
This is the Author's Pret-print version of the following article: J. S.
MURGUÍA et al, Int. J. M od. Phys. C 23, 1250078 (2012). Electronic version
of an article published as https://doi.org/10.1142/S0129183112500787

© World Scientific Publishing Company
http://www.worldscientific.com/worldscinet/ijmpc

https://doi.org/10.1142/S0129183112500787
http://www.worldscientific.com/worldscinet/ijmpc

MATRIX APPROACH OF AN ENCRYPTION SYSTEM BASED ON
CELLULAR AUTOMATA AND ITS NUMERICAL IMPLEMENTATION

J. S. MURGUÍA, G. FLORES-ERAÑA, M. MEJÍA CARLOS, and H.C. ROSU

Author 1: UASLP-Facultad de Ciencias; Authors 2, 3: UASLP-IICO; Author 4: IPICyT

Int. J. Mod. Phys. C 23(11), 1250078 (2012)

The main components of an encryption system based on rule 90 cellular automata,
i.e., two indexed families of permutations and a pseudorandom bit generator are
implemented in a very flexible way through a convenient matrix approach.

1 Introduction

Many encryption systems based on different approaches are available in the literature, such as
DES(Data Encryption Standard), AES(Advanced Encryption Standard), IDEA(International
Data Encryption Algorithm), among others.[1, 2, 3] However, an efficient encryption process is
still not an easy issue, since a complex encryption system implies more processing time, whereas
a simple encryption system presents security problems to be predictable or decipherable. Hence,
it is required to have an encryption system that has an optimal balance between both situations.

Cryptography techniques based on the application of cellular automata (CA) could be such
a balancing possibility. Some encryption systems have already used CA as pseudo-random
generators or combinations of them in the encryption algorithm.[4, 5, 6, 7, 8, 9, 10] The use of
CA in cryptography is appealing since it can be adapted to an algorithm of massively parallel
computations in computing architectures[11], and VLSI physical realizations.[12]

As is pointed out in Ref. [9], one of the first applications of chaotic CA in cryptography was
carried out by Uŕıas et al in [7]. They used a class of block cryptosystems comprising two indexed
families of permutations and an asymptotically perfect pseudorandom number generator. Such
encryption systems based on the synchronization phenomenon of the CA with rule 90 are known
as ESCA systems. Their advantage is that they can be implemented using just one basic unit
cipher.

In a previous work, we have used a sequence matrix to generate recursively the pseudo-
random sequences.[13] In the following, we extend this matrix approach to almost all the com-
ponents of the ESCA system. We show that just one sequence matrix can be used to implement
effectively most of the matrices involved in the encryption system. This alternative matrix
procedure is an encryption tool that fits well in the present-day digital technology.

The structure of this paper is as follows. Section 2 gives a general description of the encryp-
tion system considered. The way to implement the main elements of the encryption scheme with
the proposed matrix approach is discussed in Section 3. In addition, the numerical implementa-
tion of this proposal is presented. Finally, the conclusions are drawn in Section 4. An Appendix
containing basic CA definitions is included for the convenience of the reader.

1

2 Encryption System Model

2.1 The encryption system

Reference [7] describes a cryptosystem in terms of the synchronization phenomenon of cellular
automata, which has been applied to devise the three main elements of the cryptosystem: the
two families of permutations and the asymptotically perfect pseudorandom number generator.

In Uŕıas et al [14] it was found that a pair of coupled CA with local rule 90 can synchronize
if every pair of consecutive coordinates is separated by a block of

(
2k − 1

)
uncoupled sites, for k

a positive integer. This encryption system is based on a symmetric algorithm, so it is demanded
to know the seed that was used to generate the pseudo-random sequence of keys. In other words,
the complete encryption scheme is private, and the encryption and decryption processes use the
same deterministic generator that is initialized with a common seed. Figure 1 illustrates this
type of encryption scheme.

seed

PRNGT

Ψ
c t

E

m t
k t

Φ

D

k t

c t m t

channel

PRNGT

Figure 1: The encryption model used in this work with its main components: the indexed
families of permutations, Ψ and Φ, and the pseudorandom generator of keys.

Following the notation of Ref. [7], the system basically transforms a plain-text sequence
m to a sequence c, called the cipher-text. The transformation m 7→ c is selected from an
indexed family of permutations Ψ = {ψk : M → C|k ∈ K} by choosing an index k from the set
of indices K. The sets M , C and K are all sets of binary words of length N , i.e., ZN

2 , where
Z2 = {0, 1}. The words in the sets M and C are called the clear-blocks and cipher-blocks,
respectively, whereas the words in the set of indices K are the enciphering keys. This symmetric
cipher encrypts blocks of plain-text bits of length N , using a different key for each block. To
disclose from the sequence of cipher-blocks, the cryptosystem also provides the family of inverse
permutations Φ = {φk : C → M |k ∈ K} such that for every k ∈ K one has m = φk(ϕk(m)).
The pseudo-random generator of keys considered in this system has been used to select as random
as possible the succession of permutations. With this, we have avoided that any intruder be able
to infer any information about the text. The subindex T in PRNG, see Figure 1, indicates how
many transformation have been employed to generate the pseudo-random sequences. In the case
of T = 1, one transformation is used, whereas T = 2 implies that three coupled transformations
have been considered. In Ref. [13] was checked the quality of the pseudo-random sequences for
both cases, and it was found that the generated sequences pass all the NIST statistical tests.

2

2.2 The basic unit cipher

In order to implement this encryption system, Uŕıas et al [7] considered a simple two-dimensional
array composed of XOR logical functions, which we call basic unit cipher (BUC). In Fig. 2 the
space-pattern of the BUC is displayed, which is defined as the N × N square pattern in the
lattice that consists of N time-running words (x01, x

1
1, . . . , x

N−1
1), . . . , (x0N , x

1
N , . . . , x

N−1
N), along

with the words x = (x00, x
1
0, . . . , x

N−1
0) on the left side, c = (x0N+1, x

1
N+1, . . . , x

N−1
N+1) on the right

side, t = (x02, x
0
3, . . . , x

0
N+1) on the top, and m = (xN1 , x

N
2 , . . . , x

N
N) at the bottom. The latter

pattern starts from the infinite initial state (. . . , x0−1, x
0
0, x

0
1, . . . , x

0
N−1, x

0
N , . . .), that evolves

according to rule 90 from t = 0 to t = N = 2k − 1, where i 6= 0 and i 6= N + 1, since xt0 and
xtN+1 are externally assigned at each time t.[7]

In order to calculate the previous words of the BUC, the CA is required to be iterated
along both the forward and backward directions, i.e., when the time evolution of the CA is
running forward in time, and backward in time. These operations are illustrated in Fig. 3,
where the forward evolution is given by (9), and the backward evolution is given by xti+1 =(
xt+1
i + xti−1

)
mod 2. The symbol of a circled + represents a XOR gate and the connectivity of

gates follows the automaton rule 90 in the respective evolution.

Figure 2: The basic unit cipher, where the primitives of the encryption system are generated in
terms of the evolution of the rule 90. The functions h and Ψ are determined by iterating the
CA backward in time, whereas the function Φ is computed by running the CA forward in time.

The word located on the right side of the BUC is the cipher-block word c = (x0N+1, x
1
N+1, . . . , x

N−1
N+1),

and it is obtained using the indexed family permutation Ψx, i.e., c = Ψx(m). This permutation
Ψ can be calculated when the CA is iterated backward in time using the input words x and m.

On the other hand, to bring the word c back to the plain text sequence m, we consider the
inverse permutation Φ, i.e., m = Φx(c). This permutation is computed when the automaton
runs forward in time, but using the input words c and x.

In a similar way, the function t = h(x,y) can be generated when the automaton is also

3

iterated backward in time. This function or transformation has been used to generate the
pseudo-random sequences, and it takes into account the input words located on the left side of
the BUC, i.e., the words x and y. The result of the function h(x,y) is on the top of the BUC and
is identified as t = (x02, x

0
3, . . . , x

0
N+1), where x = (x00, x

1
0, . . . , x

N−1
0), and y = (x01, x

1
1, . . . , x

N
1).

Because the computation of the indexed permutations and the function h require the com-
plete application of the local automaton rule at all points of the BUC, the “one-time” version
of the algorithm has been considered as well space[15, 16]. The latter suggestion allows us to
compute the required words without intermediate steps. While in Ref. [15] the Boolean func-
tions for some coordinates of the function h for N = 15 bits are given, in Ref. [16] the respective
expressions for the indexed family of permutations have been provided. As an example, in Fig.
4 we display the way the inverse permutation Φ is used, with input words c and x, to compute
the bit m1 of the word m for the case N = 3 bits. Following the route traced by the arrows, the
value of this coordinate is m1 = x1+x3+c1. However, this task can be difficult to handle as soon
as the number of bits increases. To overcome this situation, a matrix approach is introduced
here in the next Section of this work.

3 A Matrix Approach

To carry out effectively the complete encryption system with this approach, we basically need
only one sequence matrix denoted by QN . This matrix will implement most of the matrices
involved in the encryption system.

3.1 The QN matrix

The sequence matrix QN of dimensions N × N can be generated initially from the vector
a = [a1, 0, . . . , 0], where the component a1 has a value of 1, and N is the number of bits, i. e.,
a is a vector with N components. This vector constitutes the first row of the matrix QN and
the (N−1) rows are generated applying the CA rule 90 of the previous row with fixed boundary
conditions of zero to the left and right sides. For instance, for N = 7 we have that Q7 has the
form

Q7 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 1 0 1 0 1


. (1)

With some basic matrix operations or transformations on QN , we are able to implement the
great majority of the stages involved in the encryption system, i.e., the family of permutations,
and the pseudo-random number generator. Another way to generate the latter matrix is by
means of relation (15), and taking into account the periodicity condition (10).

The case of indexed families of permutations

• The Ψ permutation

For the encryption process, c = Ψx(m), we require two matrices, PN and QN , such that

4

+ + +

+ + +

+++

i-1 i i+1

(b)(a)

i-1 i i+1

+ + +

+ + +

+ + +

Figure 3: Time evolution of the cellular automata in a (a) forward, and (b) backward form.

x
0
2

x
1

3

x
4

2

x
0

1 x
4

1

x
0

0 x
4

0

x
2

3 x
3

3

x c

+

+

+

+

+

+++

+

m

x
1

x
2

x
3

m
1

c
1

c
2

c
3

m
2

m
3

Figure 4: Generation of m1 of the plain text sequence m when the CA is made to run forward
in time for the case N = 3 bits.

5

c = Ψx(m) = [(PN × x) + (QN ×m)] mod 2. (2)

These matrices have dimensions N ×N = (2n − 1) × (2n − 1), for n = 1, 2, 3, In this
process the main QN matrix is generated as discussed in Section 3.1.

On the other hand, the PN matrix is initially generated from the vector p = [p1, p2, . . . , pN],
which constitutes the first row, and the components with position index j = (2n + 1)−2i+1,
i = 0, 1, 2, . . . , (n− 1), have a value of 1, and 0 otherwise. The (N − 1) rows are generated
applying a right shift by one position of the previous row with a zero as its first value. As
an example, for N = 7 we have the following form of the matrix P7

P7 =



1 0 0 0 1 0 1
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


. (3)

• The Φ permutation

The matrix implementation of the inverse permutation m = Φx(c) has a similar structure
of (2), that is,

m = Φx(c) = [(RN × x) + (TN × c)] mod 2, (4)

where the matrices have dimensions N × N = (2n − 1) × (2n − 1), for n = 1, 2, 3,
From (2), RN = [−Q−1

N PN] mod 2, whereas the TN matrix is just the inverse of QN ,
i.e., TN = Q−1

N mod 2.

Considering again N = 7, we have that the matrices R7 and T7 are

R7 =



1 0 0 0 1 0 1
0 1 0 0 0 1 0
1 0 1 0 1 0 0
0 0 0 1 0 0 0
1 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


, T7 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 1 0 1


. (5)

The case of pseudo-random generator

In a previous work,[13] we introduced a sequence matrix HN to compute feasibly the pseudo-
random sequences of N bits. This matrix has dimensions (2N + 1) × (2N + 1) and is formed
by two matrices, HNt and HNb

, which constitute the top and bottom parts of HN , that is,
HN =

(
HNt ;HNb

)
. The matrix HNt has dimensions of N × (2N + 1) elements, and the matrix

HNt has dimensions (N + 1)× (2N + 1). Since the matrix implementation of the outer matrices
is described in Ref. [13], we omit it.

The matrix HN in terms of QN has the form

6

HN =

(
HNt

HNb

)
=

Q−1
N Q̂

I 0

 , (6)

where I is the identity matrix with dimensions (N +1)× (N +1), and 0 is a zero matrix with
dimensions N×(N+1). The matrix Q̂ has dimensions N×(N+1), where the first (N−1) rows
and N columns are comprised of the matrix Q−1

N , but without the first row. The components

of the N -row and the (N + 1)-column of Q̂ have a value of 0 except in the intersection of both,
which has a value of 1. For instance, for N = 7 and considering (1) we have the following matrix

H7 =



1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 1 0 1 0 0 0
1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 1 0 0 0 1 0 1 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0



, (7)

where we can see the role of the matrix Q7 in the implementation of the matrix H7. When
the pseudo random sequence length is short, it is suggested to use a modified generating scheme,
which comprises three h coupled transformations.[13] In such a case we need two matrices with
the structure of (6) for the inner transformations, and a matrix HNt for the output transforma-
tion. See [13] for more implementation details.

Notice that there are different manners to implement the complete encryption system using
matrices, but we use this form because we think that it is one of the most convenient.

3.2 Numerical implementation

Considering the role of the matrix QN discussed in the previous Section, the procedure to carry
out the complete encryption system proceeds as follows.

1. Provide the value of n to consider sequences of length N = (2n − 1) bits.

2. Generate the matrix QN .

3. Calculate the initial seeds of size N and (N + 1) bits.

4. Provide the initial seeds to generate the pseudo random sequences with the matrix corre-
sponding to the pseudo random number generator in terms of the matrix QN .

5. Calculate the matrix PN and choose the task to be considered. For the encryption case, we
use the matrix PN and the matrix QN of step 2 to compute (2). Otherwise, the matrices
RN and TN are generated to perform the decryption process by means of relation (4).

The complete numerical implementation of the encryption system was achieved under the
LabVIEW graphical programming language, a trademark of National Instruments. To illustrate

7

this implementation we first describe how we implement the main elements of the encryption
system. Figure 5 depicts the time evolution of the pseudo random generator using three coupled
transformations h, for N = 31 bits. In this case, the sequences xi and yi, i ∈ {1, 2} are the
initial words for each internal transformation, h1 and h2. They generate the random sequences
pk and qk of length of N bits, which are the initial sequences of the third h3 transformation.
Since any such transformation requires two words, one of N bits and the other of (N + 1) bits,
the missing bit is obtained applying an addition modulo 2 operation between the two respective
least significant bit that become the most significant bits of their respective previous input se-
quences. At this point, it is clear that the three maps, pk, qk, and xk generate pseudo random
sequences, but only the xk sequence is released.

Figure 5: Time evolution of the pseudo random generator that makes use of three coupled
transformations for N = 31 bits.

On the other hand, Fig. 6 shows one example of the indexed families of permutations for
sequences of N = 7 bits. If we want to carry out an encryption process, we consider the top
figure, whereas for the decryption process we look to the bottom figure. On the right side, the
respective Boolean expressions of the words c and m are displayed, and the obtained results can
be compared with the results of the matrix approach.

Figure 7 presents the main virtual instrument of the encryption system, with the results
obtained when the encryption process is applied to an audio signal. A length of N = 31 bits has
been considered for this case study, and a pseudo random sequences generator of three coupled
transformations has been used.

4 Conclusions

We have proposed a matrix approach to implement in an adjustable way the main elements
of an encryption system: the two indexed families of permutation and the pseudo random bit
generator. Such a system considers a certain cellular automata rule which occurs in different
cryptographic applications,.

8

Figure 6: Numerical implementation of the indexed families of permutations c = Ψx(m) (top),
and m = Φx(c) (bottom), considering N = 7 bits.

Figure 7: Numerical implementation of the encryption system under the LabVIEW graphical
programming language, a trademark of National Instruments.

9

This matrix procedure appears to be an attractive and flexible way to implement an en-
cryption system completely or partially. We believe that this proposal can be an accessible and
affordable solution for encryption issues, since the cryptosystem will be a flexible and reconfig-
urable system that fits in the present digital technology with a wide range of applications.

Acknowledgments

G. Flores-Eraña is a doctoral fellow of CONACYT (México) in the program of “Ciencias Apli-
cadas” at IICO-UASLP. HCR thanks CONACyT for a sabbatical fellowship.

Appendix CA: Some Definitions

A cellular automaton (CA) is a discrete nonlinear dynamical system that evolves at discrete
time steps. It consists of a chain of N lattice sites where each site is denoted by an index i. A
dynamic variable xi that can take only k discrete values is associated to each site i. Considering
the common value of k = 2, we have that xi = 0 or 1, and the state space of a CA of size N
is the set Ω = ZN

2 of all sequences of N cells that take values from Z2 = {0, 1}, where Z is the
set of integers. The evolution of the CA is defined by the repeated iteration of an evolution
operator A : ZN

2 → ZN
2 , and the automaton state at time t ≥ 0 is denoted by xt ∈ ZZ

2 , where its
evolution is defined iteratively by the rule xt+1 = A(xt).

A CA with radius r has a neighborhood of 2r+ 1 cells, a cell with r neighbors on each side.
The evolution of a CA of radius 1 has the form

xt+1
i = (c−1x

t
i−1 + c0x

t
i + c1x

t
i+1) mod 2. (8)

where c−1, c0, and c1 are integer constants 0 or 1. The CA that evolves according to the
local rule

xt+1
i =

(
xti−1 + xti+1

)
mod 2, (9)

corresponds to the CA with rule 90. Since the lattice used in this work is finite in extent,
we consider the following periodic boundary condition of equation (9)

xti+N = xti, for all i, (10)

that is, the arithmetic on the subscripts of (9) is performed modulo N . Thus xtN should be
replaced by xt0 , xtN+1 by xt1, and so on.

As is pointed out in Ref. [17, 18] the complete configuration of a cellular automaton is
specified by the values of its N sites, and it may be represented by a generating polynomial
Xt(p)

Xt(p) =

N−1∑
i=0

xtip
i. (11)

Furthermore, the time evolution can be carried out by means of the multiplication of the
generating polynomial by a fixed dipolynomial, T(p) = c−1p+ c0 + c1p

−1, i.e.,

10

Xt+1(p) = T(p)Xt(p) mod (pN − 1), (12)

where the arithmetic is performed modulo 2.

Kar et al. [18] presented an explicit formula to compute the configuration of additive cellular
automata rules at any time step without any explicit simulation. Our interest is for the additive
rule 90 (9), where c0 = 0, c−1 = c1 = 1, so the fixed dipolynomial is

T(p) = (p+ p−1) mod 2. (13)

Taking an impulse as initial configuration, i.e., the first row is comprised of a “1” in the
center and “0”s elsewhere, we have that

X(t)(p) =
(
p+ p−1

)t
mod (pN − 1),

which can be written as

Xt(p) =
t∑

k=0

(
t

k

)
p2k−t =

t∑
i=−t

(t+i)even

(
t

(t+ i)/2

)
pi mod (pN − 1), (14)

where

xti =

(
t

(t+ i)/2

)
mod 2, −t ≤ i ≤ t. (15)

Therefore, from relation (15) and the periodicity condition (10) it is possible to get the
explicit values of the rule 90 for the standard span, i.e., for i = 0, . . . , N − 1.

References

[1] C. Paar, and J. Pelzl, Understanding Cryptography: A Textbook for Students and Practi-
tioners (Springer-Verlag Berlin Heidelberg, 2010).

[2] T. W. Cusick, and P. Stanica, Cryptographic Boolean Functions and Applications (Aca-
demic Press, 2009).

[3] C. K. Koc, Cryptographic engineering (Springer Science+Business Media, LLC, 2009).

[4] S. Wolfram, Lecture Notes Comput. Sci. 218, 429 (1986).

[5] S. Nandi, B. K. Kar, and P. P. Chaudhuri, IEEE Transactions on Computer 43, 1346
(1994).

[6] M. Sipper, and M. Tomassini, Int. J. Mod. Phys. C 7, 181 (1996).

[7] J. Uŕıas, E. Ugalde, and G. Salazar, Chaos 8, 819 (1998).

[8] F. Seredynski, P. Bouvry, and A. Y. Zomaya, Parallel Computing 30, 753 (2004).

[9] A. Fúster-Sabater, and P. Caballero-Gil, Applied Soft Computing 11, 1876 (2011).

11

[10] S. Das, and D. R. Chowdhury, Lecture Notes in Comput. Sci. 6584, 77 (2011).

[11] G. Zied, M. Mohsen, Z. Medien, and T. Rached, Int. J. Comput. Sci. Eng. Syst. 2, 185
(2008).

[12] P. D. Hortensius, R. D. McLeod, and H. C. Card, IEEE Transactions on Computer 38,
1466 (1989).

[13] J. S. Murgúıa, M. Mej́ıa Carlos, H. C. Rosu, and G. Flores-Eraña, Int. J. Mod. Phys. C
21, 741 (2010).

[14] J. Uŕıas, G. Salazar, and E. Ugalde, Chaos 8, 814 (1998).

[15] M. Mej́ıa, J. Uŕıas, Discrete Cont. Dynamical Syst. 7, 115 (2001).

[16] M. Mej́ıa Carlos, Ph. D. Thesis, Universidad Autónoma de San Luis Potośı, SLP (2001).

[17] O. Martin, A. M. Odlyzko, and S. Wolfram, Communications in Mathematical Physics
93, 219 (1984).

[18] B. K. Kar, A. Gupta, and P. P. Chaudhuri, Information Sciences 72, 83 (1993).

12

