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Abstract

In this paper, we propose various estimates of the attraction region for a class of nonlinear time-delay systems of
the form ẋ(t) = Ax(t) + Bx(t − h(t)) + f(x(t), x(t − h(t))). The approach is constructive and makes use of a
Lyapunov-Krasovskii functional associated to the linear part. Several illustrative examples (delayed logistic equation,
stabilizing nonlinear oscillations by delayed output feedback, congestion control in high-performance networks and
hereditary phenomena in physics) complete the presentation.
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1 Introduction
It is well-known that computing estimates of the attraction region for a given nonlinear time-delay system is not a trivial
task. The Lyapunov’s second method is a powerful theoretical tool to solve this problem. Thus, if we are able to find an
appropriate Lyapunov-Krasovskii functional or Lyapunov-Razumikhin function for the system under investigation then
we can explicitly use it to construct an estimate of the attraction region, see, for instance, (Hale & Verduyn-Lunel 1993).
However, theproblem of finding a suitable Lyapunov-Krasovskii functional or Lyapunov-Razumikhin function for a
given nonlinear time-delay system is far to be simple.

Confronted with such a problem in the general case, some effort has been devoted to find estimates of the attraction
region for some classes of nonlinear time-delay systems which possess a linear part in their description. To the best
of the authors’ knowledge, only a few studies have addressed this problem. Thus, in (Kolmanovskii & Myshkis 1999)
a bound based on the L2-stability is given. A method of computing estimates based on a comparison theorem and
special vector Lyapunov functions is proposed in (Richard et al. 1997). Next, in (Verriest 2000) a stability analysis,
going from linear to nonlinear, by means of Lyapunov-Krasovskii functionals which are known to work for the linear
part is developed, and delay-independent estimates are derived. Finally, similar constructions and their use to motivate
the fixed point analysis for functional differential equations can be found in (Burton 2006) [section 1.3].

In the finite dimensional case, it is well-known that for a system of the form ẋ = Ax + f(x), where ẋ = Ax is
exponentially stable and f(x) vanishes at the origin, an estimate of the attraction region is given by the set
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{
x ∈ Rn : v(x) = xT Px < c

}
, where c > 0 is a constant depending on matrix P and function f(x), see for instance

(Khalil 1996). Here P > 0 is the solution of the Lyapunov equation: AT P + PA = −W for any chosen W > 0. This
method is a consequence of the stability theorem on the first approximation which shows that the quadratic function
v(x) = xT Px associated to the linear system is a Lyapunov function for the system in some neighbohood of the origin.

To the best of the authors’ knowledge, there is no similar constructive method for delay systems of the form ẋ(t) =
Ax(t)+Bx(t−h)+f(x(t), x(t−h)). This is, to provide estimates of the attraction region by using explicitly a quadratic
Lyapunov-Krasovskii functional associated to the exponentially stable linear system ẋ(t) = Ax(t) + Bx(t − h). A
stability theorem on the first approximation for delay systems by means of Lyapunov-Krasovskii functionals can be
found in (Halanay 1966) and (Lakshmikantham & Leela 1969). However, such a result does not provide an explicit
procedure to determine an estimate of the attraction region for a given nonlinear time-delay system. A natural approach
to address this problem is to use a particular Lyapunov-Krasovskii functional which could work for the linear system as
a Lyapunov-Krasovskii functional candidate for the nonlinear system, as suggested by (Verriest 2000). However, such
an approach is not along the lines of the finite dimensional case. Furthermore, as it is mentioned in (Verriest 2000), the
resulting stability conditions are in general difficult to check when matrix B is not zero.

In our opinion, the difficulties arising in constructing quadratic Lyapunov-Krasovskii functionals associated to a
given exponentially stable linear time-delay system seem to be the main reason for this lack. Some general expres-
sions of quadratic functionals for linear time-delay systems have been proposed in the literature starting with the 60s:
(Repin 1966), (Infante & Castelan 1978) and (Huang 1989). Whereas all these functionals are appropriate for stability
analysis in the linear case, however, the forms of the corresponding Lyapunov derivatives as well as the construction
itself complicate the study in the robust and nonlinear cases.

Recently, (Kharitonov & Zhabko 2003) proposed a new class of Lyapunov-Krasovskii functionals which over-
comes such problems in the robust stability analysis case. Inspired by such a construction, we are able to compute
estimates of the attraction region. More explicitly, we present a constructive method of computing estimates of the
attraction region for some classes of nonlinear time-delay systems by making use of quadratic Lyapunov-Krasovskii
functionals associated to the exponentially stable linear part. We believe that such an approach allows answering
properly to the problem above.

The remaining part of the paper is organized as follows: In section 2, after some preliminaries we present the con-
struction of Lyapunov-Krasovskii functional for linear time-delay systems according to (Kharitonov & Zhabko 2003).
In section 3, the main results for the constant delay case are presented. The extension of the results to time-varying
delay systems is presented in section 4. The examples in section 5 illustrate the results, and some concluding remarks
end the paper. The notations are standard, and briefly presented in section 2.

2 Preliminaries
Consider the following class of time-delay systems:

{
ẏ(t) = Ay(t) + By(t− h(t)) + f(y(t), y(t− h(t)),
y(t) = ψ(t), t ∈ E0,

(1)

where h : R+ 7→ R+ denotes the delay, assumed to be a bounded function 0 ≤ h(t) ≤ H for all t ≥ 0, and E0 is given
by:

E0 = {t ∈ R : t = η − h(η) ≤ 0, η ≥ 0} .

The function f(u, v) satisfies a Lipschitz condition in a certain neighborhood of the origin, and

lim
‖(u,v)‖→0

‖f(u, v)‖
‖(u, v)‖ = 0. (2)

From these assumptions, it follows that f(0, 0) = 0. In order to define a particular solution y(t, ψ) of (1), an initial
vector function ψ(t), t ∈ E0 should be given. We assume that ψ belongs to the space of continuous vector functions
mapping E0 ⊂ [−H, 0] to Rn equipped with the uniform norm ‖ψ‖H = supθ∈[−H,0] ‖ψ(θ)‖ defined on the interval
[−H, 0]. We denote by yt(ψ) = y(t+θ, ψ),θ ∈ E0, the translation of the solution y(t, ψ) on E0 ⊂ [−H, 0]. Throughout
this paper we will use the Euclidean norm for vectors and the induced matrix norm for matrices, both denoted by ‖·‖ .
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Definition 1 The trivial solution of (1) is stable if for any ε > 0, there exists δ = δ(ε) > 0 such that ‖ψ‖H < δ implies
‖y(t, ψ)‖ < ε for t ≥ 0.

Definition 2 The trivial solution of (1) is asymptotic stable if it is stable and there exists δa > 0 such that ‖ψ‖H < δa

implies y(t, ψ) → 0 as t →∞.

Definition 3 The trivial solution of (1) is exponentially stable if there exist constants δe > 0, µ ≥ 1, and α > 0 such
that ‖ψ‖H < δe implies that ‖y(t, ψ)‖ ≤ µ ‖ψ‖H e−αt, t ≥ 0.

From the stability theorem on the first approximation, we have that if the system

ẋ(t) = Ax(t) + Bx(t− h(t))

is exponentially stable, then the trivial solution of (1) is asymptotically stable, for sufficiently small initial conditions,
see (Bellman & Cooke 1963), (Halanay 1966), (Lakshmikantham & Leela 1969), and (Hale & Verduyn-Lunel 1993).

Hence, according to the definition 2, there exists δa > 0 (sufficiently small) such that ‖ψ‖H < δa implies that
y(t, ψ) → 0 as t →∞.

As mentioned in the Introduction, the main goal of this paper is to present a constructive procedure for computing
estimates of the sphere ‖ψ‖H < δa in the space of the continuous functions mapping [−H, 0] toRn such that y(t, ψ) →
0 as t → ∞, that is, to compute an estimate of the attraction region whenever the first approximation is exponentially
stable.

We restrict our analysis to the following two particular classes of systems (1):

(a) the constant delay case
ẏ(t) = Ay(t) + By(t− h) + f(y(t), y(t− h))

(b) the time-varying delay case

ẏ(t) = Ay(t) + By(t− h(t)) + f(y(t), y(t− h(t)),

where h(t) = h + η(t) with 0 ≤ η(t) ≤ η0 ≤ h and η̇(t) ≤ η1 < 1.

As it was mentioned, the method developed in the sequel is along the lines of the finite-dimensional case for com-
puting estimates of the attraction region when the first approximation is exponentially stable (Halanay 1966) and
(Khalil 1996). Thus, we first construct a quadratic Lyapunov-Krasovskii functional associated to the exponential
stable system

{
ẋ(t) = Ax(t) + Bx(t− h)
x(t) = ϕ(t), t ∈ [−h, 0]. (3)

Next, we show that such a functional is a Lyapunov-Krasovkii functional for the nonlinear system, and we compute an
estimate of the attraction region by using explicitly the functional.

In the rest of this section we present the construction procedure of quadratic Lyapunov-Krasovskii functionals
associated to (3) according to (Kharitonov & Zhabko 2003).

Assume that the system (3) is exponentially stable, i.e., for any ϕ ∈ C([−h, 0],Rn) there exist some constants
µ ≥ 1 and α > 0 such that

‖x(t, ϕ)‖ ≤ µ ‖ϕ‖h e−αt, t ≥ 0.

Next, consider the following functional

w(ϕ) = ϕT (0)W0ϕ(t) + ϕT (−h)W1ϕ(−h) +
∫ 0

−h

ϕT (θ)W2ϕ(θ)dθ,

where the symmetric and positive definite matrices Wj , j = 0, 1, 2 are appropriately selected, and ϕ ∈ C([−h, 0],Rn)
is arbitrary. If the system (3) is exponentially stable, then there exists a unique quadratic functional v : C([−h, 0],Rn) 7→
R such that the mapping t 7→ v(xt(ϕ)) is differentiable for t ≥ 0 and

dv(xt(ϕ))
dt

= −w(xt(ϕ)), t ≥ 0,
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for all solutions x(t, ϕ) of (3). The functional v(·) is called the Lyapunov-Krasovskii functional associated to the
system (3) (Kharitonov & Zhabko 2003), and it is of the form

v(ϕ) = ϕT (0)U(0)ϕ(0)− 2ϕT (0)
∫ 0

−h

U(−h− θ)Bϕ(θ)dθ (4)

+
∫ 0

−h

∫ 0

−h

ϕT (θ1)BT U(θ1 − θ2)Bϕ(θ2)dθ1dθ2 +
∫ 0

−h

ϕT (θ) (W1 + (h + θ)W2)ϕ(θ)dθ,

where the matrix function U(·) is defined as

U(τ) =
∫ ∞

0

KT (t)WK(t + τ)dt, τ ∈ [−h, h] , (5)

where W = W0 + W1 + hW2, and K(t) is the unique matrix function which satisfies

K̇(t) = AK(t) + BK(t− h), t > 0

with the initial condition K(t) = 0 for all t < 0, and K(0) = I, see (Bellman & Cooke 1963) and (Hale & Verduyn-Lunel 1993).
Note that by the exponential stability of (3) the matrix U(·) is well-defined. The matrix function U (·) satisfies the

following second-order ordinary differential equation, see (Huang 1989) and (Kharitonov & Zhabko 2003):

Ü(τ) = U̇(τ)A−AT U̇(τ) + AT U(τ)A−BT U(τ)B (6)

with the additional conditions

U̇(0) = U(0)A + UT (h)B, (7)

−W = U̇(0) +
(
U̇(0)

)T

. (8)

Remark 1 The matrix function U(·) is known as a delay Lyapunov matrix associated to the system (3). When the
system (3) is exponentially stable, then the matrix function (5) is the unique solution of (6) satisfying (7) and (8),
see, for instance, (Kharitonov & Plischke 2006). A piece-wise linear approximation of U(·) can be computed from
equations (6)-(8) (Kharitonov & Garcia-Lozano 2004). In the scalar case, it is possible to obtain an explicit solution
of the equations (6)-(8), as shown by (Melchor-Aguilar 2004).

Proposition 1 Let the system (3) be exponentially stable. Given any positive definite matrices Wj , j = 0, 1, 2, the
functional (4) satisfies

1. α1 ‖ϕ(0)‖2 ≤ v(ϕ) ≤ α2 ‖ϕ‖2h , for some constants α1 > 0 and α2 > 0,

2. d
dtv(xt(ϕ)) ≤ −β ‖x(t, ϕ)‖2 , for some constant β > 0.

Proof. First observe that given any Wj > 0, j = 0, 1, 2, the exponential stability of (3) implies that functional
v(ϕ) is well defined by (4) and (5). Moreover, the functional w(ϕ) is well defined and is related with v(ϕ) by

dv(xt(ϕ))
dt

= −w(xt(ϕ)), t ≥ 0.

Then
dv(xt(ϕ))

dt
≤ −β ‖x(t, ϕ)‖2 , t ≥ 0,

where β = λmin(W0). In order to prove the lower bound for v(ϕ), consider the functional

vε(ϕ) = v(ϕ)− εϕT (0)ϕ(0).

We have
dvε(xt(ϕ))

dt
= −w(xt(ϕ))− 2εxT (t, ϕ) (Ax(t, ϕ) + Bx(t− h, ϕ)) , t ≥ 0.
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Considering the inequality

−2εxT (t, ϕ) (Ax(t, ϕ) + Bx(t− h, ϕ)) ≤ 2ε ‖A‖ ‖x(t, ϕ)‖2 + ε ‖B‖
(
‖x(t, ϕ)‖2 + ‖x(t− h, ϕ)‖2

)

we arrive at
dvε(xt(ϕ))

dt
≤ −wε(xt(ϕ)), t ≥ 0, (9)

where
wε(ϕ) = [λmin(W0)− ε (2 ‖A‖+ ‖B‖)] ‖ϕ(0)‖2 + [λmin(W1)− ε ‖B‖] ‖ϕ(−h)‖2 .

Choosing ε > 0 such that

ε < min
{

λmin(W0)
2 ‖A‖+ ‖B‖ ,

λmin(W1)
‖B‖

}
, (10)

we have wε(ϕ) ≥ 0. Integrating from 0 to ∞ the inequality (9) we get

vε(ϕ) ≥
∫ ∞

0

wε(xt(ϕ))dt ≥ 0,

which implies that
v(ϕ) ≥ α1 ‖ϕ(0)‖2 ,

for α1 = ε. Let
u0 = max

τ∈[0,h]
‖U(τ)‖ .

The following inequalities can be easily checked:

ϕT (0)U(0)ϕ(0) ≤ u0 ‖ϕ(0)‖2 ,

−2ϕT (0)
∫ 0

−h

U(−h− θ)Bϕ(θ)dθ ≤ u0 ‖B‖
(

h ‖ϕ(0)‖2 +
∫ 0

−h

‖ϕ(θ)‖2 dθ

)
,

∫ 0

−h

∫ 0

−h

ϕT (θ1)BT U(θ1 − θ2)Bϕ(θ2)dθ1dθ2 ≤ u0h ‖B‖2
∫ 0

−h

‖ϕ(θ)‖2 dθ,

∫ 0

−h

ϕT (θ) (W1 + (h + θ)W2)ϕ(θ)dθ ≤ ‖W1 + hW2‖
∫ 0

−h

‖ϕ(θ)‖2 dθ.

Then, the following inequality holds:

v(ϕ) ≤ κ

(
‖ϕ(0)‖2 +

∫ 0

−h

‖ϕ(θ)‖2 dθ

)
, (11)

where
κ = max {u0 (1 + h ‖B‖) , u0 ‖B‖ (1 + h ‖B‖) + ‖W1 + hW2‖} .

Hence we get
v(ϕ) ≤ α2 ‖ϕ‖2h , for α2 ≥ κ(1 + h).

3 Constant Delay Case
In this section, we show that an estimate of the attraction region for the trivial solution of

{
ẏ(t) = Ay(t) + By(t− h) + f(y(t), y(t− h))
y(t) = ψ(t), t ∈ [−h, 0] (12)

can be computed when the linear system (3) is exponentially stable.
From (2) it follows that for any γ > 0 there exists δ = δ(γ) > 0 such that

‖f(y(t), y(t− h))‖ < γ ‖(y(t), y(t− h))‖ if ‖(y(t), y(t− h))‖ < δ.
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Theorem 1 Let system (3) be exponentially stable. For

0 < γ < min
{

λmin(W0)
u0 (2 + ‖B‖h)

,
λmin(W1)

u0 (1 + ‖B‖h)
,
λmin(W2)
‖B‖u0

}
, (13)

the set

U =
{

ψ ∈ C([−h, 0],Rn) : v(ψ) <
α1δ

2

4
and ‖ψ‖h <

δ

2

}
(14)

is an estimate of the attraction region for the trivial solution of (12).

Proof. Let system (3) be exponentially stable. Then, given any Wj > 0, j = 0, 1, 2, there exists a unique function
U (·) satisfying equations (6)-(8), and therefore a unique functional (4) associated to (3). We will show that (4) is a
Lyapunov-Krasovskii functional candidate for (12).

The derivative of (4), along solutions of (12), is:

dv(yt(ψ))
dt

= −w(yt(ψ)) (15)

+2fT (y(t, ψ), y(t− h, ψ))
(

U(0)y(t, ψ)−
∫ 0

−h

U(−h− θ)By(t + θ, ψ)dθ

)
.

For any trajectory yt(ψ) ∈ U , we have ‖(y(t, ψ), y(t− h, ψ))‖ < δ which implies that

‖f(y(t, ψ), y(t− h, ψ))‖ < γ ‖(y(t, ψ), y(t− h, ψ))‖ .

The following inequality holds:
∥∥∥∥U(0)y(t, ψ)−

∫ 0

−h

U(−h− θ)By(t + θ, ψ)dθ

∥∥∥∥ ≤ u0

(
‖y(t, ψ)‖+ ‖B‖

∫ 0

−h

‖y(t + θ, ψ)‖ dθ

)
. (16)

It follows that

2fT (y(t, ψ), y(t− h, ψ))
(

U(0)y(t, ψ)−
∫ 0

−h

U(−h− θ)By(t + θ, ψ)dθ

)

≤ γu0

[
(2 + ‖B‖h) ‖y(t, ψ)‖2 + (1 + ‖B‖h) ‖y(t− h, ψ)‖2 + ‖B‖

∫ 0

−h

‖y(t + θ, ψ)‖2 dθ

]
.

Considering this inequality in (15) we arrive to the following inequality:

dv(yt, ψ)
dt

≤ − [λmin(W0)− γu0 (2 + ‖B‖h)] ‖y(t, ψ)‖2 (17)

− [λmin(W1)− γu0 (1 + ‖B‖h)] ‖y(t− h, ψ)‖2

− [λmin(W2)− ‖B‖u0γ]
∫ 0

−h

‖y(t + θ, ψ)‖2 dθ.

Choosing γ > 0 satisfying inequality (13), we have d
dtv(yt(ψ)) < 0, t ≥ 0, for trajectories of (12) inside U , implying

thus the asymptotic stability of the trivial solution of (12).
Now we show that the set U is a positively invariant set with respect to (12). For any initial function ψ ∈ U , we

have ‖ψ‖h < δ
2 , and it follows that d

dtv(yt(ψ))
∣∣
t=0

< 0. Then, there exists t0 > 0, sufficiently small, such that

v(yt(ψ)) < v(ψ) <
α1δ

2

4
, t ∈ (0, t0).

¿From the lower bound of functional v(·) we obtain ‖y(t, ψ)‖ < δ
2 , t ∈ (0, t0). Since ‖y(t, ψ)‖ = ‖ψ(t)‖ < δ

2 , for
t ∈ [t0 − h, 0] , it follows that

‖yt(ψ)‖h <
δ

2
, t ∈ [0, t0).
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Hence yt(ψ) ∈ U , t ∈ [0, t0). Now we assume that yt(ψ) ∈ U is not satisfied for all t ≥ 0, and let t1 ≥ t0 be the upper
bound of the set of values t for which it still holds. We have

‖y(t1, ψ)‖ =
δ

2
. (18)

Since t 7→ v(xt(ϕ)) is a continuous function of t, we have

v(yt(ψ)) < v(ψ), t ∈ (0, t1)

and

α1 ‖y(t1, ψ)‖ ≤ v(yt1(ψ)) ≤ v(ψ) < α1
δ2

4
.

So, we have ‖y(t1, ψ)‖ < δ
2 , which contradicts (18). The existence of t1 is contradictory and it follows that yt(ψ) ∈ U

for all t ≥ 0.
Therefore, the set U is a positively invariant set with respect to (12), and (4) is a Lyapunov-Krasovskii functional

on U , which implies that the set U is an estimate of the attraction region.

Corollary 1 Let system (3) be exponentially stable. For any solution y(t, ψ) of (12) such that ψ ∈ U , the following
exponential estimate holds:

‖y(t, ψ)‖ ≤
√

α2

α1
‖ψ‖h e−

β
2κ t, t ≥ 0, (19)

where
β = min {λmin(W0)− γu0 (2 + ‖B‖h) , λmin(W2)− ‖B‖u0γ} .

Proof. For any initial function ψ ∈ U we have yt(ψ) ∈ U , for all t ≥ 0, since U is a positively invariant set with
respect to (12). From inequality (17) we obtain

d

dt
v(yt(ψ)) ≤ −β

(
‖y(t, ψ)‖2 +

∫ 0

−h

‖y(t + θ, ψ)‖2 dθ

)
, t ≥ 0,

where
β = min {λmin(W0)− γu0 (2 + ‖B‖h) , λmin(W2)− ‖B‖u0γ} .

¿From (11) we have

v(yt(ψ)) ≤ κ

(
‖y(t, ψ)‖2 +

∫ 0

−h

‖y(t + θ, ψ)‖2 dθ

)
, t ≥ 0.

It follows that
d

dt
v(yt(ψ)) ≤ −β

κ
v(yt(ψ)), t ≥ 0.

Integrating this inequality from 0 to t we get

ln v(yt(ψ))− ln v(ψ) ≤ −β

κ
t,

from which it follows that

α1 ‖y(t, ψ)‖2 ≤ v(yt(ψ)) ≤ v(ψ)e−
β
κ t ≤ α2 ‖ψ‖2h e−

β
κ t, t ≥ 0,

and

‖y(t, ψ)‖ ≤
√

α2

α1
‖ψ‖h e−

β
2κ t, t ≥ 0.

Hence, according to the definition 3, the trivial solution of (12) is exponentially stable. Note that, by combining U
with the upper bound for the functional v(·) we can obtain the following more conservative, yet computationally more
tractable estimate of the attraction region:

V =
{

ψ ∈ C([−h, 0],Rn) : ‖ψ‖h <

√
α1

α2

δ

2

}
⊆ U . (20)

As in the case of systems without delay, estimating the region of attraction by the means of the set U is simple but
usually conservative. Clearly, the estimates of the attraction region (14) and (20) depend on the choice of the matrices
Wj , j = 0, 1, 2. These matrices can be used as free parameters in order to optimize such estimates.
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4 Time-varying delay case
In this section, we present the extension of the results for the time-varying delay case. We show that an estimate of the
attraction region for the trivial solution of the system

{
ẏ(t) = Ay(t) + By(t− h(t)) + f(y(t), y(t− h(t)),
y(t) = ψ(t), t ∈ [−2h, 0], (21)

where h(t) = h + η(t) with
0 ≤ η(t) ≤ η0 ≤ h and η̇(t) ≤ η1 < 1 (22)

can be computed when the linear system
{

ẏ(t) = Ay(t) + By(t− h(t))
y(t) = ψ(t), t ∈ [−2h, 0] (23)

is exponentially stable. The stability of (23) can be ensured from a robust stability approach for uncertain delay by
assuming the stability of the nominal system (3), see (Kharitonov & Niculescu 2003).

Since for t ≥ 2h

y(t− h(t))− y(t− h) = −
∫ −h

−h(t)

ẏ(t + θ)dθ = −
∫ −h

−h(t)

[Ay(t + θ) + By(t + θ − h(t + θ))] , (24)

we can write (23) as

ẏ(t) = Ay(t) + By(t− h)−B

∫ −h

−h(t)

[Ay(t + θ) + By(t + θ − h(t + θ))] (25)

y(t) = ϕ(t), t ∈ [−2h, 2h],

where

ϕ(t) =
{

ψ(t), t ∈ [−2h, 0]
y(t, ψ), t ∈ (0, 2h] .

The method of transforming (23) to (25) is known as a model transformation (Gu & Niculescu 2000; Gu & Niculescu 2001;
Kharitonov & Melchor-Aguilar 2000; Kharitonov & Melchor-Aguilar 2002). Clearly, every solution of (23) is a solu-
tion of (25), and therefore the stability of (25) implies the stability of (23). It is well known that such model trans-
formation introduces some additional dynamics, which are not present in the original system (23), and a significant
conservatism on the stability conditions may be obtained from the transformed system (25), see (Gu & Niculescu 2000;
Gu & Niculescu 2001; Kharitonov & Melchor-Aguilar 2000; Kharitonov & Melchor-Aguilar 2002). As we will see
later, the model transformation will also introduce a certain conservatism in our estimates of the attraction region.

Now, we construct an appropriate Lyapunov functional associated to (3) for the stability of (25). Assume that
system (3) is exponentially stable. Selecting positive definite matrices Wj , j = 0, 1, 2, consider the functional

w(ϕ) = ϕT (0)W0ϕ(0) + ϕT (−h)W1ϕ(−h) +
∫ 0

−4h

ϕT (θ)W2ϕ(θ)dθ,

where ϕ ∈ C([−4h, 0],Rn) is arbitrary. If system (3) is exponentially stable, then there exists a unique quadratic
functional v : C([−h, 0],Rn) 7→ R associated to (3) such that t 7→ v(x̃t(ϕ)) is differentiable for t ≥ 0, and

dv(x̃t(ϕ))
dt

= −w(xt(ϕ)), t ≥ 0,

for all solutions x(t, ϕ) of (3), where x̃t(ϕ) := x(t + θ, ϕ), θ ∈ [−h, 0] and xt(ϕ) := x(t + θ, ϕ), θ ∈ [−4h, 0].
The functional is of the form

v(ϕ) = ϕT (0)U(0)ϕ(0)− 2ϕT (0)
∫ 0

−h

U(−h− θ)Bϕ(θ)dθ (26)

+
∫ 0

−h

∫ 0

−h

ϕT (θ1)BT U(θ1 − θ2)Bϕ(θ2)dθ1dθ2 +
∫ 0

−h

ϕT (θ) (W1 + (4h + θ)W2)ϕ(θ)dθ,

8



where the matrix function U(·) is defined by (5) with W = W0+W1+4hW2, and satisfies the second order differential
equation (6) with additional conditions (7) and (8). The functional (26) satisfies the conditions of proposition 1. Indeed,
we have α1 ‖ϕ(0)‖2 ≤ v(ϕ) for

α1 <

{
λmin(W0)

2 ‖A‖+ ‖B‖ ,
λmin(W1)
‖B‖

}
. (27)

The functional (26) satisfies

v(ϕ) ≤ κ

(
‖ϕ(0)‖2 +

∫ 0

−h

‖ϕ(θ)‖2 dθ

)
, (28)

where
κ = max {u0 (1 + h ‖B‖) , u0 ‖B‖ (1 + h ‖B‖) + ‖W1 + 4hW2‖} .

Then
v(ϕ) ≤ α2 ‖ϕ‖2h , for α2 ≥ κ(1 + h).

Proposition 2 System (23) is exponentially stable for a continuous time-varying function η(t) satisfying (22), if system
(3) is exponentially stable and for any given matrices Wj > 0, j = 0, 1, 2, there exist constants kj > 0, j = 1, 2, 3, 4
such that the following inequalities hold:

λmin(W0) > η0u0 ‖B‖
(
k−1
1 ‖A‖+ k−1

3 ‖B‖)
λmin(W2) > η0u0 ‖B‖2

(
k−1
2 ‖A‖+ k−1

4 ‖B‖)
λmin(W2) > ‖A‖ ‖B‖u0 (k1 + k2 ‖B‖h)
λmin(W2) > (1− η1)

−1 ‖B‖2 u0 (k3 + k4 ‖B‖h)

(29)

Proof. Let the system (3) be exponentially stable. Then, given any matrices Wj > 0, j = 0, 1, 2, there exists
a unique matrix function U(·) satisfying equations (6)-(8), and therefore a unique functional (26) associated to (3).
For the solution y(t, ϕ) of (25), consider ỹt(ϕ) := y(t + θ, ϕ), θ ∈ [−h, 0], t ≥ 2h and yt(ϕ) := y(t + θ, ϕ), θ ∈
[−4h, 0], t ≥ 2h.

The derivative of (26), along solutions of (25), for t ≥ 2h, is

dv(ỹt(ϕ))
dt

= −w(yt(ϕ))− 2

(∫ −h

−h(t)

[
BAy(t + θ, ϕ) + B2y(t + θ − h(t + θ), ϕ)

]
dθ

)T

×

×
(

U(0)y(t, ϕ)−
∫ 0

−h

U(−h− θ)By(t + θ, ϕ)dθ

)
.

Considering inequality (16) and
∥∥∥∥∥
∫ −h

−h(t)

[
BAy(t + θ, ϕ) + B2y(t + θ − h(t + θ), ϕ)

]
dθ

∥∥∥∥∥

≤ ‖B‖
∫ −h

−h(t)

(‖A‖ ‖y(t + θ, ϕ)‖+ ‖B‖ ‖y(t + θ − h(t + θ), ϕ)‖) dθ

we arrive to the following inequality:

dv(ỹt(ϕ))
dt

≤ −w(yt(ϕ)) + 2u0 ‖B‖
(
‖y(t, ϕ)‖+ ‖B‖

∫ 0

−h

‖y(t + θ, ϕ)‖ dθ

)
×

×
(∫ −h

−h(t)

(‖A‖ ‖y(t + θ, ϕ)‖+ ‖B‖ ‖y(t + θ − h(t + θ), ϕ)‖) dθ

)
.
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The following inequalities hold:

2 ‖y(t, ϕ)‖
∫ −h

−h(t)

‖y(t + θ, ϕ)‖ dθ ≤ k−1
1 η0 ‖y(t, ϕ)‖2 + k1

∫ −h

−h(t)

‖y(t + θ, ϕ)‖2 dθ,

2

(∫ −h

−h(t)

‖y(t + θ, ϕ)‖ dθ

)(∫ 0

−h

‖y(t + θ, ϕ)‖ dθ

)

≤ k−1
2 η0

∫ 0

−h

‖y(t + θ, ϕ)‖2 dθ + k2h

∫ −h

−h(t)

‖y(t + θ, ϕ)‖2 dθ,

2 ‖y(t, ϕ)‖
∫ −h

−h(t)

‖y(t + θ − h(t + θ), ϕ)‖ dθ

≤ k−1
3 η0 ‖y(t, ϕ)‖2 + k3

∫ −h

−h(t)

‖y(t + θ − h(t + θ), ϕ)‖2 dθ,

2

(∫ −h

−h(t)

‖y(t + θ − h(t + θ), ϕ)‖ dθ

)(∫ 0

−h

‖y(t + θ, ϕ)‖ dθ

)

≤ k−1
4 η0

∫ 0

−h

‖y(t + θ, ϕ)‖2 dθ + k4h

∫ −h

−h(t)

‖y(t + θ − h(t + θ), ϕ)‖2 dθ,

where kj , j = 1, 2, 3, 4 are any free positive constants.
Observing that ∫ −h

−h(t)

‖y(t + θ, ϕ)‖2 dθ ≤
∫ −h

−2h

‖y(t + θ, ϕ)‖2 dθ, (30)

∫ −h

−h(t)

‖y(t + θ − h(t + θ), ϕ)‖2 dθ =
∫ −h−h(t−h)

−h(t)−h(t−h(t))

‖y(t + ξ, ϕ)‖ (1− η̇(t + θ))−1
dξ

≤ (1− η1)
−1

∫ −2h

−4h

‖y(t + ξ, ϕ)‖ dξ, (31)

we obtain

dv(ỹt(ϕ))
dt

≤ −w(yt(ϕ)) + η0u0 ‖B‖
(
k−1
1 ‖A‖+ k−1

3 ‖B‖) ‖y(t, ϕ)‖2

+η0u0 ‖B‖2
(
k−1
2 ‖A‖+ k−1

4 ‖B‖)
∫ 0

−h

‖y(t + θ, ϕ)‖2 dθ

+ ‖A‖ ‖B‖u0 (k1 + k2 ‖B‖h)
∫ −h

−2h

‖y(t + θ, ϕ)‖2 dθ

+(1− η1)
−1 ‖B‖2 u0 (k3 + k4 ‖B‖h)

∫ −2h

−4h

‖y(t + θ, ϕ)‖2 dθ.

If inequalities (29) are satisfied then d
dtv(ỹt(ϕ)) < 0, for t ≥ 2h, which implies the exponential stability of (23).

Now we rewrite (21) using formula (24) as
{

ẏ(t) = Ay(t) + By(t− h) + Bz(t) + f(y(t), y(t− h) + z(t)),
y(t) = ϕ(t), t ∈ [−2h, 2h], (32)

where

z(t) = −
∫ −h

−h(t)

Ay(t + θ) + By(t + θ − h(t + θ)) + f (y(t + θ), y(t + θ − h(t + θ))) dθ
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and

ϕ(t) =
{

ψ(t), t ∈ [−2h, 0]
y(t, ψ), t ∈ (0, 2h] . (33)

The stability of the trivial solution of (32) implies that of the trivial solution of (21).
From (2) it follows that for any γ > 0 there exists δ = δ(γ) > 0 such that if ‖(y(t + θ1), y(t + θ2))‖ < δ, for

θ1, θ2 ∈ [−4h, 0], t ≥ 2h, then

‖f(y(t + θ1), y(t + θ2))‖ < γ ‖(y(t + θ1), y(t + θ2))‖ .

Theorem 2 Let the system (3) be exponentially stable and assume that for any given matrices Wj > 0, j = 0, 1, 2,
there exist constants kj > 0, j = 1, 2, 3, 4 such that inequalities (29) hold. For

0 < γ < min
j=0,1,2,3

{
γrj ,

λmin(W1)
b

}
, (34)

where b = u0 (1 + ‖B‖h) , and γrj , j = 0, 1, 2, 3 are the corresponding positive real roots of the equations

ajγ
2 + bjγ + cj = dj , j = 0, 1, 2, 3 (35)

with d0 = λmin(W0), dj = λmin(W2), j = 1, 2, 3, and

a0 = u0η0

(
k−1
1 + k−1

3

)
,

b0 = u0η0

(
(‖A‖+ ‖B‖) k−1

1 + 2 ‖B‖ k−1
3

)
+ u0 (3 + 2 ‖B‖h) ,

c0 = η0u0

(
‖A‖ ‖B‖ k−1

1 + ‖B‖2 k−1
3

)
,

a1 = u0η0 ‖B‖
(
k−1
2 + k−1

4

)
,

b1 = u0 ‖B‖
(
η0 (‖A‖+ ‖B‖) k−1

2 + 2 ‖B‖ η0k
−1
4 + 2

)
,

c1 = u0η0 ‖B‖
(
‖A‖ ‖B‖ k−1

2 + ‖B‖2 k−1
4

)
,

a2 = u0 (k1 + k2 ‖B‖h) ,
b2 = u0 (k1 + k2 ‖B‖h) (‖A‖+ ‖B‖) ,
c2 = u0 (k1 + k2 ‖B‖h) ‖A‖ ‖B‖ ,

a3 = (1− η1)
−1

u0 (k3 + k4 ‖B‖h) ,

b3 = (1− η1)
−1

u02 ‖B‖ (k3 + k4 ‖B‖h) ,

c3 = (1− η1)
−1 ‖B‖2 u0 (k3 + k4 ‖B‖h) ,

(36)

the set

V =
{

ψ ∈ C([−2h, 0],Rn) : ‖ψ‖2h <

√
α1

α2

δ2

2e2h(‖A‖+‖B‖+L)

}
, (37)

where L is the Lipschitz constant of function f(u, v) on the set
{

ψ ∈ C([−2h, 0],Rn) : ‖ψ‖2h ≤
δ2

2

}
⊃ V

and
δ2 =

2δ

2 + h (‖A‖+ ‖B‖+ 2γ)
,

is an estimate of the attraction region for the trivial solution of (21).

Proof. Let the system (3) be exponentially stable. Then, given any Wj > 0, j = 3, 4, 5, there exists a unique matrix
U(·) satisfying equations (6)-(8), and therefore a unique functional (26) associated to (3). In addition, assume that there
exist constants kj > 0, j = 1, 2, 3, 4 such that inequalities (29) hold. Then, from Proposition 2 we have that (23) is
exponentially stable and (26) is a Lyapunov-Krasovskii functional for (23). We will show that (26) is a Lyapunov-
Krasovskii functional candidate for (32). For the solution y(t, ϕ) of (32), consider ỹt(ϕ) := y(t + θ, ϕ), θ ∈ [−h, 0],
t ≥ 2h, and yt (ϕ) := y(t + θ, ϕ), θ ∈ [−4h, 0], t ≥ 2h.
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The derivative of (26) along solutions of (32), for t ≥ 2h, is given by:

dv(ỹt (ϕ))
dt

= −w(yt (ϕ)) + 2 [Bz(t, ϕ) + f(y(t, ϕ), y(t− h, ϕ) + z(t, ϕ))]T

×
[
U(0)y(t, ϕ)−

∫ 0

−h

U(−h− θ)By(t + θ, ϕ)dθ

]
. (38)

Let

U =
{

ϕ ∈ C([−4h, 0],Rn) : ‖ϕ‖4h <
δ2

2
and v(ϕ̃) < α1

δ2
2

4

}
,

where ϕ̃(θ) = ϕ(θ), θ ∈ [−h, 0]. For a segment of trajectory yt(ϕ) ∈ U , we have ‖y(t + θ, ϕ)‖ < δ2
2 , θ ∈ [−4h, 0],

t ≥ 2h.
Then ‖(y(t + θ, ϕ), y(t + θ − h(t + θ), ϕ))‖ < δ2, θ ∈ [−2h,−h], which implies that

‖f (y(t + θ, ϕ), y(t + θ − h(t + θ), ϕ))‖ ≤ γ ‖(y(t + θ, ϕ), y(t + θ − h(t + θ), ϕ))‖ .

Therefore

‖z(t, ϕ)‖ ≤ (‖A‖+ γ)
∫ −h

−h(t)

‖y(t + θ, ϕ)‖ dθ + (‖B‖+ γ)
∫ −h

−h(t)

‖y(t + θ − h(t + θ), ϕ)‖ dθ. (39)

¿From (39) we have

‖(y(t, ϕ), y(t− h, ϕ) + z(t, ϕ))‖ <
δ2

2
(2 + h (‖A‖+ ‖B‖+ 2γ)) = δ,

which implies that

‖f(y(t, ϕ), y(t− h, ϕ) + z(t, ϕ))‖ ≤ γ ‖(y(t, ϕ), y(t− h, ϕ) + z(t, ϕ))‖ .

Hence

‖Bz(t, ϕ) + f(y(t, ϕ), y(t− h, ϕ) + z(t, ϕ))‖ ≤ (‖B‖+ γ) (‖A‖+ γ)
∫ −h

−h(t)

‖y(t + θ, ϕ)‖ dθ

+γ (‖y(t, ϕ)‖+ ‖y(t− h, ϕ)‖) + (‖B‖+ γ)2
∫ −h

−h(t)

‖y(t + θ − h(t + θ), ϕ)‖ dθ.

Taking into account this inequality and (16) in (38), we obtain

d

dt
v(ỹt (ϕ)) ≤ −w(yt (ϕ)) + 2u0

[
‖y(t, ϕ)‖+ ‖B‖

∫ 0

−h

‖y(t + θ, ϕ)‖ dθ

]

×
[
γ (‖y(t, ϕ)‖+ ‖y(t− h, ϕ)‖) + (‖B‖+ γ) (‖A‖+ γ)

∫ −h

−h(t)

‖y(t + θ, ϕ)‖ dθ

+(‖B‖+ γ)2
∫ −h

−h(t)

‖y(t + θ − h(t + θ), ϕ)‖ dθ

]
.

12



The following inequalities hold:

2u0γ (‖y(t, ϕ)‖+ ‖y(t− h, ϕ)‖)
(
‖y(t, ϕ)‖+ ‖B‖

∫ 0

−h

‖y(t + θ, ϕ)‖ dθ

)

≤ u0γ

[
(3 + 2 ‖B‖h) ‖y(t, ϕ)‖2 + ‖y(t− h, ϕ)‖2 + 2 ‖B‖

∫ 0

−h

‖y(t + θ, ϕ)‖2 dθ

]
,

2u0 (‖B‖+ γ) (‖A‖+ γ)

(∫ −h

−h(t)

‖y(t + θ, ϕ)‖ dθ

)(
‖y(t)‖+ ‖B‖

∫ 0

−h

‖y(t + θ, ϕ)‖ dθ

)

≤ u0 (‖B‖+ γ) (‖A‖+ γ)
[
k−1
2 ‖B‖ η0

∫ 0

−h

‖y(t + θ, ϕ)‖2 dθ

+k−1
1 η0 ‖y(t, ϕ)‖2 + (k1 + k2 ‖B‖h)

∫ −h

−h(t)

‖y(t + θ, ϕ)‖2 dθ

]
,

2u0 (‖B‖+ γ)2
(
‖y(t, ϕ)‖+ ‖B‖

∫ 0

−h

‖y(t + θ, ϕ)‖ dθ

) ∫ −h

−h(t)

‖y(t + θ − h(t + θ), ϕ)‖ dθ

≤ u0 (‖B‖+ γ)2
[
k−1
3 η0 ‖y(t, ϕ)‖2 + k−1

4 ‖B‖ η0

∫ 0

−h

‖y(t + θ, ϕ)‖2 dθ

(k3 + k4 ‖B‖h)
∫ −h

−h(t)

‖y(t + θ − h(t + θ), ϕ)‖ dθ

]
,

where kj , j = 1, 2, 3, 4 are any free positive constants. Considering inequalities (30) and (31), and after some simple
but tedious calculations, we arrive at the following upper bound for the derivative:

dv(ỹt (ϕ))
dt

≤ − (λmin(W1)− bγ) ‖y(t− h, ϕ)‖2 − [
d0 −

(
a0γ

2 + b0γ + c0

)] ‖y(t, ϕ)‖2

− [
d1 −

(
a1γ

2 + b1γ + c1

)] ∫ 0

−h

‖y(t + θ, ϕ)‖2 dθ

− [
d2 −

(
a2γ

2 + b2γ + c2

)] ∫ −h

−2h

‖y(t + ξ, ϕ)‖ dξ

− [
d3 −

(
a3γ

2 + b3γ + c3

)] ∫ −2h

−4h

‖y(t + ξ, ϕ)‖ dξ, (40)

where b = u0(1 + ‖B‖h), aj , bj , cj , j = 0, 1, 2, 3 are defined by (36), and d0 = λmin(W0), dj = λmin(W2), j =
1, 2, 3.

Hence, if there exists γ > 0 satisfying bγ < λmin(W1) and the following system of inequalities:

ajγ
2 + bjγ + cj < dj , j = 0, 1, 2, 3, (41)

then the derivative of v(ỹt(ϕ)) will be negative definite. From the assumption that there exist kj > 0, j = 1, 2, 3, 4
such that inequalities (29) hold, it follows that dj > cj , j = 1, 2, 3 for the same set of constants kj , j = 1, 2, 3, 4,
which implies that the corresponding inequality in (41) is satisfied for any γ ∈ (0, γrj), where γrj is the corresponding
positive real root of the equation (35).

Thus, by choosing γ > 0 such that inequality (34) holds we obtain that d
dtv(ỹt(ϕ)) < 0, for trajectories of (32)

inside the set U , implying the asymptotic stability of the trivial solution of (32).
Following a similar argument to the one proposed for the proof of theorem 1, we can arrive to prove that the set U

is a positively invariant set with respect to (32) which implies that the set U is an estimate of the attraction region for
the trivial solution of (32).

Let L be the Lipschitz constant of the function f(·, ·) on the set
{

ψ ∈ C([−2h, 0],Rn) : ‖ψ‖2h ≤
δ2

2

}
⊃ V .
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For any initial function ψ ∈ V , the solution y(t, ψ) of (21) satisfies the following inequality (Halanay 1966):

‖y(t, ψ)‖ ≤ e(‖A‖+‖B‖+L)t ‖ψ‖2h , t ≥ 0.

It follows that
‖y2h(ψ)‖2h ≤ e2h(‖A‖+‖B‖+L) ‖ψ‖2h . (42)

Then, the function ϕ ∈ C([−4h, 0],Rn) defined by (33) satisfies

‖ϕ‖4h <

√
α1

α2

δ2

2
. (43)

Now consider ϕ̃(θ) := ϕ(θ) = y(2h + θ, ψ), θ ∈ [−h, 0]. From (43) and the upper bound of v(·), we have

v(ϕ̃) ≤ α2 ‖ϕ̃‖2h < α1
δ2
2

4
. (44)

¿From the inequalities (43) and (44) it follows that for any initial function ψ ∈ V , the function ϕ ∈ C([−4h, 0],Rn)
defined by (33) belongs to the set U , and therefore y(t, ψ) → 0 when t → ∞. Hence, the set V is an estimate of the
attraction region for the trivial solution of (21).

The estimate of the attraction region (37) depends on the Lipschitz constant of the nonlinear function f(·, ·), which
result in a more conservative estimate of the attraction region. This is a consequence of using the model transformation
to derive such estimate.

Corollary 2 Let system (3) be exponentially stable and assume that for any given matrices Wj > 0, j = 0, 1, 2, there
exist constants kj > 0, j = 1, 2, 3, 4 such that inequalities (29) hold. For any solution y(t, ψ) of (21) such that ψ ∈ V,
the following exponential estimate holds:

‖y(t, ψ)‖ ≤ µ ‖ψ‖2h e−
β
2κ t, t ≥ 0, (45)

where β = minj=0,1

{
dj −

(
ajγ

2 + bjγ + cj

)}
and

µ =
√

α2

α1
e2h(‖A‖+‖B‖+L+ β

2κ ).

Proof. For any initial function ψ ∈ V, we have that the function ϕ ∈ C([−4h, 0],Rn) defined by (33) belongs to
the set U , and therefore yt(ψ) := y(t + θ, ψ), θ ∈ [−h, 0], t ≥ 2h, satisfies that yt(ψ) ∈ U , t ≥ 2h. From inequality
(40) it follows that

d

dt
v(yt(ψ)) ≤ −β

(
‖y(t, ψ)‖2 +

∫ 0

−h

‖y(t + θ, ψ)‖2 dθ

)
, t ≥ 2h,

where
β = min

j=0,1

{
dj −

(
ajγ

2 + bjγ + cj

)}
.

¿From (28) we have

v(yt(ψ)) ≤ κ

(
‖y(t, ψ)‖2 +

∫ 0

−h

‖y(t + θ, ψ)‖2 dθ

)
.

It follows that
d

dt
v(yt(ψ)) ≤ −β

κ
v(yt(ψ)), t ≥ 2h.

Integrating this inequality from 2h to t we get

ln v(yt(ψ))− ln v(y2h(ψ)) ≤ −β

κ
t, t ≥ 2h,

from which follows

α1 ‖y(t, ψ)‖2 ≤ v(yt(ψ)) ≤ v(y2h(ψ))e−
β
κ t ≤ α2 ‖y2h(ψ)‖2h e−

β
κ t, t ≥ 2h,
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and

‖y(t, ψ)‖ ≤
√

α2

α1
‖y2h(ψ)‖h e−

β
2κ t, t ≥ 2h.

¿From (42) we have
‖y2h(ψ)‖h ≤ e2h(‖A‖+‖B‖+L) ‖ψ‖2h .

It follows that

‖y(t, ψ)‖ ≤
√

α2

α1
e2h(‖A‖+‖B‖+L) ‖ψ‖2h e−

β
2κ t, t ≥ 2h.

Since for t ∈ [0, 2h]
‖y(t, ψ)‖ ≤ e2h(‖A‖+‖B‖+L) ‖ψ‖2h

and
√

α2
α1
≥ 1, the following inequality holds:

‖y(t, ψ)‖ ≤ µ ‖ψ‖2h e
− β

2κ
t

, t ≥ 0,

where

µ =
√

α2

α1
e2h(‖A‖+‖B‖+L+ β

2κ ).

5 Examples
In this section, we illustrate our results by some examples from the literature. More precisely, we consider: the
stability analysis of a delayed logistic equation (Gopalsamy 1992), the stabilization of nonlinear oscillations by delayed
feedback (Niculescu 2001), the stability analysis of Kelly’s nonlinear (fluid) first-order delay model for describing
congestion phenomena in communication networks (Kelly 2000), and the stability analysis of a nonlinear second-order
delay model encountered in some hereditary phenomena in physics (self-excited oscillations in a vacuum tube and
theory of stabilization of ships) (Kolmanovskii & Myshkis 1999).

5.1 Delayed Logistic Equation
Let us consider the following delayed logistic equation:

ẋ(t) = x(t)
[
r −mx(t)− nx2(t− h)

]
. (46)

Equation (46) is a generalization of the so-called delayed logistic equation encountered in several problems in biological
systems (population dynamics, single species growth model, etc.) see (Gopalsamy 1992). Equation (46) has a unique
positive equilibrium point defined by

x∗ =
−m +

√
m2 + 4rn

2n
.

Let y(t) = x(t)− x∗, then
ẏ(t) = ay(t) + by(t− h) + f(y(t), y(t− h)), (47)

where a = −mx∗, b = −2n(x∗)2, and

f(u, v) = −mu2 − 2nx∗uv − nx∗v2 − nuv2.

We have
|f(u, v)| ≤ mu2 + nx∗

(
u2 + v2

)
+ nx∗v2 + (n/2)

(
u2 + v2

) 3
2 .

Let ς = max {m,nx∗} , then

|f(u, v)| ≤ 2ς
(
u2 + v2

)
+ (n/2)

(
u2 + v2

) 3
2 .
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Thus, for any given γ > 0 there exists δ(γ) > 0, as the unique real positive solution of the equation 2ςδ + n
2 δ2 = γ,

such that |f(u, v)| < γ ‖(u, v)‖ if ‖(u, v)‖ < δ. The first approximation

ẋ(t) = ax(t) + bx(t− h) (48)

is exponentially stable for b < a if and only if h ∈ [0, h0), where

h0 =
arccos

(−a
b

)
√

b2 − a2
.

This fact is used in (Gopalsamy 1992) to conclude, by means of a direct application of the stability theorem on the
first approximation, that the trivial solution of (47) is asymptotically stable for h ∈ [0, h0) in a sufficiently small
neighborhood of the origin, and then to investigate the existence of periodic solutions of (47) for h close to h0. Here,
we show how the application of our results can provide an estimate of such neighborhood (the attraction region).

In this case equations (6)-(8) look as

Ü(τ) =
(
a2 − b2

)
U(τ), (49)

U̇(0) = aU(0) + bU(h), (50)
−W = 2U̇(0). (51)

If equation (48) is exponentially stable, the unique solution of (49), satisfying (50) and (51), is U(τ) = Wu(τ), where

u(τ) =
( −λ + b sin(λh)

2λ (a + b cos(λh))

)
cos(λτ)− 1

2λ
sin(λτ), τ ∈ [0, h]

with λ =
√

b2 − a2, see (Melchor-Aguilar 2004). As an example, consider in (46) that r = 1, m = 1, and n = 2, then
the unique positive equilibrium point of (46) is x∗ = 0.5. We get a = −0.5, b = −1, and h0 = 2.4184. So, taking
h = 1 we have that (48) is exponentially stable.

Let W0 = 1.5, W1 = 1 and W2 = 0.5, then u0 = 2.4562. Direct calculations derived from (13) show that

0 < γ < 0.2036.

Selecting γ = 0.2035, we obtain δ = 0.0970. From (10) and (11) we get α1 < 0.75 and α2 ≥ 12.8249. Selecting
α1 = 0.74 and α2 = 12.8249, the estimates of the attraction region for the trivial solution of (47) defined by (14) and
(20) are given by

U = {ψ ∈ C([−1, 0],R) : v(ψ) < 0.0017 and |ψ|1 < 0.0485}
and

V = {ψ ∈ C([−1, 0],R) : |ψ|1 < 0.0117} .

From (19) we obtain the following exponential bound for any solution starting in the set U :

|y(t, ψ)| ≤ 4.1630 |ψ|1 e−1.225×10−5t, t ≥ 0.

Now we illustrate the dependence of the attraction region on the delay value. Let us select h = 0.5, then (48) is
exponentially stable. Let now W0 = 1.5, W1 = 0.9, and W2 = 0.6, then u0 = 1.4237. From (13) we obtain
γ < 0.4214. Choosing γ = 0.4213, we get δ = 0.1922. From (10) and (11) we obtain α1 < 0.75 and α2 ≥ 5.0032.
Selecting α1 = 0.74 and α2 = 5.0032, the estimates of the attraction region (14) and (20) are given by

U = {ψ ∈ C([−0.5, 0],R) : v(ψ) < 0.0068 and |ψ|0.5 < 0.0961}

and
V = {ψ ∈ C([−0.5, 0],R) : |ψ|0.5 < 0.0370} .

The corresponding exponential bound (19) is given by

|y(t, ψ)| ≤ 2.6 |ψ|0.5 e−3.1391×10−5t, t ≥ 0.

16



5.2 Stabilizing nonlinear oscillations by delayed feedback
Let us consider the following nonlinear equation:

ÿ(t) = −w2
0 sin y(t). (52)

Equation (52) is the well-known pendulum equation without friction. This equation could also describe the elevation
motion of certain types of helicopter models, see (Roesch et al. 2005). Equation (52) have two equilibrium points
(0, 0) and (0, π). The equilibrium (0, 0) is stable but not asymptotically stable, and it is not possible to stabilize it by a
static feedback of the form u(t) = ky(t). Recently, in (Abdallah et al. 1993) (see also (Niculescu 2001)), it has been
shown that the linear oscillator

ÿ(t) = −w2
0y(t)

can be stabilized by a static delayed feedback of the form

u(t) = ky(t− τ), (53)

for all the pairs (k, τ) :
0 < k < w2

0 and τ i(k) < τ < τ i(k), (54)

where

τ i(k) =
2iπ√
w2

0 − k
and τ i(k) =

(2i + 1)π√
w2

0 + k
, i = 0, 1, ...

Let us rewrite (52) as
ÿ(t) = −w2

0y(t) + w2
0 [y(t)− sin y(t)] .

Then, the closed-loop (52)-(53) is

ÿ(t) = −w2
0y(t) + ky(t− τ) + w2

0 (y(t)− sin y(t)) . (55)

Let x1(t) = y(t) and x2(t) = ẏ(t), then

ẋ(t) = Ax(t) + Bx(t− τ) + f(x(t), x(t− τ)),

where x(t) =
(

x1(t) x2(t)
)T

, A =
(

0 1
−w2

0 0

)
, B =

(
0 0
k 0

)
, and f(x(t), x(t−τ)) =

(
0 w2

0 [x1(t)− sin x1(t)]
)T

.

For 0 < u < π
2 or −π

2 < u < 0, the following inequalities hold:

1− u2

2
<

sin u

u
< 1.

It follows that for any given 0 < γ ≤ w2
0π2

8 there exists δ =
√

2γ
w0

such that
∣∣w2

0 [x1(t)− sin x1(t)]
∣∣ < γ |x1(t)| if |x1(t)| < δ.

Hence, a direct application of the stability theorem on the first approximation leads to conclude that if the pair (k, τ)
satisfies (54), then the trivial solution of (55) is asymptotically stable for sufficiently small initial conditions.

Considering w2
0 = 1 and k = 0.5, the first delay interval guaranteeing closed-loop stability is given by 0 < τ <

2.5651. Let τ = 1, W0 = 1.5I,W1 = 0.9I and W2 = 0.3I. A piece-wise linear approximation of the unique matrix
function U(·) solution of (6), satisfying (7) and (8), is plotted in Fig. 1. From Fig. 1 we have u0 = 7.1517. Direct
calculations derived from (13) show that

0 < γ < 0.0839.

Selecting γ = 0.0838, we get δ = 0.4094. From (10) and (11) we obtain α1 < 0.6 and α2 ≥ 21.4551. Selecting
α1 = 0.59 and α2 = 21.4551, the estimates of the attraction region (14) and (20) are given by

U =
{
ψ ∈ C([−1, 0],R2) : v(ψ) < 0.0247 and ‖ψ‖1 < 0.2047

}

and
V =

{
ψ ∈ C([−1, 0],R2) : ‖ψ‖1 < 0.0339

}
.

¿From (19) we obtain the following exponential bound for any solution of (55) starting in the set U :

‖y(t, ψ)‖ ≤ 6.0303 ‖ψ‖1 e−1.6030×10−5t, t ≥ 0.
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Figure 1: Components of matrix U(τ)

5.3 Congestion control problem in networks
Let us consider the following nonlinear equation:

ẋ(t) = k [w − x(t− h(t))p(x(t− h(t)))] , (56)

where k and w are positive reals, p(·) is a continuous and differentiable nondecreasing function, and h(t) is a continuous
positive function. Equation (56) describes the dynamics of a collection of flows, all using a single resource and sharing
the same gain parameter k, see (Kelly 2000).

The delay function h(t) represents the round-trip time. In the context of congestion control networks, the delay
function is usually modeled as h(t) = h+η(t), where h is the propagation delay (assumed constant) and η(t) represents
the queueing delay in the congested router. Here, we assume that η(t) is a continuous function satisfying (22). The
function p(·) can be interpreted as the fraction of packets indicating (potential) congestion (presence), see (Kelly 2000).
Considering that the function p(x) = kpx with kp > 0, (see (Hollot et al. 2002) for a discussion on the benefits to use
a proportional controller), equation (56) can be written as

ẋ(t) = k
(
w − kpx

2(t− h(t))
)
. (57)

The unique positive equilibrium point of (57) is

x∗ =
√

w

kp
.

Let y(t) = x(t)− x∗, then
ẏ(t) = by(t− h(t)) + f(y(t− h(t))), (58)

where b = −2kkpx
∗ and f(y(t − h(t))) = −kkpy

2(t − h(t)). For any given γ > 0 there exists δ = γ
kkp

such that if
|y(t− h(t))| < δ then

|f(y(t− h(t)))| < γ |y(t− h(t))| .
The first approximation of (58) is

ẏ(t) = by(t− h(t)). (59)

From Proposition 2 we have that the system (59) is exponentially stable if

ẏ(t) = by(t− h) (60)
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is exponentially stable and for any given Wj > 0, j = 0, 1, 2, there exist kj > 0, j = 1, 2, 3, 4 such that inequalities
(29) hold. In this case, inequalities (29) rewrite as:





W0 > η0b
2u0k

−1
3

W2 > |b|3 u0η0k
−1
4

W2 > b2

1−η1
u0 (k3 + k4 |b|h)

(61)

The system (60) is exponentially stable if and only if

2bh > −π or kp <
π2

16w (hk)2
.

In this case, equations (6)-(8) become:

Ü(τ) = −b2U(τ), (62)
U̇(0) = bU(h), (63)

2U̇(0) = −W. (64)

If the system (60) is exponentially stable, then the unique solution of (62) satisfying (63) and (64) is U(τ) = Wu(τ),
see (Melchor-Aguilar 2004), where

u(τ) =
(−1 + sin(bh)

2b cos(bh)

)
cos(bτ)− 1

2b
sin(bτ), τ ∈ [0, h].

As an example, consider the network parameters from (Kunniyur & Srikant 2003): k = 0.01, w = 1, and h = 0.1.
Taking kp = 0.01, equation (60) is exponentially stable and x∗ = 10.

Let W0 = 0.4, W1 = 6, and W2 = 0.001, then u0 = 1600. Let kj = 0.0013, j = 1, 2, 3, 4. From the third
inequality in (61) we obtain η1 < 0.9917. From the first and second inequalities in (61) we obtain η0 < 0.0812.

Thus, a direct application of the stability theorem on the first approximation leads to conclude the local asymptotic
stability of the trivial solution of (58) for a continuous time-varying function η(t) satisfying

0 ≤ η(t) < 0.0812 and 0 ≤ η̇(t) < 0.9917.

Now we show how the application of our results allow us to compute an estimate of the attraction region.
First we observe that for any ψ1, ψ2 ∈

{
ψ ∈ C([−2h, 0],R) : |ψ|2h ≤ δ2

2

}
it holds that

|f (ψ1(θ))− f (ψ2(θ))| ≤ L |ψ1(θ)− ψ2(θ)| , θ ∈ [−2h, 0],

where L = kkpδ2. Let us select η0 = 0.08 and η1 = 0.9. Simple calculations derived from (34) show that

0 < γ < 1.1220× 10−6.

Choosing γ = 1.12× 10−6, we get δ = 0.0112. From (27) and (28) we obtain α1 < 200 and α2 ≥ 1760.8. Selecting
α1 = 199 and α2 = 1760.8, the estimate (37) of the attraction region is given by

V = {ψ ∈ C([−0.2, 0],R) : |ψ|0.2 < 0.0019} .

From (45) we obtain the following exponential bound for any solution of (58) starting in the set V :

|y(t, ψ)| ≤ 2.9758e−3.3099×10−9 |ψ|0.2 , t ≥ 0.

Now consider η0 = 0.01 and η1 = 0.9. Simple calculations derived from (34) show that

0 < γ < 7.1917× 10−5.

Selecting γ = 7.19× 10−5, we obtain δ = 0.7190. Thus, the estimate (37) of the attraction region is given by

V = {ψ ∈ C([−0.2, 0],R) : |ψ|0.2 < 0.1208}
and the corresponding exponential estimate (45), for any solution starting in the set V , is given by

|y(t, ψ)| ≤ 2.9758e−2.6384×10−8 |ψ|0.2 , t ≥ 0.
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5.4 Hereditary phenomena in physics
Let us consider the following equation:

ẍ(t) + 2rẋ(t) + p2x(t) + 2qẋ(t− 1) = εẋ3(t− 1). (65)

Equation (65) arises in modelling the dynamics of oscillations in a vacuum tube and in the theory of self-excited
oscillations, see (Kolmanovskii & Myshkis 1999) and the references therein. This equation is also encountered in the
theory of stabilization of ships, see (Kolmanovskii & Myshkis 1999).

Let y1(t) = x(t) and y2(t) = ẋ(t), then (65) can be written as

ẏ(t) = Ay(t) + By(t− 1) + f (y(t), y(t− 1)) , (66)

where y(t) =
(

y1(t) y2(t)
)T

, A =
(

0 1
−p2 −2r

)
, B =

(
0 0
0 −2q

)
, and f (y(t), y(t− 1)) =

(
0 εy3

2(t− 1)
)T

.

The unique equilibrium point of (66) is the origin. For any given γ > 0 there exists δ =
√

γ
ε such that

∣∣εy3
2(t− 1)

∣∣ < γ |y2(t− 1)| if |y2(t− 1)| < δ.

The first approximation of (66) is
ẏ(t) = Ay(t) + By(t− 1). (67)

Applying a frequency sweeping test, it is easy to show that the system ẋ(t) = Ax(t) + Bx(t − τ) with A, B given
above is delay-independent exponentially stable if 2(r2+q2) > p2, see (Niculescu 2001). Considering r = p = q = 1,
we have the exponential stability of the system (67).

Let W0 = I, W1 = 0.75I, and W2 = 0.5I. A piece-wise linear approximation of the unique matrix U(·) solution
of (6) satisfying (7) and (8) is plotted in Fig. 2. From Fig. 2 we have u0 = 5.0801. Direct calculations derived from
(13) show that

0 < γ < 0.0492.

Selecting γ = 0.049 and considering ε = 0.5, we obtain δ = 0.3130. From (10) and (11) we get α1 < 0.1464 and
α2 ≥ 63.4618. Taking α1 = 0.146 and α2 = 63.4618, the estimates of the attraction region defined by (14) and (20)
are given by

U =
{
ψ ∈ C([−1, 0],R2) : v(ψ) < 0.0036 and ‖ψ‖1 < 0.1565

}
,

and
V =

{
ψ ∈ C([−1, 0],R2) : ‖ψ‖1 < 0.0075

}
.

The corresponding exponential upper bound (19) for any solution of (66) starting in the set U is

‖y(t, ψ)‖ ≤ 20.8487 ‖ψ‖1 e−3.3808×10−5t, t ≥ 0.

6 Conclusion
In this paper, a constructive procedure to compute estimates of the attraction region for some classes of nonlinear
time-delay systems having a linear part in their description is proposed. The method developed is along the lines of
the finite dimensional case for constructing estimates of the attraction region whenever the linear part of the system is
exponentially stable. The approach is constructive and makes use of a Lyapunov-Krasovskii functional associated to
the exponentially stable linear system. Some examples illustrate the results.
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