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Abstract

In this paper, we obtain some new explicit travelling wave solutions of the perturbed KdV equation through recent
factorization techniques that can be performed when the coefficients of the equation fulfill a certain condition. The
solutions are obtained by using a two-step factorization procedure through which the perturbed KdV equation
is reduced to a nonlinear second order differential equation, and to some Bernoulli and Abel type differential
equations whose solutions are expressed in terms of the exponential and Weierstrass functions.

PACS number(s): 02.30.Hq

In a previous paper [1], we have factorized the Korteweg-de Vries-Burgers (KdVB) equation by means of an
efficient factorization procedure that we introduced in 2005 [2]. This allowed us to obtain in an easy way
some travelling wave solutions of the KdVB equation. Recently, Wang and Li [3] discussed an extended form
of our method and applying it to various nonlinear equations. Our goal in the present paper is to use jointly
the two methods for yet another nonlinear evolution equation, the so-called perturbed Korteweg de Vries
(PKdV) equation, which is one of the most general nonlinear equations with important applications [4]. We
shall use the following form of this equation

ut + λ(uxxx + 6uux) + 5βuux + (uxxx + 6uux)x = 0 . (1)

It was used to describe the evolution of long surface waves in a convecting fluid. It has been thoroughly
investigated by Cerveró and Zurrón in 1996 [5]. We notice here that the solution of a slightly more compli-
cated equation describing the evolution of a system exhibiting an oscillatory instability with respect to the
static state can be obtained from u with an appropriate scaling followed by a constant shift proportional to
the excess of the Rayleigh number above its critical value (see page 5 in [5]).

Passing to the travelling variable z = x − ct, we convert this equation after integrating it once into the
following ODE

uzzz + λuzz + 6uuz +
1

2
(6λ + 5β)u2 − cu + K1 = 0 , (2)

where K1 is the integration constant. Moreover, employing u = w − δ, where the constant δ is equal to
−c±

√
c2−4α1K1

2α1

, α1 = 1
2 (6λ + 5β), and denoting α2 = 2δα1 + c, one can get

wzzz + λwzz + 6(w − δ)wz + w(α1w − α2) = 0 . (3)

Eq. (3) can be factorized in the form

[Dz − φ1(w)wz − φ2(w)][Dzz − φ3(w)Dz − φ4(w)]w = 0 (4)

1

http://arxiv.org/abs/0902.0750v2


by introducing the appropriate φi functions. It is easily shown by direct calculation that the factorization

[

Dz +
α1

3

]

[

Dzz + (λ − α1

3
)Dz +

3

α1
(α1w − α2)

]

w = 0 , (5)

is allowed under the restriction
α3

1 − 3α2
1λ − 54δα1 + 27α2 = 0 . (6)

Therefore, the travelling wave solutions obtained for Eq. (3) correspond to the case in which Eq. (6) for the
coefficients α1 and α2 is satisfied. Furthermore, this restriction leads to c = − 5

6β(λ + 5
6β)2 which represents

the velocity of the travelling waves.
Let us consider now the extended factorization scheme [3]. Assuming

[

D2
z + (λ − α1

3
)Dz +

3

α1
(α1w − α2)

]

w = Ω , (7)

then Eq. (5) can be rewritten as the following system

Ωz +
α1

3
Ω = 0, (8)

wzz − 5

6
βwz +

3

α1
(α1w − α2)w = Ω . (9)

where (λ − α1

3 ) has been replaced with − 5
6β in Eq. (9). The first equation implies Ω(z) = c1e

−α1

3
z , where

c1 is an integration constant. Thus, we can consider the solutions of the second equation of the system, i.e.,

wzz − 5

6
βwz + 3w2 − 3

α2

α1
w = c1e

−α1

3
z (10)

The transformations
w = λ(z)W + µ(z) , Z = Φ(z)

where

λ(z) = (−2)1/5e
β
3

z , µ(z) =

(

β

6

)2

+
α2

2α1
, Φ(z) =

(

−1

2

)2/5
6

β
e

β
6

z

lead to the following canonical equation [6]

d2W

dZ2
= 6W 2 + S(z) (11)

where
S(z) = −3µ2 + 3

α2

α1
µ + c1e

−α1

3
z ,

which according to Ince’s texbook has solutions free of movable singularities other than poles only if c1 = 0.
However, this condition leads to µ = 0 and therefore to the Painlevé case

d2W

dZ2
= 6W 2 , (12)

for which the solutions are

W = C2

[ −k2

1 + k2
+ sn−2(CZ, k)

]

. (13)

On the other hand, let us consider, for the same case c1 = 0, the second-order nonlinear differential equation
coming out from the factorization procedure

d2w

dz2
− 5

6
β

dw

dz
+ 3w [w − α3] = 0 (14)

where α3 = α2

α1

= ±
√

c2−4α1K1

3λ+ 5

2
β

. We are now able to apply the factorization procedure introduced by Rosu

and Cornejo-Pérez [2] as a second-step procedure. Eq. (14) can be factorized in the form

[Dz − f2(w)] [Dz − f1(w)] w = 0 , (15)
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under the conditions
{

f1 + f2 + df1

dw w = 5
6β

f1f2w = 3w(w − α3).

Let f1 =
√

3a2(w
1/2 − α

1/2
3 ) and f2 =

√
3a−1

2 (w1/2 + α
1/2
3 ). From the last factorization conditions one can

get after some algebra the following values of the parameters a2 = ±i
√

2
3 and α

1/2
3 = ±i

√
2

6 β for which this

type of factorization is possible. Therefore, solutions of

[D − f1]w = 0

will be solutions of the factorized equation as well. The latter equation has the explicit form

dw

dz
± i

√
2w3/2 ± i

√
2α

1/2
3 w = 0 . (16)

The solutions of these two Bernoulli equations can be directly written down. Taking into account that
u = w − δ we immediately get:

u1,2 =

[

−3
√

2

β
i + e

β
6
(z−z0)

]−2

− 5

36
λβ − β2

36

[

25

6
± 1

]

(17)

u3,4 =

[

3
√

2

β
i + e−

β
6
(z−z0)

]−2

− 5

36
λβ − β2

36

[

25

6
± 1

]

(18)

(19)

Choosing now the factorization functions f1 =
√

3a2(w
1/2 + α

1/2
3 ) and f2 =

√
3a−1

2 (w1/2 − α
1/2
3 ) the

following two Bernoulli equations are obtained

dw

dz
∓ i

√
2w3/2 ± i

√
2α

1/2
3 w = 0 , (20)

whose solutions are

u5,6 =

[

3
√

2

β
i + e

β
6
(z−z0)

]−2

− 5

36
λβ − β2

36

[

25

6
± 1

]

(21)

u7,8 =

[

−3
√

2

β
i + e−

β
6
(z−z0)

]−2

− 5

36
λβ − β2

36

[

25

6
± 1

]

. (22)

(23)

On the other hand, combining the factorization conditions

f1f2w = F (w) , f2 +
d

dw
(f1w) =

5

6

and introducing the function l(w) = f1(w)w one obtains an Abel equation of the form

l
dl

dw
− 5

6
βl = −3w2 + 3α3w . (24)

The solution of this equation can be written as follows [8]

w =
1

2

(

β

3

)2

e
β
3
(z−z0)P

(

e
β
3
(z−z0) + c2, 0, 1

)

, (25)

which is expressed in terms of the Weierstrass P function. Therefore,

u(z) =
1

2

(

β

3

)2

e
β
3
(z−z0)P

(

e
β
3
(z−z0) + c2, 0, 1

)

− 5

36
λβ −

(

β

6

)2 [
25

6
± 1

]

. (26)
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We notice that the latter solution although similar in form to a solution mentioned by Porubov [7] is different
by an additive constant that depends on the coefficients of the PKdV equation and by the variable of the
Weierstrass P function which in the case of Porubov’s result is exp(y) = exp(eγ(z−z0)), γ = constant.

The Weierstrass component of the solution (26) can be also written in the following form, see also [9]

1

2

(

β

3

)2
e

β
3

z

4
√

3
k2
0



1 +
√

3
1 + cn

(

k0(e
β
6

z + c2e
β
6

z0)|m
)

1 − cn
(

k0(e
β
6

z + c2e
β
6

z0)|m
)



 , (27)

where k0 = 2H
1/2
2 e−

β
6

z0 , H2 =
√

3
41/3

, m = 1
2 −

√
3

4 . Expanding now the cnoidal function in a Taylor series

cn
(

k0(e
β
6

z + c2e
β
6

z0)|m
)

= 1 − 1

2
k2
0

(

e
β
6

z + c2e
β
6

z0

)2

+ ... ,

one gets in the small k0 limit:

lim
k0→0

u(z) =
1

2

(

β

3

)2
(

e
β
6
(z−z0)

c2 + e
β
6
(z−z0)

)2

+ const . =

(

3
√

2

β
+ c3e

β
6
(z−z0)

)−2

− 5

36
λβ −

(

β

6

)2 [
25

6
± 1

]

,

which is a simple particular real PKdV solution.

In conclusion, after performing the travelling variable reduction for the PKdV equation we have jointly
used recent factorization methods to obtain some new exact travelling wave solutions of this equation in
the particular case when the coefficients fulfill the condition (6). This is equivalent to saying that the
factorization of the ODE travelling form of PKdV equation can be performed only for a particular value of
the velocity parameter and leads to a second order differential equation that has the Painlevé property, a
fact that pinpoints the connection between the technique of factorizations and the Painlevé analysis. The
latter connection has been already noticed by Gilson and Pickering for other types of nonlinear third-order
partial differential equations [10].
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[2] Rosu H C and Cornejo-Pérez O 2005 Phys. Rev. E 71 046607

[3] Wang D-S and Li H 2008 J. Math. Anal. Appl. 343 273

[4] Aspe H and Depassier M C 1990 Phys. Rev. E 41 3125
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