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Abstract

We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential
equations and the Abel equations which in its first kind form have only cubic and quadratic terms. Then, employing an old
integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present
the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers-Huxley type equations which are obtained in this
way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second-order
nonlinear equations.
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1. Introduction

The connections between second order differential equa-
tions of linear and nonlinear type and Riccati and Abel first
order nonlinear equations, respectively, are well known and re-
ferred in many textbooks [1, 2]. Abel equations of the first kind
look similar to the Riccati equations but with an additional cu-
bic nonlinearity,

dy
du
= ϕ0(u) + ϕ1(u)y+ ϕ2(u)y2

+ ϕ3(u)y3 , (1.1)

while those of the second kind have the more general format,

[g0(u)+g1(u)η]
dη
du
= f0(u)+ f1(u)η+ f2(u)η2

+ f3(u)η3 , (1.2)

and also chronologically occurred first in Abel’s famous study
on elliptic functions [3] in the form:

[g0(u) + η]
dη
du
= f0(u) + f1(u)η + f2(u)η2 . (1.3)

However, we stress that the two types of Abel equations are
equivalent since they can be obtained one from the other through
the change of the dependent variableg0(u)+g1(u)η = 1/y. In the
following, we first state a simple ‘connection’ result for the par-
ticular case of (1.2) as given in (2.2). We then turn the latter in
its first-kind form, equation (2.8) below, and present Chiellini’s
integrability result [4] which is also mentioned in the book of
Kamke [5]. Our discussion of Chiellini’s result goes beyond
that in Chiellini’s paper and in Kamke’s book. Next, we show
that one does not need to findη from (2.2), but directly from
a factorization technique as applied to the corresponding sec-
ond order ODE. Finally, we will use our findings to introduce

new types of integrable second-order nonlinear ODE providing
also their solutions and we end up the Letter with several con-
clusions. For the reader interested in other approaches to the
integrability of Abel’s equation and general overview we rec-
ommend [6].

2. Two fundamental results

We now briefly present the results we need. A first funda-
mental result is the following lemma.

Lemma 1: Solutions to a nonlinear second order
ODE of the type

d2u
dζ2
+ g(u)

du
dζ
+ h(u) = 0, (2.1)

whereg andh are general functions ofu(ζ), may
be obtained via the solutions to the second-kind
Abel’s equation

η
dη
du
+ g(u)η + h(u) = 0 , (2.2)

and vice versa using the following relationship

du
dζ
= η(u(ζ)) . (2.3)

This equivalence can be found in the book of Polyanin and Za-
itsev in the simpler caseh(u) = u, which they call nonlinear
oscillator equations [7].
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Proof: To show the equivalence, one just need the simple
chain rule

d2u
dζ2
=

dη
du

du
dζ

(2.4)

which turns (2.1) into

dη
du

du
dζ
+ g(u)

du
dζ
+ h(u) = 0, (2.5)

which is (2.2).

Thus, the solutions of the several classes of known solvable
Abel equations [8] are just the derivatives of the solutionsof the
second order nonlinear equations of the type (2.1). Hence, if
one could solve (2.2) forη, thenu could be found via inverting

∫ u 1
η

dr = ζ − ζ0 . (2.6)

As we already said we will also need the following result.

Chiellini’s integrability condition: If g(u) andh(u)
are connected by

d
du

(

h(u)
g(u)

)

= kg(u), (2.7)

for some constantk, then Abel’s equation is inte-
grable.

Proof: Lettingη(u) = 1
y(u) , then equation (2.2) becomes

dy
du
= h(u)y3

+ g(u)y2 , (2.8)

which is an Abel equation of the first kind without linear and
free terms. We wish to point out that an Abel equation of the
type (2.2) with an additional quadratic (Riccati) nonlinearity is
still allowed in the connection result because it leads to a linear
term l(u)y in the Abel equation (2.8) and such a term can be
always eliminated via the transformationy = e

∫

l(u)duŷ. Hence
without loss of generality, we will work only with quadraticand
cubic nonlinearities.

Furthermore, letz = yh
g and take into account Chiellini’s

condition, then one gets

dz
du
=

h
g

dy
du
+ kgy (2.9)

and, therefore, the first-kind Abel equation (2.2) becomes

dz
du
=

g2

h

(

z3
+ z2
+ kz

)

(2.10)

which is separable as follows

∫

dz
z(z2 + z+ k)

=

∫

g2

h
du . (2.11)

The right-hand-side of (2.11) can be written as1
k

∫ d( h
g )

h
g

.

Therefore, one obtains
∫

dz
z(z2 + z+ k)

=
1
k

ln
∣

∣

∣

h
g

∣

∣

∣ + c . (2.12)

The implicit solutions depend on the constantk, and are given
by































|z|k |z−z1|z2
|z−z2|z1 = d0

∣

∣

∣

h
g

∣

∣

∣

√
1−4k

if k < 1
4

e
[

1
1+2z−2 arctan(1+4z)

]

= d1
h
g if k = 1

4

ln |z|√
z2+z+k

− 1√
4k−1

arctan 2z+1
2
√

4k−1
= ln d2

∣

∣

∣

h
g

∣

∣

∣ if k > 1
4 .

(2.13)
d0, d1, d2 are general integration constants, whilez1 andz2 are
the distinct real roots ofz2

+ z+ k = 0 for k < 1
4.

Along the years, this important result drew the attention of
very few people. In the 1960s, Bandić wrote a couple of re-
lated mathematical papers [9, 10], while much later Borghero
and Melis [11] used it in the so-called Szebehely’s problem of
finding the generalized potential function which is compatible
with prescribed dynamical trajectories of a holonomic system.
More recently, Mak and Harko [12, 13, 14] devised a method
to get general solutions of the first-kind Abel equation froma
particular solution based on Chiellini’s result and the list closes
with a paper by Yurov and Yurov in cosmology [15]. We also
mention a very recent unpublished work by Harko et al [16] for
the case of particular Liénard equations.

3. A factorization method

In this section, we will explain how we use the factorization
method applied to (2.1) to obtain the solutions of (2.2).

The factored form of (2.1) reads
[

d
dζ
− φ2(u)

] [

d
dζ
− φ1(u)

]

u(ζ) = 0 . (3.1)

Expanding (3.1) and identifying terms, Rosu and Cornejo-P´erez
[17, 18] obtained the equation

d2u
dζ2
−

(

φ1 + φ2 +
dφ1

du
u

)

du
dζ
+ φ1φ2u = 0 , (3.2)

which leads to the following conditions on the two factoring
functions

φ1φ2 =
h(u)

u
, (3.3)

φ1 + φ2 = −
dφ1

du
u− g(u) . (3.4)

The solutionsφ1(u) andφ2(u) of the system (3.3) are easily
obtained by solving the quadratic equation

t2 − S t+ P = 0, (3.5)

whereS = − dφ1

du u − g(u), andP = h(u)
u , and t± = φ1,2. By

2



choosingt+ = φ1, we obtain

φ1

(

φ1 +
dφ1

du
u

)

+ gφ1 +
h
u
= 0. (3.6)

It is not a coincidence to notice that if

η(u) = uφ1(u) , (3.7)

then the equation for factors (3.6), is indeed Abel’s equation
(2.2). Therefore, rather than solving (2.2),η can be obtained
from the factors of the ODE. Interestingly, the factorization
method provides another argument for the two equivalences,
(2.3) and (3.7). From the factorization (3.1) we have

[

du
dζ − φ1(u)

]

u(ζ) =

0, i.e., du
dζ = φ1(u)u. Thus, if we takedu

dζ = η, then alsoφ1(u)u =
η. In addition, the interpretation of the Abel solution as in (3.7)
permits the formulation of another lemma as follows.

Lemma 2: For Chiellini-integrable ODEs, i.e., ODEs
that haveg(u), andh(u) connected via Chiellini’s
condition, the solution to Abel’s equation (2.2) is
given by

η(u) = ck
h(u)
g(u)

, (3.8)

where the constantck is given in terms of Chiellini’s
constant through

ck =
−1±

√
1− 4k

2k
. (3.9)

Proof: Let η(u) = ck
h(u)
g(u) , and substitute in (2.2),

then one getskc2
k + ck + 1 = 0 with the roots given

by (3.9).

Lemma 2 is very useful because one can employ it to findη
from g(u) andh(u) as follows.

Theorem: For an integrable ODE of type (2.1),

i) if g(u) is known, then

ηg(u) = ck

(

c0 + k
∫ u

g(r)dr

)

(3.10)

or
ii) if h(u) is known, then

ηh(u) = ±ck

√

c1 + 2k
∫ u

h(r)dr (3.11)

Proof: For both cases we will use Chiellini’s con-
dition together with lemma 2. For simplicity, we
putck = 1.

i) if we haveg(u), then

h(u) = g(u)

(

c0 + k
∫ u

g(r)dr

)

(3.12)

by integrating (2.7).

ii) If we know h(u), then we multiply equation (2.7)
by h

g to get

h
g

d
du

(

h
g

)

= kh. (3.13)

By integrating once with respect tou, we ob-
tain

h2

g2
= c1 + 2k

∫ u

h(r)dr. (3.14)

4. Examples of integrable dissipative equations obtained from
the above Theorem

We use now these results to obtain four integrable dissipa-
tive equations of type (2.1), either by starting with giveng or
h. We prefer to begin with the two cases of givenh because
usually the nonlinear equations are identified by their nonlinear
term(s) and not so much by their dissipation coefficient. In these
illustrative examples, we will takeck = 1, which corresponds
to k = −2.

4.1. Dissipative Fisher’s equation

In this case, leth(u) = u(1− u). Using the theorem,

ηh(u) =

√

c1 − 2u2 +
4u3

3
. (4.1)

Then, one gets the following integrable dissipative Fisher’s
equation

uζζ +
u(1− u)

√

c1 − 2u2 +
4u3

3

uζ + u(1− u) = 0 , (4.2)

with closed form solution given by

ζ − ζ0 =
√

3
2

∫ u dr
√

r3 − 3
2r2 + c2

, (4.3)

wherec2 =
3
4c1.

We notice that (4.2) can be also written in the convective
form

uζζ + µ(u)uuζ + u(1− u) = 0 , (4.4)

whereµ(u) = 1−u
√

c1−2u2+ 4u3
3

can be interpreted as a tuning function

of the convection.
In general, convective Fisher equations have been applied

with interesting results in population dynamics [19], while the
case of constantµ has been studied by Schönborn and collabo-
rators [20].

The dissipative Fisher solution of (4.2) forc2 =
1
2 is dis-

played in Fig. 1, and it has the dark soliton profileu(ζ) =
1 − 3

2sech2 ζ2. On the other hand, whenc2 =
1
4 the solution
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is the Jacobi elliptic sn function of the formu(ζ) = 1−
√

3
2 +√

3 sn2
(

ζ

31/4 |2
)

as plotted in Fig. 2.

4.2. Dissipative nonlinear pendulum equation

For this case,h(u) = sinu and thenηh(u) is given by

ηh(u) =
√

c3 + 4 cosu . (4.5)

Therefore, one gets the dissipative integrable nonlinear pendu-
lum equation

uζζ +
sinu

√
c3 + 4 cosu

uζ + sinu = 0 , (4.6)

with closed form solution in terms of the elliptic integral of the
first kind F(u|m)

ζ − ζ0 =
√

2m
2

∫ u dθ
√

1−msin2 θ
=

√
2m
2

F(u|m) , (4.7)

wherem= 8
c3+4.

In the case of the dissipative nonlinear pendulum equation
(4.6) for m = 2 the solution is the amplitude for Jacobi ellip-
tic functionu(ζ) = am(ζ |2), whereζ = F(u|2) as displayed in
Fig. 3. If m = 1, thenF(u|1) = ln | sec(u) + tan(u)|, and hence
the solution to equation (4.6) is
u(ζ) = ±arcsin

(

tanh(
√

2ζ)
)

, see Fig. 4. Ifm = 8/9, then
u(ζ) = am(3ζ2 |

8
9), see Fig. 5.

4.3. Generalized nonlinear pendulum equation with sine dissi-
pation

If we takeg(u) = sinu, then (3.12) givesh(u) = c0 sinu+sin 2u,
and therefore this is a generalized nonlinear pendulum equation
of the type

uζζ + sinuuζ + c0 sinu+ sin 2u = 0. (4.8)

The solutions are obtained by inverting

ζ =

∫

du
c0 + 2 cosu

, (4.9)

which leads to the following solutions

u(ζ) =















































2 arctan (2ζ) if c0 = 2
2arccotan(2ζ) if c0 = −2

2 arctan
( (2+c0) tanh (12

√
4−c2

0ζ)√
4−c2

0

)

if |c0| < 2

2 arctan
( (2+c0) tan (1

2

√
4−c2

0ζ)√
4−c2

0

)

if |c0| > 2 .

Plots of the last two cases forc0 = 1 andc0 = 3 are dis-
played in Figs. 6 and 7, respectively.

4.4. Burgers-Huxley type equation

An equation of this type can be obtained if we letg(u) = µu,
which through (3.12) leads to

h(u) = µ2u(
√

c0/µ − u)(
√

c0/µ + u) . (4.10)

This is similar to a Huxley nonlinearity, although not for the
typical range of the Huxley parameters. Such equations re-
flect the complex interplay between the nonlinearity, convec-
tion, and diffusive transport for waves propagating in biological
and chemical systems [21, 22]. The solutions are obtained from

ζ = −1
µ

∫ u dr

r2 − c0
µ

. (4.11)

After inverting, this leads to three simple elementary solutions
as follows

u(ζ) =



























(

c0
µ

)1/2
tanh(

√
µc0ζ) if c0

µ
> 0

1
µζ

if c0 = 0
(

− c0
µ

)1/2
tan(
√−µc0ζ) if c0

µ
< 0 .

We do not plot these solutions because they are well-known
elementary functions.

One may think about a medium, e.g., a biological mem-
brane, with convection tuned by theµ parameter and with the
symmetric Burgers-Huxley nonlinearity implied by the Chiellini
integrability as given in (4.10). Then the amplitude of the switch-
ing solution (for positivec0/µ) is inverse proportional to

√
µ.

Thus, stronger convection leads to a less pronounced switching
effect in this case.

5. Conclusion

In summary, we have shown that the connections between
dissipative nonlinear second order differential equations and the
integrable Abel equations can be very useful to extend the class
of integrable dissipative nonlinear equations. The convective-
like Fisher’s equation and the dissipative nonlinear pendulum
equation as well as the Burgers-Huxley type equation intro-
duced here are such examples but many other equations can
be generated in this way. All these equations may be thought as
designed ones, i.e., they have either special dissipation factors
for given nonlinearities or special nonlinearities for given dis-
sipation such that they have well defined solutions. In addition,
we showed how one can get Abel solutions directly from the
factorization of the second-order nonlinear equations.

Acknowledgment: The second author thanks CONACyT-Mexico
for a sabbatical fellowship.
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Figure 1: (Color online) Solution with dark soliton profile,
u(ζ) = 1 − 3

2sech2 ζ2, of the Abel-dissipative Fisher equation
(4.2) forc1 =

2
3.
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Figure 2: (Color online) Elliptic function solutionu(ζ) =
1−
√

3
2 +

√
3sn2

(

ζ

31/4 |2
)

of the Abel-dissipative Fisher equation

(4.2) forc1 =
1
3.
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Figure 3: (Color online) Amplitude for Jacobi elliptic function
u(ζ) = am(ζ |2) as solution of the dissipative pendulum equation
(4.6) forc3 = 0.
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Figure 4: (Color online) Solutionu(ζ) = ±arcsin
(

tanh(
√

2ζ)
)

of the dissipative pendulum equation (4.6) forc3 = 4.
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Figure 5: (Color online) Solutionu(ζ) = am(3ζ2 |
8
9) of the dissi-

pative pendulum equation (4.6) forc3 = 5.
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Figure 6: (Color online) Solutionu(ζ) of the generalized non-
linear pendulum equation (4.8) forc0 = 1.
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Figure 7: (Color online) Solutionu(ζ) of the generalized non-
linear pendulum equation (4.8) forc0 = 3.
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