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SUPERSYMMETRY OF FRW BAROTROPIC COSMOLOGIES

H.C. ROSU∗ and P. OJEDA-MAY†

Potosinian Institute of Science and Technology (IPICyT)

Apartado Postal 3-74 Tangamanga, 78231 San Luis Potośı, Mexico

Barotropic FRW cosmologies are presented from the standpoint of nonrelativis-
tic supersymmetry. First, we reduce the barotropic FRW system of differential
equations to simple harmonic oscillator differential equations. Employing the fac-
torization procedure, the solutions of the latter equations are divided into the two
classes of bosonic (nonsingular) and fermionic (singular) cosmological solutions.
We next introduce a coupling parameter denoted by K between the two classes
of solutions and obtain barotropic cosmologies with dissipative features acting on
the scale factors and spatial curvature of the universe. The K-extended FRW
equations in comoving time are presented in explicit form in the low coupling
regime. The standard barotropic FRW cosmologies correspond to the dissipa-
tionless limit K = 0.

Comoving FRW barotropy

Barotropic FRW cosmologies in comoving time t obey the Einstein-Friedmann
dynamical equations for the scale factor a(t) of the universe supplemented
by the (barotropic) equation of state of the cosmological fluid

ä
a = −

4πG
3 (ρ + 3p) ,

H2
0(t) ≡

(

ȧ
a

)2
= 8πGρ

3 −
κ
a2 ,

p = (γ − 1)ρ ,

where ρ and p are the energy density and the pressure, respectively, of the
perfect fluid of which a classical universe is usually assumed to be made of,
κ = 0,±1 is the curvature index of the flat, closed, open universe, respec-
tively, and γ is the constant adiabatic index of the cosmological fluid.
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Bosonic FRW barotropy

Passing to the conformal time variable η, defined through dt = a(η)dη, one
can combine the three equations in a single Riccati equation for the Hubble
parameter H0(η) (we shall use either d

dη or ′ for the derivative with respect

to η in the following)

H
′

0 + cH2
0 + κc = 0 , (1)

where c = 3
2γ − 1.

Employing now H0(η) = 1
c

w
′

w one gets the very simple (harmonic oscilla-
tor) second order differential equation

w
′′

− c · cκ,bw = 0 , (2)

where cκ,b = −κc. Moreover, the particular Riccati solutions H+
0 = − tan cη

and H−

0 = coth cη for κ = ±1, respectively, are related to the common fac-
torizations of the equation (2)

(

d

dη
+ cH0

)(

d

dη
− cH0

)

w = w
′′

− c(H
′

0 + cH2
0)w = 0 . (3)

Borrowing a terminology from supersymmetric quantum mechanics, we
call the solutions w as bosonic zero modes. They are the following. For
κ = 1

w1,b ∼ cos(cη + d) → a1,b(η) ∼ w
1/c
1 ,

where d is an arbitrary phase, whereas for κ = −1 one gets

w−1,b ∼ sinh(cη) → a−1,b(η) ∼ w
1/c
−1 .

Fermionic FRW barotropy

A class of barotropic FRW cosmologies with inverse scale factors with re-
spect to the bosonic ones can be obtained by considering the supersymmetric
partner (or fermionic) equation of Eq. (3) which is obtained by applying the
factorization brackets in reverse order

(

d

dη
− cH0

)(

d

dη
+ cH0

)

w = w
′′

− c(−H
′

0 + cH2
0)w = 0 . (4)

Thus, one can write
w

′′

− c · cκ,fw = 0 , (5)

where

cκ,f(η) = −H
′

0 + cH2
0 =

{

c(1 + 2tan2cη) if κ = 1

c(−1 + 2coth2cη) if κ = −1
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denotes the supersymmetric partner adiabatic index of fermionic type as-
sociated through the mathematical scheme to the constant bosonic index.
Notice that the fermionic adiabatic index is time dependent. The fermionic
w solutions are

w1,f =
c

cos(cη + d)
→ a1,f(η) ∼ [cos(cη + d)]−1/c ,

and
w−1,f =

c

sinh(cη)
→ a−1,f(η) ∼ [sinh(cη)]−1/c ,

for κ = 1 and κ = −1, respectively.

We can see that the bosonic and fermionic barotropic cosmologies are
reciprocal to each other, in the sense that

a±,ba±,f = const .

Thus, bosonic expansion corresponds to fermionic contraction and viceversa.

Uncoupled fermionic and bosonic FRW barotropies

A matrix formulation of the previous results is possible as follows. Introduc-
ing the following two Pauli matrices

α = −iσy = −i

(

0 −i
i 0

)

and β = σx =

(

0 1
1 0

)

we can write a cosmological matrix equation

σyDηW + σx(icH0)W = 0 , (6)

where W =

(

w1

w2

)

is a two component ‘zero-mass’ spinor. This is equiva-

lent to the following decoupled equations

Dηw1 + cH0w1 = 0 (7)

−Dηw2 + cH0w2 = 0 . (8)

Solving these equations one gets w1 ∝ 1/ cos(cη) and w2 ∝ cos(cη) for κ = 1
cosmologies and w1 ∝ 1/sinh(cη) and w2 ∝ sinh(cη) for κ = −1 cosmologies.
Thus, we obtain

W =

(

w1

w2

)

=

(

wf

wb

)

.

This shows that the matrix equation contains the two reciprocal barotropic
cosmologies on the same footing as the two components of the spinor W.
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Coupled fermionic and bosonic cosmological barotropies

There is a simple way to couple the two spinorial components by means of
a constant parameter K. Indeed, we write

[σyDη + σx(icH0 + K)]W = KW , (9)

where K is equivalent to the mass parameter of a Dirac spinor. Eq. (9) is
equivalent to the following system of coupled equations

Dηw1 + (icH0 + K)w1 = Kw2 (10)

−Dηw2 + (icH0 + K)w2 = Kw1 . (11)

These two coupled first-order equations are equivalent to second order dif-
ferential equations for each of the two spinor components.
The fermionic spinor component can be found directly as solutions of

{

w+′′

1 − c[c1,f(η) + 2iK tan cη]w+
1 = 0 for κ = 1

w−
′′

1 − c[c−1,f(η) − 2iKcoth cη]w−

1 = 0 for κ = −1 ,
(12)

whereas the bosonic components are solutions of

{

w+′′

2 + c[c − 2iK tan cη]w+
2 = 0 for κ = 1

w−
′′

2 + c[−c + 2iKcoth cη]w−

2 = 0 for κ = −1 .
(13)

The solutions of the bosonic equations are expressed in terms of the Gauss
hypergeometric functions 2F1 of complex parameters that can be written in
explicit form :

z−k2

2 w+
2 (η) = A zk1

1 2F1

[

k1 + k2 + 1, k1 + k2, 1 + 2k1 ;−
z1

2

]

−B e−i(1+2k1)π
(

4

z1

)k1

2F1

[

−k1 + k2,−k1 + k2 + 1, 1 − 2k1 ;−
z1

2

]

(14)

and

z−k4

4 w−

2 (η) = C zk3

3 2F1

[

k3 + k4, k3 + k4 + 1, 1 + 2k3;
z3

2

]

+D

(

4

z3

)k3

2F1

[

−k3 + k4 + 1,−k3 + k4, 1 − 2k3;
z3

2

]

, (15)

where the variables zi (i = 1, ..., 4) are given in the following form:

z1 = i tan(cη) − 1, z2 = i tan(cη) + 1, z3 = coth(cη) + 1, z4 = coth(cη) − 1,
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respectively. The k parameters are the following:

k1 =
1

2

(

1 −
2K

c

)
1

2

, k2 =
1

2

(

1 +
2K

c

)
1

2

,

and

k3 =
1

2

(

1 + i
2K

c

)
1

2

, k4 =
1

2

(

1 − i
2K

c

)
1

2

,

whereas A, B, C, D are superposition constants. Plots of these modes are
given in Ref. 2b.

Based on these K zero-modes, we can introduce bosonic scale factors and
Hubble parameters depending on the parameter K

aK,+ = (w+
2 )1/c , H+

K(η) =
1

c

(

log w+
2

)′

(16)

and

aK,− = (w−

2 )1/c , H−

K(η) =
1

c

(

log w−

2

)′

, (17)

and similarly for the fermionic components by changing w±

2 to w±

1 in eqs. (16)
and (17), respectively.

Comoving K-coupled FRW barotropy: Small K regime

Introducing the notations λK = −K(∂aK

∂K )K=0 and Fκ(t) =
(

1 + 2λK

κaK

)

, one

can show that in the small K/c limit the comoving time equations can be
written as follows:

äK

aK

(

F1(t) −
λK

aK

)

−
λ̈K

aK
= −

4πG
3 (ρ + 3p) ,

(

ȧK

aK

)2
F1(t) = 8πGρ

3 −
(κ+2

λK

aK
)

a2

K

,

p = (γ − 1)ρ .

(aK could be either aK,+ or aK,− depending on the κ case we take into
account).

Interpretation

We come now to the interpretational issue. We consider only the small K
regime as realistic. Then, the effects of K show up only on the geometri-
cal quantities without any change in the barotropic equation of state. The
parameter K introduces an imaginary part in the cosmological Hubble pa-
rameter H. Since the latter is the logarithmic derivative of the scale factor of
the universe one comes to the conclusion that the supersymmetric techniques
presented here are a supersymmetric way to take into account dissipation
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and instabilities of barotropic FRW cosmologies. However, since K is also a
coupling parameter between fermion and boson components, the dissipation
and instabilities belong to the cosmological epochs that occurred before the
supersymmetry breaking.
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c) H.C. Rosu and R. López-Sandoval, “Barotropic FRW cosmologies with a Dirac-like
parameter”, Mod. Phys. Lett. A 19, 1529 (2004), gr-qc/0403045.

3. a) F. Cooper, A. Khare, R. Musto, A. Wipf, “Supersymmetry and the Dirac equation”,
Ann. Phys. 187, 1 (1988). See also:
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