origin. R€ossler’s system5 can also be characterized through

UDS Type I and Type II, and similarly some other sys-

tems.6–8 A characteristic of all these systems is that their

scrolls are generated from UDS Type I. Recently, a class of

3-D dynamical systems was composed in Ref. 3 by con-

structing a system with a switching law to obtain various

multiscroll attractors. Such systems are derived under the

assumption of having an unique hyperbolic equilibrium

point to each scroll, which belongs to UDS Type I. In gen-

eral, chaotic dynamical systems have been constructed in

two options: (i) considering both UDS Type I and Type II,
for example Chua’s systems; or (ii) only using UDS Type I,
as those reported in Ref. 3.

In this work, we contribute to use only UDS Type II by

constructing a class of 3-D dynamical systems. This class of

dynamical systems generates strange attractors, which

appear as a result of the combination of two unstable “one-

spiral” trajectories. The trajectory of the attractor lies

between two hyperbolic equilibrium points. This is shown by

numerical simulations describing the dynamical changes via

switching in between two UDS Type II.

II. SYSTEM DESCRIPTION AND PROBLEM
STATEMENT

In general, in order to generate attractors via UDS Type
II at equilibrium points distinct to origin, an affine linear sys-

tem can be considered. Thus, from the same approach as that

in Refs. 3, 9–11, we consider a class of affine linear systems

given by

_v ¼ Avþ B; (3)

where v¼½x1;x2;x3�T 2R3 is the state vector, B¼½b1;b2;b3�T
2R3 is a real vector, and A2R3�3 denotes a linear operator

given as

A ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

0
@

1
A: (4)

Recall that if the matrix A has a negative sum of eigen-

values then it is dissipative. The equilibrium of system (3) is

v� ¼ �A�1B 2 X � R3 and it is a saddle hyperbolic point

with a one-dimensional unstable manifold Wu
v� and a two-

dimensional stable manifold Ws
v� , see Figure 1. The dynamics

of the affine linear system (3) is characterized by the set of

eigenvalues K : specðAÞ. Condition in Definition 3 is satisfied

when one eigenvalue is a positive real number and the other

two are complex conjugate numbers with a negative real part.

Theorem 1. Let d; c; s be real numbers defined by
d¢detðAÞ, c¢�a11a22�a11a33�a22a33þa13a31þa23a32

þa12a21, s¢traceðAÞ, p¢� c� s2

3
and q¢�d� cs

3
� 2s3

27
. If

s< 0 and d> 0 with q2=4þp3=27� 0 then system (3) is
UDS Type II with the unique equilibrium point at v�.

Proof. Suppose s < 0 and d > 0. Since, by definition,

s ¼ TraceðAÞ ¼
X3

i¼1

ki < 0, system (3) is dissipative. Addition-

ally, when d ¼ detðAÞ > 0, system (3) has a saddle equilibrium,

which is determined by the characteristic polynomial of Eq. (4),

namely,

gðkÞ ¼ �k3 þ sk2 þ ckþ d: (5)

In fact, the classical Descartes’ rule of signs implies that

Eq. (5) has sings ð�;�; signðcÞ;þÞ. That is, there is only

one change of coefficient sign independently if signðcÞ < 0

or signðcÞ > 0. This implies that one of the three eigenvalues

is a positive real value and the other two are (i) complex con-

jugate with a negative real part or (ii) negative real numbers.

Thus, system (3) has a one-dimensional unstable manifold

Wu
v� and a two-dimensional stable manifold Ws

v� .

Define y¢k� s=3. By using the Cardano approach and

the expansion of Taylor series, Eq. (5) takes the form,

g yþ s
3

� �
¼ g

s
3

� �
þ g0

s
3

� �
yþ

g00 s
3

� �
2

y2 þ
g000 s

3

� �
6

y3: (6)

Evaluating g and its derivatives at s
3
, the resulting equation is

obtained as

y3 þ pyþ q ¼ 0: (7)

Then, Eq. (7) is solved by the change of variables, y ¼ uþ v
and p¼ –3 uv, giving

u3 þ v3 ¼ �q; u3v3 ¼ � p3

27
: (8)

Combining both expressions in Eq. (8), one has u6 þ u3q
� p3

27
¼ 0. By defining t ¼ u3, one obtains

t2 þ qt� p3

27
¼ 0: (9)
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Its real solutions are

t1 ¼ �
q

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
;

t2 ¼ �
q

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
;

(10)

for q2

4
þ p3

27
� 0. Due to the symmetry of the terms between u3

and v3 in system (8), u3 ¼ t1 gives u ¼ ffiffiffiffi
t13
p

. Then, there exist

three roots: u1 ¼
ffiffiffiffi
t1

3
p

, u2 ¼ w
ffiffiffiffi
t13
p

, and u3 ¼ w2
ffiffiffiffi
t1

3
p

, where

w ¼ �1þi
ffiffi
3
p

2
with i ¼

ffiffiffiffiffiffiffi
�1
p

. Equivalently for v, one has three

values: v ¼ ffiffiffiffi
t2

3
p

, v ¼ w
ffiffiffiffi
t23
p

, and v ¼ w2
ffiffiffiffi
t2

3
p

. Therefore,

Eq. (5) has roots,

k1 ¼
ffiffiffiffi
t1

3
p
þ

ffiffiffiffi
t2

3
p
þs=3;

k2 ¼ w
ffiffiffiffi
t1

3
p
þw2

ffiffiffiffi
t2

3
p
þs=3;

k3 ¼ w2
ffiffiffiffi
t1

3
p
þw

ffiffiffiffi
t2

3
p
þs=3:

(11)

Consequently, k1 2 R and k2;3 2 C. Finally, according to

Descartes’ Rule of Signs, one of the eigenvalues is positive

real and the other two are complex conjugate with a negative

real part, which completes the proof.

We are interested in a switching system (SW), which is

constituted by two systems in the form of Eq. (3), Si, i¼ 1,2,

governed by a switching law. Each system Si has a domain

Di � R3, containing the equilibrium v�i ¼ �A�1
i Bi. Then, the

switching law governs the SW dynamics which changes the

equilibrium from v�1 to v�2, or vice versa.

Definition 4. Let the two systems be given by Eq. (3) in
R3 with domains Di � R3 and equilibria v�i 2 Di, for i¼ 1,2.
Define a SW by two UDS Type II systems as follows:

_x ¼
A1xþ B1; if x 2 D1;

A2xþ B2; if x 2 D2:

(
(12)

Note that the system given by Eq. (12) induces a flow

ut; t 2 R in the phase space R3, such that the forward orbit

of the initial point x0 is the set fxðtÞ ¼ utðx0Þ : t � 0g.
Assume that system (12) has a dissipation ball X � R3 such

that utðXÞ � X for all t � 0. This assumption will be guaran-

teed by suitably choosing the pair ðAi;BiÞ, i¼ 1, 2. The maxi-

mal attractor A of system (12) is the largest attracting invariant

subset of X.

Proposition 1. Assume that system (12) oscillates

between its two sub-systems. Then, for each x0 2 A, there

exists a flow utðXÞ � D such that

(a) [2
i¼1Di ¼ D 	 R3,

(b) \2
i¼1Di ¼1, \2

i¼1clðDiÞ 6¼1,

where clð
Þ is the closure of a set.

The statement (a) is about the domain of system (12),

which is constituted by two domains of UDS Type II. The

statement (b) indicates that the flow ut is determined by only

one vectorial field and moves from one domain to another

one immediately. This is illustrated by Figure 2. As will be

seen below, this very simple configuration allows the genera-

tion of strange attractors.

Proposition 2. The basin of attraction X of an attractor

A given by system (12) is located between the two stable

manifolds Ws
v�i

, i¼ 1,2.

The above result is illustrated by Figure 3. Notice that in

system (12), the unstable manifolds Wu
v�

1
and Wu

v�
2

guide the flow

ut towards the equilibria v�1 and v�2, respectively. Therefore, the

orbit oscillates between the two equilibrium points. Thus, all ini-

tial points located outside the space between the manifolds Ws
v�i

,

i¼ 1, 2, become unstable. As a result, the basin of attraction

X has the only possibility to be located between the manifolds

Ws
v�i

. Moreover, Ws
v�i
\ X ¼1, i¼ 1,2, because starting from

any initial point in Ws
v�i

the orbit goes to v�i , i¼ 1,2.

III. ATTRACTORS GENERATED BY UDS TYPE II

The first case study is to show how attractors can be

generated when the matrix A is identical in all domains Di;

that is, only Bi are changed. The second case study is to con-

sider both matrices Ai and vectors Bi be changed as the flow

Ut goes into the corresponding domains Di, i¼ 1,2.

A convenient approach to building the matrices A and

B is based on the linear ordinary differential equation (ODE)

written in the jerky form: &x þ a33€x þ a32 _x þ a31xþ b ¼ 0

FIG. 1. Qualitative trajectories around a saddle hyperbolic equilibrium point

of UDS Type II.

FIG. 2. Generation of attractors in domains Di. The flow ut is governed by

the corresponding pair ðAi;BiÞ, i¼ 1,2.
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(see Refs. 10, 12, and 13), for which the SW can be repre-

sented in state space as Eq. (1), where the matrix A is

A ¼
0 1 0

0 0 1

�a31 �a32 �a33

0
@

1
A (13)

and B ¼ ðb1; b2; b3ÞT ¼ ð0; 0;�bÞT . Then, it follows from

Eq. (13) directly that d ¼ �a31, s ¼ �a33; c ¼ �a32. By

Theorem 1, the dynamical system based on matrix Eq. (13)

is a UDS Type II if s < 0, d > 0 and q2=4þ p3=27 � 0.

Therefore, one can choose the entries of matrix A to be

a31 ¼ �0:15; a32 ¼ 10; a33 ¼ 1:0 and b to be zero or 10 so

as to generate a system having two equilibria and one attrac-

tor, with the switching law defined as follows:

SW ¼ B2 ¼ ð0; 0;�10ÞT ; if x1 � 1;

B1 ¼ ð0; 0; 0ÞT ; otherwise:

(
(14)

Also note that the matrix Eq. (4) is not restricted to the form

derived from a jerky equation. This provides richer possibil-

ities on chaos generation.

Figure 4 shows some numerical results of the attractor

generated by the SW (Eqs. (13) and (14)). The attractor oscil-

lates between two UDS Type II, near the switching surface

x1 ¼ 1, and its equilibria are located at v�1 ¼ ð0; 0; 0Þ and

v�2 ¼ ð66:6667; 0; 0Þ. The largest Lyapunov exponent is

0.015. If the switching surface is located in the middle of the

two equilibrium points, with x1 ’ 33:333, then the strange

attractor collapses to a limit cycle. This approach does not

yield oscillations around any equilibrium, different from the

R€ossler system whose oscillations are around an equilibrium

Type I. Figure 5(a)) shows a projection of the attractor onto

the plane ðx1; x2Þ. In this figure, it is possible to see the effect

of repulsion given by the subsystem ðA2;B2Þ. Figure 5(b))

shows a projection of the attractor onto the plane ðx1; x3Þ.
Figure 5(c)) shows a projection of the attractor onto the plane

ðx2; x3Þ.
As seen above, the SW given by Eqs. (13) and (14) has

two UDS Type II, with equilibrium points located at the ori-

gin and at (a, 0, 0) with a > 1. The parameter a is restricted

to be a > 1 since the switching surface is located at (1,0,0),

so a can be taken as a bifurcation parameter. Figure 6 shows

FIG. 4. The attractor generated from Eqs. (13) and (14).

FIG. 3. The basin of attraction X of an attractor A.

FIG. 5. Projections of the attractor onto planes: (a) ðx1; x2Þ, (b) ðx1; x3Þ, and

(c) ðx2; x3Þ. The switching surface is defined at x1 ¼ 1. Because the system

(A;B2) is highly repulsive, the trajectories appear to bounce at the switching

surface.

FIG. 6. Bifurcation diagram for 2 < a < 6700.
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the bifurcation diagram for 2 < a < 6700. Figure 7 shows

how the trajectory goes away along the unstable manifold

Wu
v1

for a ¼ 6800. Figure 7 captures the segment of trajec-

tory where the pair (A;B2) is more repulsive than the pair

(A;B1). This provokes a very strong bounce near the switch-

ing surface and, as a consequence, the trajectory escapes

away. Figure 8 shows the time series of the system, which

are underdamped signals.

In order to get an explicit solution of the system given

by Eqs. (13) and (14), we first recall the Fundamental Theo-

rem for Linear Systems and a proposition about linear

transformations.

Theorem 2. (Ref. 1) [The Fundamental Theorem for
Linear Systems] Let A be an n� n matrix. Then, for a given
x0 2 Rn, the initial value problem

_x ¼ Ax;

xð0Þ ¼ x0;

has a unique solution given by

xðtÞ ¼ eAtx0:

Proposition 3. (Ref. 1) If A and J are linear transformations
on Rn and A ¼ PJP�1, then eA ¼ PeJP�1.

Now, the solution of the system given by Eqs. (13) and

(14) when the flow moves into D1 ¼ fx 2 R3 : x1 < 1g do-

main is given by

xðtÞ ¼ P
e0:014977232285795t 0 0

0 H1 �H2

0 H2 H1

0
@

1
AP�1xð0Þ (15)

where H1¼ e�0:507488616142898tcosð3:123724836514592tÞ and

H2¼ e�0:507488616142898tsinð3:123724836514592tÞ.
For the case that the flow moves into D2 ¼ fx 2 R3 :

x1 � 1g domain, the solution of the system given by Eqs.

(13) and (14) is found by means of a change of variables, as

follows: z1 ¼ x1 � ð1000=15Þ, z2 ¼ x2 and z3 ¼ x3. Thus, the

system is given by

_z ¼ Az; if x 2 D2;

where z ¼ ðz1; z2; z3ÞT . Now, using the change of variables it

is possible to find the solutions of x1ðtÞ, x2ðtÞ and x3ðtÞ when

the flow belongs to D2 domain. Figure 9 shows the exact so-

lution of the attractor generated by the SW (Eqs. (13) and

(14)) with initial condition xð0Þ ¼ ð0:9; 0; 0Þ. The attractor

oscillates between two UDS Type II, near the switching sur-

face x1 ¼ 1, and its equilibria are located at v�1 ¼ ð0; 0; 0Þ
and v�2 ¼ ð66:6667; 0; 0Þ.

Figure 10 shows three different qualitative trajectories

that can possibly be obtained by moving the equilibrium point

v�2 into domain D2 while another equilibrium point v�1 at the

origin into domain D1. The switching surface SW is given by

\2
i¼1clðDiÞ. Let d1 and d2 denote the minimum distances from

the equilibrium points v�1 and v�2 to SW, respectively.

When d1 ¼ d2, the trajectory is trapped into a limit cycle and

if d1 < d2 this asymmetry can break periodic oscillations so

that the trajectory is trapped, generating an attractor between

two saddle hyperbolic equilibrium points (see Figure 10(a)).

But d2 can increase until a certain value d2 < dH because if

d2 > dH the trajectory escapes along Wu
v�

1
(see Figure 10(c)).

If the distance d2 ¼ dH , it is possible to induce that the

FIG. 7. The trajectory escapes along Wu
v1

for a¼ 6800.

FIG. 8. Time series of the attractor shown in Figure 4.

(a) x1 state, (b) x2 state, (c) x3 state.

FIG. 9. The attractor generated from Eqs. (13) and (14). The blue curve cor-

responds to the solution when x1 < 1 and the red curve when x1 � 1.
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trajectory goes to equilibrium point located at v�1 (see Figure

10(b)). It is worth mentioning that the stable manifold Ws of

the saddle-focus v�1 is 2D, whereas the unstable one Wu is 1D.

The manifold Wu is the union of v1 and two separatrices that

tend to v1 as t! �1. A homoclinic loop C of the saddle-

focus is a trajectory bi-asymptotic to v1 as t! 61. The con-

struction of homoclinic orbits in order to demonstrate chaotic

attractors is beyond the scope of this paper, so we have only

included the largest Lyapunov exponent.

A. Scroll attractor for 3 subdomains

Under the condition given for UDS type II and when the tra-

jectory escapes from d2 > dH, a natural question is: Is it possible

to trap the trajectory again between the stable manifolds Ws
v1

and

Ws
v2

? The answer to this question depends on the number of sub-

domains. When the trajectory escapes it can be bounced again,

defining another equilibrium point symmetrically, that is,

v�3 ¼ �v�2. The switching law Eq. (14) is replaced by

SW ¼
B2 ¼ ð0; 0; 1700Þ; if x1 � 1;

B1 ¼ ð0; 0; 0Þ; if j x1 j< 1;

B3ð0; 0;�1700Þ; if x1 � �1:

8><
>: (16)

The matrices A1 ¼ A2 ¼ A3 and the values are determined by

Eq. (4). Figure 11 shows some numerical results of the attractor

generated by SW (Eqs. (4) and (16)). The attractor oscillates

between the two switching surfaces x1 ¼ �1 and x1 ¼ 1, near

the stable manifold Ws
v�

1
, and its equilibria are located at

v�1 ¼ ð0; 0; 0Þ, v�2 ¼ ð8000; 0; 0Þ and v�3 ¼ ð�8000; 0; 0Þ.
Figure 12 shows the time series of the system: (a) x1 state, (b)

x2 state, (c) x3 state.

B. Different A matrices

A precise location of the basin of attraction can be

described by defining the equilibria v�i and their stable mani-

folds Ws
vi

, i¼ 1,2. Here, we show an example in which both

matrices Ai and vectors Bi are changed as follows:

SW ¼ A1;B1 ¼ ð�5;�12; 19ÞT ; if x1 < 9;

A2;B2 ¼ ð�5;�12;�20ÞT ; otherwise;

(
(17)

where

A1 ¼
0 1 0

0 0 1

0:5 �4 �0:12

0
@

1
A; A2 ¼

0 1 0

0 0 1

15 �25 �0:5

0
@

1
A:

Figure 13 shows some numerical results of the attractor gen-

erated by the SW (Eq. (17)). The attractor oscillates near

FIG. 10. Qualitative trajectories between two saddle hyperbolic equilibrium

points. (a) Trajectory is trapped. (b) Homoclinic orbit is generated. (c) Tra-

jectory is escaped along Wu.

−1.5 −1 −0.5 0 0.5 1 1.5

−5
0
5

−20

0

20

x1
x2

x 3

FIG. 11. The attractor generated from Eqs. (4) and (16).

FIG. 12. Time series of the attractor shown in Figure 11. (a) x1 state, (b) x2

state, (c) x3 state.
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the switching surface x1 ¼ 9, and its equilibria are located

at v�1 ¼ ð4:88; 5:00; 12:00Þ and v�2 ¼ ð10:0667; 5:00; 12:00Þ,
respectively.

IV. CONCLUSIONS

This paper has studied a mechanism of constructing

chaos-generating systems based on two piece-wise linear

systems. Particularly, it deals with UDS Type II. It derives

conditions to generate chaotic attractors. The attractor arises

from a switching system having at least two UDS Type II.
Two examples are shown by means of considering a system

in which the A matrix is the same in both domains D1 and

D2, and the difference lies only in the B matrices which

determine the locations of the equilibrium points. The other

example considers a system in which both matrices A and B
are different in both domains D1 and D2. This result was

extended to yield a system with three domains and a precise

location of the basin of attraction can be given when the sys-

tem is comprised by UDS’s Type II.
This approach may be further extended to generate: (1)

chaotic systems with multistabilities by adding more UDS

Type II, and (2) multivibrators in a similar way that Ref. 14

where local Lyapunov exponents were changed to control the

stability in order to generate the multivibrator.
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