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Abstract

A one-parameter family of Emden-Fowler equations defined by Lampariello’s parameter p which, upon using
Thomas-Fermi boundary conditions, turns into a set of generalized Thomas-Fermi equations comprising the
standard Thomas-Fermi equation for p = 1 is studied in this paper. The entire family is shown to be
non integrable by reduction to the corresponding Abel equations whose invariants do not satisfy a known
integrability condition. We also discuss the equivalent dynamical system of equations for the standard
Thomas-Fermi equation and perform its phase-plane analysis. The results of the latter analysis are similar
for the whole class.

Keywords: generalized Thomas-Fermi equation, Emden-Fowler equation, Abel equation, invariant,
dynamical system

1. Introduction

The Thomas-Fermi (TF) model [1, 2] for the effective electrostatic potential at an arbitrary point in the
bulk of a heavy atom emerged as a forerunner of the density functional theory almost ninety years ago, and
with some improvements is still in common use for predictions concerning the stability and sizes of heavy
atoms, ions, and molecules [3, 4].

The TF equation belongs to the class of Emden-Fowler nonlinear equations which have the form

d2z

dx2
= ±x−λ−2zn , (1)

or
d2y

dx2
= ±x−λ+nyn , (2)

where the change of power of the independent variable in the latter equation is obtained via the transforma-
tion z(x) = x y

(
1
x

)
. λ is a real parameter and n is an integer or fractional parameter. This type of equations

became first known in theoretical astrophysics as Lane-Emden and later also as Emden-Fowler equations
where they dominated the main stream literature for decades as the basic equations for the Newtonian
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gravitational potential of a spherically symmetric polytropic gas [5, 6, 7]. The astrophysical applications
are described generically by the case λ = −2, with n related to the polytropic index, the dependent variable
related to the density of the self-gravitating gas and the independent variable as a dimensionless radius of
the gas structure. The minus sign in the right hand side is common for all of the astrophysical applications.
On the other hand, the Thomas-Fermi model [1, 2] describing the electronic screening effect in the bulk of
a heavy atom leads to the same form of the equation, though for a non-integer n and with the positive sign
in the right hand side. In both astrophysics and atomic physics applications, the self-adjoint form of Eq. (1)
is used which comes out by means of Kamke’s substitutions [8] of the canonical variables η(ξ) = z(x) and
ξ = 1/x

1

ξ2
d

dξ

(
ξ2
dη

dξ

)
= ±ξλ−2ηn . (3)

Other interesting cases correspond to negative n’s of the form n = 1 − 2m, λ = −m, in (1), with m a
positive integer ≥ 2, when the Emden-Fowler equations can be associated to Ermakov parametric oscillators
and their Reid generalization [9], while for m = 1, λ = −2, and negative sign in the right hand side of (1)
the equation is known as the ‘pseudo’-oscillator equation [10, 11] and has been used to model the path taken
by an electron in an electron beam injected into a plasma tube [12].

In this paper, we provide a discussion of a class of Emden-Fowler equations presenting fractional powers
of both parameters that have been introduced in 1934 by Lampariello [13] which can be considered as
generalized Thomas-Fermi equations since the TF equation is just one particular case of the whole chain
and we also maintain the Thomas-Fermi boundary conditions. We show explicitly that these generalized TF
equations are related to non integrable Abel equations and therefore no closed solutions are possible for any
case of this class. We finally study the autonomous type system of equations to which the Thomas-Fermi
equation can be mapped onto, the results of the phase-plane analysis being analogous for all cases.

2. Generalized Thomas-Fermi equations

The TF equation is the p = 1 case of the following class of Emden-Fowler equations introduced by
Lampariello [13]

x
p
p+1

d2y

dx2
= y

2p+1
p+1 , or

d2y

dx2
= x−

p
p+1 y1+

p
p+1 , (4)

with the boundary conditions
y(0) = 1 , lim

x→∞
y(x) = 0 . (5)

imposed by atomic physics considerations that we keep up for the whole family. An additional condition at
the origin is that the physical solution should have finite derivative to the right. This requires p/(p+ 1) < 1
[13], which then provides the interval (−1,∞) as allowed for the parameter p. However, the case p = 0
is a simple linear equation, while if p ∈ (−1, 0) the origin is not a singular point as it is the case for the
standard equations of this class. If one does not impose the additional condition of finite first derivative at
the origin, then the interval p ∈ (−∞,−1) may be taken into account with some interesting cases such as
when the powers of y are positive integers corresponding to Lane-Emden equations. In the latter cases, we
have 1 + p

p+1 = n ∈ N which is possible only when p ∈ (−2,−1).

Comparison of Eq. (4) to Eq. (2) implies that n = 2 − 1
p+1 , and λ = 3 − 2

p+1 . Thus to obtain the TF

equation, we use λ = 2, n = 3
2 in Eq. (1) which gives

d2z

dx2
= x−4z

3
2 (6)

and according to Eq. (3) has the self-adjoint form,

1

ξ2
d

dξ

(
ξ2
dη

dξ

)
= η

3
2 , (7)
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while with the powers changed takes the standard form

d2y

dx2
= x−

1
2 y

3
2 (8)

obtained alternatively using p = 1 in Eq. (4).
Equation (4) admits a particular solution

y0(x) =
kp

x1+
2
p

, kp =

[(
2 +

2

p

)(
1 +

2

p

)]1+ 1
p

, (9)

which satisfies the boundary condition lim
x→∞

y(x) = 0 but not y(0) = 1. In addition, Eq. (4) is invariant

under the rescaling transformations x → ax and y → a−(1+ 2
p )y for a 6= 0 which suggests that there is a

function w(x) = y(x)
y0(x)

that satisfies the nonlinear equation

d2w

dx2
+ 2

dy0
dx

y0

dw

dx
+ x−

p
p+1 y

p
p+1

0

(
w − w2− 1

p+1

)
= 0. (10)

By using y0 from Eq. (9), we obtain the nonlinear Cauchy-Euler type equation

x2
d2w

dx2
− 2

(
1 +

2

p

)
x
dw

dx
+

[(
2 +

2

p

)(
1 +

2

p

)](
w − w2− 1

p+1

)
= 0. (11)

This equation can be changed into a nonlinear oscillator equation by the rescaled variable t = lnx to obtain

d2w

dt2
−
(

3 +
4

p

)
dw

dt
+ k

1− 1
p+1

p w = k
1− 1

p+1
p w2− 1

p+1 , (12)

where we have moved the nonlinearity on the right hand side. These nonlinear oscillators have a negative

constant ‘damping’ ratio ζp = −
(

3
2 + 2

p

)
k

1
2 ( 1

p+1−1)
p and a specific stiffness of κp = k

1− 1
p+1

p of the same value

as the specific strength of the nonlinearity. The interesting feature of these nonlinear oscillators is that when
p is increased from 1 (the TF case) to ∞, the ‘damping’ ratio varies only from ζ1 = −7

√
3/12 ≈ −1.01

to ζ∞ = −3
√

2/4 ≈ −1.06, whereas the specific stiffness decreases six times, from κ1 = 12 to κ∞ = 2, in
parallel with the same decrease of the specific strength of the nonlinearity while the latter raises its power
index from three halves to quadratic. To display the limits of variation of the coefficients of this class of
nonlinear equations, we use p = 1 and p =∞ in Eqs. (11) and (12) that gives

x2
d2w

dx2
− 6x

dw

dx
+ 12w = 12w

3
2 , x2

d2w

dx2
− 2x

dw

dx
+ 2w = 2w2 , (13)

which in the rescaled variable corresponds to

d2w

dt2
− 7

dw

dt
+ 12w = 12w

3
2 ,

d2w

dt2
− 3

dw

dt
+ 2w = 2w2 , (14)

respectively. We also notice that the characteristic equation of the corresponding linear oscillator has the
roots r1 = 2 + 2

p and r2 = 1 + 2
p . In the case of the TF equation, r1 = 4 and r2 = 3; moreover, their squared

product is (r1r2)2 = k1 = 144.

2.1. Perturbation of the particular solution

Now, let us perturb the particular solution by a function ε(x) = y(x)− y0(x), assumed infinitesimal. By
substituting into Eq. (4) and expanding with respect to ε we obtain
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x
p
p+1

d2ε

dx2
=

2p+ 1

p+ 1
y

p
p+1

0 ε+
p(2p+ 1)

2(p+ 1)2
y
− 1
p+1

0 ε2 − p(2p+ 1)

6(p+ 1)3
y
−(1+ 1

p+1 )
0 ε3 +O(ε4) . (15)

Using the particular solution y0 the above reduces to

d2ε

dx2
=

2p+ 1

p+ 1
k

p
p+1
p

1

x2
ε+

p(2p+ 1)

2(p+ 1)2
k
− 1
p+1

p x
2
p−1ε2 − p(2p+ 1)

6(p+ 1)3
k
−(1+ 1

p+1 )
p x

4
p ε3 +O(ε4). (16)

If we keep now only the linear term, we obtain the Cauchy-Euler equation

d2ε

dx2
=

2p+ 1

p+ 1
k

p
p+1
p

1

x2
ε (17)

from which we get
d2ε

dx2
=

18

x2
ε (18)

as a particular case when p = 1 with general solution

ε(x) = c1x
1
2 (1−

√
73) + c2x

1
2 (1+

√
73) ≈ c1x−3.772 + c2x

4.772 . (19)

Lampariello used the negative power term in (19) to argue on the asymptotic behavior of solutions at
infinity. Since it is the only one which is infinitesimal at infinity and moreover since its power exponent
is more negative than the power exponent of y0, which is valid for any p, then any solution y(x) which is
infinitesimal at infinity differs from y0 by an infinitesimal of higher order with respect to y0. One concludes
that the solution y(x) itself should differ from y0 by an infinitesimal of order higher to the order of y0 and

then one may assume that the quotient w(x) = y(x)
y0(x)

→ 1 for x → ∞. On the other hand, the presence

of the irregular positive power term is indicative of possible perturbative instabilities and may explain the
nonexistence of more extended Thomas-Fermi structures. In addition, we will see in the last section that
the same powers as in (19) correspond to the eigenvalues of the Jacobian matrix at the saddle point.

3. Abel equation as an ingredient for generalized Thomas-Fermi equations

To write Eq. (12) as an Abel equation of the second kind we proceed as in [14] and let dw
dt = s(w). This

leads to

s
ds

dw
−
(

3 +
4

p

)
s+

[
2

(
1 +

1

p

)(
1 +

2

p

)](
w − w2− 1

p+1

)
= 0 (20)

which corresponds to

s
ds

dw
− 7s+ 12w(1−

√
w) = 0 (21)

for the TF equation when p = 1.

3.1. Abel Invariant

We use the inverse transformation s(w) = 1
z(w) to obtain the Abel equation of the first kind

dz

dw
= f2z

2 + f3z
3 = −

(
3 +

4

p

)
z2 +

[
2

(
1 +

1

p

)(
1 +

2

p

)](
w − w2− 1

p+1

)
z3 . (22)

This equation has the invariant

Φp(w) =
1

3

(
f3
df2
dw
− f2

df3
dw

)
+

2

27
f32 =

2(3p+ 4)

27p3

[
(3p+ 2)− 9(p+ 2)(2p+ 1)w1− 1

p+1

]
. (23)
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Remark 3.1. Abel equations are integrable if the invariant satisfies the integrability condition

f3
dΦp
dw

+

(
f22 − 3

df3
dw

)
Φp = 3αΦ

5
3
p , (24)

for some constant α. In that case, the solution is

z =
3uΦp

1
3 − f2

3f3
(25)

where u is found by one quadrature ∫
du

u3 − αu+ 1
+ C =

∫
Φp

2
3

f3
dw . (26)

However, the structure of the invariant Φp in Eq. (23) leads to an integrability condition of the form

c1w
q + c2w

2q + c3 (c4 − c5wq)
5
3 α = c6 , (27)

where the constants ci = ci(p) and q = p
p+1 , and there is no constant α that satisfies (27). In particular,

the Abel equation corresponding to the TF equation has the invariant

Φ1(w) =
70

27
− 42

√
w (28)

and the corresponding integrability condition

3807
√
w + 11664w + 14

2
3

(
5− 81

√
w
) 5

3 α = 195 (29)

is not satisfied by any constant α.
Therefore, we will instead use a special transformation due to Lampariello [13] which will change the

Thomas-Fermi equation into a first-order equation obtained by Majorana [15].

3.2. The Lampariello transformation

Let us rewrite Eq. (20) as

s
ds

dw
=

(
3 +

4

p

)
s+

[
2

(
1 +

1

p

)(
1 +

2

p

)]
w
(
w

p
p+1 − w

)
(30)

and use w(τ) = τ (p+1)(p+2) with

s(w) =

(
1 +

2

p

)[
1− τp(p+1)u(τ)

]
w (31)

in Eq. (30). Then we obtain

du

dτ
= −2(p+ 1)2

τp−1
(

1− τp2u2
)

1− τp(p+1)u
, (32)

which in the TF case takes the form
du

dτ
=
−8(1− τu2)

1− τ2u
. (33)

This equation is the same as Eq. (27) in Esposito’s paper on the results of Majorana [15] and it is an important
intermediate step in Majorana’s approach. A power expansion of the function u in the variable (1− τ) led
Majorana to his parametric solution of the TF equation adapted to the phenomenological requirements of
atomic physics.
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4. An autonomous two-dimensional ODE system of the TF equation

This section deals essentially with the TF equation since the results are similar for the other nonunity val-
ues of p. By transforming the self-adjoint form of the TF equation into a dynamical system, one can classify
the solutions based on linear stability analysis. This mapping can be achieved by using the transformations
on Eq. (3) given by Jordan and Smith in their book [16]

X = ξ
ηξ
η

Y = ξλ−1 ηn

ηξ
,

(34)

with ξ = et, which will turn the self-adjoint form of TF Eq. (7) into the autonomous two-dimensional ODE
system

dX
dt = −X(1 +X − Y ) = M(X,Y )
dY
dt = Y (λ+ 1 + nX − Y ) = N(X,Y ) ,

(35)

with four equilibrium points given by{
(X0, Y0) = (0, 0); (X1, Y1) = (−1, 0); (X2, Y2) = (0, λ+ 1); (X3, Y3) =

(
− λ

n− 1
, 1− λ

n− 1

)}
.

We mention that a discussion of a similar system of equations obtained with the same transformations
applied to the non self-adjoint form of the TF equation has been provided by Hille a long time ago [17].
However, his discussion is focused on adding more intuition to the series expansions of the TF solutions for
large and small values of the independent variable rather than on the phase-plane analysis as we do next.

Following standard methods of phase-plane analysis, we use the linear approximation of the equilibrium
points to classify them. The Jacobian matrix of (35) is

J =

[
∂M
∂X

∂M
∂Y

∂N
∂X

∂N
∂Y

]
=

[
−1− 2X + Y X

nY λ+ 1 + nX − 2Y

]
(36)

and the characteristic polynomial of the Jacobian matrix is

j(θ) = θ2 − δ1θ + δ2 = 0 . (37)

The equilibrium points will be classified according to signs of the trace Tr(J) = δ1 = ∂M
∂X + ∂N

∂Y , deter-

minant Det(J) = δ2 = ∂M
∂X

∂N
∂Y −

∂M
∂Y

∂N
∂X , and discriminant ∆ = δ21 − 4δ2, all evaluated at (Xi, Yi). For TF

equation, n = 3
2 , λ = 2, the results are presented in Table 1 and the phase-plane portraits in Fig. 1.

Fixed Points δ1 δ2 ∆ Type

(X0, Y0) 2 −3 16 saddle
(X1, Y1) 5

2
3
2

1
4 stable node

(X2, Y2) -1 −6 25 saddle
(X3, Y3) 7 −6 73 saddle

Table 1: General equilibrium points of the predator-prey system (35).

Now let us consider the only nontrivial fixed point (X3, Y3) = (−4,−3). Since in the general case
(X3(p), Y3(p)) = (−3 − 1/p,−2 − 1/p), this fixed point moves towards (−3,−2) when p → ∞. Using the

transformation given by (34) we have XY = ξληn−1 ⇒ X3Y3 = 12 = ξ2η
1
2 =

√
z(x)

x2 . Since z(x) = xy( 1
x ),

the particular solution y0(x) = 144/x3 can also be obtained using the saddle point. Also, the Jacobian at
the fixed point is
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Figure 1: Phase-plane portrait of the autonomous ODE system (35) for the TF equation for n = 3
2
and λ = 2.

J(X3,Y3) =

[
4 −4
− 9

2 3

]
(38)

with characteristic polynomial j(X3,Y3) = θ2 − 7θ − 6 = 0. The eigenvalues are θ1,2 = 7±
√
73

2 = 3 + θ01,2 ,

where the perturbed values from the integer part 3 are θ01,2 = 1±
√
73

2 . The integer part of the eigenvalue,
3, corresponds to the power of the particular solution y0, while the perturbed eigenvalues correspond to the
powers of the perturbed solutions ε from Eq. (19). For the first eigenvalue θ1 the flow is in the direction

of ~u1 =

[
1

1− θ1
4

]
≈
[

1
−0.943

]
, while for the second eigenvalue θ2 the flow is in the direction of ~u2 =[

2(3− θ2
9 )

1

]
≈
[

6.171
1

]
.

5. Conclusion

The generalized class of TF equations labeled by the Lampariello parameter p ≥ 0, with the TF equation
corresponding to the case p = 1, has been shown to be nonintegrable by reduction to the corresponding
class of Abel equations. A different reduction of the TF equation to an autonomous system of first-order
equations shows that the system possesses a single stable node and three unstable saddle points in the phase
plane, a result which is valid for the whole class of generalized TF equations.

We surmise that the TF equations in this class may be used to describe quantum systems which display
intrinsic deviations from Fermi or Bose statistics [18] or in some astrophysical or cosmological context in
which the quantum electrostatics may present more interweaved screening effects.

Finally, we have also noticed that if the condition of boundedness of the first derivative of the solution
at the origin is relaxed then one can consider this family of equations in the direction p < −1 with direct
connection to the Lane-Emden equations in astrophysics only for p ∈ (−2,−1).

7



Acknowledgment: The authors thank the referees for comments which helped to perform a substantial
improvement of this work.

References

[1] Thomas L H 1927 The calculation of atomic fields, Proc. Cambridge Phil. Soc. 23, 542-548.
[2] Fermi E 1927 Un metodo statistico per la determinazione di alcune proprietà dell’atomo, Rend. Accad. Naz. Lincei 6,
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