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Braid solutions to the ation of the Gin enzymeBy Hugo Cabrera Ibarra† and David A. Lizárraga Navarro‡Applied Mathematis DivisionInstituto Potosino de Investigaión Cientí�a y Tenológia, IPICYTCamino a la Presa San José 205578216, San Luis Potosí, S.L.P., Méxio(Reeived )AbstratThe topologial analysis of enzymes, a urrently ative researh topi, allowed thededution of the ation mehanism of several enzymes, modelled as 2-string tangles, by anappliation of the tangle model of Ernst and Sumners. In this artile we analyse knottedand linked produts of site-spei� reombination mediated by the Gin DNA invertase,an enzyme whih involves 3-string tangles, and give two families of solutions to its ationin both, the diretly and inversely repeated sites ases, whenever the 3-tangles involvedare 3-braids. For eah ase, one of the given solutions had not previously been reportedin the related literature. In addition, a detailed pseudo-ode algorithm is presented whihallows one to ompute solutions under the assumption that the produt of two or morerounds of reombinations are known.
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1. IntrodutionTangles, as mathematial objets, were introdued by J. Conway in [4℄ and have provedto be useful tools in the study of knots and links, for example in the lassi�ation of 2-bridge and Montesinos knots [1, 13℄, and in appliations of knot theory to moleularbiology [6, 9℄. In turn, the tangle model, introdued by Sumners et al. in [15℄, wasapplied under reasonable biologial assumptions to model the site-spei� reombinaseTn3 resolvase, as well as other enzymes suh as λ-Int [6℄ and Xer [16℄. It is worthmentioning that suh ases involved ations of enzymes on 2-tangles, a quite favourablesituation sine a omplete lassi�ation of rational 2-tangles exists in the literature. Someenzymes, however, suh as Gin and Hin integrase reombinases, at on 3-tangles insteadof 2-tangles. In [17℄, Vazquez and Sumners gave a solution to the ation of the Gin enzymewith inversely and diretly repeated sites. Their result is based on the appliation of thetangle model under the additional assumption that one of the strings involved remainsompletely �xed by Fis, an aessory protein, and hene that the presene of this stringan be negleted, thereby obtaining a 2-tangle.In DNA site-spei� reombination, a reombination enzyme attahes to a pair of DNAspei� sites, breaks both, and reombines them to di�erent ends, thereby modifying theoriginal topology of the moleule. Eletron mirographs of reombinases bound to DNAshow the enzyme as a blob from whih two or three DNA loops emerge, depending on



Braid solutions to the ation of the Gin enzyme 3the enzyme. In the spei� ase of the Gin enzyme, three DNA loops stik out of theblob, thus making of the theory of 3-tangles a partiularly powerful analysis tool.Regarding 3-tangles, a lassi�ation of a subset of the set of rational 3-tangles, bymeans of the Kau�man braket polynomial and ertain invariant matries, is desribedin [2, 3℄. What is more, the results in [2℄ provide a omplete lassi�ation of the set B3of rational 3-braids�a speial ase of rational 3-tangles.Building on the theory and results developed in [2℄, in this paper we exploit the proper-ties of standard braid diagrams and apply the main ideas of the tangle model in order toanalyse knotted produts of site-spei� reombination mediated by the Gin enzyme. Asa result, we obtain two solutions to its ation in both the diretly and inversely repeatedases, under the assumption that the tangles involved are 3-braids. It is interesting tomention that two of the four given solutions, one for eah ase, were not previously avail-able in the relevant literature. Moreover, we desribe an algorithm to ompute solutionswhen the produt of two rounds of reombinations are equal to known 2-bridge knots(also referred to as 4-plats). In more mathematial terms, our algorithm permits thesolution of equations involving braids whose losures equal the given 2-bridge knots. Itis worth mentioning that in [7, 8℄, an analysis is made of tangle equations whih arethe numerators of sums of 2-tangles and whose produts are either 4-plats or Montesinosknots.The organisation of the paper is as follows. In Setions 2 and 3 we reall the de�nitionand basi properties of 3-braids, whih are speial ases of rational tangles, as well as thebraket polynomial applied to tangles. We also give a haraterisation of a matrix M1assoiated to a braid. In Setion 4, we study some of the properties of a given 3-tangleinvariant F , obtained from the matrix M1. In Setion 5 those results are applied to the



4 H. Cabrera Ibarra and D.A. Lizárraga Navarroanalysis of the ation of the gin enzyme in both the diretly and inversely repeated sitesases. Setion 6 ontains a pseudo-ode listing of our algorithm to solve braid equationsusing the results in previous setions.2. Preliminaries2·1. TanglesAn n-tangle is a pair (B3, T ), where B3 is the 3-ball and T is a set of n disjoint properlyembedded ars in B3. An n-tangle (B3, T ) is alled rational if there is a homeomorphismof pairs from (B3, T ) to (D,P )× I, where D is the unit disk, P is any set of n points inthe interior of D and I is the losed unit interval. A tangle diagram is the projetion ofthe tangle onto the yz-plane.In this work we shall only deal with rational 3-tangles, and refer to them simply astangles. Aordingly, we shall write T for a tangle (B3, T ). Two n-tangles T and T ′ aresaid to be equivalent, denoted T = T ′, if there is a homeomorphism of pairs h : T −→ T ′suh that h restrited to ∂B3 is the identity funtion or, equivalently, if one an transform
T into T ′ by repeatedly performing Reidemeister moves in B3 (.f. Figure 1), keeping
∂B3 �xed. Given two tangle diagrams TD1 and TD2, their sum TD1 + TD2 is obtained

Fig. 1. Reidemeister moves.by onatenation (or juxtaposition), as shown in Figure 2.It was shown in [2, 3℄, by an appliation of Kau�man's braket polynomial to tangles,that every tangle diagram TD has �ve assoiated Laurent polynomials invariant under
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TD1

TD1TD1

TD2

TD2TD2

TD1 + TD2Fig. 2. The diagrams of TD1, TD2 and TD1 + TD2.regular isotopy. For eah tangle diagram TD of a tangle T , these polynomials allow oneto de�ne, in turn, two polynomial matriesM1(TD) andM2(TD). It turns out that M2,along with a ertain equivalene lass [M1] of M1, onstitute ambient isotopy invariantswhih provide a lassi�ation of a subset of rational 3-tangles, namely the set B3 of3-braids. More spei�ally, given a 3-braid T ∈ B3 and its related matries M1(T ) and
M2(T ), one easily omputes the standard diagram AD+kE assoiated with T , onsistingof the sum of an alternating diagram AD and k opies of a (nonalternating) 3-braid E.On the other hand, whether suh matrix invariants ompletely lassify the set of 3-tanglesis still an open question.2·2. 3-BraidsAn n-braid an be de�ned as a set of n strings attahed to vertial bars at their left andright endpoints (see Figure 3(a)), with the property that eah string heads rightwardsat every point as it is traversed from left to right. The n-braids form a partiular lassof rational n-tangles (Figure 3(b)). Sine in this paper we deal exlusively with 3-braids,we shall drop the pre�x `3-' and refer to any of them simply as `braid.'

(a) (b)Fig. 3. (a) A 3-braid, and (b) the tangle indued by it.A braid diagram is said to be non-alternating if any of its strings, as traversed



6 H. Cabrera Ibarra and D.A. Lizárraga Navarrofrom left to right, exhibits two onseutive overpasses or two onseutive underpasses.A diagram is alternating if it fails to be non-alternating. The braid in Figure 3(a), forinstane, is non-alternating. For a detailed introdution to braids see [12, 14℄.As a matter of notation, we write T(a1, . . . , an), aj ∈ Z, to denote either of the followingbraid diagrams, aording to whether n is odd or even:
a1a1

a2a2

a3a3 an−1

an−1 an

an

n odd n evenIn the above diagrams, eah box of the form n or n omprises |n| two-stringrossings aording to the following onventions:
n =























































n > 0

n = 0

n < 0

n =























































n > 0

n = 0

n < 0. (2·1)
Note that for any braid T we have an assoiated diagram T(a1, . . . , an) for some aj ∈ Z,

j = 1, . . . , n. Also note that, with our onvention, T(a1, . . . , an) is an alternating diagramif, and only if, either ai ≥ 0, i = 1, . . . , n or ai ≤ 0, i = 1, . . . , n. An example of analternating diagram is depited in Figure 4.Fig. 4. Example of an alternating diagram: T (3, 2, 1, 2, 2)An important lass of non-alternating braid diagrams is generated by E and −E, whihare diagrams de�ned as follows
E = T (1,−1, 1) = T (0,−1, 1,−1) and − E = T (−1, 1,−1) = T (0, 1,−1, 1).



Braid solutions to the ation of the Gin enzyme 7Given k ∈ Z, we let
kE =



































E + E + · · · + E, (k times), k > 0;
T (0), k = 0;

−E − E − · · · −E, (|k| times), k < 0.A braid diagram B is said to be standard if has the form B = AD + kE, with ADalternating and k ∈ Z. It was shown in [2℄ that every braid admits a unique standarddiagram:Lemma 2·1 For every braid T ∈ B3 there exists a unique alternating diagram AD anda unique integer k ∈ Z suh that a diagram of T equals AD + kE.The proof is simple and the underlying intuition is exempli�ed in Figure 5: Starting witha tangle diagram, one �twists� all the strands at plaes where two onseutive overpassesor underpasses our, then ompensates that twist by another in the opposite diretionat the rightmost end of the diagram. Following [10℄, we shall refer to this proedure as a�ype move . For 3-tangles, a �ype move is related to appliation of Lagrange's rule (f.the desription of Apply-Lagrange-At in Setion 6).2·3. Kau�man braket polynomials and the invariant M1.The Kau�man braket is a funtion from unoriented link diagrams to Laurent poly-nomials with integer oe�ients in an indeterminate a. It maps a diagram D to 〈D〉 ∈

Z[a, a−1] and is haraterised by the following three onditions:(K1) 〈 〉

= 1(K2) 〈

TD ⊔
〉

= −(a2 + a−2) 〈TD〉(K3) 〈 〉

= a
〈 〉

+ a−1
〈 〉
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T (−2,−1, 3, 4, 2,−4)

T (−2,−1 + 1,−1,−3 + 1,−4,−2, 4, 0, 1,−1, 1)

T (−3,−2,−4,−2, 4, 0, 1,−1, 1)

T (−3,−2,−4,−2 + 1,−1,−4 + 1, 0, 1,−1, 1, 0, 1,−1, 1)

T (−3,−2,−4,−1,−1,−3, 0, 1,−1, 1, 0, 1,−1, 1)Fig. 5. Deformation of T (−2,−1, 3, 4, 2,−4) into the standard diagram
T (−3,−2,−4,−1,−1,−3) + 2E. At eah plae indiated by a dotted line, a full 3-string twist(show in red) is introdued; in order to preserve the braid, the twist is ompensated at the endof the diagram by adding an E summand of the opposite sign (also shown in red). The resultof these two �ype moves appears as a 2E summand, shown in blue in the last diagram.In this de�nition, is the diagram of the unknot, with no rossings, and TD ⊔is the diagram onsisting of the diagram TD together with an extra losed urvethat ontains no rossings at all, neither with itself nor with TD. In ondition (K3),the formula refers to three link diagrams that are exatly the same exept near a pointwhere they di�er as indiated. It is well known that the Kau�man braket satis�es thefollowing relations [10℄:

(i) 〈 〉

= −a3
〈 〉; 〈 〉

= −a−3
〈 〉

(ii) 〈 〉

=
〈 〉

(iii) 〈 〉

=
〈 〉These identities show that the braket polynomial is an invariant of knots under relations

(ii) and (iii), i.e., it is invariant under regular isotopy.Given a tangle diagram TD, we de�ne the braket polynomial of TD by
〈TD〉 = α(TD)

〈 〉

+ β(TD)
〈 〉

+ δ(TD)
〈 〉

+

χ(TD)
〈 〉

+ ψ(TD)
〈 〉

, (2·2)



Braid solutions to the ation of the Gin enzyme 9where the oe�ients α(TD), β(TD), δ(TD), χ(TD) and ψ(TD) are polynomials in aand a−1 that are obtained by using formulas (K2) and (K3) reursively on TD until oneomes up with a diagram ontaining only ombinations of the �ve tangles that appear in(2·2). Note that these polynomials, any of whih may be zero, are also invariant underregular isotopy.One assoiates, with a given tangle diagram TD, the following matrix:
M(TD)(a) =



















α(TD) + χ(TD) β(TD) 0

δ(TD) α(TD) + ψ(TD) 0

0 0 α(TD)



















,where the orresponding polynomial entries are taken from Equation (2·2). Again,M(TD)(a)is an invariant under regular isotopy. We have the following result, proved in [2℄.Theorem 2·2 [2℄ Given two tangle diagrams TD1 and TD2,
M(TD1 + TD2)(a) = M(TD1)(a)M(TD2)(a)

−(a2 + a−2)



















χ1 β1 0

δ1 ψ1 0

0 0 0





































0 1 0

1 0 0

0 0 0





































χ2 β2 0

δ2 ψ2 0

0 0 0



















,with αi = α(TDi), βi = α(TDi), . . . ψi = ψ(TDi), i = 1, 2.With a tangle diagram TD we assoiate the matrix M1(TD) = M(TD)(
√
i), whihresults from evaluatingM(TD) at a =

√
i. Sine (

√
i)2 +(

√
i)−2 = 0,M1(TD) obviouslyhas the following property:Lemma 2·3 For any two tangle diagrams TD1 and TD2 one has M1(TD1 + TD2) =

M1(TD1)M1(TD2).



10 H. Cabrera Ibarra and D.A. Lizárraga NavarroFrom Property (i) of the Kau�man braket it follows that
TD1 = TD2 =⇒M(TD1)(a) = (−a)3zM(TD2)(a)for some z ∈ Z whih depends on the number of loops in the diagrams. As a onsequene,

M1(TD) is not a tangle invariant. An invariant may be obtained from M1, however, byonsidering the following relation on M3×3(C):
A1 ∼ A2 ⇐⇒ A1 = (−

√
i)3zA2 for some z ∈ Z. (2·3)One easily shows that this is in fat an equivalene relation. Moreover:Lemma 2·4 The equivalene lass [M1(TD)] is a tangle invariant.Clearly, if two tangle diagrams TD1 and TD2 are equivalent, then

[M1(TD1)] = [M1(TD2)]and, by Lemma 2·3, we have [M1(TD1 · TD2)] = [M1(TD1)][M1(TD2)]. In the sequelwe shall only deal with suh equivalene lasses, denoting [M1(TD)] simply by M1(TD)and enlosing its entries using (square) brakets.2·4. Continued FrationsHere we brie�y reall basi fats on ontinued frations, to be used in the remainderof the paper. Given a1, . . . , an ∈ C, let
N [a1] = a1 D[a1] = 1

N [a1, a2] = a2N [a1] + 1 D[a1, a2] = a2D[a1]

N [a1, a2, a3] = a3N [a1, a2] +N [a1] D[a1, a2, a3] = a3D[a1, a2] +D[a1].



Braid solutions to the ation of the Gin enzyme 11If we de�ne N [a−1] = 0, D[a−1] = 1, N [a0] = 1, and D[a0] = 0, we have the followingreursive formulæ
N [a1, . . . , an] = anN [a1, . . . , an−1] +N [a1, . . . , an−2], n ≥ 1,

D[a1, . . . , an] = anD[a1, . . . , an−1] +D[a1, . . . , an−2], n ≥ 1.

(2·4)Note that
N [a1]

D[a1]
=
a1

1
,
N [a1, a2]

D[a1, a2]
= a1 +

1

a2
,
N [a1, . . . , an]

D[a1, . . . , an]
= a1 +

1

a2 +
1

· · · + 1

an

.We denote N [a1, . . . , an]/D[a1, . . . , an] simply by [a1, . . . , an], that is,
[a1, . . . , an] = a1 +

1

a2 +
1

· · · + 1

an

,and de�ne a
0 = ∞, ∞ · a = ∞ = ∞ + a, and a

∞ = 0, where a ∈ C with a 6= 0. Using thenotation An = [a1, . . . , an], the formulæ in (2·4) take the form
NAn = anNAn−1 +NAn−2, DAn = anDAn−1 +DAn−2, n ≥ 1,whene NAn/DAn = An.An n-tuple [a1, . . . , an] is said to be a ontinued fration expansion ; if, moreover,sign(aj) ·sign(aj+1) ≥ 0 for j = 1, . . . , n−1, [a1, . . . , an] is referred to as a strit ontin-ued fration expansion. As mentioned above, it is easy to see that T(a1, . . . , an) is analternating diagram if, and only if, [a1, . . . , an] is a strit ontinued fration expansion.2·5. Computation of M1 for braidsHere we develop some results that shall allow us to readily ompute the matrixM1(T )for a braid T .
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M1(T(n)) =



















1 0 0

n
i

1 0

0 0 1



















and M1(T(0, n)) =



















1 −n
i

0

0 1 0

0 0 1



















.Proof. One learly has
M1(T(0)) =



















1 0 0

0 1 0

0 0 1



















, M1(T(1)) =



















1 0 0

1
i

1 0

0 0 1



















, M1(T(−1)) =



















1 0 0

−1
i

1 0

0 0 1



















.Thus, from Lemma 2·3 we obtain, for n > 0,
M1(T (n)) =



















1 0 0

1
i

1 0

0 0 1



















n

=



















1 0 0

n
i

1 0

0 0 1



















and M1(T (−n)) =



















1 0 0

−n
i

1 0

0 0 1



















,Hene
M1(T(n)) =



















1 0 0

n
i

1 0

0 0 1



















.In a similar manner, one proves that the given expression forM1(T(0, n)) is valid as well.Using the previous notation, in general we have the following Lemma:Lemma 2·6 Given a1, . . . , an ∈ C, the following statements hold:If n is odd, then 

















1 0 0

a1 1 0

0 0 1





































1 a2 0

0 1 0

0 0 1



















. . .



















1 0 0

an 1 0

0 0 1



















=



















DAn DAn−1 0

NAn NAn−1 0

0 0 1



















.
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1 0 0

a1 1 0

0 0 1





































1 a2 0

0 1 0

0 0 1



















. . .



















1 an 0

0 1 0

0 0 1



















=



















DAn−1 DAn 0

NAn−1 NAn 0

0 0 1



















.This lemma may be used to determine M1(TAn), as pointed out by the following result.Lemma 2·7 Given T(a1, . . . , an) one has:
M1(T(a1, . . . , an)) =









































































































DAi
n DAi

n−1 0

NAi
n NAi

n−1 0

0 0 1



















=



















DAn
−1
i
DAn−1 0

1
i
NAn NAn−1 0

0 0 1



















, for odd n;


















DAi
n−1 DAi

n 0

NAi
n−1 NAi

n 0

0 0 1



















=



















DAn−1
−1
i
DAn 0

1
i
NAn−1 NAn 0

0 0 1



















, for even n,
where ai ∈ Z, An = [a1, . . . , an] and Ai

n =

[

a1

i
, −a2

i
, . . ., (−1)

n+1
an

i

]

.3. The invariant FReall that, given a tangle T , we have the equivalene lass
M1(T ) =



















α+ χ β 0

δ α+ ψ 0

0 0 α

















whereas Lemma 2·7 gives us an easy way to ompute the matrix assoiated to a braiddiagram T (a1, . . . , an). We shall use these fats in order to obtain another invariant and



14 H. Cabrera Ibarra and D.A. Lizárraga Navarrosimplify our tasks. De�ne a mapping F by
F (T ) =

(

M1(T )21
M1(T )11

,
M1(T )22
M1(T )12

)

=

(

δ

α+ χ
,
α+ ψ

β

)

,whih is a tangle invariant (in fat, any quotient among linear ombinations of the entriesof M1(T ) is also an invariant). We have the following Theorem, a diret onsequene ofLemma 2·7 and of the properties of ontinued frations:Theorem 3·1 One has
F (T (a1 . . . , an)) =















(

1
i
[a1, . . . , an], 1

i
[a1, . . . , an−1]

)

, for n odd;
(

1
i
[a1, . . . , an−1],

1
i
[a1, . . . , an]

)

, for n even.Let us remark that, while the ontinued frations [a1, . . . , an], [a1, . . . , an−1] de�nedby the rossings of a tangle diagram T (a1, . . . , an) need not be strit, the invariant Funiquely determines a ouple of strit ontinued frations [q1, . . . , qn−1] and [q1, . . . , qn],
q1, . . . , qn ∈ Z, suh that if we let (1

i
a
b
, 1

i
c
d
) = F (T (a1, . . . , an)) then

(

1

i

a

b
,
1

i

c

d

)

=















(1
i
[q1, . . . , qn], 1

i
[q1, . . . , qn−1]), n odd;

(1
i
[q1, . . . , qn−1],

1
i
[q1, . . . , qn]), n even.If T (a1, . . . , an) is an alternating diagram, then [a1, . . . , an] and [a1, . . . , an−1] are stritontinued fration expansions. Conversely, a pair of strit ontinued fration expansions

[a1, . . . , an] and [a1, . . . , an−1] determine a unique alternating diagram T (a1, . . . , an).Realling, from Lemma 2·1, that every tangle T may represented in the standard form
T = AD + kE, the following lemma asserts that F (T ) determines the alternating part
AD.



Braid solutions to the ation of the Gin enzyme 15Lemma 3·2 For any two alternating braid diagrams T1 and T2, one has T1 = T2 if, andonly if, F (T1) = F (T2). In partiular T1 = T2 if, and only if, M1(T1) = M1(T2).Proof. If T1 = T2, it learly follows that F (T1) = F (T2) and M1(T1) = M1(T2). Toprove the onverse impliation, from the ordered pair (1
i

a
b
, 1

i
c
d
) we obtain a pair of stritontinued fration expansions [a1, . . . , an−1] and [a1, . . . , an] whih, in turn, uniquely de-termine an alternating diagram T (a1, . . . , an). Sine T1 and T2 are alternating diagrams,it follows that T1 = T (a1, . . . , an) = T2. On the other hand, M1(T1) =M1(T2) implies

F (T1)=F (T2) and hene T1 = T2.From the proof of Lemma 3·2 we see that the assoiation of rationals and alternatingbraid diagrams is reversible in the sense that, given a pair of rationals that are equalto the invariant F of an alternating braid diagram T , the latter may be reonstrutedwithout ambiguity.We shall now turn to studying the invariantM1 assoiated to a non-alternating diagram
kE. Using Lemma 2·7 we obtain:
M1(E) =



















0 1
i

0

1
i

0 0

0 0 1



















, M1(2E) =



















-1 0 0

0 -1 0

0 0 1



















, M1(3E) =



















0 -1
i

0-1
i

0 0

0 0 1



















, M1(4E) = I3.(3·1)Sine M1(4E) is the identity matrix, the proof of following Lemma is straightforward:Lemma 3·3 For any tangle diagram T ,
M1(T + lE) = M1(T +mE) ⇐⇒ l ≡ m mod 4.



16 H. Cabrera Ibarra and D.A. Lizárraga NavarroApplying this result to F , and using the expressions for M1(E) and M1(2E) one has:Lemma 3·4 Let T ∈ B3 be suh that F (T ) = (1
i

c
a
, 1

i
d
b
). Then we have

F (T + nE) =















(1
i

c
a
, 1

i
d
b
), n even;

(1
i

d
b
, 1

i
c
a
), n odd.Given a braid B = AD + kE, Lemma 3·4 and the remarks after Theorem 3·1 imply,in partiular, that F (B) determines the alternating part AD as well as whether k is oddor even. Using lemmas 3·2 and 3·4, we get:Lemma 3·5 Let be T1, T2 ∈ B3 then(i) If F (T1)=(1

i
c
a
, 1

i
d
b
) = F (T2), then T1 = T2 + 2kE for some k ∈ Z.(ii) If F (T1)=(1

i
c
a
, 1

i
d
b
) and F (T2)=(1

i
d
b
, 1

i
c
a
), then T1 = T2+(2k+1)E for some k ∈ Z.Proof. (i) Sine F (T1) = F (T2), by Lemma 3·4 we have T1 = AD + k1E and T2 =

AD + k2E for some k1, k2 ∈ Z. Sine F (T1) = F (T2), then k1 and k2 are both even orboth odd. Therefore
T1 = AD + k1E = AD + k2E + (k1 − k2)E = T2 + (k1 − k2)E,with (k1 − k2) even. The proof of (ii) is similar, mutatis mutandis.Remark 3·6An additional matrix is introdued in [2℄, namely M2(TD) = M(TD)(1+i

√
3

2 ). It turnsout that M2 is a tangle invariant with the property that
M2(T + rE) = M2(T + sE) ⇐⇒ r = s.



Braid solutions to the ation of the Gin enzyme 17Using this fat, one onludes that the matries M1(·) and M2(·) ompletely lassify thebraid group B3, as stated in the following result.Theorem 3·7 Given T1, T2 ∈ B3, one has T1 = T2 if, and only if, M1(T1) = M1(T2)and M2(T1) = M2(T2). 4. DNA and 2-bridge knotsThe family of knots and links known as 2-bridge knots has been largely studied, to thepoint that it is ompletely lassi�ed. This family is losely related to rational 2-tangles[1, 4, 14℄ and, as we will see, to the set of 3-braids as well. A standard diagram of a2-bridge knot has the form shown in Figure 6, and it an be proved that every 2-bridgeknots admits an alternating diagram [14℄. A 2-bridge knot having a standard regulardiagram as in Figure 6, with the exeption that signs of rossings follow the oppositeonvention to that adopted in this paper (f. 2·1), is said to have type b(a, b), where
a
b

= [b1, . . . , bn] is a strit ontinued fration expansion and n is odd.
b1

b2

b3

bn−1

bnFig. 6. Standard diagram of a 2-bridge knot.As mentioned above, 2-bridge knots have been ompletely lassi�ed:Theorem 4·1 Suppose that K and K ′ are 2-bridge knots of types b(a, b) and b(a′, b′),respetively. Then K and K ′ are equivalent if, and only if,(i) a = a′ and(ii) b ≡ b′ mod a or bb′ ≡ 1 mod a.Note that, as depited in Figure 7, the standard diagram of a 2-bridge knot an be



18 H. Cabrera Ibarra and D.A. Lizárraga Navarroregarded as the losure of a braid T(a1, . . . , an), denoted A(T(a1, . . . , an)), under theproviso that n be odd and [a1, . . . , an] be a strit ontinued fration expansion.
a1

a2

a3

an−1

anFig. 7. The losure A(T(a1, . . . , an)) of a tangle diagram T(a1, . . . , an).As a onsequene of a diagram having non-alternating part equal to 2kE, we have thefollowing lemma.Lemma 4·2 The losure operator A satis�es:(i) For every tangle B and every integer k ∈ Z, A(B + 2kE) = A(B).(ii) Given a2, . . . , an ∈ Z, A(T(0, a2, a3, . . . , an)) = A(T(a3, . . . , an)).Proof. (i) follows, by indution on k, from the diagram redution shown in Figure 8.(ii) follows immediately from Figure 7 by letting a1 = 0.
PSfrag

B BB

EEE

≃≃Fig. 8. Illustration of the fat that A(B + 2E) = A(B).Remark 4·3Aording to Lemma 4·2, when taking the A losure of a diagram T (a1, . . . , an), nogenerality is lost by assuming, as we shall do in the sequel, that a1 6= 0 and n is odd.If, moreover, [a1, . . . , an] is a strit ontinued fration expansion and F (T (a1, . . . , an)) =

(1
i

a
b
, 1

i
a′

b′
), then |a

b
| ≥ 1.A relation between 2-bridge knots and 3-braids is desribed in the following theorem.Theorem 4·4 The following hold:(i) Every 2-bridge knot is the A losure of some 3-braid.



Braid solutions to the ation of the Gin enzyme 19(ii) The A losure of any 3-braid is a 2-bridge knot, or the unknot, or the 2-omponentunlink.Proof. (i) Assume that a 2-bridge knot K has type (a, b), so that K = b(a, b) with
gcd(a, b)=1. Let [a1, . . . , an] (n odd) be a strit ontinued fration expansion suh that
a
−b

= [a1, . . . , an] and assume, without loss of generality, that a1 6= 0 (f. Remark 4·3).Hene, by de�nition of type of a 2-bridge knot:
b(a, b) = A(T(a1, . . . , an)).(ii) is obvious.Lemma 4·5 Let B ∈ B3 and assume that F (B) = (1

i
a
b
, 1

i
a′

b′
) with 1 <| a

b
|< ∞. Then

A(B) = b(a,−b).Proof. Sine a unique strit ontinued fration expansion [b1, . . . , bn] an be obtainedfrom F (B), from Lemma 3·5 we have B = T(b1, . . . , bn) + kE, for some k ∈ Z. Supposethat n is odd and k even. By Lemma 4·2 we have
A(T (b1, . . . , bn) + kE) = A(T (b1, . . . , bn)) = b1

b2

b3

bn−1

bn

Beause of the assumption that |a
b
| = |[b1, b2, . . . , bn]| > 1, one has b1 6= 0. From thelassi�ation of the 2-bridge knots and Lemma 4·2, it follows that

A(T(b1, . . . , bn) + kE) = A(T(b1, . . . , bn)) = b(a,−b),where the sign in −b is due to the usual sign onvention for 2-bridge knots, [1, 14℄. Theother ases are analogous.



20 H. Cabrera Ibarra and D.A. Lizárraga NavarroUsing the above lemmas and the lassi�ation theorem for 2-bridge knots, we have:Theorem 4·6 Let T be a braid suh that F (T ) = (1
i

α1

β1
, 1

i

α′

1

β′

1

). One has A(T ) = b(α2,−β2)if, and only if,(i) α1 = α2 and(ii) β1 ≡ β2 mod α1 or β1β2 ≡ 1 mod α1.Proof. From Lemma 4·5, one gets A(T ) = b(α1,−β1) whereas, by assumption, A(T ) =

b(α1,−β1) = b(α2,−β2). Now, aording to the 2-bridge knots lassi�ation theorem,the latter equation holds if, and only if, α1 = α2 and (β1 ≡ β2 mod α1 or β1β2 ≡ 1

mod α1).Note that the previous result does not apply to the unknot; onerning the latter,however, we have:Theorem 4·7 Let T be a braid suh that F (T ) = (1
i

α1

β1
, 1

i

α′

1

β′

1

) with | α1

β1
|≥ 1. Then

A(T ) = Unknot ⇐⇒
∣
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∣

∣
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∣

= 1 or ∣
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∣

∣

α1

β1

∣

∣

∣

∣

= ∞.Proof. Suppose that A(T ) is the unknot and that T = AD + kE, where AD =

T (a1, . . . , an) and [a1, . . . , an] is a strit ontinued fration expansion. From Theorem 3·1,Lemma 3·4 and the de�nition of ontinued fration, if T (a1, . . . , an) with n ≥ 3 and
F (T (a1, . . . , an)) = (1

i
α1

β1
, 1

i

α′

1

β′

1

), then |α1

β1
| > 1. By Lemma 4·5, if 1 < |α1

β1
| < ∞ then

A(B) = b(a1,−b1) whih, by the 2-bridge knots lassi�ation theorem, is not the unknot.Whenever n ≤ 2 we have the following ases:(i) F (T (a1) + kE) =
(

∞, 1
i
[a1]

) for k odd. Here |α1

β1
| = ∞.(ii) F (T (a1) + kE) =

(

1
i
[a1],∞

) for k even. Here |α1

β1
| = 1 if, and only if, a1 = ±1.(iii) F (T (a1, a2) + kE) =

(

1
i
[a1, a2],

1
i
[a1]

) for k odd. Here |α1

β1
| > 1.



Braid solutions to the ation of the Gin enzyme 21(iv) F (T (a1, a2) + kE) =
(

1
i
[a1],

1
i
[a1, a2]

) for k even. Here |α1

β1
| = 1 if, and only if,

a1 = ±1.One readily heks that the A losure of the knots involved in ase (i), and in ases (ii)and (iv) when a1 = ±1, are equal to the unknot.5. Appliation to the ations of the Gin enzymeAs mentioned in the introdution, an appliation of topology to moleular biologyis the tangle model for reombination [9℄, where knotted and linked produts of site-spei� reombination mediated by an enzyme are analysed and, by appliation of thetangle model, possible solutions to its ation are given. Whilst some of the enzymesthat have been studied involve rational 2-tangles [15, 16℄, in this paper we deal withtwo known ations of the Gin invertase enzyme, orresponding to the ases of inverselyand diretly repeated sites, both of whih involve 3-tangles. The topologial approahto enzymology is the study of enzymes ating on, and thereby modifying the topologyof, irular unknotted DNA moleules. Suh enzymati ations are typially produedexperimentally by inubating a substrate of irular unknotted DNA and mixing it witha solution of the enzymes under study. A shemati representation of this proess isillustrated in Figure 9. For a more detailed and motivated introdution to the topologialapproah to enzymology and the tangle model, see e.g. [9, 15, 6℄.
writhing recombination

enzymeFig. 9. Illustration of the ation of an enzyme ating on a irular, unknotted DNA moleule.Eletron mirographs of the enzyme-DNA omplex show the Gin enzyme with three



22 H. Cabrera Ibarra and D.A. Lizárraga Navarroloops of DNA stiking out, whih suggests that the lassi�ation of rational 3-tanglesmight be an appropriate tool in order to apply the tangle model. On the other hand,experimental results indiate that under ertain biologial assumptions, the ation of Ginon initially unknotted DNA moleules with inversely repeated sites is a proess whoseessential topologial features are aptured by the model depited in Figure 10, where
O, S and T represent 3-tangles. It is reasonable to expet that O, S and T are indeedbraids, so we shall assume that it is indeed the ase and provide solutions under thisassumption.

≃≃

≃≃

O SS

SS

T

TTTTT

A(S + O) A(S + T )

A(S + 2T ) A(S + 3T )Fig. 10. Repeated ation of the Gin enzyme on an initially unknotted DNA moleule.Using the previous notation, the experimental data in Figure 10 an be translated intothe three equations:
A(S + T ) = Unknot, A(S + 2T ) = b(3, 1), A(S + 3T ) = b(5, 2). (5·1)In order to solve these equations for S and T , it is onvenient to start manipulating theseond one. Indeed, by virtue of Theorem 4·6, if X is any braid suh that A(X) = b(3, 1),its invariant F (X) = (1

i
a
b
, 1

i
a′

b′
) satis�es a = 3 and b ≡ −1 mod 3. Now, the ondition

|a
b
|>1 translates into the onstraint |b| < 3, whih, along with the previous requirements



Braid solutions to the ation of the Gin enzyme 23on b, implies that b = −1 or b = 2. Hene, X should satisfy
1) F (X) =

(

1

i

3

−1
,
1

i

a′

b′

) or 2) F (X) =

(

1

i

3

2
,
1

i

a′

b′

)

.Sine the only strit ontinued fration expansions for 3
−1 are [−3] and [−2,−1] whereasthose for 3

2 are [1, 2] and [1, 1, 1], by Lemma 4·2 we have the following sets (or families)of solutions:
X1 = T (−3,−a1) + 2c1E X2 = T (−2,−1,−a2) + (2c2 + 1)E

X3 = T (1, 2, a3) + (2c3 + 1)E X4 = T (1, 1, 1, a4) + 2c4where ai, cj ∈ Z, ai ≥ 0. For the third equation we proeed similarly: If a braid Y satis�es
A(Y ) = b(5, 2) and F (Y ) = (1

i
c
d
, 1

i
c′

d′
), then it must be that c = 5 and (d ≡ −2 mod 5or −2d ≡ 1 mod 5). Sine |d| < 5, if d ≡ −2 mod 5, then d = −2 or d = 3. If, on theother hand, −2d ≡ 1 mod 5, then d = −3 or d = 2. Hene, in this ase our solutions are:

Y1 = T (−2,−2,−b1) + (2d1 + 1)E Y2 = T (−2,−1,−1,−b2) + 2d2E

Y3 = T (1, 1, 2, b3) + 2d3E Y4 = T (1, 1, 1, 1, b4) + (2d4 + 1)E

Y5 = T (2, 2, b5) + (2d5 + 1)E Y6 = T (2, 1, 1, b6) + 2d6E

Y7 = T (−1,−1,−2,−b7) + 2d7E Y8 = T (−1,−1,−1,−1,−b8) + (2d8 + 1)E,with bk, dl ∈ Z, bk ≥ 0.The previous analysis shows that, if B1, B2 ∈ B3 satisfy A(B1)= b(3, 1) and A(B2)=

b(5, 2), then B1 ∈ Xi and B2 ∈ Yj for some i = 1, 2, 3, 4 and j = 1, . . . , 8. On the otherhand, by the tangle model it is assumed that B1 and B2 are of the form S + 2T and
S + 3T , respetively. Therefore, in order to proeed with the solution, for eah pair ofsets Xi and Yj we need to �nd families Sij and Tij suh that the following set equalities



24 H. Cabrera Ibarra and D.A. Lizárraga Navarrohold
Sij + 2Tij = Xi and Sij + 3Tij = Yj .Considering the group struture on B3, the ombination of these two equations yields

Xi + Tij = Yj , whih in turn implies
Tij = −Xi + Yj and Sij = Xi + 2(−Yj +Xi).The latter equations indiate that, for eah pair of sets Xi and Yj , there is a pair offamilies of solutions Sij and Tij . Performing the required omputations, with the aidof the algorithm outlined in Setion 6, one omes up with 32 pairs of families Sij , Tijlisted in standard form. For eah of these pairs, we must hek that the �rst equationin (5·1), i.e., A(Sij + Tij) = Unknot, is atually satis�ed. By Theorem 4·7, in order forthis equation to hold it is enough to ensure that |α1

β1
| = 1 or |α1

β1
| = ∞. As applied tothe previously obtained solutions, these onstraints yield the following families of pairsof solutions

S1 = T (0,−2,−1,−a1) + 2k1E T1 = T (0, a1, 1, 3, a1) + (2ℓ1 + 1)E

S2 = T (0,−3,−a2) + (2k2 + 1)E T2 = T (0,−a2,−3,−1,−a2) + (2ℓ2 + 1)E

S3 = T (−1,−1 + a3) + 2k3E T3 = T (0, 1 − a3,−1 − a3) + (2ℓ3 + 1)E

S4 = T (−1,−2 − a4) + 2k4E T4 = T (0, 2 + a4, a4) + (2ℓ4 + 1)E

S5 = T (2 − a5) + (2k5 + 1)E T5 = T (0, 1 − a5,−1 − a5) + (2ℓ5 + 1)E

S6 = T (3 + a6) + (2k6 + 1)E T6 = T (0, 2 + a6, a6) + (2ℓ6 + 1)E,

(5·2)
with ai ≥ 0 and ki, ℓi ∈ Z for i = 1, . . . , 6. An interesting fat, as proved in following



Braid solutions to the ation of the Gin enzyme 25theorem, is that in addition to solving (5·1), these families solve the equations for allrounds of reombinations involved in the tangle model, inluding the fourth and beyond.Theorem 5·1 The pairs of families of solutions (Sk, Tk) given in ( 5·2) satisfy, for every
k ∈ {1, . . . , 6} and n ≥ 1:

A(Sk + nTk) =















Unknot, n = 1;
b(2n− 1, 2n− 3), n > 1.Proof. Let k = 1. From the de�nition of M1(·) we get, by indution on n:

M1(S1) = σ1



















3 −i(3a1 + 2) 0

i 1 + a1 0

0 0 σ1



















,

M1(nT1) = σ2



















2n+ 1 + 4a1n −ni(1 + 4a1(1 + a1)) 0

−4ni 1 − 2n− 4na1 0

0 0 σ2



















,where σ1, σ2 are powers of −1 whih depend on the parity of k1 and ℓ1, the oe�ientsof E in the diagrams of S1 and T1. As desribed in Setion 3, these matries allow us toompute F (S1 + nT1), the �rst omponent of whih is given by
F (S1 + nT1)1 =

1

i

(

2n− 1

3 − 2n

)

.Aording to Theorem 4·6, the A losure of S1 +nT1 is the 2-bridge knot of type b(2n−
1, 2n−3), as stated. The ases orresponding to other hoies of k follow by using similararguments along with Theorem 4·1.This theorem implies in partiular that our solutions satisfy A(S + 4T ) = b(7, 3),



26 H. Cabrera Ibarra and D.A. Lizárraga Navarrothe (−5)-twist knot. This equation, whih is not present in (5·1), is in aordane withthe produt obtained in the fourth round in an experiment involving the Gin invertaseenzyme for a substrate with inversely oriented gix sites, [15℄. These fats validate thelaim that the tangle model based on 3-braids predits any reombination.At this point, it is natural to wonder about the smallest number of essentially di�erentfamilies that ontain the solutions listed in (5·2). In view of the above theorem, for every
n ∈ Z, the losure A(Si + nTi) is independent of the parameters ai, ki, ℓi, whih inludethe oe�ients of E in the standard diagrams of Si and Ti. One may thus relax therequirement that the ais be nonnegative or, equivalently, that the diagrams of Si and
Ti be standard, by permitting the ais to take negative values. As we shall see shortly,this allows one to merge some families, thus reduing the number of di�erent solutions.Another observation is helpful to merge further solutions, to wit, S always appears in(5·2) as the �rst (leftmost) summand, to whih a number of T s are appended. Therefore,if S = T (a1, a2, a3, . . . , an) + kE �starts� with a zero entry, i.e. a1 = 0, the losure of
S+nT is una�eted if one replaes S by S′ = T (a3, . . . , an)+kE. These remarks motivatethe following de�nition and lemma.De�nition 5·2 Let ∼ denote the relation de�ned on pairs of braids by setting (S, T ) ∼

(S′, T ′) if, and only if, there exist integers a0, a1, . . . , an, k1, k2 suh that T = T ′ + 2k2Eand either(i) S = T (a1, . . . , an) and S′ = T (0, a0, a1, . . . , an) + 2k1E, or(ii) S = T (0, a0, a1, . . . , an) + 2k1E and S′ = T (a1, . . . , an).Lemma 5·3 The relation ∼, as de�ned above, is an equivalene relation.Proof. That ∼ is re�exive and symmetri is obvious. To prove transitivity, suppose



Braid solutions to the ation of the Gin enzyme 27that (S, T ) ∼ (S′, T ′) and (S′, T ′) ∼ (S′′, T ′′). From the eight possible ases allowed bythe de�nition of ∼, we shall only work one out in detail; the rest follow by analogousarguments. Thus, assume that there exist integers a0, . . . , an, b0, . . . , bm ki, ℓi suh that
T = T ′ + 2k2E, T ′ = T ′′ + 2ℓ2E and both of these onditions hold:(i) S = T (a1, . . . , an) and S′ = T (0, a0, a1, . . . , an) + 2k1E,(ii) S′ = T (b1, . . . , bm) and S′′ = T (0, b0, b1, . . . , bm) + 2ℓ1E.Clearly, T = T ′′+2(ℓ2+k2)E. Also, sine S′ = T (0, a0, a1, . . . , an)+2k1E = T (b1, . . . , bm),we onlude that S′′ = T (0, b0, 0, a0, a1, . . . , an)+2(k1+ℓ1)E = T (0, b0+a0, a1, . . . , an)+

2(k1 + ℓ1)E. Therefore (S, T ) ∼ (S′′, T ′′).An interesting result is that, modulo this equivalene relation, there exist two essen-tially di�erent families of solutions.Theorem 5·4 Modulo the relation ∼ of De�nition 5·2, there exist two di�erent lassesof solutions to the braid equations ( 5·1), namely (Sα, Tα) and (Sβ , Tβ) as in Figure 11,where a, b and k1, . . . , k4 are integers:
a

a

b
b

b

b
b

−b

Sα Tα

Sβ Tβ

2k1E (2k2 + 1)E

(2k3 + 1)E (2k4 + 1)EFig. 11. The two di�erent families of solutions to equations (5·1)Proof. The proof proeeds in two steps: First we identify families with like lasses under
∼, denoted with square brakets [·], then prove that the two lasses thus obtained aredi�erent.Sine −1 + a3 = −2 − a4 is equivalent to a3 = −a4 − 1, substituting this value of a3in the expressions for S3 and T3, we get [(S3, T3)] = [(S4, T4)]. For the third and �fth



28 H. Cabrera Ibarra and D.A. Lizárraga Navarrofamilies, we observe that by taking ℓ3 = ℓ5 we get T3 = T5 and, by appliation of a �ypemove:
S3 = T (−1,−1 + a3) + 2k3E

= T (−1 + 1,−1, 1− a3 + 1) + (2k3 − 1)E

= T (0,−1, 2− a3) + (2k3 − 1)E.Setting a3 = a5 we onlude that [(S3, T3)] = [(S5, T5)]. Similarly, for the fourth andsixth families we take ℓ4 = ℓ6 to get T4 = T6 and then apply a �ype move to S4:
S4 = T (−1,−2 − a4) + 2k4E

= T (−1 + 1,−1, a3 + 2 + 1) + (2k4 − 1)E

= T (0,−1, a4 + 3) + (2k4 − 1)E.Letting a4 = a6 we onlude that [(S4, T4)] = [(S6, T6)]. Thus (Si, Ti) belong to the samelass for i = 3, . . . , 6. Note that
[(S4, T4)] = [T (−1,−2 − a4) + 2k4E, T (0, 2 + a4, a4) + (2ℓ4 + 1)E)]

= [(T (0, a,−1,−2− a4) + 2k4E, T (0, 2 + a4, a4) + (2ℓ4 + 1)E]

= [(Sα, Tα)],that is, the lass of the �rst family in Figure 11. Now, applying a �ype move to an element
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S2 = T (0,−3,−a2) + (2k2 + 1)E

= T (0,−3 + 1,−1, a2 + 1) + (2k2 + 2)E

= T (0,−2,−1, a2 + 1) + 2(k2 + 1)E,whih is heked to belong to family S1 by taking a1 = −a2 − 1 and k1 = k2 + 1.Substituting the orresponding value a2 = −a1−1 in the expression for T2, and applyingfurther �ype moves we get:
T2 = T (0, a1 + 1,−3,−1, a1 + 1) + (2ℓ2 + 1)E

= T (0, a1 + 1 − 1, 1, 3− 1, 1,−a1 − 1) + 2ℓ2E

= T (0, a1, 1, 2, 1,−a1 − 1) + 2ℓ2E

= T (0, a1, 1, 2 + 1,−1,−1 + 1, a1 + 1) + (2ℓ2 + 1)E

= T (0, a1, 1, 3,−1, 0, a1 + 1) + (2ℓ2 + 1)E

= T (0, a1, 1, 3, a1) + (2ℓ2 + 1)E,learly an element of T1. Thus [(S1, T1)] = [(S2, T2)]. Sine the �rst box in the diagramof S2 equals 0, we get
[(S2, T2)] = [(T (−a2) + (2k2 + 1)E, T2)]

= [(T (0, a, b) + (2k2 + 1)E, T (0, b,−3,−1, b) + (2ℓ2 + 1)E)]

= [(Sβ , Tβ)],that is, the seond family in Figure 11.



30 H. Cabrera Ibarra and D.A. Lizárraga NavarroTo prove that the two families are di�erent, onsider (T (b)+E, T (0, b,−3,−1, b)+E),a representative of [(Sβ , Tβ)]. In partiular, for b = 0 we get (T (0)+E, T (0, 0,−3,−1, 0)+

E) = (E, T (−3,−1) + E) ∈ [(Sβ , Tβ)]. We shall show that, for every b and k2 in Z, onehas T (−3,−1)+E 6= B(b, k2) := T (0, b+2, b)+(2k2+1)E so that [(E, T (−3,−1)+E)] 6=

[(Sα, Tα)]. To this aim, note that T (−3,−1)+E is in standard form, and so is B(b, k2) if
b < −2 or b > 0; di�ering in their standard diagrams, these braids are therefore unequal.Now, if b = −1,

B(−1, k2) = T (0, 1,−1) + (2k2 + 1)E

= T (0, 1 − 1, 1, 1 − 1) + 2k2E

= T (1) + 2k2E,whih is in standard form. Thus T (−3,−1) + E 6= B(−1, k2). Analogously, if b = −2,then B(−2, k2) = T (−2) + (2k2 + 1)E and hene T (−3,−1) + E 6= B(−2, k2). This�nishes the proof.5·1. Gin ating on substrates with diretly repeated sitesIt was shown in [11℄ that, under ertain onditions, the Gin enzyme also ats insubstrates with diretly repeated sites, a ase whih was analysed in [17℄ under the as-sumption that the tangles involved were 2-string tangles. In order to apply our algorithmbased on 3-braids, and in view of the experimental data, the equations to be onsideredin this ase are
A(S + T ) = b(3, 1), A(S + 2T ) = b(7, 3) and A(S + 3T ) = b(11, 9). (5·3)



Braid solutions to the ation of the Gin enzyme 31Applying the methodology desribed above, one �nds that the families of solutions are
S1 = T (0,−2,−1,−a1) + 2k1E T1 = T (0, a1, 1, 1, 1, 2, a1) + (2ℓ1 + 1)E

S2 = T (0,−3,−a2) + (2k2 + 1)E T2 = T (0,−a2,−2,−1,−1,−1,−a2) + (2ℓ2 + 1)E

S3 = T (−1,−1 + a3) + 2k3E T3 = T (0, 1 − a3,−1,−1,−a3) + (2ℓ3 + 1)E

S4 = T (−1,−2 − a4) + 2k4E T4 = T (0, 1 + a4, 1, 1, a4) + (2ℓ4 + 1)E

S5 = T (2 − a5) + (2k5 + 1)E T5 = T (0, 1 − a5,−1,−1,−a5) + (2ℓ5 + 1)E

S6 = T (3 + a6) + (2k6 + 1)E T6 = T (0, 1 + a6, 1, 1, a6) + (2ℓ6 + 1)E

S7 = T (0,−1,−1,−a7) + 2k7E T7 = T (0, a7, 1, 1, 1, 2, a7) + (2ℓ7 + 1)E

S8 = T (0,−2,−a8) + (2k8 + 1)E T8 = T (0,−a8,−2,−1,−1,−1,−a8) + (2ℓ8 + 1)E,(5·4)with ai ≥ 0 and ki, ℓi ∈ Z for i = 1, . . . , 8. An argument analogous to the one in theproof of Theorem 5 shows that, modulo the relation ∼ from De�nition 5·2, these familiesfall into the two lasses (Sα, 2Tα) and (Sβ , 2Tβ) depited in Figure 12, where Sα, Sβ, Tαand Tβ orrespond to the solutions found in the previous ase.
a

a

b
b

b
b

b

−b

Sα 2Tα

Sβ 2Tβ

2k1E (2k2 + 1)E

(2k3 + 1)E (2k4 + 1)EFig. 12. The two di�erent families of solutions to equations (5·3)6. AlgorithmThe following is an algorithm to solve tangle equations using the results desribedabove. Spei� implementations (in a variety of omputer languages) may easily be ob-tained from the listed pseudo-ode, whih adheres to the onventions set forth in [5℄.As an additional onvention, if A is an array, A[j . . k] denotes the (�nite) sequene
A[j], A[j+1], . . . , A[k]. Due to spae limitations, the proedures do not inlude any datavalidation or exeption handling. Here is a brief desription of the proedures involved:

• Append(A, x) Appends the element x at the end of array A.
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• Conatenate(A,B) Conatenates arrays A and B, in that order.
• Get-CF-Expansion(n, long-format) Gets the ontinued fration expansion of arational n. The argument long-format indiates whether the long or short formatis required.
• Solve-2BK-Congruenes(α, β) Returns an array of ouples of integers [a, b]that solve the two-bridge knot ongruenes: a = α and (b ≡ β mod α or
bβ ≡ 1 mod α).

• Get-Solution-Expansion(α, β,X) Returns an array of braids. Eah braid B instandard form and satis�es (F (B))1 ≥ 1. These braids represent the totality ofsolutions to equation A(B) = b(α,−β).
• Apply-Lagrange-At(F, k, plus-to-minus) Applies Lagrange's rule to the ontin-ued fration F , represented as an array of integers, at position k ∈ {1, . . . , length[F ]}.If plus-to-minus = true, the rule a+ 1

−b
= a−1+ 1

1+ 1
b−1

is applied, so that if F =

[f1, . . . , fk−1, a,−b, fk+2, . . . , fn], it returns [f1, . . . , fk−1, a−1, 1, b−1,−fk+2, . . . ,−fn].If plus-to-minus = false, the rule −a+ 1
b

= −a+1+ 1
−1+ 1

−b+1

is applied, so thatif F = [f1, . . . , fk−1,−a, b, fk+2, . . . , fn], it returns [f1, . . . , fk−1,−a+ 1,−1,−b+

1,−fk+2, . . . ,−fn].
• Strip-Zeroes(F ) Returns an array that di�ers from the array of integers F inthat it ontains no zero entry.
• Remove-Zeroes(F ) Takes a ontinued fration F , represented as an array, thenremoves zeros and simpli�es aording to the rules of ontinued frations.
• Detet-Sign(P,X) Takes a degree-one multinomial P = a0 + a1X [1] + · · · +

alength[X]X [length[X ]] in the indeterminates X [i] and returns a struture indiat-ing whether P is sign-de�nite and, in suh ase, sign(P ). Sign-de�niteness is testedunder the assumption that the indeterminates take stritly positive values.
• Detet-Sign-Change(A, I,X) Takes an array A of multinomials in the inde-terminates X and, starting from the Ith position, determines whether there is asign hange. In suh ase, the position p at whih it ourred, and the sign of A[p]are also returned. Sign-detetion is based on the rules applied by Detet-Sign.
• Get-Standard-Form(B,X)Takes a braidB, given by T (fraction [B])+index [B]Eand puts it in the standard form AD+kE. fraction [B] is an array on multinomialsin the indeterminates X .
• Conatenate-Braids(A,B,X) Takes braidsA andB (f.Get-Standard-Form

(B,X) for the desription of braids) and onatenates (i.e., adds) them, expressingthe result in standard form.
• Invert-Braid(A) Inverts braid A (f. Get-Standard-Form(B,X) for the de-sription of braids) under the onatenation operation in the braid group.
• Get-P-and-Q(A,B) Given two 2-bridge knots b(A[1], A[2]) and b(B[1], B[2]),returns braid families P andQ suh thatA(P+Q) = b(A[1], A[2]) andA(P+2Q) =

b(B[1], B[2]).Append(A, x)1 return [A[1 . . length [A]], x]Conatenate(A,B)1 return [A[1 . . length [A]], B[1 . . length [B]]]



Braid solutions to the ation of the Gin enzyme 33Get-CF-Expansion(n, long-format)1 R← sign(n)GetContinuedFration(|n|)2 if long-format3 then R[length [R]]← R[length [R]]− sign(n):4 R← Append(R, sign(n))5 return RSolve-2BK-Congruenes(α, β)1 T ← {β}2 if |α + β| < α3 then T ← T ∪{α + β}4 if | − α + β| < α5 then T ← T ∪{−α + β}6 for ℓ← −|β| to |β|7 do b← α

β
ℓ + 1

β8 if b ∈ Z and |b| < |α|9 then T ← T ∪{b}10 reate array R of size [1 . . length [T ]]11 for i← 1 to length [R]12 do a[R[i]]← α13 b[R[i]]← T [i]14 return RGet-Solution-Expansion(α, β, x)1 C ← Solve-2BK-Congruenes(α, β)2 R← [ ]3 for i← 1 to length [C]4 do5 F ←
a[C[i]]

b[C[i]]6 for j ← 1 to 27 do8 if j = 19 then fraction [S]← Get-CF-Expansion(F, false)10 else fraction [S]← Get-CF-Expansion(F,true)11 fraction [S]← Append(fraction [S], sign(F )x)12 index [S] = length [fraction [S]] mod 213 R← Append(R, S)14 return RApply-Lagrange-At(F, k, plus-to-minus)1 n← length [F ]2 if n < 2 or k 6∈ {1, . . . , n− 1}3 then return F4 if plus-to-minus5 then return [F [1 . . k − 1], F [k]− 1, 1,−F [k + 1]− 1,−F [k + 2 . . n]]6 else return [F [1 . . k − 1], F [k] + 1,−1,−F [k + 1] + 1,−F [k + 2 . . n]]Strip-Zeroes(F )1 R← [ ]2 for i← 1 to length[F ]3 do if F [i] 6= 04 then R← Append(R, F [i])5 return R



34 H. Cabrera Ibarra and D.A. Lizárraga NavarroRemove-Zeroes(F )1 R← F2 last-zero ← 33 while length [R] > 1 and any entry of R[last-zero . . length [R]− 1] equals 04 do n← length [R]5 for i← last-zero −1 to n− 16 do if R[i] = 07 then R← [R[1 . . i− 2], R[i− 1] + R[i + 1], R[i + 2..n]]8 last-zero ← max{i, 3}9 break � Breaks the for loop and jumps to 310 if length [R] > 1 and R[length [R]] = 011 then R← [R[1.. length [R]− 1]]12 return RDetet-Sign(P, X)

� P is assumed to be given by P = a0 + a1X[1] + · · ·+ alength[X]X[length [X]]
� It is assumed that sign(n) = 0 if and only if n = 01 s = [sign(a0), . . . , sign(alength[X])]2 s← Strip-Zeroes(s)3 if length [s] = 04 then is-definite[R]← true5 sign[R]← 06 else7 m← min{s[1 . . length [s]]}8 M ← max{s[1 . . length [s]]}9 if m = M10 then is-definite[R]← true11 sign[R]← m12 else is-definite[R]← false13 sign[R]← 014 return RDetet-Sign-Change(A, I, X)1 sign-changed [R]← false2 position[R]← 03 plus-to-minus[R]← false4 if length [A] ≤ 15 then return R6 reate array s of size [1 . . length [A]− I + 1]7 for i← I to length [A]8 do s[i− I + 1]← Detet-Sign(A[i], X)9 for i← 2 to length [s]10 do if is-definite [s[i]]11 then12 � Detet �rst A[j℄ to the left of A[i℄ with de�nite sign and ompare13 for j ← i− 1 downto 114 do if is-definite[s[j]] and sign[s[j]] 6= 015 then16 if sign [s[j]] 6= sign[s[i]]17 then sign-changed [R]← true18 position [R]← i + I − 119 if sign[s[j]] > sign[s[i]]20 then plus-to-minus[R]← true21 return R22 return R



Braid solutions to the ation of the Gin enzyme 35Get-Standard-Form(B, X)1 n← length[fraction [B]]2 F ← Remove-Zeroes(fraction[B])3 a← 04 ℓ← 45 c← Detet-Sign-Change(F, ℓ− 3, X)6 while sign-changed [c]7 do F ← Remove-Zeroes(Apply-Lagrange-At(F, position [c]− 1, plus-to-minus[c]))8 if plus-to-minus[c]9 then a← a + (−1)position[c]10 else a← a− (−1)position[c]11 ℓ← max{position [c], 4}12 c← Detet-Sign-Change(F, ℓ− 3, X)13 fraction[R]← F14 index [R]← index [B] + a15 return RConatenate-Braids(A,B, X)1 fa ← fraction [A]; fb ← fraction [B]; na ← length [fa]; nb ← length [fb]2 index [R]← index [A] + index [B]3 if index [A] ∈ 2Z4 then if na ∈ 2Z5 then fraction [R]← Conatenate(fa, fb)6 else fraction [R]← [fa[1 . . na − 1], fa[na] + fb[1], fb[2 . . nb]]7 else if na ∈ 2Z8 then fraction [R]← [fa[1 . . na − 1], fa[na]− fb[1],−fb[2 . . nb]]9 else fraction [R]← Conatenate(fa,−fb)10 return Get-Standard-Form(R)Invert-Braid(A)1 n← length[fraction [A]]2 k← index [A]3 F ← [ ]4 if k ∈ 2Z5 then if n ∈ 2Z6 then F ← [0]7 F ← Append(F, [− fraction [A][n . . 1]])8 else if n ∈ 2Z + 19 then F ← [0]10 F ← Append(F, [fraction [A][n . . 1]])11 fraction[R]← Remove-Zeroes(F )12 index [R]← −k13 return RGet-P-and-Q(A, B)1 Xs ← Get-Solution-Expansion(A[1], A[2], a)2 Ys ← Get-Solution-Expansion(B[1], B[2], b)3 reate array R of size [1 . . length [Xs], 1 . . length [Ys ]]4 for i← 1 to length [Xs ]5 do for j ← 1 to length [Ys ]6 do Q← Conatenate-Braids(Invert-Braid(Xs [i]), Ys[j], [a, b])7 P ← Conatenate-Braids(Xs[i], Invert-Braid(Q), [a, b])8 X[R[i, j]]← Xs[i]9 Y [R[i, j]]← Ys [j]10 P [R[i, j]]← P11 Q[R[i, j]]← Q12 return R
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