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We examine the three-step master equation from the standpoint of the general

solution of the associated discrete Riccati equation. We report by this means stationary

master solutions depending on a free constant parameter, denoted by D, that should

be negative in order to assure the positivity of the solution. These solutions correspond

to different discrete Markov processes characterized by the value of D, which is related

to specific renormalizations of the transition rates of the chain of states.

In general, the three-step population master equation is used by physicists in
many studies of diffusion processes of microscopic particles on one-dimensional
lattices [1], but this simple discrete equation has extensive and interesting ap-
plications in other fields as well, most recently to Hubbell’s neutral theory in
ecology [2]. In the following, we shall use a population interpretation. It reads

dpn
dt

= dn+1pn+1 − σnpn + bn−1pn−1 , σn, = bn + dn , (1)

where bn is the transition rate for the birth-type jump n → n+ 1 and dn is the
death-type rate for the backward jump n → n − 1, while pn is the probability
to have n individuals at the instant t. Employing the initial conditions b

−1 =
d0 = 0, the known stationary solution is, [3]

P st
n = P0

(

n−1
∏

j=0

bj
dj+1

)

, (2)

where P0 is a scaling constant that through the probabilistic normalization

condition can be written as P0 =

(

1 +
∑N

n=1

∏n−1

j=0

bj
dj+1

)

−1

(see, [4]).

We proceed now to show that stationary solutions which are different of Eq. (2)
can be obtained that are based on the general solution of the discrete Riccati
equation connected to the master equation. Indeed, performing the transforma-
tion

yn−1 =
Pn−1

Pn
+

1− σn

bn−1

, n 6= 0 , (3)
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in Eq. (1) leads to the following discrete Riccati equation

yn = bn−1ynyn−1 −
bn−1

bn
(1− σn+1)yn−1 + dn+1 +

1− σn+1

bn
, (4)

with the particular solution

y0n =
1− bn+1

bn
. (5)

However, it is easy to check that one can write a more general solution of Eq. (4)
as follows

y1n = y0n +
fn

D −
∑n

k=0

fkbk+1

dk+2

, fn =

n
∏

i=0

bidi+2

b2i+1

, (6)

where D is a real constant.
Using simple discrete algebra, one can obtain the recurrence relationship

Pn+1 = Pn

(

yn +
σn+1 − 1

bn

)

−1

(7)

leading to stationary solutions of the following form

Pn(D) = P̃0

n−1
∏

i=0

bi
di+1

(

1 +
fibi/di+1

|D|+
∑i

j=0

fjbj+1

dj+2
− fibi

di+1

)

(8)

where the normalization constant reads

P̃0 =

[

1 +
N
∑

n=1

n−1
∏

i=0

bi
di+1

(

1 +
fibi/di+1

|D|+
∑i

j=0

fjbj+1

dj+2
− fibi

di+1

)]

−1

. (9)

Examining Eq. (8) with normalization (9), we first notice that for D → −∞ we
recover the known case of stationary master solution with the common normal-
ization. In addition, we notice that the factor

(

1 +
fibi/di+1

|D|+
∑i

j=0

fjbj+1

dj+2
− fibi

di+1

)

looks like a renormalization factor for the transition rates of the original station-
ary Markov process. A reasonable interpretation of D depends on the specific
application and in general is related to initial conditions, boundary conditions,
or external applied fields. In addition, for a physical solution one requires posi-
tivity implying

bi
di+1

≥
bi−1

di
.

This is a strong condition and in particular cases it could be relaxed.
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a). The most trivial case is bk = dk = const < 1, k = 0, ..., n. This implies
P st
k = P0; the Riccati solution is yk = b−1 − 1. The D-dependent solution will

be

Pk = P̃

(

1 +
k

D

)

(10)

and with the normalization explicitly calculated

Pk =
1

n+ 1

(

1 + k
D

1 + n
2D

)

. (11)

A plot of Pk for various values of the parameter D is shown in Fig. (1).

b). For the asymmetric case we take bn = 1

2
(1 + ǫ), dn = 1

2
(1 − ǫ), q = 1−ǫ

1+ǫ <
1, n = 0, ...N , and the parametric solution reads

Pn = P̃0q
−n

n−1
∏

i=0

(1− q)(D + qi) + 1− qi

(1 − q)D + 1− qi
, (12)

and the normalization constant can be easily written down from Eq. (9). Plots
for this case are displayed in Fig. (2).

c). Various other cases are presented in Figures (3) - (5) for exponential
parametrizations of the jump rates.

In summary, we report one-parameter stationary solutions of the three-step
master equation that are based on the corresponding discrete Riccati gen-
eral solution. In the continuous case, the mathematical method we employ
here corresponds to Mielnik’s procedure in supersymmetric quantum mechanics
[5]. The parameter of these solutions could be fixed in applications by ini-
tial/boundary conditions or through external perturbations of the underlying
birth-death Markov process.

It is well known that the stationary solution of the master equation of a
discrete Markov process is uniquely defined if the process contains only one
class of ergodic states. In this case, the stationary solution does not depend
on the initial condition. The discrete Riccati mathematical procedure leads
to modified transition rates and consequently to different stationary solutions
that belongs to different master equations. Modifying the rates at the ends
of the chain of states corresponds to a probability current flow through the
system, i.e., to a driven system. Thus, the physical interpretation of this class
of parametric master solutions is that they are a specific type of current-carrying
solutions that are important non-equilibrium steady states in many mesoscopic
and macroscopic systems, such as Becker-Döring nucleation processes [6], or
superconductivity, where as stated by Geller [7], “it is now understood that
supercurrent-carrying states are in fact, metastable non-equilibrium states ...
with an extremely long lifetime”. The latter states are essential for the tunable
supercurrent of Josephson junction technology [8].

If, for example, we place us in a population (ecology) context, the difference
with respect to the original master equation is already at the level of the d0 rate.
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For a finite D the rate d0 is not zero. Thus, for positive d0, one can interpret
this rate as an initial immigration rate, while for negative values as an initial
emigration rate.
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Figure 1: Pk(−1000), Pk(−2000) and Pk(−∞) for bi = di = const < 1 and
n = 20.
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Figure 2: Pn(−4) - black straight line; Pn(−40) - blue dotted line; Pn(−∞) -
red-dotted line, all of them for ǫ = 0.02.
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Figure 3: Black straight line - Pn(−4); blue-dotted line is Pn(−4000); red-
dotted-dashed line is Pn(−∞)- for bi = 0.1 + exp[−0.12 i] and di = 0.1 +
exp[−0.15 i].
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Figure 4: Pn(−4) - black straight line; Pn(−4000) - blue dotted line; Pn(−∞) -
red-dotted line, for bi = exp[−0.12 i1/2] and di = exp[−0.15 i1/2].
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Figure 5: Pn(−4) - black straight line; Pn(−4000) - blue dotted line; Pn(−∞) -
red-dotted line, for bi = 0.01 + exp[−0.15 i] and di = 0.01 + exp[−0.12 i].
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