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Álvaro Obregón No. 64 Centro, C. P. 78000 San Luis Potośı, S.L.P., Mexico
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Abstract

In this paper, we study in detail the multifractal features of the main matrices of an encryption system
based on a rule-90 cellular automaton. For this purpose we consider the scaling method known as the
wavelet transform multifractal detrended fluctuation analysis (WT-MFDFA). In addition, we analyze the
multifractal structure of the matrices of different dimensions, and find that there are minimal differences
in all the examined multifractal quantities such as the multifractal support, the most frequent singularity
exponent, and the generalized Hurst exponent.
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1 Introduction

Elaborating algorithms or methods to analyze the singular behavior that may be hidden in functions, signals,
distributions, or time series, has been a lasting goal along many decades. At the present time, there are a
large number of methods or techniques to analyze or detect singular behavior.[1, 2] To recall a few, we have
the structure function method,[3] the wavelet transform module maxima (WTMM) method,[3, 4, 5, 6, 7, 8]
the detrended fluctuation analysis (DFA),[9] and its variants.[1, 10, 11]

In 2005, Manimaran et. al [12] proposed to combine the discrete wavelet transform with DFA procedures.
Based on this, Murgúıa et. al [13] implemented and used this approach to investigate the multifractal behavior
of the time series of the row-sum signals of certain cellular automata rules. This technique, denominated
as multifractal detrended fluctuation analysis based on the wavelet transform (WT-MFDFA), was also used
in Ref. [14] to obtain the multifractal characteristics of complementary cellular automata (CA) rules for
different initial conditions achieving a better performance compared with other multifractal methods. In
a previous work, we have also used the WT-MFDFA method to reveal multifractal features of a sequence
matrix that generated recursively the pseudo-random sequences of an encryption system based on the CA
rule 90.[15] In fact, the main functions of such an encryption system are based on both the forward and
backward evolution of the CA rule 90. In Ref. [16], the matrix approach was extended to almost all
the components of the encryption system. This situation motivates us to apply the efficient WT-MFDFA
method to reveal multifractal properties of the sum of ones in the sequences of the rows of the encryption
main matrices that can be used for their characterization. There is a work that related some multifractal

1Corresponding author. E-mail: ondeleto@uaslp.mx

1



parameters to encrypted information,[23] but there the analysis is performed on encrypted signals and not
directly to the encryption elements of the encryption system as we do here.

The organization of this paper is as follows. In Section 2, we briefly give a description of the encryption
system considered in terms of the matrix approach. Section 3 contains the results obtained by applying
the WT-MFDFA technique to the encryption matrices. In addition, we also vary the dimensions of the
encryption matrices to see how the WT-MFDFA results depend on this important parameter.

2 Encryption System Model

In this work we consider the encryption scheme used in Ref. [17], where the synchronization phenomenon of
cellular automata (CA) has been applied to devise the two families of permutations and an asymptotically
perfect pseudo-random number generator. The encryption system is based on the usage of CA that evolves
according to the local rule xt+1

i =
(
xti−1 + xti+1

)
mod 2, which corresponds to the rule 90. The phenomenon

of synchronization in coupled pairs of CA is described in detail in Ref. [18], where it was found that a pair
of coupled CA can synchronize if every pair of consecutive coordinates is separated by a block of

(
2k − 1

)
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Fig. 1: The encryption model considered in this work with its main components: the indexed families of permutations,
Ψ and Φ, and the pseudorandom generator of keys.

Figure 1 shows the complete encryption system. Basically, the class of the considered block cryptosystem
transforms a plain text sequence m to a sequence c, called the cipher-text. The transformation m 7→ c is
selected from an indexed family of permutations Ψ = {ψx :M → C|x ∈ X} by choosing an index x from the
set of indices X. The sets M , C and X are all sets of binary words of length N , i.e., ZN

2 , where Z2 = {0, 1}.
The words in M and C are called the clear-blocks and cipher-blocks, respectively, whereas the words in the
set of indices X are the encyphering keys. To disclose from the sequence of cipher-blocks, the cryptosystem
also provides the family of inverse permutations Φ = {ϕx : C → M |x ∈ X} such that for every x ∈ X
one has m = ϕx(φx(m)). Since the complete encryption scheme is private, the encryption and decryption
processes use the same deterministic generator that is initialized with a common seed.

2.1 Matrix approach of the ESCA system

Murgúıa and collaborators[16] used a matrix approach to implement effectively the main components of the
ESCA system. In fact, with some basic matrix operations or transformations on the main sequence matrix,
denoted by QN , they were able to implement the great majority of the stages involved in the encryption
system, i.e., the family of permutations, and the pseudo-random number generator.

2.1.1 Encryption matrices: the Ψ permutation

For the encryption process, c = Ψx(m), we require two matrices, PN and QN , such that
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c = Ψx(m) = [(PN × x) + (QN ×m)] mod 2. (1)

In this process, both matrices have dimensions N × N = (2n − 1) × (2n − 1), for n = 1, 2, 3, . . .. The
PN matrix is initially generated from the vector p = [p1, p2, . . . , pN ], which constitutes the first row, and
the components with position index j = (2n + 1) − 2i+1, i = 0, 1, 2, . . . , (n − 1), have a value of 1, and 0
otherwise. The (N − 1) rows are generated by applying a right shift of one position of the previous row with
a zero as its first value.

On the other hand, the main QN matrix can be generated initially from the vector a = [a1, 0, . . . , 0],
where the component a1 has a value of 1, and N is the number of bits, i. e., a is a vector with N components.
This vector constitutes the first row of the matrix QN and the (N−1) rows are generated by applying the CA
rule 90 of the previous row with fixed boundary conditions of zero to the left and right sides. For instance,
for N = 15 we have that P15, and Q15 have the form

P15 =



1 0 0 0 0 0 0 0 1 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



, Q15 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0 1 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1



.
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Fig. 2: Space-time pattern of the two matrices, PN and QN , involved in the encryption process when N = 127 bits.

In Fig. 2 one can see the space-time pattern of the two encryption matrices for N = 127, P127 and Q127,
where a pattern can be noticed with an appearance of a Sierpinski triangle in the Q matrix.

2.1.2 Decryption matrices: the Φ permutation

The matrix implementation of the inverse permutation m = Φx(c) has a similar structure of (1), that is,

m = Φx(c) = [(RN × x) + (TN × c)] mod 2, (3)

where the matrices have dimensions N ×N = (2n − 1)× (2n − 1), for n = 1, 2, 3, . . .. From equation (1),
RN = [−Q−1

N PN ] mod 2, whereas the TN matrix is just the inverse of QN , i.e., TN = Q−1
N mod 2. As an

example, and considering again N = 15, we have that the matrices R15 and T15 are
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R15 =



1 0 0 0 0 0 0 0 1 0 0 0 1 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
1 0 1 0 0 0 0 0 1 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 1 0 0 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0



, T15 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 1 0 1



.

(4)
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Fig. 3: Space-time pattern of the two matrices, RN and TN , involved in the decryption process when N = 127 bits.

In Fig. 3, the two resulting matrices, RN and TN , for n = 7, i.e., N = 127 bits, are displayed. Since
both matrices are the result of some matrix operations on the matrix QN , it is clear that both of them must
present a “similar” pattern.

2.1.3 The pseudo-random generator

In a previous work,[15] we introduced a sequence matrix HN of dimensions (2N +1)× (2N +1) to compute
feasibly the pseudo-random sequences of N bits. Since the matrix implementation of this matrix is described
in Ref. [15] we omit its description and we only describe the format of the matrix HN in terms of QN , which
is the following one

HN =

Q−1
N Q̂

I 0

 , (5)

where I is the identity matrix with dimensions (N +1)× (N +1), and 0 is a zero matrix with dimensions

N × (N + 1). The matrix Q̂ has dimensions N × (N + 1), where the first (N − 1) rows and N columns are
comprised of the matrix Q−1

N , but without the first row. The components of the N -row and the (N + 1)-

column of Q̂ have a value of 0 except in the intersection of both, which has a value of 1. For instance, for
N = 15 and considering the Q15 matrix of (2), we have the following matrix
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H15 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,

(6)

where we can directly see the role of the matrix Q15 in the implementation of the matrix H15.

3 Multifractal Properties of the Encryption and Decryption Ma-
trices

In Ref. [13], we have employed the wavelet transform multifractal detrended fluctuation analysis (WT-
MFDFA) to determine a possible multifractal behavior of some time series of cellular automata, in particular
for rules 90, 105 and 150. It was found that these CA rules have an intrinsic multifractal behavior. In
addition, in a previous work published in this journal,[15] we analyzed and found multifractal features of
the matrix HN , where this matrix was computed in a slightly different matrix approach. The WT-MFDFA
method is based on the calculation of the so-called q-th order fluctuation function defined as

Fq(s;m) =

{
1

2Ms

2Ms∑
ν=1

|F 2(ν, s;m)|q/2
}1/q

, (7)

where q ∈ Z with q ̸= 0. The diverging behaviour for q → 0 can be avoided by using a logarithmic

averaging for the 0-th order fluctuation function F0(s;m) = exp
{

1
2Ms

∑2Ms

ν=1 ln |F 2(ν, s;m)|
}
, see Ref. [10].

To assess the fractal scaling behavior of a time series, the fluctuation function Fq(s;m) should reveal a power
law scaling

Fq(s;m) ∼ sh(q). (8)

The exponent h(q) is the generalized Hurst exponent since it depends on q, while the original Hurst
exponent is h(2). If h(q) is constant for all q then the time series is monofractal, otherwise it has a multifractal
behavior. In the latter case, one can calculate various other multifractal scaling exponents, such as the
singularity (Hölder) spectrum f(α) of a signal or distribution g(t) as the Legendre transform of the scaling
exponent τ(q)[19], i.e.,

α =
dτ(q)

dq
, and f(α) = qα− τ(q), (9)

where α characterizes the strength of singularities, and the Hölder spectrum of dimensions f(α) is a
non-negative convex function that is supported on the closed interval [αmin, αmax]. The spectrum f(α)
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can be interpreted as the Hausdorff fractal dimension of the subset of data characterized by the Hölder
exponent α.[7, 20] The most “frequent” singularity, which corresponds to the maximum of f(α), occurs for
the value of α(q = 0), whereas the boundary values of the support, αmin for q > 0 and αmax for q < 0,
correspond to the strongest and weakest singularity, respectively. On the other hand, a linear behavior of
τ(q) indicates monofractality whereas a non-linear behavior indicates a multifractal signal. Additionally,
there is a relation between the scaling exponent τ(q) and the generalized Hurst exponents h(q), which is
given by τ(q) = qh(q)− 1.[10]

As an example, we carry out the analysis of the binomial multifractal model.[10, 21] For the multifractal
time series generated through the binomial multifractal model, a series of N = 2nmax numbers xk, with
k = 1, . . . , N , is defined by

xk = an(k−1)(1− a)nmax−n(k−1). (10)

where 0.5 < a < 1 is a parameter and n(k) is the number of digits equal to 1 in the binary representation
of the index k. The scaling exponents h(q) and τ(q) can be calculated analytically in this model, and they
have the closed form

h(q) =
1

q
− ln[aq + (1− a)q]

q ln 2
, τ(q) = − ln[aq + (1− a)q]

q ln 2
. (11)

To illustrate the efficiency of the WT-MFDFA method, we present the comparison of the multifractal
quantities h and τ for a = 3/4 between the values for the theoretical values and the numerical results obtained
through the WT-MFDFA analysis. The results for this case are displayed in Fig. 4, whereas Table 3 contains
the theoretical values (hT (q)) and the numerical results obtained through the wavelet approach (hW (q)).
Notice that the numerical values have a small downward shift. Adding the vertical offset ∆ = hT (1)−hW (1)
to hW (q), we can notice that the theoretical and numerical values are very close.

In a similar way as in our previous work[13], and since the main sequence matrix QN is based on the
evolution of rule 90, we analyze with the WT-MFDFA method the sum of ones in the sequences of the rows
of this matrix, using the db-4 wavelet function belonging to the Daubechies orthogonal family [22]. We select
this wavelet function because of its desirable properties, such as orthogonality, approximation quality, and
numerical stability;[22] in addition, the algorithm with the Daubechies family wavelet functions is memory
efficient and is reversible, whereas other wavelet bases have a slightly higher computational overhead and
are conceptually more complex.

The results for the row sum of the encryption matrix QN are illustrated in Fig. 5. We consider N =
212 − 1 = 4095 data points of the time series, and the fact that the generalized Hurst exponent is not a
constant horizontal line is indicative of a multifractal behavior in this time series, see Fig. 5 (b). Since
the scaling exponent τ is not of a single slope, Fig. 5 (c), it can be considered as another clear feature of
multifractality. The strength of the multifractility is roughly measured with the width ∆α = αmax − αmin

of the “parabolic” singularity spectrum f(α) on the α axis, see Fig. 5 (d). For this matrix, the width
∆αQ4095 = 1.0160− 0.0080 = 1.0080, and the “most” frequent singularity occurs at αmfQ4095

= 0.5540.
On the other hand, the multifractal results for the decryption matrices, TN and RN , are displayed in

Fig. 6. We notice that both time series have a smaller ∆α that the previous one. However, both of them
present a similar multifractal behavior. For instance, the width ∆αR4095 = 0.9740 − 0.2180 = 0.7560 and
∆αT4095 = 0.9600− 0.2180 = 0.7420 do not present a big difference. In fact, the “most” frequent singularity
occurs at the same alpha value αmfR4095

= αmfT4095
= 0.4280. These results were expected since these

decryption matrices depend on the matrix QN .
In order to assess the impact of finite signal lengths on the multifractal quantities, we apply the WT-

MFDFA technique to the time series obtained from the encryption matrices involved in the ESCA system
for different lengths: N = 2n − 1, n = 9, 10, 11, 12, 13. Table 3 summarizes the results obtained, where we
notice that the results of matrix QN are more stable than the results obtained from the decryption matrices,
TN and RN . In fact, the results obtained for QN are in very good agreement with the results obtained in a
previous work,[13] where the WT-MFDFA method was applied to different CA rules, including the CA rule
90.

It is worth pointing out that we studied the intrinsic multifractal properties of the main sequence matrices
of an encryption system having in mind their possible usage in cryptanalysis. In Ref. [23] the authors have
considered the generalized Hurst exponent h(q) as a representative multifractal parameter. In that paper,
they analyzed a chaotic carrier with an embedded signal and found that this quantifier helped to detect the
presence of a message, meaning that it can be used as an efficient measure of encryption schemes. But, the
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analysis is performed on encrypted signals and not directly to the encryption elements of the encryption
system as we do here. A similar approach has been considered in another work, where we hope to establish
a relationship between an encrypted signal and multifractal quantities.

4 Conclusions

We have used the wavelet-based variant of the multifactal detrended fluctuation analysis to reveal the
multifractal features of some matrices that carry out the main functions in an encryption system. To
accomplish this goal, we discussed some multifractal quantities such as the generalized Hurst exponent h(q),
the singularity spectrum f(α), and the scaling exponent τ(q) of these matrices. In general, the multifractal
quantities provide useful statistical information and characterization of the matrices used in some classes of
encryption systems.
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[18] J. Uŕıas, G. Salazar, and E. Ugalde, Chaos 8, 814 (1998).

[19] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Phys. Rev. A 33, 1141 (1986).
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Fig. 4: (a) The generalized Hurst exponent h(q), and (b) the scaling exponent τ(q) for the binomial multifractal
model with a = 3/4. The theoretical values of h(q) and τ(q) with the WT-MFDFA calculations are shown for
comparison.

The values obtained for the multifractal the generalized Hurst exponent h for the binomial multifractal model with

a = 3/4, which were computed analytically and with the wavelet approach.

q hT (q) hW (q) hW (q) + ∆
-10 1.9000 1.8550 1.9000
-9 1.8889 1.8443 1.8893
-8 1.8750 1.8310 1.8760
-7 1.8572 1.8139 1.8589
-6 1.8337 1.7913 1.8363
-5 1.8012 1.7602 1.8052
-4 1.7544 1.7156 1.7606
-3 1.6842 1.6487 1.6936
-2 1.5760 1.5450 1.5900
-1 1.4150 1.3878 1.4328
0 0.0000 1.1779 1.2229
1 1.0000 0.9577 1.0026
2 0.8390 0.7899 0.8349
3 0.7309 0.6829 0.7279
4 0.6606 0.6138 0.6588
5 0.6139 0.5669 0.6119
6 0.5814 0.5339 0.5789
7 0.5578 0.5099 0.5549
8 0.5400 0.4917 0.5367
9 0.5261 0.4776 0.5225

10 0.5150 0.4662 0.5112
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Fig. 5: (a) Time series of the row signal of Q4095. Only the first 29 points are shown of the whole set of (212−1) data
points. (b)The generalized Hurst exponent h(q), (c) the τ exponent, where τ(q) = qh(q)− 1, and (d) the singularity

spectrum f(α) = q dτ(q)
dq

− τ(q).

The values of the width ∆α = [αmin, αmax] and the most “frequent” singularity, αmf, for different di-
mensions of the three matrices QN , RN and TN obtained by means of the WT-MFDFA method.

n
Matrix 9 10 11 12 13

αmin 0.1200 0.0500 0.0220 0.0080 0.0080
QN αmax 1.1000 1.0580 1.0300 1.0160 1.0160

∆α 0.9800 1.0080 1.0080 1.0080 1.0080
αmf 0.6520 0.5960 0.5820 0.5540 0.5540
αmin 0.0360 0.1060 0.1620 0.2180 0.2460

RN αmax 0.8060 0.8760 0.9320 0.9740 0.9880
∆α 0.7700 0.7700 0.7700 0.7560 0.7420
αmf 0.2880 0.3440 0.4000 0.4280 0.4560
αmin 0.0220 0.1060 0.1620 0.2180 0.2460

TN αmax 0.8060 0.8760 0.9320 0.9600 0.9880
∆α 0.7840 0.7700 0.7840 0.7420 0.7420
αmf 0.3020 0.3440 0.4000 0.4280 0.4560
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Fig. 6: Time series of the row signal of the matrices (a) R4095, and (b) T4095. Only the first 28 points are shown of
the whole set of (212 − 1) data points. (c)The generalized Hurst exponent h(q) for the row signals R4095, and T4095,
(d) the τ exponent for each signal, and (e) the corresponding singularity spectrum f(α).
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