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Abstract In this work, an output-feedback adaptive SP-
SD-type control scheme for the global
stabilization of robot manipulators with bounded inputs
is proposed. Compared with the output-feedback
adaptive approaches previously developed in a bounded-
input context, the proposed velocity-free feedback

position

controller guarantees the adaptive regulation objective
globally (ie. for any initial condition),
discontinuities throughout the scheme, preventing the
inputs from reaching their natural saturation bounds and
imposing no saturation-avoidance restrictions on the

avoiding

choice of the P and D control gains. Moreover, through its
extended structure, the adaptation algorithm may be
configured to evolve either in parallel (independently) or
interconnected to the velocity estimation (motion
dissipation) auxiliary dynamics, giving an additional
degree of design flexibility. Furthermore, the proposed
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scheme is not restricted to the use of a specific saturation
function to achieve the required boundedness, but may
involve any one within a set of smooth and non-smooth
(Lipschitz-continuous) bounded passive functions that
include the hyperbolic tangent and the conventional
saturation as particular cases. Experimental results on a 3-
degree-of-freedom manipulator corroborate the efficiency
of the proposed scheme.

Keywords Adaptive Control, Output Feedback, Global

Regulation, Saturation, Robot Manipulators

1. Introduction

Since the publication of [1], the Proportional-Derivative
with gravity compensation (PDgc) controller [2] has
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proved to be a useful technique for the regulation of robot
manipulators. In its original form, such a control
technique achieves global stabilization under ideal
conditions, for instance unconstrained input,
measurability of all the system (state) variables and exact
knowledge of the system parameters. Unfortunately, in
actual applications, such underlying assumptions are not
generally satisfied, giving rise to unexpected or
undesirable effects, such as input saturation and those
related to such a nonlinear phenomenon [3], noisy
responses and/or deteriorated performance [4], or steady-
state errors [5]. However, such inconveniences have not
necessarily rendered the PDgc technique useless. Inspired
by this control method, researchers have developed
alternative  (nonlinear or dynamic) PDgc-based
approaches that deal with the limitations of the actuator
capabilities and/or of the available system data, while
keeping the natural energy properties of the original
PDgc controller, which are the definition of a unique
arbitrarily-located closed-loop equilibrium configuration
and motion dissipation. For instance, extensions of the
PDgc controller that cope with the input saturation
phenomenon have been developed under various
analytical frameworks in [6, 7, 8, 9, 10 and 11]. Indeed,
assuming the availability of the exact value of all the
system parameters and accurate measurements of all the
link positions and velocities, a bounded PDgc-based
approach was proposed in [6] and [7]. In these works, the
P and D terms (at every joint) are each explicitly bounded
through specific saturation functions; a continuously
differentiable one, or more precisely the hyperbolic
tangent function, is used in [6] and the conventional non-
smooth one in [7]. In view of their structure, these types
of algorithms have been denoted SP-SD controllers in
[12]. Two alternative schemes that prove to be simpler
and/or give rise to improved closed-loop performance
were recently proposed in [8]. The first approach includes
both the P and D actions (at every joint) within a single
saturation function, while in the second one all the terms
of the controller (P, D and gravity compensation) are
covered by one such function, with the P terms internally
embedded within an additional saturation. The exclusive
use of a single saturation (at every joint) including all the
terms of the controller was further achieved through
desired gravity compensation in [13]. Moreover, velocity-
free versions of the SP-SD controllers in [7] and [6] (still
depending on the exact values of the system parameters)
are obtained through the
developed in [9] and [10]. In [9] global regulation is
proven to be achieved when each velocity measurement
is replaced by the dirty derivative [14] of the respective
position in the SP-SD controller of [7]. A similar
replacement in a more general form of the SP-SD

design methodologies

controller is proven to achieve global regulation through
the design procedure proposed in [10] (where an
alternative type of dirty derivative, which involves a
saturation function in the auxiliary dynamics that gives
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rise to the estimated velocity, results from the application
of the proposed methodology). Furthermore, an output-
feedback dynamic controller with a structure similar to
that resulting from the methodology in [10], but which
considers a single saturation function (at every joint)
where both the position errors and velocity estimation
states are involved, was proposed in [11] (where a
dissipative linear term on the auxiliary state is added to
the saturating velocity error dynamics involved for the
dirty derivative calculation). Extensions of this approach
to the elastic-joint case were further developed in [15].

Furthermore, SP-SD-type adaptive algorithms that give
rise to bounded controllers, while alleviating the system
parameter dependence of the gravity compensation term,
have been developed in [16, 17, and 18]. In [16] global
regulation is aimed for, through a discontinuous scheme
that switches among two different control laws, under the
consideration of state and output feedback. Both
considered control laws keep an SP-SD structure similar
to that of [7]; the first one avoids gravity compensation
taking high-valued control gains (by means of which the
closed-loop trajectories are lead close to the desired
position) and the second one considers adaptive gravity
compensation terms that are kept bounded by means of
discontinuous  auxiliary dynamics. Each
measurement is replaced by the dirty derivative of the
corresponding position in the output-feedback version of
the algorithm. Unfortunately, a precise criterion to
determine the switching moment (from the first control
law to the second one) is not furnished for either of the
developed schemes.

velocity

In [17] semi-global regulation is proven to be achieved
through a state feedback scheme that keeps the same
structure as the SP-SD controller of [6] but additionally
considers adaptive gravity compensation. The adaptation
algorithm is defined in terms of discontinuous auxiliary
dynamics, by means of which the parameter estimators
are prevented from taking values beyond some pre-
specified limit, which consequently keeps the adaptive
gravity compensation terms bounded. This approach was
further extended in [19] where the control objective is
defined in task coordinates and the kinematic parameters,
in addition to those involved in the system dynamics, are
considered to be uncertain too.

In [18] a controller that keeps the SP-SD structure of [6] is
proposed, where each velocity measurement is replaced
by the dirty derivative of the corresponding position and
an adaptive gravity compensation term with initial-
condition-dependent bounds is considered. Based on the
proof of the main result, semi-global regulation is claimed
to be achieved.

Let us note that, by the way the SP and SD terms are
defined in the adaptive schemes mentioned above, the
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bound of the control signal at every link turns out to be
defined in terms of the sum of the P and D control gains
(and of an additional term involving the bounds of the
parameter estimators). This limits the choice of such gains
if the natural actuator bounds (or arbitrary input bounds)
are to be avoided. This, in turn, restricts the closed-loop
region of attraction in the semi-global stabilization cases.
On the other hand, as far as the authors are aware, the
semi-global and/or discontinuous approaches developed
in [18] and [16] are the only output-feedback bounded
adaptive algorithms proposed in the literature. Moreover,
a continuous adaptive scheme with continuous auxiliary
dynamics, which achieves the global regulation objective,
avoiding input saturation and disregarding velocity
measurements in the feedback, is still missing in the
literature and consequently remains an open problem.
These arguments have motivated the present work,
which aims to fill in the aforementioned gap.

It is worth adding that recent works have focused on the
global regulation problem in the bounded-input context
through nonlinear PID-type controllers. This is the case
for instance of [20], [21], [22] where state-feedback and
output-feedback schemes were presented, and [23] where
a controller with the same structure as the state-feedback
algorithm presented in [22] was previously proposed.
Such PID-type algorithms are not only independent of the
exact knowledge of the system parameters, but also
disregard the structure of the system dynamics (or of any
of its components). However, in a bounded-input context,
the design of an output-feedback adaptive scheme that
solves the regulation problem globally, avoiding input
saturation, and being free of discontinuities, remains an
open analytical challenge. Moreover, as will be
corroborated in subsequent sections of this work,
regulation towards a suitable configuration permits the
output-feedback adaptive scheme to provide an
estimation (exact under ideal conditions) of the system
parameters (involved in the gravity-force vector), which
is not the case for other types of controllers.

In this work, an output-feedback adaptive SP-SD-type
control scheme for the global regulation of robot
manipulators with saturating inputs is proposed. Through
its extended structure, the adaptation algorithm may be
configured to evolve either in parallel (independently) or
interconnected to the velocity estimation (motion
dissipation) auxiliary dynamics, giving an additional
degree of design flexibility. With respect to the previous
output-feedback adaptive approaches developed in a
bounded-input proposed  velocity-free
feedback controller guarantees the adaptive regulation
objective globally (i.e. for any initial condition), avoiding
discontinuities throughout the scheme, preventing the
inputs from attaining their natural saturation bounds and
imposing no saturation-avoidance restriction on the choice
of the P and D control gains. Furthermore, contrarily to the

context, the
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adaptive schemes of the previously cited studies, the
approach proposed in this work is not restricted to
involving a specific saturation function to achieve the
required boundedness, but may involve any one within a
set of smooth and non-smooth (Lipschitz-continuous)
bounded passive functions that include the hyperbolic
tangent and the conventional saturation as particular cases.
3-degree-of-freedom
manipulator corroborate the proposed contribution.

Experimental results on a

2. Preliminaries

Let XeR™ and yeR". Throughout this work, X;
denotes the element of X at its i row and jth column,
X; represents the i" row of X and y; stands for the i
element of y. 0, denotes the origin of R" and I,
represents the nxn identity matrix. H : H denotes the
_ no 2
Yy H_ YoV

matrices, ie.,

standard Euclidean norm for vectors, i.e.,
and  the
HXH = ﬂ’max(XTX) ’ where 4

norm  for
(XTX) represents the

induced
max
maximum eigenvalue of X'X. The kernel of X is
denoted ker (X). Consider a continuously differentiable
scalar function ¢:R—R and a locally Lipschitz-
continuous scalar function ¢:R — R, both vanishing at
zero, i.e., {(0)=¢(0)=0. Let ' denote the derivative of
¢ with respect to its argument and D¥¢ stand for the
upper right-hand (Dini) derivative of ¢ [24, App. C.2]
and [25, App. 1. Thus ¢(c)=| 3D+¢(r)dr and

(Cof)&) = (BN = [ ¢ (@)D plr)dr .

Let us consider the general n-degree-of-freedom (1-DOF)
serial rigid robot manipulator dynamics with viscous
friction [26, 27]:

H(q)q+C(g,q)q+Fq+g(q) =7 o

where ¢,4,§eR" are,
(generalized coordinates), velocity and acceleration vectors.

respectively, the position

1 The upper right-hand derivative D'y
Hc+h) - 9(5)

+ h
h—0
a sequence of real numbers {xn} is a scalar w satisfying the

is defined by

DY g(¢) = lim sup where limsup, , =~ of
following two conditions [24, App. C.2]: 1) for every & >0, there
exists an integer N such that >N implies x,, <w + & and 2)
given €>0 and m >0, there exists an integer 71> m such that
x,>w=-¢. In particular, if ¢ is differentiable at ¢ then
DY g(c) = i—f(g) . For a locally Lipschitz-continuous scalar
function ¢(¢) that is not differentiable at a countable number of
values of ¢, say Sis i=12,.., D'§(c) is a piecewise continuous
function with bounded discontinuities but well defined at ¢;,

i=12,..
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4

H(g) e R™" is the inertia matrix and C(q,9)j, Fq, g(q),
reR" are,
centrifugal, viscous friction, gravity and external input
generalized forces, with F e R™" being a positive definite

respectively, the vectors of Coriolis and

constant diagonal matrix whose entries f; >0, i=1,...,n,
are the viscous friction coefficients. Some well-known
properties characterizing the terms of such a dynamical
model are recalled here (see for instance [2, Chap. 4] and see
further [2, Chap. 14] and [28] concerning Property 6 below).

Property 1 The inertia matrix is a positive definite symmetric
L, <H@) < uyl,, YqeR", for some
positive constants u,, < iy, .

bounded matrix i.e.,

Property 2 The Coriolis matrix satisfies HC(q,q‘)H <
Y(q,4) € R" xR", for some constant k. >0.

Pro erty 3 The Coriolis matrix and H= H satisfy
H(q,q) C(q,q)]q 0, ¥(g,9)eR"xR", and actually
H(q )=Clg.)+CT(q,4).

Property 4 The viscous friction coefficient matrix satisfies
f I P<xTFx <, 11x1 2, YxeR", where

0< f,, =min,{f;} <max;{f;} = fo.

Property 5 The gravity vector g(q) is bounded, or
equivalently every element of the gravity vector g;(q),
i=1,..,n, satisfies 1g,(q)I< Bgi, VgeR" for some positive
constants Bgi, i=1,...,n.2

Property 6 The gravity vector can be rewritten as
2(q,0)=G(q)0, where 6eRP is a constant vector whose
elements depend exclusively on the system parameters and
G(q) e R (the regression matrix) is a continuous matrix

fumction, whose elements depend exclusively on the configuration
variables and do not involve any of the system parameters.
Equivalently, the potential energy function of the robot can be

rewritten as U(q,0) = Y(9)0, where Y(q) € R™P (the regression

vector) is a continuous row vector function whose elements depend
exclusively on the configuration variables and do not involve any of

the system parameters. Actually, G" (9)= %YT (9),
equivalently, Y (q)= zl J . G (g, 5 Git> 5 G- 5Gn )

, Vie{l,..,p}, with q :(qi,...,q;)T being the reference

configuration where U(q*,H) =0.

Property 7 Consider the gravity vector(q,0). Let O
represent an upper bound of 10.1, such that 16;I< O -

] T ]
viell,...,p}. Let Oy = (‘9M1/ QMP) and

2 Property 5 is not satisfied by all types of robot manipulators but
it is, for instance, by those with only revolute joints [2, Sect. 4.3].
This work is addressed to manipulators satisfying Property 5.
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O =[-Op1, 001 1% [—HMP,G p]. By Properties 5 and 6,
there exist positive Constants B i Bgl, i=1,...,n, such that
lg;(x,y) = |G(x)y|<Bgl , 1—1 n,VxeR", Vye®.
Furthermore there exist positive constants BG , Bg and Bg
such that (x) I< BG , HG (x)H< BG and HG(x)H< BG,
VxeR", i N, ]— oD

Let us suppose that the absolute value of each input z;
(ith element of the input vector 7) is constrained to be
smaller than a given saturation bound T; >0, ie. I7;I<T;,
i=1,...,n.In other words, letting u; represent the control
signal (controller output) relative to the i degree of

freedom, we have:
u.
7, =Tsat (T:] 2

i=1,...,n, where sat() is the standard saturation
function, i.e., sat(¢)=sign(¢)min{l¢|,1}.

Let us note from (1) and (2) that T; > B i (see Property 5),
Vi=1,...,n, is a necessary condition for the manipulator to
be stabilizable at any desired equilibrium configuration
q; € R". Thus, the following assumption turns out to be
crucial within the analytical setting considered in this work:

Assumption1 T, > B, Viel,...,n

8t
The control schemes proposed in this work involve

special functions fitting the following definition.

Definition 1 Given a positive constant M, a non-decreasing
Lipschitz-continuous function o:R—>R is said to be a
generalized saturation with bound M if

a) ¢o(s)>0 forall ¢#0;
b) lo(s)I<M forall ceR.

Functions meeting Definition 1 satisfy the following:

Lemma 1 Let 0:R—R be a generalized saturation with
bound M and k be a positive constant. Then

1 limg, D*o(c)=0;

2. 3oy, €(0,%) such that osD+a(g)s(;;w, VeeR

3. (’@ <j o(krdr <55 e eR;

4. J.Oga(kr)dr >0, Ve#0;

5. Iga(kr)dr —w as lgl>w;

6. if o is strictly increasing then, for any constant ae€ R,
o(¢)=0o(s+a)—o(a) is a strictly increasing generalized

saturation with bound M = M+1co(a)!.

Proof. See Appendix A.
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3. The proposed controller

Let  M,=(M,,...,M,)" and ©,=[-M,,M,]x

~~-><[—Map,Map], with Maj, j=1,...,p, being positive
constants, such that
I 6’]- <M o (3a)
j=1,..,p and
M
By <T; (3b)

Vi e{l,...,n} , where, in accordance to Property 7, BQ;I"
are positive constants, such that | g;(x,y) =l G;(x)y < BZI ,
i=1..,n, VxeR", Vye®,. Let us note that
Assumption 1 ensures the existence of positive values
M,;,
notice that inequality (3b) is satisfied if 2 Bc, My <T;,
B; 1I|M, T, or B;IIM,II<T;, i=1,..,n. Actually,
Z?:lBGunj, B I1M, 11 or Bl1M,!| may be taken as
the value of BQ;I" as long as inequality (3b) is satisfied.

Vje{l,...,p}, satisfying inequalities (3). Also

The proposed output-feedback adaptive control scheme
is defined as

u(q,9,0) = —sp(Kpq) — s, (Kp9) + G(q)0 (4)

where g=g-g, for any constant (desired equilibrium
position) vector g, €R", G(q) is the regression matrix
related to the gravity vector, according to Property 6,
such that g(q,0)=G(9)¢, Kp eR™" and K, eR"™" are
positive definite
Kp =diaglkpy,...,kp,] and K, =diaglkp,,...,kp,] with
kp; >0 and kp,; >0 forall i=1,...,n,

diagonal matrices, ie.,

sp:R"—>R"

X (Upl(x1) ey UPn(xn))T

and
sp:R"—>R"
x= (opy(®) e o (x,)]
with op,() andop(), i=1,.,n, being generalized
saturation functions with bounds My, and Mp,; such that
Mpi+MDi<TifB§f” (5)
i=1,..,n2 9eR" (the velocity estimator) and

ée@ucRP (the parameter estimator) are the output
vector variables of (interconnected) auxiliary dynamic
subsystems, defined as

3 Observe that the satisfaction of inequalities (3) guarantees
positivity of the right-hand side of inequality (5). As will become
clear later, inequality (5) constitutes the tuning criterion on Mp,
and Mp,; through which the input variables u; are prevented
from reaching their natural saturation bound T, along the
closed-loop trajectories.

www.intechopen.com

g, =—AKg'sp(Kp(q, + B7)) (6a)

8 =q,.+Bq (6b)

(the velocity estimation [or motion dissipation dynamic]
algorithm)

. =G (@sp(Kp) + asp(Kp9)] (72)

0=s,(¢. -1 (9) 7B

(the parameter estimation [or adaptation] algorithm),
where AeR"™, BeR"™ and T'eRP? are positive
definite diagonal matrices ie, A =diag[a,,...,a,] and
B =diag[b,,...,b,], with 4, >0 and b, >0 forall i=1,...,n
and deiag[yl,...,;/p] with 7; >0 forall j=1,..,p, g,
and ¢. are the (internal) state vectors of the auxiliary
dynamics in Egs. (6a) and (7a) respectively, Y(g) is the
regression vector related to the potential energy function,
according to Property 6,i.e, U(g,0)=Y(q)0,

s, :RF - RF

X (cral(xl) ey aap(xp))T

with (), j=1,...,p, being strictly increasing generalized
saturation functions with bounds M, i satisfying
inequalities (3), & is a constant that may arbitrarily take any
real value and ¢ is a (sufficiently small) positive constant. A
block diagram of the proposed output-feedback adaptive
control scheme is shown in Fig. 1.

CONTROLLER

[NV
—{ X )

ACTUATOR
, - . P
T4 s, (Ku) =5, (K, 9)+ G0 - ROBOT

Auxiliary dynamic subsystems
Parameter estimator

i
b =~ G ()5, (K7) + a5, (K, 9)
0=5,(¢.-TY" (q))

-

Velocity estimator
G =—AK, "5, (K (gc + BD))
§=q. +Bg

Figure 1. Block diagram of the proposed scheme

Remark 1 Observe that the control scheme in (4), (6) and
(7) does not involve the exact values of the elements of 0.
It only requires the satisfaction of inequalities (3). In other
words, only strict bounds M, of IHJ- I, j=1...,p,
satisfying inequalities (3b) are involved. Notice further
that the velocity vector 4 is not involved in the
expressions in Egs. (4), (6) or (7).

Remark 2 Note that the simplest version of the proposed
control scheme arises by taking o =0 . However, the « -
term extending the adaptation dynamics in (7a) has been
included for the sake of generality, since an analogue

Daniela J. Lépez-Araujo, Arturo Zavala-Rio, Victor Santibafiez and Fernando Reyes: Output-Feedback Adaptive SP-SD-Type Control

with an Extended Continuous Adaptation Algorithm for the Global Regulation of Robot Manipulators with Bounded Inputs



term was considered in a previous approach [18].
Furthermore, the « -term in (7a) has a natural influence
in the closed-loop responses which could be used for
performance adjustment purposes. This aspect is not
explored in this work.

4. Closed-loop analysis

Consider system (1) and (2), taking u:u(q,&,é) as

defined in Eqgs. (4), (6) and (7). Define the variable
transformation

q)(4q q-144
Glac|—] q.+Bla-q4) ®)
9)\4) \g-TY'(9)-¢

with ¢*=(¢f,...,¢%)T, such that s,(4)=6, or

equivalently, ¢; = a;j (Gj) , j=1,...,p * Observe that from

the satisfaction of inequalities (3) and (5), we have
_ — * M .

(G +64,9,5,8 + )|« Mp + Mpy + BYs < T, i=1,..m,

v(q,9,¢)€ R"x R"xR?, whence, in view of (2), one sees

that

Tl->| ui(§+qd,9,su($+¢*)) | u; =z 1, )
i=1,...,n,97,9¢)eR"<xR" xRV
Thus, under the consideration of Property 6 and the

variable transformation (8), the closed-loop dynamics
adopt the (equivalent) form®

H(q)j+C(q,4)j + Fq
_ _ - (10a)
= —sp(Kp7) —5p (Kp9) + G(9)5,(9)
§=—-AKp'sp(Kp9)+Bi (10b)

¢ =-TG" () esp(Kpq)+aesy(Kp9)+4q]  (100)

where 5,(¢)=5,(4 +¢ )—s,(4 ). Note that by point 6 of
Lemma 1, the elements of 5, #), ie.,
Goi(4)) =0, (4; + ;) —0,(4;), j=1,...,p, turn out to be
strictly increasing generalized saturation functions.

Remark 3 Let us note that from Egs. (10) under stationary
conditions, ie, by considering ¢=¢= 9= 0, and
a =0,, q, proves to be the unique equilibrium position
is the
unique equilibrium position error of the closed loop),

of the closed-loop system (or equivalently, 0,

4 Notice that their strictly increasing character renders the
generalized saturations o, i J=lp, (involved in the
definition of s ) invertible.

5 Observe from the variable transformation defined through (8) that
7=7 +q,, and consequently H(q)=H(q +q,), C(q,4)=C(q +q,,4)
and G(q) =G(q +q,) . However, for the sake of simplicity, H(q),
C(q,9) ,and G(g) are used throughout the paper.
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while the parameter estimation error equilibrium vector
¢, turns out to be defined by the solutions of the

equation G(q1)5,(8,)=0,,, and consequently
5,(4,) e ker(G(g,))
Let
&= | Hm - (11a)
Hm (:BP ta ﬂDo)
& = 5 Ju ; (11b)
Bup +§A+|a|[ﬂMD +g’:]
2
& = ﬂ2mﬂ (11c¢)
1+ +75m | o |
&
where

i

, '_ .
ﬂP:maX{o-PiMkPi} » Pro =max{—O-D’Z Dl}

Bup =k Bp+upBp 1 Bup =kBp + 1B

. { a; } z 2\/fmﬂm

3
ﬂMa

Bp1= ml,aX{GDiMkDibi} ¢ Bra = fu + #nPpa

Ppa = ml_ax {UDiM ai}

with U}DIM and o-biM being the positive bounds of
D op() and D'op,() respectively, in accordance to
point 2 of Lemma 1, and u, , #,, k., f,,and f,, as
defined in Properties 1, 2 and 4. We are now ready to
state the main analytical result.

Proposition 1 Consider the closed-loop system in Egs.
(10), under the satisfaction of Assumption 1 and
inequalities (3) and (5), and the positive constants &,
k=0,1,2, defined in Egs. (11). Then, given any positive
definite diagonal matrices K,, K5, A, B and I', and
any o €R there exists & >min{g,,&;,&,} such that, for
any ¢e (0,&"), the trivial solution (7, 9,4)t) = ©,,0,,0,)
is stable and, for any initial condition
(7,6,%,4)0)e R"xR"xR"xRV, (7,9)(t)—> ,,0,) as
t—>w, and 5(4(t) > ker(G(q;) as
lo;() Hu,(t) <T;, i=1,...,n, VE20.

t >, with
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Proof. From (9) one sees that along the system trajectories
l7;(t) I=lu;(t)I<T;,, Vt>=0. This proves that, under the
proposed output-feedback adaptive scheme, the input
saturation values T; are never reached. Now, in order to
develop the stability/convergence analysis, let us define
the scalar function

R o
V(@.4,8,8) =0 H(g)i+ esp(Kp) H(@)q
+aesh (Kpd)H(q) + jj sT(Kpr)dr

g7 -1 ¢ _T, \1
+ .[0” sp(Kpr)B™dr + J.Op s, (NIdr
where

q;
Z:lzl IO opi(kpit;)dr,;

no% -1
= 21:1 Io opi(kpir)b; " dr;

'[g“ sg(KPr)dr =

4T -1
jO“ sp(Kpr)Bdr

and

¢ T, \r-1 & -1
J.Op s, (NI dr = Z;J.O/ 5 (1))7; dr]-
iz

with ¢ satisfying

&< ¢y, =min{g,, &, &} (12)

Observe that from Property 1 and point 3 of Lemma 1, we
have

V(@@,d,9,8)2 Wo@d,9)+1-5)[ sp(Kpr)dr

7 (13)
I -1 T, \-1
+(1-6y)|. sp(Kpr)Bdr+| s, (r)[ dr
0 -[0“ p\&p '[Op .
where
T _
sp(Kpg) ! [sp(Kpg) !
Wo@.q.9)=—1  1qll Q| Mgl
[sp(Kpd) !l Hsp(Kpd) !l
with
5,
Qo =| —tym Hiy —laleuy
5,
0 -lal o
aleuy, 7
and 0, is a positive constant satisfying
2
8—2 <9y <1 (14)
0

(see (12)). Furthermore, note that, by (14), W;(7,4,9) is
positive definite (since withe<g,, <g,, in accordance
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with (12), any ¢, satisfying (14) renders Q, positive
definite) and observe that W(0,,4,0,) =~ as HqH —> .
From this, inequality (14) and points 4 and 5 of Lemma 1
(through which one sees that the integral terms in the
right-hand side of (13) are radially unbounded positive
definite functions), V(7,4,9,4) is concluded to be
positive definite and radially unbounded. Its upper right-
hand derivative along the system trajectories V =D*V
[25,App. 1] [29,86.1A] is given by

V(7,q,9¢)

.T O T,., — .
=q H(q)q+ 51 H(q,q9)q+ esp(Kpq)H(q)q

+ &4 H(q,)s, (Kp7) + &' H(@)sp(Kp7)Kpd

+ags) (K 9)H(q)j +aeq" H(q,d)s, (Kp9)
+ agi" H(g)s(Kp9)Kpd + 55 (Kp)]
+s£(KD9)B‘19+§HT(;Z)F;

= 4" Fj = a5y (KpT)Fd - 255 (Kp)sp(K,7)
- (L+ @)esp(Kpq)sp (Kpd)
+&q' Cq,0)sp(Kp) + &0 H(q)sp(KpT)Kpi
—aesh(Kp9)Fj— aes] (Kyp9)s ) (K )
+aq' C(q,)sp(Kp9)
—aeq H(g)s)) (K ) As (K p9)
+ asi" H(g)s),(Kp9)K B
—sp(Ky 9B AK s (K, 9)

where H(g)ij, 9 and gZ have been replaced by their
equivalent expression from the closed-loop manipulator
dynamics in Egs. (10), Property 3 has been used and

SYP(KPE) =diag[D"op;(kpiy),---, D" op, (kp,1,,)]
sp(Kpq) = diag[D"op, (kpi@),---s D+UDn(kDrﬁn)]

Observe that from Properties 1, 2 and 4 and points (b) of
Definition 1 and 2 of Lemma 1, we have

V(@.4.9,9)

<—f G P wefo, Hsp(Kpg) TG =61 1sp(Kpg) | P
+11+alellsp(Kpg) ! 11sp(Kpd) 1 +kBp 11411
+ et Bp 111 P +lalefy 1111 sy (Kp9)l |
—sallsp(Kp® | P +lalek-Bpllgl?
+lal gy, a1 1 sp(Kpd) | 1+ el gy, B 11411

~ B, Isp(Kp9)| 12
<-Wi(4.9) - W,(q,9) - W;(q, )

where

(s Y (s (K 1
Wl(q’q)_( gl jgl{ gl
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8

gl gl
s (Kp9) | Q| Isp(Kp9)l |

o (MspKe I (1sp(Kpi)

W,(4,9) =(

with

e
2

N [o

le

Kl

- J;M 01 fm _g(ﬂMP"'laIﬂMD)

lxl
_ (1_51)fm _%ﬂw
2= laleB,,,
S -6,

£ _N+ale
Q.= 2 2
3 _N+ale
2

ag+0o,p,,
where ¢, is a positive constant satisfying

0<9,, =¢| max l,l —lft—l
& &) &

lale
<o <l-—
3

3

(15)

=0 <1

Let us note that the fulfilment of (12) guarantees the
existence of values ¢, €(0,1) that satisfy (15) (since
& <&y <minf{g},¢&,}, in accordance with (12), implies that
O, < 010 ), While the satisfaction of (15) renders W,(q,4),
W,(4,9) and W;(g,9) positive definite (with respect to
their arguments, since, under such a condition, Q;, Q,,
and Q, turn out to be positive definite). Hence,
V(7,4,9,4)<0, ¥(7,4,94)eR"xR"xR"xR’  with
V(7,4,9,4)=0<—(7,4,9)=(0,,0,,0,). Therefore, by
Lyapunov's second method® the trivial solution
(7,%,4)(t) = (On,On,Op) is concluded to be stable. Now,_in
view of the radially unbounded character of V(q,4,%,¢),
the set Q={(7,4,9,4) eR"xR"xR"xR" :V(7,q,9,4)
<c} is compact for any positive constant ¢ [24, p.128].
Moreover, in view of the semi-negative definite character
of V(7,4,9,4), Q is positively invariant with respect to
the closed-loop dynamics [24, p.115]. Furthermore, from
previous arguments: E:={(7,4,9,4) €Q: V(7,4,9,4)
=0} ={7,§,9¢) €Q:G=4=9=0,}. Further, from
Remark 3, the largest invariant set in E , denoted M, is
given as M ={(7,4,9,¢) € E:5,(¢) € ker(G(q,))} . Thus, by
the invariance theory [29, Sect. 7.2] (more specifically, by
[29, Theorem 7.2.1], see Appendix B), we have
(7,9,9,4)0)eQ =(7,4,%4)t)>M as t—w. Since

6 See for instance [25,Chap. II, Sect. 6], where (generalized)
statements of Lyapunov's second method are presented under
the consideration of locally Lipschitz-continuous Lyapunov
functions and their upper right-hand derivative along the system
trajectories.
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this holds for any c¢>0 and V(7,4,%,¢4) is radially
unbounded (in view of which Q may be rendered
arbitrarily large), we conclude that for any
(7,4,9,4)0)e R"xR"xR"xR?, (7,9)(t)—>(0,,0,) as
t > and §u(¢7(t))—>ker(G(qd)) as t — . Finally, from
(12) and its sufficient character, as a condition supporting
the proof, the stated stability/convergence result is
concluded to hold with &€ (0,&") forsomes >¢,,.

Corollary 1 If GT(qd)G(qd) is non-singular then the trivial
solution (7,9,6)t) = (On,On,Op) is globally
asymptotically stable.

Proof. Note on the one hand that non-singularity of
G'(4,)G(q,) implies that ker(G(q,))=10,} and on the
other hand that §a(¢)=0p<—>¢=0p. Then _from
Proposition 1 we have that, for any (7,4,%,¢) (0)
eR"xR"xR"xR”, (7,9,4)(t) —(0,,0,,0,) as t—o,
whence the stability of the trivial solution
(q,y,a)(t)s(on,on,op) is concluded to be globally
asymptotical [24, Sect. 4.1], [25, Chap. I, Sect. 2.10-2.11].

Remark 4 Observe that the coefficient ¢ is involved in
the control algorithm through the adaptation subsystem
in Egs. (7). Thus, inequality (12) (obtained as a condition
under which the proposed Lyapunov function and its
upper right-hand derivative along the system trajectories
get the expected analytical properties) may be taken as a
tuning criterion on ¢, through which the stated
stability/convergence result is guaranteed. Furthermore,
notice that such a tuning criterion on ¢ does not require
the exact knowledge of the system parameters. Indeed,
observe that an estimation of the right-hand side of
inequality (12) may be obtained by means of upper and
lower bounds of the system parameters and viscous
friction coefficients (more precisely, nonzero lower
bounds of 4, and f,, and upper bounds of ,,, k. and
fum, see Egs. (11)). Furthermore, as pointed out in the
proof of Proposition 1, the satisfaction of (12) is not
necessary, but it is only sufficient for the closed-loop
analysis to hold, which permits the consideration of
values of ¢ higher than ¢,,, up to certain limit g,
without destabilizing the closed loop.

Figure 2. Experimental setup
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5. Experimental results

In order to experimentally corroborate the efficiency of
the proposed scheme, referred to as the SP-SDc-ga
controller, real-time control were
carried out on a 3-DOF manipulator. The experimental
setup, 3-revolute-joint
anthropomorphic arm located at the Benemerita
Universidad Autonoma de Puebla, Mexico. The actuators are
direct-drive (from Parker
Compumotors) operated in torque mode, so they act as a
torque source and accept an analogue voltage as a

implementations

shown in Fig. 2, is a

brushless motors

reference of torque signal. Position information is
obtained from incremental encoders located on the
motors. The setup includes a Pentium host computer and
a system of electronic instrumentation, based on the
motion control board MFIO3A, manufactured by
Precision Microdynamics. The robot software is in open
architecture, whose platform is based in C language to
run the control algorithm in real time. The control routine
registers data generated during the first 2000 samples at a
default sample time of T, =2.5ms, but T, can be changed
to higher in accordance to the desired
experimental duration. The experiments carried out in the
context of this work, whose results are presented below,
were run taking T,=0.12s. A more detailed technical
description of this robot is given in [30].

values

For the considered experimental manipulator, Properties
5 and 6 are satisfied with

0 0
G(q)=| sing,sin(g, +q3) |, €=

[38.465
0 sin(g, +43)

1.825} (Nml™ (16)

B =0, Bg2=40.29 N, Bg3= 1.825 Nm, and

gl

Y(g)= (l —c0sq, 1—cos(q, +¢, ))

with g el,={geR® 19, =q3=0}, e, such that
U(q*,ﬁ)zO, Vq* €U, (see Property 6). The maximum
allowed torques (input saturation bounds) are T, =50
Nm, T, =150 Nm and T, =15 Nm for the first, second
and third links respectively. From these data, one easily
corroborates that Assumption 1 is fulfilled.

The involved saturation functions were defined as
O'pi(g):Mpisat(g/MH), aDi(g):MDisat(g/MDi),
i=1,2,3,and

o ()= c VIgISLaj
u]g
pi(c) YlgI>L,

j=1,2, where

www.intechopen.com

. ¢ —sign(g)L,;
p;(¢) =sign(5)L,; +(M,; — L) tanh [J]

aj = Laj

with 0<L, i< M, i Let us note that with these saturation

functions we have O'}JIM = abiM =1, Vie{l,2,3}. The
experimental implementations were run fixing the
following saturation parameter values (all of them
Mp, =Mp;=20,Mp, =Mp,=35,
Mp,=Mp,=4, M, =70, M_,=5, and ng =09M

expressed in Nm):

aj’
j=1,2. These saturation function parameter values were

corroborated to satisfy inequalities (3) and (5), taking

M, _ 02 . . M, M, _
B, = ZFBGU,MW., i=1,2,3, ie. By =0, By =75

Nm and B;g“ =5.

For comparison purposes, additional experiments were
run implementing the output-feedback adaptive
algorithm proposed in [18], referred to as the LOO
controller (choice made in terms of the analogue nature of
the compared algorithms: output-feedback adaptive
developed in a bounded input context; comparison of
controllers of a different nature loses coherence), i.e.,

u=—KpT, (A7) - KT, (69) + G 0 (17a)

G;=G(4,),  T,(x)=(tanh(x,),..., tanh(x,))",
KpeR" and K,eR" are positive definite diagonal
matrices, 4 and & are positive constants and $€R" and
OeR’ are the output variables of (interconnected)
auxiliary dynamic subsystems that take the following
form:

where

4 =-aK(q, +K7q) A75)
4 =q.+Kq

and

. = PGy [nT,(69) - uT, ()] w70
N _ c
0=9¢,- BG4

where KeR" is a positive definite diagonal matrix and
a, B, n and u are positive constants. Arguing
simplicity of development, the constant matrices involved
in this control algorithm are taken in [18] as K, =kpl,,
Kp=kpl, and K=kI,,
positive constants. However, in order to speed up the
closed-loop responses, different P and D control gains
were considered at every input control expression. In
other words, K, and K, in (17a) were taken as
Ky, =diaglkpy,...,kp,] and Ky =diaglkp,,...,kp,] with
gains kp; and kp,, i=1,...,n, which each have their own
different positive value. Furthermore, observe that
through this controller, if input saturation is to be

with k,, k;, and k being
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avoided, the control gains must satisfy saturation-
avoidance inequalities of the form kp +kp, <T.-B;,
i=1,...,n, for some initial-condition-dependent positive

constants B;, i=1,...,1n.

The initial conditions and desired link positions for all the
executed experiments were: ¢;(0)=4;(0)=4(0)=0,
i=1,2,3; ¢4(0)=20, ¢,0)=1 [Nm]; gq;=q4,,=7/4
and q,, =7 /2 [rad]. With this desired configuration, the
condition stated by Corollary 1 turns out to be satisfied.”

For the proposed controller, with a=-1, the selected
parameter combination was found through simulation
tests, so as to have as good closed-loop responses as
possible, mainly in terms of stabilization time (as short as
possible) and transient response (avoiding or lowering
down overshoot and oscillations as much as possible),
and further refining the tuning experimentally. The
resulting values were Kp=diag[350,400,75] Nm/rad,
Kp=diag[25, 50, 12] Nms/rad, A=diag[15, 50, 35]
rad/s?, B=diag[5, 10, 5] s, I' =diag[5,0.5] Nm/rad and
¢=15 rad/Nms. As for the LO0 controller, a similar
tuning procedure was performed disregarding the
saturation-avoidance inequalities in view of the
considerably poor closed-loop performance observed
under their consideration. The resulting values were:
Kp=diag[800,1300,200] Nm, Kp=diag[5,10,10] Nm,
A=30[rad] !, §=5 sfrad, k=50s"}, @a=5, B=25
Nm/rad, =5 rad/s and x =10 rad/s.

Figures 3-5 show the results for both implemented
controllers. Observe that the regulation objective was
achieved preventing input saturation and avoiding
steady-state position errors. Furthermore, note that
despite the presence of a small overshoot, through the SP-
SDe-ga algorithm shorter stabilization times took place in
both position error and parameter estimation responses.
Let us further note that at 240s, where the experimental
data registration was stopped, the parameter estimations
were still evolving. This is a consequence of the slow
evolution of the adaptation subsystem dynamics, due to
the relatively small value of ¢ in the proposed scheme
and the analogue coefficients 7 and x in the LOO
controller. Nevertheless, the slow evolution of the
adaptation subsystem dynamics did not have any
influence on the position responses, which had been
stabilized during the initial seconds of the experiment.
The subsequent parameter estimator evolution was
expected to reduce the difference among the estimations
obtained through each implemented controller.

7 One can verify from G(g) in (16) that, for the considered
manipulator, the desired configurations that satisfy the condition
stated by Corollary 1 are those such that gq,, #mz and
Ggp + 443 7 My7, forany my ,m, =0,+1,42,...
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Figure 3. Position errors

—SP-SD,-g, ---L00
., 45 45
E 30 30
> 1574~ 18
£ 2 s
= =15 = -|5|
= 30 -30
o 1 2 3 4 5 6 7 8 (] 60 120 180 240
— 80 80
g 60 60
> 4ol |\ RS L PP bl T8
£ Y 3 znl
@ 0 o
= g 20
0 1 2 3 4 5 6 7 8 0 60 120 180 240
i 1 10
E 5 5
N A g
el
S5 -
o 1 2 3 4 5 6 7 8 [ 60 120 180 240
Time [s] Time [s]

Figure 4. Control signals

— 525
g
Z )
&' 17.5:," 125%
o 0»’
0 40 80 120 160 200 240 o 2 4 & 8 10
Time [s] Time [s]
5
4
g,
Pz !
P A SR ;
&
[oX - o
0 40 80 120 160 200 240 o 2 4 6 8 10
Time [s] Time [s]

Figure 5. Parameter estimates
6. Conclusions

In this work, an output-feedback adaptive control scheme
for the global regulation of robot manipulators with
bounded inputs was proposed. With respect to the
previous  output-feedback  adaptive  approaches
developed in a bounded-input context, the proposed
velocity-free feedback controller guarantees the adaptive
regulation objective: globally, avoiding discontinuities
throughout the scheme, preventing the inputs from
reaching their natural saturation limits and imposing no
saturation-avoidance restriction on the control gains.
Moreover, the developed scheme is not restricted to the
use of a specific saturation function to achieve the
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required boundedness, but may rather involve any one
within a set of smooth and non-smooth (Lipschitz-
continuous) bounded passive functions that include the
hyperbolic tangent and the conventional saturation as
particular cases. The efficiency of the proposed scheme
was corroborated through experimental tests on a 3-DOF
manipulator. Good results were obtained, which were
observed to improve those gotten through an algorithm
that was previously developed in an analogue analytical
context.

A Proof of Lemma 1

1. Since o is a Lipschitz-continuous function that
keeps the sign of its argument (according to point (a)
of Definition 1) and is non-decreasing and bounded
by M, there exists positive constants ¢~ <M and
c¢" <M such that

lim o(c) = (sign(¢)—1)c™ +(sign(¢)+1)c* Y

o0
5|0 2

Hence, we have

lim D*o(c) = lim limsupZ& =€)

Igl—>o0 gl ) o h

o(g+h)—¢(s)

=limsup lim
he0* Il h
. o, -0
=limsup———==0
h—0"

2. Since o is a Lipschitz-continuous non-decreasing
function, D*o(s) exists and is piecewise-continuous
on R and D'o(5)>0, V¢ e R. Furthermore, because
of its piecewise-continuity, D’c(s) is bounded on
any compact interval on R . Thus, its boundedness
holds on R if
lim|g|_mD+a(g):0 (according to point 1 of the
statement), we conclude boundedness of D*c(s) (on
R), i.e.,, there exists a non-negative finite scalar O'}VI
such that D*o(¢) < O'}VI , V¢ eR. Finally, observe that
by virtue of point (a) of Definition 1, there exists
ae(0,0] such that D'o(¢)>0, Vg¢e(-a,a)\{0}
whence we conclude that 0'}\,[ >0.

3. From Lipschitz-continuity of o, its satisfaction of
point (a) of Definition 1 and the boundedness of
D*c by a positive constant G}VI (according to point
2 of the statement), it follows that

lim, D*o(g) <. Since

Dok | ok < |othe)| < o)y | k5|

Oy

Vs e R, whence (considering that ¢ has the sign of
its argument, according to point (a) of Definition 1),
we have

www.intechopen.com

so(kr) s s,
Io o‘}w Do (kr)dr < J.o o(kr)dr < .[0 ko rdr

wherefrom we get

2 2
L]@ < '[ga(kr)dr < M
2koy, 0 2

VseR.

Strict positivity of J.ga(kr)dr on R\{0} follows from
points 3 of the statement and (a) of Definition 1, by
noting that o*(k)>0, V¢ #0.

By the Lipschitz-continuous and non-decreasing
characters of o and its satisfaction of point (a) of
Definition 1, there exist constants a>0, k, >0, and
c21, such that lo(g) 2k, ‘a sat(¢ / a)
get

c
, whence we

S,(¢)= Iogsign(r)ku ‘usat(r / a)‘c dr< Jga(kg)dr
V¢ e R, with

k
— | e Vigl<a
c+1

5.(6) = e
kgac[lgl—] Vigha
c+1

Thus, from these expressions we can observe, on the

one hand, that lim, l 5,(6) <lim, cl _m.fga(kr)dr

and, on the other, that S (¢)—>® as Iglow,

wherefrom we conclude that J-og o(kr)dr > as

lgl—> 0.

Suppose o is strictly increasing. Let y,7,5 € R . For

any constant a € R, let o(¢) =0o(s +a)—o(a) .

e Lipschitz-continuity. From the Lipschitz-continuity
of o and point 2 of the statement, we have

lo(s)—o(n) |SO‘}VI l¢—nl, Vg,neR .Then

|5(5) -]
(ot +a)-o(@)-(c(n+a)-o(@)]
- o-(g+a)—o-(r]+a)|
3‘7}\/{ |(g+a)—(77+u)|

Sa;wlg—nl

V¢,ne R, which shows that & is Lipschitz-
continuous.

e Strictly increasing monotonicity. From the strictly
increasing monotonicity of o, we have

a(s)>a(n)
«——o(c+a)—o(a)>o(n+a)—o(a)
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«——o(c+a)>o(n+a)
——g+a>n+a
«——¢>7
which shows that & is strictly increasing.

e ¢0(5)>0, Vg#0.Since o is strictly increasing,

we have
o(g)=o(c+a)—o(a)>0
«——o(sc+a)>o(a)

«——¢>0 VaeR

and
o(g)=o(c+a)—o(a)<0
«——o(sc+a)<o(a)

«——>¢<0 VaeR

whence one sees that, for any aeR, ¢5(5)>0,
Vg#0.

o 15(0)IKM=M+lo(a)l, VseR.
lo(¢)IKM, Vg eR, wehave that

Since

16(c) = o(c+a)—o(a)l
<lo(gc+a)l+lo(a)l
<M+lo(a)l=M

VseR.

Thus, according to Definition 1, & is concluded to
be a strictly increasing generalized saturation with
bound M =M+Io(a)l.

B Theorem 7.2.1 of [29]

Theorem 7.2.1 in [29] states a version of La Salle’s
Invariance Principle that considers autonomous systems
with continuous dynamics and makes use of continuous
scalar functions and their upper-right derivative along
the system trajectories (in contrast, for instance, with the
statement presented in [24, Theorem 4.4], which is
addressed to autonomous state equations with locally
Lipschitz-continuous vector fields and makes use of
continuously differentiable scalar functions). Consider
the autonomous system

1= f(x) (18)

where f:D—R" is continuous, DcR" is an open
connected set and f(0,)=0, € D . Theorem 7.2.1in [29] is
stated as follows.

Theorem Assume that there exists a continuous function
V:D — R, such that D"V (x)<0 for all xeD and such

12 IntJ Adv Robotic Sy, 2013, Vol. 10, 71:2013

that, for some constant ce R, the set Q is a closed and
bounded component of the set {x eD:V(x)< C} .Let M
be the largest invariant set with respect to (18) in the set
E= {x eD:D'V(x)= 0} . Then every solution x(t) of (18)
with x(t,) e Q approaches the set Mas t — .

The use of the upper right-hand derivative of V along the
system trajectories, D'V, in the statement of this
theorem, is corroborated in [29, §6.1A].
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