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Abstract

We emphasize two connections, one well known and another less known, between the dissipative nonlinear secgfetentat di
equations and the Abel equations which in its first kind form have only cubic and quadratic terms. Then, employing an ol
integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present
the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers-Huxley type equations which are obtained in tt
way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second-orde
nonlinear equations.
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1. Introduction new types of integrable second-order nonlinear ODE providing
) o also their solutions and we end up the Letter with several con-
The connections between second ordefedential equa-  cjysions. For the reader interested in other approaches to the

tions of linear and nonlinear type and Riccati and Abel ﬁrStintegrabiIity of Abel's equation and general overview we rec-
order nonlinear equations, respectively, are well known and resmmend [5].

ferred in many textbooks|[1} 2]. Abel equations of the first kind
look similar to the Riccati equations but with an additional cu-

bic nonlinearity, 2. Two fundamental results
dy We now briefly present the results we need. A first funda-
qu- o(U) + @1(U)y + p2(W)y? + wa(U)y® , (1.1)  mental result is the following lemma.
while those of the second kind have the more general format, Lemma 1: Solutions to a nonlinear second order
q ODE of the type
[Go(u) + Ga(Un] = = fo(u) + Fu(U)n + o) + Fa(U® . (1.2) 2
du d<u du
— + g(u)d— +h(u) =0, (2.2)
and also chronologically occurred first in Abel’s famous study dg ¢

on elliptic functionsi[3] in the form: whereg andh are general functions af(¢), may

dy be obtained via the solutions to the second-kind
[9o(u) + 77]@ = fo(u) + fu(U)n + fo(U)n® . (1.3) Abel’s equation

However, we stress that the two types of Abel equations are Tl% +g(u)y+h(u) =0, (2.2)
equivalent since they can be obtained one from the other through du

the change of the dependent variadp@)+g; (U)y = 1/y. Inthe
following, we first state a simple ‘connection’ result for the par-
ticular case of[(1]2) as given in(2.2). We then turn the latter in du

its first-kind form, equatiori{218) below, and present Chiellini's d_g = 1) (2:3)
integrability result|[4] which is also mentioned in the book of

Kamke [5]. Our discussion of Chiellini’'s result goes beyondThis equivalence can be found in the book of Polyanin and Za-

that in Chiellini’s paper and in Kamke’s book. Next, we showtsev in the simpler cask(u) = u, which they call nonlinear
that one does not need to figdfrom (2.2), but directly from  oscillator equations [7].

a factorization technique as applied to the corresponding sec-
ond order ODE. Finally, we will use our findings to introduce

and vice versa using the following relationship
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Proof: To show the equivalence, one just need the simple Therefore, one obtains

chain rule U dnd 1 h
dy du f __% Il
= 2.4 ==In|=|+cC. (2.12)
a2 " dudl (2.4) Z+z2+K K |g|
which turns[(Z.11) into The implicit solutions depend on the constianand are given
by
SZ gz g(u)g—l; +h(u) =0, (2.5) _
22 = dolg iTk<g
which is [Z.2). e[1+2z 2arctan(}+4z)] dy h if k = %1
Thus, the solutions of the several classes of known solvable | In \/% - W arctan=22L zf/?ki In dzlgl ifk>1.
Abel equations [8] are just the derivatives of the solutiofthe (2.13)

second order nonlinear equations of the tyfpel(2.1). Heifice, do, d;, d, are general integration constants, wiaileandz, are
one could solve(2]2) fay, thenu could be found via inverting  the distinct real roots af + z+ k= 0 fork < 3.

(2.6) very few people. In the 1960s, Bandi¢ wrote a couple of re-
lated mathematical papers [9, 10], while much later Borgher
and Melis [11] used it in the so-called Szebehely’s problém o
finding the generalized potential function which is comiplati

fu 1d Along the years, this important result drew the attention of
r=7-2

As we already said we will also need the following result.

Chidllini’sintegrability condition: If g(u) andh(u) with prescribed dynamical trajectories of a holonomic egst
are connected by More recently, Mak and Harko [12, 13,/14] devised a method
to get general solutions of the first-kind Abel equation fram
d (@) ~ kg(u) 2.7) particular solution based on Chiellini’s result and thedisses
du\g(u) ’ ' with a paper by Yurov and Yurov in cosmology [15]. We also
L mention a very recent unpublished work by Harko et al [16] for
for ;:)me constark, then Abel's equation is inte- the case of particular Liénard equations.
grable.

Proof: Lettingn(u) = (u), then equatiori(2]2) becomes 3. A factorization method

In this section, we will explain how we use the factorization
g4 = hWy* + guy*, (2.8) method applied td(211) to obtain the solutions[of(2.2).

e , i , , i The factored form of(2]1) reads
which is an Abel equation of the first kind without linear and

free terms. We wish to point out that an Abel equation of the

type [2.2) with an additional quadratic (Riccati) nonlirigais [d_g ~ ¢2(1)

still allowed in the connection result because it leads ioear

term I(u)y in the Abel equation[{218) and such a term can beExpanding((3.11) and identifying terms, Rosu and Cornegcel”

always eliminated via the transformatign= e/'@duy Hence  [17,/18] obtained the equation

Without Ios_s of ggnerality, we will work only with quadratind u s

cubic nonlinearities. — - (¢1 ¢ + —1u) + ¢rpoU = (3.2)
Furthermore, let = y and take into account Chiellini’s ¢ d dz

condition, then one gets

[%—m@%@=o (3.1)

which leads to the following conditions on the two factoring

functions
3—3 = gg—z + kgy (2.9) h(u)
P12 = (3.3)
and, therefore, the first-kind Abel equatién {2.2) becomes deb1
P1+ P2 = —d—U—g(U)- (3.4)
dz Z2+Z2+k 2.10 :
du ( to Z) (2.10) The solutionsp1(u) andg,(u) of the system[(3]3) are easily

btained by solving th drati ti
which is separable as follows obtained by solving the quadratic equation
. ~-St+P =0, (3.5)
———— = [ =du. 2.11
fZ(ZZ+Z+ k) f h (1D whereS = ~%u - g(u), andP = X andt* = ¢1,. By

h
The right-hand-side of{Z.11) can be writtenia$ @
g



choosing* = ¢4, we obtain i) If we know h(u), then we multiply equatiofi.(2.7)

by I to get
dés h ygtog
¢1 ¢1+d—u +g¢1+ - =0. (36)
u u hd (h
adu (—) = kh. (3.13)
It is not a coincidence to notice that if gauig
By integrating once with respect tg we ob-
n(u) = ug(u) , 3.7) tain
then the equation for factorg (3.6), is indeed Abel's equmti h2 u
(22). Therefore, rather than solvifg (2.2)can be obtained Foar 2kf h(r)dr. (3.14)

from the factors of the ODE. Interestingly, the factorimati

method provides another argument for the two equivalences,

(Z3) and[(3.l7). From the factorizatidn(3.1) we h%gﬁé— ¢1(u)] u@) =

0, i.e.,g—z‘ = ¢1(u)u. Thus, if we take%‘ =, then alsaps (U)u = 4. Examplesof integrabledissipative equationsobtained from
1. In addition, the interpretation of the Abel solution asi3ad) the above Theorem

permits the formulation of another lemma as follows.

Lemma2: For Chiellini-integrable ODEs, i.e., ODEs
that haveg(u), andh(u) connected via Chiellini's
condition, the solution to Abel's equation (2.2) is
given by )
u

n(u) R
where the constait is given in terms of Chiellini’'s
constant through

(3.8)

-1+ V1-4k
= - (3.9
Proof: Letn(u) = ck%, and substitute in(212),

then one getke + ¢« + 1 = 0 with the roots given
by 3.9).

Lemma 2 is very useful because one can employ it tosfind
from g(u) andh(u) as follows.

Theorem: For an integrable ODE of type(2.1),
i) if g(u) is known, then

) = a0k [“aar) 310

or
ii) if h(u) is known, then

1h(U) = £Ck \/Cl + 2k fu h(r)dr  (3.11)

Proof: For both cases we will use Chiellini’s con-
dition together with lemma 2. For simplicity, we
putce = 1.

i) if we haveg(u), then

h(u) = g(u) (co + kfu g(r)dr) (3.12)

by integrating[(2.7).

We use now these results to obtain four integrable dissipa-
tive equations of typd (2.1), either by starting with givgor
h. We prefer to begin with the two cases of giviebecause
usually the nonlinear equations are identified by their imaalr
term(s) and not so much by their dissipationféeént. In these
illustrative examples, we will takex = 1, which corresponds
tok =-2.

4.1. Dissipative Fisher’'s equation
In this case, leh(u) = u(1 — u). Using the theorem,

3
(W) = /1 — 22 + 4% . (4.1)
Then, one gets the following integrable dissipative Fisher
equation

1-
Uy + ud-u) u+u(l-u)=0, (4.2)
¢ —2u2 + 4
with closed form solution given by
(4.3)

V3 dr
§—§o=7f ——
Jri-3ri+c

wherec; = 2c;.
We notice that[{4]2) can be also written in the convective
form
Uy + p(u)ud, +u(l-u) =0, (4.4)

% can be interpreted as a tuning function
C1—2u2+ 2=

of the convection.

In general, convective Fisher equations have been applied
with interesting results in population dynamics|[19], vehihe
case of constant has been studied by Schonborn and collabo-
rators [20].

The dissipative Fisher solution df (4.2) foy = % is dis-
played in Fig. 1, and it has the dark soliton profil@) =
1- :—gsecﬁ%. On the other hand, whety =  the solution

whereu(u) =



is the Jacobi elliptic sn function of the form(¢) = 1‘—2‘/§ +

V3srt (ﬁlz) as plotted in Fig. 2.

4.2. Dissipative nonlinear pendulum equation
For this caseh(u) = sinu and them(u) is given by

nh(u) = /c3 + 4 cosu.

Therefore, one gets the dissipative integrable nonlineadp-
lum equation

(4.5)

sinu .
U +sinu=0,

\Vez +4cosu

with closed form solution in terms of the elliptic integrdltbe
first kind F (ujm)

U{{ + (46)

4 \/ﬁf‘ do V2m
O: =
2 V1 - msirt g 2

_ .8
wherem = rd-

¢~ Fum), (4.7)

4.4. Burgers-Huxley type equation

An equation of this type can be obtained if we ¢gt)) = uu,
which through[(312) leads to

h(u) = p?u(v/co/p — U)(/co/k + ) .

This is similar to a Huxley nonlinearity, although not foreth
typical range of the Huxley parameters. Such equations re-
flect the complex interplay between the nonlinearity, caave
tion, and difusive transport for waves propagating in biological
and chemical systems |21, 22]. The solutions are obtairwed fr

1Y dr
L

“

(4.10)

(4.11)

After inverting, this leads to three simple elementary 8ohs
as follows

()" tanh(yress) it 250
u@Q) ={ = ” ifco=0
(-%) " tan(y=mc) if £ <0.

In the case of the dissipative nonlinear pendulum equation We do not plot these solutions because they are well-known
(4.8) form = 2 the solution is the amplitude for Jacobi ellip- elementary functions.

tic functionu(¢) = am(|2), whereZ = F(u|2) as displayed in
Fig. 3. If m = 1, thenF(u|1) = In|sec() + tan{u)|, and hence
the solution to equation(4.6) is

u@) = =arcsir(tanh(v27)), see Fig. 4. Ifm = 8/9, then
u@) = am&|8), see Fig. 5.

4.3. Generalized nonlinear pendulum equation with sinsidis

pation
If we takeg(u) = sinu, then [3.IP) giveb(u) = co sinu+sin 2,

and therefore this is a generalized nonlinear pendulumtigua

of the type
Uy + SinuU; + CpSinu+ sin2u = 0. (4.8)
The solutions are obtained by inverting
du
= ——— 4.
¢ fco +2cosu’ (4.9)

which leads to the following solutions

2 arctan (2) if co=2
2arccotan(2) if cp=-2
_ (2+co) tanh ¢ \/4-c2¢) .
u@l) = 2arctar(#) if |co| < 2
(2+co) tan (3 \/4-c2¢) .
2arctar(—\/47_cg ) if |col > 2.

Plots of the last two cases fog = 1 andcg = 3 are dis-
played in Figs. 6 and 7, respectively.

One may think about a medium, e.g., a biological mem-
brane, with convection tuned by theparameter and with the
symmetric Burgers-Huxley nonlinearity implied by the Qhie
integrability as given if{4.10). Then the amplitude of thétsh-
ing solution (for positivecy/y) is inverse proportional toy.
Thus, stronger convection leads to a less pronounced sagtch
effect in this case.

5. Conclusion

In summary, we have shown that the connections between
dissipative nonlinear second ordeffdrential equations and the
integrable Abel equations can be very useful to extend thscl
of integrable dissipative nonlinear equations. The cotivec
like Fisher’'s equation and the dissipative nonlinear p&ndu
equation as well as the Burgers-Huxley type equation intro-
duced here are such examples but many other equations can
be generated in this way. All these equations may be thowgght a
designed ones, i.e., they have either special dissipagictorfs
for given nonlinearities or special nonlinearities for jivdis-
sipation such that they have well defined solutions. In @aiuit
we showed how one can get Abel solutions directly from the
factorization of the second-order nonlinear equations.
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Figure 1: (Color online) Solution with dark soliton profile,
u¢) = 1- :—gsecﬁ%, of the Abel-dissipative Fisher equation

(#2) forc, = 2.

Figure 2: (Color online) Elliptic function solutiom() =
%g + Vf%sn’—(%m) of the Abel-dissipative Fisher equation

(#2) forc, = 3.
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Figure 3: (Color online) Amplitude for Jacobi elliptic futhan
u(¢) = am(|2) as solution of the dissipative pendulum equation

(4.8) forcz = 0.
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Figure 4: (Color online) Solution(?) = +arcsir{tanh(V2?))
of the dissipative pendulum equatidn (4.6) fgr= 4.
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Figure 5: (Color online) Solution(?) = am(%lg) of the dissi-
pative pendulum equation (4.6) fos = 5.

Figure 6: (Color online) Solution(?) of the generalized non-
linear pendulum equatioh (4.8) fog = 1.

Figure 7: (Color online) Solution(/) of the generalized non-
linear pendulum equatiofn(4.8) fog = 3.
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