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Abstract

A dynamic strategy is proposed to estimate parameters of chaotic systems. The
dynamic estimator of parameters can be used with diverse control functions; for
example those based on: (i) Lie algebra, (ii) backstepping or (iii) variable feedback
structure (sliding-mode). The proposal has adaptive structure because of interac-
tion between dynamic estimation of parameters and a feedback control function.
Without lost of generality, a class of dynamical systems with chaotic behavior is
considered as benchmark. The proposed scheme is compared with a previous low-
parameterized robust adaptive feedback in terms of execution and performance. The
comparison is motiv;ited to ask: What is the suitable adaptive scheme to suppress
chaos in an specific implementation? Experimental results of proposed scheme are
discussed in terms of:control execution and performance and are relevant in specific
implementations; for; example, in order to induce synchrony in complex networks.
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1 Introductioh

Chaos control comprisesf suppression and synchronization of chaotic systems and can
be potentially exploited,?among others, to deal with current engineering problems like
chaos suppression on dc-ac converters; multimode laser in surgery of carbon nanotubes;
regulation of fluid dynan;;ics; design of systems for secure communications via internet;
and some problems in biémedical sciences as arrhythmias or epilepsy. Particularly, chaos
suppression problem has i)een a studied topic to address these problems (sse reviews and
seminal papers (1, 2, 3, 4] Complementarily, synchronization problem has been exploited
to deal with secure coml_énunication, synchrony on multimode lasers, biological systems
and, more recently, comﬁlex networks (see [5, 6]). Diverse schemes have been proposed
to understand mechanisms of the chaos control [2] or to design control devices [4, 7).

Two equivalent issues: are important on chaos control: (i) to exploit the chaotic solu-
tions of systems [1] or (ii) i_to use the vector fields of systems [6]. Latter is the major concern
from the control theory \iriewpoint because it means the possibility of driving a desired
chaotic behavior along tir;ne. For instance, several control schemes have been widely stud-
ied in last two decades to induce synchronous behavior (see [5, 4, 8]). As matter of fact,
a practical implementatio_in is often limited by the information available for feeding back.
Then, a control practitidner has only partial information available (i.e., only measured
states or nominal paramgeters values). This has served as motivation to diverse adap-
tive control techniques li_ke, among others, feedback output linearization, backstepping,
sliding-mode, and observ_éar-based. These approaches lead us to the following problem of
selecting a specific contr(jl scheme to reach a desired control performance. This problem
is a challenge if we consider the trade off among simplicity in implementation, control
execution and convergenc;'e rate. This particular problem takes major relevance in light of
recent scientiﬁc'questions; as the stabilization of complex networks [6]. Moreover, due to
chaotic dynamic is highlyi sensitive to initial conditions and parameter values, chaos con-
trol has been oriented oné robust feedback approaches [4, 5]. Thus, selection of a specific
technique can depend oné: performance of control, structural simplicity, and closed-loop
stability, etcetera. |

The purpose of this paper is to propose a dynamic parameter estimator that can



be used under different fcontrol strategies. In order to reach this purpose, a class of
chaotic systems is considered as benchmark to design and the posteriori experimental
comparison. The considéred class includes the most important chaotic systems in the
form x = f(x) + g(x)uéwith x € R3 and vector fields f,g : D — R3 have, at least,
first derivative, where D g R3 stands for the system domain. The performance study is
carried out for experimefltal comparison. The comparison is presented in terms of the
quantitative execution aﬁd performance. The paper is organized as follows. A class of
chaotic systems is presenfed in Section 2. Section 3 describes three controllers for chaos
suppression: state feedbajck linearization, backstepping techniques, sliding-mode. These
three controllers are based on an adaptive observer designed to estimate unmeasurable
state and unknown pare{meters. Although these schemes were reported in [4, 5, 13],
in seek of completeness, éclosed—loop stability analysis is included. Section 4 shows the
fourth scheme, which is ?_a low-order parametrized controller. In this contribution, the
main point is performancé comparison for the four controllers under noise and parametric
uncertainties. Such conﬁrollers are designed in Section 5 for the P-class presented in
Section 2. The performa%'lce comparison is carried out experimentally on the realization
of chaotic system in an eléctronic circuit. Finally, Concluding remarks are given in Section

6.

2 Chaotic sysfﬁems used as benchmark

A class of chaotic systerﬁs is introduced in this section. This class contains dissipative
chaotic terms and can bé transformed into the equation z= Jp(z, £, ), which is defined
by a polynomial jerk fur{ction. It is know that jerk equation exhibits chaotic behavior
for a set of parameter vélues, represents different nature or man-made systems and is
a sub-class of Lur’e systérns when bursting in velocity is involved (see for instance [10]
and references therein). {Without control, jerk equation has the homogeneous form z
+oi+z—¢g(z, ) =0, :izvhere do(z, a:) includes polynomial terms; e.g., ¢g(z, &) = 22 or
oz, ) = zz [9]. In whf;zt follows, the jerk equation is represented in state space form:
%1 = To, Tg = T3, T3 = —a:l — azs + ¢o(z1, z2). Thus, jerk equation constitutes a family

of systems with only onefparameter related to damping « > 0. Among many others, the



following collection of dynamical systems is included in such a family [9]:

( : (
1 = X9 Ty = X9
Yy % To = x3 PIPIAR Tog = I3
L 11',‘3 = —axr3 — L1+ 117% i33 = —QI3— ZT1+ T1X2
: \
( 4
T1 = Tp+1 Ty = T3
Y3t 4 Iy = —aX9+ 23 DIFREE Ty = xz7+1 (1)
{ T3 = 1%y \ T3 = —ax3+ T1Z
(. (.
Iy = X2 I = X2
Y5:48 %o = —azs+ 23 e J g = —oZg-+ I3
L .’i?3 = -z + SE% L Ii33 = —I1+ 2129

All systems in collection (1) is grouped in a class by using C*-equivalence of vector fields
[9, 11]. Noted that the fafnily can be found for a large variety of systems by constructiong
a diffeomorphic transforrifnation. As matter of fact, there exists conditions such that
the Rossler, Lorenz, and Chen systems can be written as the form (1). Additionally,
dynamical properties can_g.be studied through transformations of systems; as, for example,

its stability can be analyzed via preservation [12).

3 An observer adaptive for distinct control ap-
proaches

We can mention state féedback linearization, backstepping and sliding-mode methods
among distinct control téechniques [13]. However, physical implementation is ussually
limited due to only partii‘al or imprecise information is available in regard parameters of
measurement. In order tb overcome this difficulty, estimation of state and identification
of parameter values is ofjten required. An alternative is to use adaptive observer-based
schemes. An adaptive observer is interpreted as a virtual (software) sensor for simul-
taneous estimation and identiﬁcation. An observer is designed as dynamic parameter
estimator. Convergence aind closed-loop stability proofs are shown [15, 16]. We show how
is possible to use our proﬁ_osal under three distinct control techniques, which are described

in what follows.



State Feedback Linear{ization: This technique exploits Lie algebra and is very popular
in control practice. In order to design a control, P-class chaotic systems is written in the

following control affine fo%rm:

w = filw;a)+g(w;e)ur @)
ye = Mh(w)

where w € R3, uy, € R, yc € R are state vector, control input and output, respectively.

Functions f; and g, are srﬁooth vector fields. For a given continuous function A; : R® — R,

Lie derivative is given by Ly h(w) = 2% fi(w; a). Then, state feedback control

(~L§Zlhl(w) + )

- 3)
Lo L% Th(w) (

up(w; @) =

induces a linear behavior, where v, = (—kyy. — k2y£1’ ———.— k,,yé” _1)). The constants k;
(i = {1,2,...,p}) are such that s? + k,s?~! + ... + kys + k; is a Hurwitz polynomial.
Backstepping Controi__j: This technique is based on solving a sequence of first-order
systems succeeding is bacj'kward configuration. The method starts by writing the P-class

system at the form:

w = folw;a)+ go(w; a)s (4)
¢ = flw,5;0) + 9w, 5;)us (5)

where (w,¢) € R? x R is j’state vector and up € R stands for control. Functions f, : D —
R? and g5 : D — R? ai‘e smooth in D C R? that contains w = 0 and f,(0;a) = 0.
System (4)-(5) is a casca;de connection of two components. First component (4) with ¢
as the virtual control. Séacond component is the integrator (5). Assuming that (4) can
be stabilized by a smootfl state feedback control ¢ = ¢g(w), with ¢5(0) = 0, the origin
of w = fu(w;a) + gw(wg; a)¢p(w) is asymptotically stable [13]. Thus, by means of the

change of variables zg = ¢ — ¢p(w), it follows that system

& = [ful®;) + 9u(w; 0)$5(®)] + gu(@; @) 25

o . (6)
Zp = up—¢B
can be derived. Hence, by computing $p, and using the Lyapunov function Vg(w), the

state feedback control lavgr can be derived

us(,3) = 22 ([l ) + (i )] — T 2ge(@;0) — kls = ga(@)] (7



where k is a positive reali} constant.

Sliding-mode Controli: This technique has been used due to its robustness properties.
An important feature is g’that control leads system trajectories at finite time towards a
manifold and holds them Eon it. The manifold is constructed in terms of desired reference.
Then, once the trajector-:_ies reach the sliding manifold, they tend to desired reference.

P-class is written in the form to design controller

i = fi(m&a) +én,E ) ©
£ =" fe(n, &)+ Ge(n, & a)us + 8(n, €, us; )] 9)

where n € R?, ¢ € R, us € R and 4, and §; denote uncertainties. Let us consider the
subsystem (8), where & 1s interpreted as a secondary control. By defining £ = ¢g(n),
where ¢5(n) is a smooth function satisfying ¢5(0) = 0, the origin of (8) is asymptotically
stable. Now, let us take zs = £ — ¢s(n). Control u entering into (9) leads zs(t) to zero, in
finite time, holding it alorflg time. Note dynamics of zs is zs = fe(n,&; 0)+Ge(n,&; o) [us+
S¢(m, & us )] — %i;ﬁ[f,,(n, §, a) + dy(n, & «)]. Hence, the controller becomes

’U,S(n7 5; Of) = Ueq(m 6; Of) + Gf—l(n’ 5’ a)U('f], 5) (10)

where ueg(n, & @) = G101, € @)~ fe(n, & 0) + 2 f,(1, & )] is chosen to cancel terms in
Ge(n, & ). v(n, &) is detérmined by substituting ug(-) into Zs-equation to have

zs = v(n,§) + A(n,&,v; Q) (11)

Assuming A satisfies [[A(n,§,v; 0]l < ps(n, &5 @) + k||v|co, Where ps(n,&;a) >0 and
k € [0,1) are known. ’fhen, v(n, &) is designed such that zg(t) is forced towards the
manifold zg =0. In pari;icular, v(n, &) is chosen to be v(n,&) = —-ﬂi(l’_%)sgn(zs), where
B(n,&) > ps(n, & a)+ bo for any constant b, > 0, and sgn(-) is the signum function.
Closed-loop stability of (11) can be ensured by taking the following Lyapunov function
Vs = %zg As chatteriné is exhibited, as higher order sliding-mode can be designed to

improve robustness and to diminish chattering.

3.1 Adaptive Ob%server and closed-loop stability

P-class system has only ohe unknown parameter and a single output y,, € R available for

feedback. Under its featui‘es, this P-class can be represented as a state affine system with

6



unknown parameters as in [14, 15]:

z = A(u7 ym)z + ‘10(“7 ym) =+ CI)('u,, ym)e (12)
ym = Cz

where entries of A(u, ym)i, o(u, ym) and ®(u,yn,) are continuous functions depending on

u and ¥y, uniformly bouflded and @ is a vector of unknown parameters. The following

assumptions are introduced [16]:

Assumption 1 There e:icists a bounded time-varying matriz K (t) such that the following
system A(t) = (A(t) — K{t)C(t))A(t) is exponentially stable.

Assumption 2 The solution A(t) of A(t) = [A(t) — K (t)C(t)]A(t) + ®(t) is persistently
exciting in the sense that exist o1, By, T1 such that

: t+T1
al < /+ A(T)TCTSC(r)A()dr < Bl (13)

for some bounded positive definite matriz 3.

Assumption 3 Control u is persistently exciting in the sense that there exist g, s,
To >0 and tg > 0 such that:

: t+15
oal < / Uy (r, )T CTEC(r) Wy (r, )dr < Byl (14)
CoJt

Vt > to, where W, denotes the transition matriz for the system 2z = A(u,ym)z, ym = Cz,
and ¥ some positive definite bounded matriz.

From (14) and (13) WitH K = S71CT and S as solution of § = —pS — A(u, ym)TS —
SA(u,ym) + CTLC, adaﬁtive observer is given by

z = Alu,ym)? + o(u, Ym) + D(u, ym)é +{AS;'ATCT + S;1CT} Sy — C3)
i = S;ATCTS(yn, — C3)
A

1 A = {A@,ym) = S;ICTCIA + B(u, ym)
S’z = _pzSz - AC“’? y’m)TSz - SZA(’U’) ym) + CTEC

Sg = -—pgSg—l-A:,?CTECA
| (15)

where S,(0) > 0 and Sp(0) > 0, and p, and py are positive constants sufficiently large and
37 some bounded positive?deﬁnite matrix. Moreover, it is remarkable that if Assumptions
2 and 3 are verified, they ensures that the matrices S, and Sy are invertible and symmetric

positive definite. Now, Wé can establish the following result.

7



Lemma 1 Let us consider system (12). Suppose 1, 2 and 3 hold. Then, system (15)
is an adaptive observer for system (12). That is, estimation error vector (e, = % — z,
€p = 6 — 0) converges exponentially to zero with a rate given by p = min(p,, py).

Sketch of the Proo;jf. Let e, ;== 2 — z and ¢ := 6 — 0 be the convergence errors for

states and parameter, resbectively. Defining ¢, = e, — A¢y, it follows that
& = {A(u, ym) — AS;IATCTEC — S7ICTECYe, + B(u, ym)es — Aeg — Aég

Replacing suitable expreésions in above equation, we get:

é2 = {A,ym) — S;1CTECle,

éo = —SO_IATCTEC(ﬁz—l‘Aﬁo)
We consider V(e,, €5) %eszez+egsoeo as a Lyapunov function to prove ob-
server convergence. Then, taking V and replacing appropriated expressions, we
obtain V(ez,60) < —/i)zeszez — poel Speg.  Taking p = min{p,,ps), we have

Vies,€6) < —pV(es,€9). Finally, €, and ¢ converge to zero exponentially with a

rate given by p. This ends the proof. m

Note that the chaotic:_system can be represented in the following general form
x = f(x;a), ym =0Cx (18)

where X is state vector, yn, is measured output and constant o is a real parameter whose
exact value in unknown.i By means of a change of coordinates (2 = T(x)), (18) can
be transformed into a stéte—aﬂine system (12), for which is possible to design adaptive
observer (15). Now, close?d—loop system is analyzed with the three first controllers (3), (7),
and (10) based on adapti%ve observer (15). From system (12), we have that by extending
the state vector by para;meters vector 6, into Z := (z )T, state affine structure is

preserved as follows:
Z = F)Z+ G®)
Ym = HZ

(19)

where ¥ := (u ym), H =(C 0), F(9) = ?) , and G(9) =



Thus, extended systerh is given by

Z : F(H(Z)Z + G((Z))
Z = FO(2)Z+GO(2)+ S H (ym — H) (20)
§ = —pS~FT(9(2)S - SF(9(2))+ HTH

S S\
where S = ( Lo ) ;and S,, Sp, A of (15) are related to solution S through:

ST S,
n_q;; = S]_
Sy = S3— SIS s, (21)
A = —8718,
Let us define e := Z — Z be the estimation error. Then, the dynamics of resulting

observer-based controller can be rewritten as:
¢ = {F(9(Z))-S'HTH}e
Z = FO(Z)Z+CW(Z)) (22)
S = —0S—FT(9(2))S — SF(8(Z))+ HTH
where u(Z) is the controlier given by (3), (7), or (10) for each case. Next lemma is stated
to prove closed-loop stability:
Lemma 2 [16] Assume ?ﬁhat 9 1is reqularly persistent for (19) and let be
S(t) = —0S(t) — FT(9(Z))S(t) — S(t)F(I(Z)) + HTH

a Lyapunov differential ?quation, with S(0) > 0. Then, 3 6y > 0 such that for any
symmetric positive definite matriz S(0); V8 > 6o

- 3a>0,8>0,t>0:Vt>1
al < S(t) < BI where S(t) satisfies S(t) m.

Although the formal proof of Lemma 2 can be found in [16], we show the rationale
behind such a formalism ;_to seek completeness in presentation. Consider two continuous
functions fi, fo; therefore 3 oy, 8; Tj such that Gl > [T fi(r,6)* fi(r,t)dr > ol &
3 a4, B; Tj such that

=T fl (T7 t)*
a1> | (u(r1) falr, ) dr 2 oy
It

Z(Tat *

9



fori,7 =1,2 A t 2> to.i The implication = can be verified directly by developing the
product inside the integrél. Now, for <=, let us consider any vector z; # 0 and 23 # 0 of
same dimension as z, 0, Erespectively, and define F; = f;z;, with ¢ = 1,2. Note I, I3 are
both of same dimension as output ym. Then, let us take a T £ maz(Ty,T3) and notice

that Cauchy-Schwartz inéquality yields

(/tHT Fy(7,t) Fo(r, t)dT) < (/tHT Fi(r, )" Fi(r, t)d7> (/tHT Fy(r,t)" Fy(T, t)d7>

Next, let us define fy(u) ( T Fi(r,t)*Fi(r, t)dT> ( tt+T Fo(r,t)* Fa(r, t)dT) -

2

>

t

p ST B R dr)| 2> — wf5T B(r ) Ba(r, drlal? + @llalPz)? -
2

(1T A ) R, t)dr)
Schwartz inequality, v(z) > 0. Hence, there exists go > 0 such that y(x) > 0

Thus, < is continuous in u, and, from Cauchy-

for any —py < p < Ho- Moreover, 3 pu3 : 0 < p < o such that
T . . . .
ST REO R ) > wmlal® A ST Fy(r,t) Fy(r,)dr > l|ze])?, which

yields

TRy (r, t)*Fy(7, t)d7 — |22 [T Ry, t) Bl t)dr

t
[T By(r 6y Fa(r, t)dr ST By, ) Fu(r, t)dr — |2

>0

Conclusion on lower bourfd of S(t), in Lemma 2, can be derived by following this rationale.
The upper bound conch_flsion is quite clear from definition of f;, fs. Therefore, the
following result can be established:

Theorem 1 Under assumptions that nominal controller is globally asymptotically stable
and that state Z in (20) remains for all t > to > 0 in a compact set Q (containing
equilibrium point of nominal controller) ¥V Z(0) € Q, extended system (20) is globally
asymptotically stable on Q x R™ x St (i.e., V Z(0) € Q,V Z(0) € R%; VY S(0) > 0).

Proof. Since observei (15) is such that estimation error goes to zero, it is bounded
and matrix S is solution:of the Lyapunov differential equation in (20), is bounded from
above and from below in set of positive definite matrices, see Lemma 2. Hence, whole
state e = (Z - Z, Z ,S) of (20) remains in a compact set along any trajectory.

Let A= {(e(t), Z(t),S(t)),t > 0} be a semitrajectory of observer-based controller
given by (20). This semitrajectory, lying in a compact set, has a nonempty w-limit
set (i.e., w-limit set of a trajectory is set of its accumulation points). Let [¢, Z, S] be

an element of w-limit seit of A. Tt is clear that when e — 0 implies that € = 0. Let

10



{(0, Z(t), S(t)), ¢t > 0} bef:a semitrajectory starting at time ¢ = 0 from [0, Z, S]. Since the
w-limit set is positively ingvariant, it follows that the semitrajectory {(0, Z(t), S(t)),¢ > 0}
belongs to w-limit set of A The estimation error is here equal to zero for this semitrajec-
tory, and using our closea—loop stability assumption, 7 is globally asymptotically stable,
ie., Z(t) — Z* = Ib(Z*)-éSO; there are points at which e = 0 and Z = Z* in w-limit set
of A, since it is a closed set. Letting [0, Z*, S(t)] be an element of w-limit set of A and
following same reasoningi: let {(0, Z*,S(t)),t > 0} be a semitrajectory starting at ¢t = 0
from [0, Z*,S]. This serﬁitrajectory belongs to w-limit set of A. The dynamics of S(t)
are given by Lyapunov di??ﬁerential equation and using the observability of constant linear
system (F* + G*, H), tha;;f S(t) tends to S*, unique positive definite solution of Lyapunov
algebraic equation. So, [0, Z*,S5*] belongs to w-limit set of A. It follows that, under the
assumption of (local) asylmptotic stability of (20), A enters in a finite time into the basin

of attraction of [0, Z*, S *] Hence (20) is globally asymptotically stable on 2 x R™ x St .

4 An adaptivé low-order parametrization scheme to

compare execution

Above controllers are corf;pared with other adaptive scheme previously reported [5]. This
last adaptive scheme comf)ensates uncertainties in parameters and unmeasured states with
a low order equation. Lét us re-write P-class system (1) in the canonical form (named
strict-feedback form): Xz = xip1 With 1 <4 < p—1, xp = L, v;0) + Tx,v;a)ua
and v = ((x,v). Then, by exploiting Lie algebra of vectors fields, P-class system can be
stabilized as p is a integér constant such that I'(x,v;a) # 0 at any point belonging to
domain (see details in [5]) Functions f,(x, v; @) and I'(x, v; @) are assumed uncertain and
unavailable for feedback. ?'Thus, the v(x, v; @) = T'(x, v; @) —Tnom(x) and O(x, v, ua; @) =

Loy o) +v(x, v; a)uAécan be defined. After algebraic manipulations, we have:

Xi = Xitl, 1<i<p—-1
Xp : e(Xa V,UA; a) + Fnom(X)uA (23)
vo= ((xv)

where O(x, v, us; @) is a gcontinuous function that lumps the uncertain terms. Lumping

function © is seen as an augmented state by defining © = ©(z, v, ua; @). So, system (23)

11
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can be rewritten in the augmented form

=

Xi = Xitls 1<i<p-1
Yy = O+ Cnom(x)u
) inD (X) A (24)
© = E(z,v,0,us; )
vo= (V)

where Z(z,v, ©,ua; @) = Zf;ll Xi+10:0(z, v, ua; ) + [© + Crom(x)ua]8oO(z, v, us; ) +
Y(x, v; a)ia + Oyy(x, v; a)ua + 0,0(z, v, ua; )X, V).

Controller ua(x, ©) = oy (—© — K 7x) can be used to stabilize (24), where K € R
is chosen in such way that Px(s) = P 4 kps?™! + ... + kps + ky = 0 is Hurwitz. Now,
problem of estimating (x,©) can be addressed by using a high-gain observer for (24).

Thus, dynamics of x andg B is reconstructed from measurements of output v, = x1 by

~

Xi = Xt L'ri(x1 — x1), l<isp-1
AP = é + Fnom()%)uA + Lpﬁp(Xl - Xl) (25)
6 = LA Ry (x — xa)

where k;, j = 1,2,...,p + 1, are such that P.(s) = sP*1 + ks + ... + KpS + Kpy1 = 0 is
also Hurwitz. Parameter L > 0 stands for estimation rate of uncertainties, being unique

tuning parameter. Finally, control becomes

ua(2,©) = ﬁ(—é _KTR) (26)

5 Experimenthl implementation

Implementation is realized to compare controllers performance. Let us consider only one
of chaotic systems in coilection (32). Only y,, = zo is measured and parameter « is
uncertain, the problem 1s to lead output y. = z; (note ym, # y.) when u is acting on

right-side of (¥3) as folloWs

T = Tz
d?Q = X3 (27)
3'33 = —Qx3— X1+ T1T2+ U

12



5.1 Implementedﬁi controllers

State  feedback liﬁeam’zating control: For (27), we have that
fl(w;a)=[a;g,x3,—aa:3-%x1+x1x2]T and g(w;a) = [0,0,1]T. Then, designed

controller is given by
'LLL(’UJ, Of) = I3 + 1 — 2120 — klxl — k2$2 — k3£173 (28)

Backstepping control:% Let us write the subsystem

f= (29)

i‘2=l'3

which is in form (4), whére @ =z, =3 and Up = z3. By proposing z; = ¢p(@) =

—uxy, where p is a positiﬁre real constant, and V(&) = %xf is a Lyapunov function, then

the controller (7) for (29j is given by
Up(@,%) = 23 = —pzs ~ 21 — k(22 + pz1) = ¢p(21,22) (30)

with k£ > 0. Now, let us consider the complete system (27) re-written as

i‘l ZI9 0

= + 1‘3
i 0 1 (31)
i73 = (—041173 — 1+ l‘1$2) + up

which is in form (4)—(5), where w = ( z; z, )T and ¢ = z3. Taking (30), £ > 0, and
Ve(w) = 322 + [z2 + pz1]? as Lyapunov function, then controller (7) for system (27) is
given by: .
up(w,g;a) = ups— (1+kp)zy — (u+ k)zs — (20 + pz;)
| —kzs + (1 + kp)zy + (n+ k)za) (32)

uBe(w, ;@) = ozxz+ 2 — 129

Sliding-mode control:: By defining n = ( z; z, )T and & = z3,(27) can be written as

&1 = T3+ 6y, (33)
1?2 = z3-+ 6772 (34)
1173 = [—0401173 -+ 11711172] + [’LLS + 55] (35)
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where 6, 4, and (55 are the uncertainties. Sliding surface is given by
25 = z3 + 0121 + 0229, and from (35) and controller takes the form

US(U:_@ = Ueg(n, &) — %sgn(m + o121 + 0222)

ueq(n,if) = [0401”3 + 21— 2122 — 0122 — 02933] (36)

Bn,€) = kilal|@a] + kolz1] + kalza| + kalzs] + bo
Specifically, implementatifon of above controllers requires state estimation and parameter
identification provided by adaptive observer given in Section 4. Then, system structure

is transformed into

2"1 = —az1+ 29
20 = —z3tzzztu (37)
3 = 2

By defining 8 = « and ym = z;, adaptive observer (15) is derived. Then, states and

parameter are replaced 1n controllers (28), (32), and (36) becomes

4 {0 1 0 2 -z 0
% =10 zn -1 z |+] 0 la+t|
2 \0 o0 0 2 0 2

Scheme based on l(éJw-order parametrization: By defining x = (z; z, 23 )7,

© = —axs — 1 + 2172 and Trom(x) = 1; system (27) is written as (24) to have:

4
1 = T2
o =
2 : (39)
T3 = O+ uy
\ 0 = =(z,0,uy; a)
Hence, 4(25) and (26) becomes
Lo
CII\,'l = iz“*‘thl(.’I?l —L%l)
) %2 = 5%3 + LPro(z1 — 21) (40)
: :%3 = ®+UA+L3KZ3(£L'1 ﬂii‘l)
: L s = L4:‘€4(.’I}1 - :i‘l)
ua(%,0) = —6 — kg1 — kads — kss (41)

where L, k; (j = 1,2,3,4) are taken as (25). and k; (i = 1,2,3) are as in (26).

14



5.2 Performance éindex definition and details for implementation

Control execution can be evaluated via performance indexes. The underlying idea is to
provide a quantitative méasure of the control execution by emphasizing closed-loop spec-
ifications. Because our I;roblem aims the chaos suppression, we consider the reference
is given and constant. T_;hus, our attention can be paid onto time convergence indexes.
Three different issues aref relevant in chaos suppression: steady-state error, overshooting
of control action, and avérage control effort. Steady-state error index discriminates be-
tween overdamped and u"_'nderdamped behavior of the closed-loop system. This index is
very convenient for analy?tical purposes due to it involves system trajectories providing
a measure of ”distance” %to the reference. Overshooting of control action and average
control effort provide me‘;:adsures about of the energy required to reach chaos suppression.
Former measures the ma;idmum energy needed by the controller for suppression while lat-
ter considers the long—tefm control requirements. Both overshooting control action and
average control effort are firelevant when control energy for chaos suppression is restricted.
Next, three indexes are deﬁned with time weight to normalize the time duration of the

experiment:

e The first one is a measure of stabilization error, equivalent to an index
of chaos suppressibn during the interval [to,tf]. This index is defined by
Js =

matrix for all ¢ € [to, ts]. Q(t) = I(1 — e 2t~%))? was chosen to assign major weight

tf - {x(t)TQ(t) (t)}dt, where Q(t) is a positive semi-definite symmetric

to steady-state error, where I is the identity matrix, A > 0, and ¢ is a positive
integer. '

e In second index, chtrol effort is also measured by its overshoot; which is defined

by infinity norm umam leorts] abs(u(t)).

e Finally, the last index is used to measure average control effort at implementation

interval [to, ty]. This index is defined by Jue = s to ftf {u(t) Ju(t) }dt.

System (27) was electronically realized by means of operational amplifiers TLO84CN, an
analog multiplier AD633§N and passive components. A DSpace 1104 acquisition data

15



board was used to measﬁre control action, capture system state values along implemen-
) tation time and estimaté states and parameter values from adaptive observer. Figure
1 shows a photo of expe_fimental setup including details of oscilloscopes depicting time
series during experimenté. Schematic of used circuit is in Figure 2. In this way, control

schemes were implementéd selecting the following parameters:
e State feedback linea?n'zation (28): ky =27, ko =27 and k3 = 9.

e Backstepping (32) p=1k=1and k= 1.

Sliding-mode (36): o1 = 1, o = 1, k = 0.04, ky = 0.34, ky = 0.1, ks = 0.08,
ks = 0.3224, b, = 0.01 and o = 2.02.

Adaptive Obser’uerf (15): p, = 50, pg = 2, S,(0) = I, Sp(0) = I and A(0) =
[10, 10, 10]7. |

Robust control'withé low-order parametrization (40)-(41): ky = 27, ko = 27, k3 = 9,

L=10,k =4, k3 =6, kg =4 and ry = 1.

B Experimental results E»are shown in the Figures 3, 4, 5, and 6. Now, a comparative
study is presented for théa four controllers. Performance indexes are evaluated. Table 1

shows indexes values from evaluation of each controller.

Table 1: Performance indexes from experimental implementation.

Qontrol strategy Js Umaz Jue

State feedback linearization || 0.026381 | 43.7965 || 0.0002980
: Backstepping || 0.030910 || 4.0440 | 0.0000097
- Sliding-mode | 0.199010 || 3.9620 | 7.771480

bLow—order parametrization || 0.818650 || 2.9216 || 0.601240

As a summary of expérimental implementation, note the following remarks from Table
1: (i) State feedback linearization shows a small stabilization error J, which is lightly
smaller than Backsteppiﬁg but has the largest control action overshooting. Although

this controller shows the fastest response (see Figure 3), the largest overshoot can induce
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saturation in actuator in éspeciﬁc implementations inducing closed-loop will be broken as
consequence. (ii) The sliding—mode strategy exhibits acceptable convergence rate without
overshooting but the lar;gest control effort (see Figure 5). Actually, the control action
includes high frequency Signal demanding largest average control effort J,., which could
be unsuitable for systemsz_: because of chattering phenomena. (iii) Robust control with low
parametrization shows t};ie lowest overshoot but the largest value for J; as consequence
of slowest response. Thi§ fact could be undesirable for implementations requiring faster
suppression.

Since the lowest averfage control effort controller with fast response and moderated
overshoot was found for‘i Backstepping, therefore it seems as best candidate for chaos

suppression implementations.

6 Conclusions

In this paper, a study of control performance has been shown in regard to chaos sup-
pression. Three control étrategies, based on an adaptive observer, have been presented
to evaluate them: State feedback linearization, Backstepping and Sliding-mode. Further-
more, the convergence of 1i;he adaptive observer has been shown, where sufficient conditions
have been given. Then, a stability analysis of the closed loop system has been presented.
Additionally, a robust cox,iltrol with low-order parametrization has been also considered in
this comparative study. :

The comparative study of these schemes has been done considering three performance
indexes, which have beenétaken into account to measure stabilization error, control effort,
and average control effor;c. Experimental results were measured to evaluate the perfor-
mance of each scheme. As a summary, state feedback with adaptive observer yields the
lowest stabilization errorf} but largest overshoot. The lowest average control effort was
obtained by backsteppiné strategy. Lowest overshoot was exhibited by robust control
with low-order parametrifzation, which had the largest stabilization error. It follows that
backstepping method shdwed best performance.
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Figure 1: Photo of experimental setup.
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Figure 2: Schema;tic diagram for physical realization of the system (27).
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Adaptive observed-based feedback control with iow-order parametrization
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