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ABSTRACT
This thesis deals with physics phenomena in low dimensional systems, i.e., sys-

tems that range between few atoms and the bulk. The work deals with well

studied (in this sense, classical) phenomena such as quantum tunneling and

the enhancement of tunneling, surface reconstructions on surfaces, stability of

structures vs. shape and size of nanoparticles, the mechanical properties stud-

ied in classical elastic theory for metals (such as hardness, ductility, malleability,

etc.). However, althouh we have used and applied "classical" theories from both

quantum and mechanical physics, we studied new, unusual phenomena in low

dimensional systems. Thus, the reader will find in this thesis work, theoretical de-

velopments, hypothesis and results that advance explanations in unusual physical

phenomena.

In quantum physics there are phenomena which do not have analogs in classi-

cal physics. One of these phenomena is quantum tunneling. The manifestation of

this process is penetration of a particle or more complicated object through a po-

tential barrier. Such process is forbidden by classical mechanics. Besides tunnel-

ing through static potential barriers there are many phenomena in labs and nature

when tunneling occurs across nonstationary barriers. There are many examples

of such processes, ionization of atoms by a nonstationary electric filed, ac electric

current in junctions of metals or semiconductors, dissociation of molecules by a

high-frequency fields, field emission from metals by the action of an ac field, de-

cay of current states in Josephson junctions, alpha decay of nuclei initiated by an

external flux of protons, etc. These processes of tunneling through nonstationary

barriers require an adequate theoretical description.

Regarding studies for nanoparticles, we have faced the shape, structure and

mechanical properties of metallic nanoparticles. First, we studied a particular

truncation operated on the regular icosahedron gives rise to a new (not reported
xxi



before) particle with five-fold symmetry and external decahedral shape termed

the decmon motif. These truncated icosahedra exposes internal facets (100) and

(111)âĂŞadditional to the external (111) facets of the regular icosahedron. The

uncovering of additional facets to the icosahedron gives rise to phenomena such

as surface reconstructions and a delicate competition in the energy contribution

coming from the new facets (100) and (111) to the total surface energy, a com-

petence that makes arise some regions in the path from the icosahedron to the

decahedron (m-Ih→st-Ih→s-Dh) that becomes more stable than the icosahedron

at that size. This study give us physical insights for nucleation and growth paths

of metallic nanoparticles.

A main second problem faced had been the mechanical properties of multi-

twinned metallic nanoparticles. We present support from theory and molecular

dynamics simulations for startling experimental observations that reveal nanopar-

ticles are extremely strong and malleable at the same time. These facts are unex-

pected since one of the nanotechnology leitmotifs "smaller is stronger" implies an

almost brittle behaviour. Explanations are supported on the role of twin bound-

aries in finite grains, as has been demonstrated that ductility could be increased

without losing strength by introducing coherent twin boundaries as is reported

for polycrystalline materials though not for individual nanoparticles. Our results

show unprecedented deformation on twinned nanoparticles up to 90%, both ex-

perimentally as well from molecular dynamics simulations.

In summary we present both from theory, and from numerical simulations tech-

niques, the results for frontier phenomena in modern physics with potential ap-

plications or clear developments in the disciplines where each problem has been

settled.



CHAPTER 1

INTRODUCTION

QUANTUM TUNNELING PHENOMENA

In quantum physics there are phenomena which do not have analogs in classi-

cal physics. One of these phenomena is quantum tunneling. The manifestation

of this process is penetration of a particle or more complicated object through a

potential barrier. De Broglie’s idea of "matter as wave" suggests a startling conse-

quence, and that’s what is called the tunnel effect. More precisely, Schrödinger’s

wave equation can show this rigorously. Unlike the classical mechanics of parti-

cles, quantum mechanics allows light as well as particles (such as electrons and

protons) to appear even where the "wall" of potential should prevent them from

appearing. In Fig, 1.1, you may imagine the wall as the "wall of potential", in

that any particle must have an energy, greater than a certain amount, for going

through it and appearing on the other side. But even when the particle has a

lower energy than that, it can go through the wall, just as a wave can appear on

the other side (since its oscillation can go through the wall). Since particles as

well as light have particle-wave duality, matter (with an appropriate energy) can

go through the wall according to quantum mechanics. This can explain the spon-

taneous desintegration of radioactive substances (such as radium); even though

the strong interaction within the nucleus forms a high wall of potential, alpha-
1



CHAPTER 1. INTRODUCTION

distintegration can occur because of the tunnel effect [1].

Figure 1.1: Cartooned picture of the tunnel effect. Due to particle-wave duality, quantum me-

chanics allows the matter to tunnel trough a "wall of potential".

The theory of tunneling through one-dimensional static barriers was devel-

oped by Wentzel, Kramers, and Brillouin (WKB) in twentieth of the last century [1].

The main feature of the WKB theory is that a wave function has a "tail“ under the

barrier which can be extended over the entire barrier length. This provides a finite

flux of particles from under the barrier. This flux becomes exponentially small

when the barrier is high or long. Such potential barrier are called semiclassical.

Besides tunneling through static potential barriers there are many phenomena

in labs and nature when tunneling occurs across nonstationary barriers. There

are many examples of such processes, ionization of atoms by a nonstationary

electric field, ac electric current in junctions of metals or semiconductors, disso-

ciation of molecules by high-frequency fields, field emission from metals by the

action of an ac field, decay of current states in Josephson junctions, alpha decay

of nuclei initiated by an external flux of protons, etc.

The above processes of tunneling through nonstationary barriers require an

adequate theoretical description. When a nonstationary field is very small the
2



penetration of a particle through a barrier hardly differs from the conventional tun-

neling described by the semiclassical WKB theory. At a relatively big nonstation-

ary field an overbarrier motion enters the problem when a particle should absorb

a number of quanta to reach the barrier top. Many situations in experiments are

associated with a soft nonstationary field with atypical frequency much less than

the barrier height. This means that the particle has to absorb a large number

of quanta to reach the barrier top. In the language of quantum mechanics, this

corresponds to a high order of the perturbation theory when the probability is

proportional to a high power of the nonstationary field.

There are some intermediate magnitudes of the nonstationary field when nei-

ther pure tunneling nor pure overbarrier motion describes the penetration through

the barrier. In this case, the real motion through a barrier is a combination of

quanta absorption and tunneling. The particle pays in its probability to absorb

quanta and to reach the certain higher energy level but the subsequent tunneling

is easier since it occurs in a more transparent part of the barrier. That higher

energy is determined by a maximization of the total probability. This mechanism

of barrier penetration in a nonstationary field is called photon-assisted tunneling.

The physics of photon-assisted tunneling has no conflict with intuition since

the loss in absorption probability is compensated by the gain in probability of

tunneling. In photon-assisted tunneling two processes (absorption and tunnel-

ing) are weakly coherent, which allows one to consider them independently and,

therefore, the total probability is a product of two partial ones. This recalls static

tunneling through two barriers, separated in space, when the quantum coher-

ence between them is artificially destroyed by some external source. In this case,

the two probabilities (tunneling and tunneling) are also independent and the total

probability is a product of the partial ones.

In addition to quanta absorption, resulting in the increase of particle energy,

quanta emission is also possible, followed by tunneling with a lower energy. At

first sight, this process cannot lead to an enhancement of tunneling due to a
3
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double loss in probability: (i) emission of quanta and (ii) tunneling in a less trans-

parent part of the barrier (with a lower energy). This conclusion is based on

the assumption that quanta emission and tunneling are not strongly coherent

processes which allows us to consider them almost independently. The remark-

able point of physics of nonstationary tunneling is that the processes of quanta

emission and tunneling may be strongly coherent and cannot be considered in-

dependently. Moreover, the conclusion was drawn [2] that emission of quanta

and tunneling with a lower energy may result in a strong enhancement of barrier

penetration. This conclusion is counterintuitive. Indeed, intuition is sometimes

useless in description of certain quantum mechanical processes. For example,

the property of nonreflectivity of some potentials [1] cannot be established on the

basis of general arguments.

The strong coherence of quanta emission and tunneling is similar to the strong

coherence of two stationary tunneling processes through a static double barrier

potential. After tunneling through the first barrier the particle performs multiple

reflections from the walls of the two barriers and then tunnels through the second

barrier. Due to multiple coherent reflections, the two tunneling processes become

strongly coherent and the total penetration probability dramatically increases if the

particle energy E coincides with one of the energy levels ER in the well between

two barriers. Fig. 1.2 shows a typical Transmision Coefficient T (E) for a double

barrier system. The physical idea of this mechanism, called resonant tunneling,

stems from Wigner [1]. The strong coherence between quanta emission and

tunneling also results in a resonant effect and penetration probability, as a function

of a particle energy E , has a sharp peak at a certain energy ER determined by

dynamical characteristics. This effect is called Euclidean resonance (ER) [2]. The

difference between a stationary resonant tunneling through a static double barrier

and Euclidean resonance in a dynamic barrier is that the former requires a long

time for its formation but the latter occurs fast.
4



Figure 1.2: Transmission coefficient for a double barrier potential. The transmission probability

increases when the energy of the incident particle is close to E1 and E2 and reaches its maximum

for those energy levels (it is said to be in resonance).
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CHAPTER 1. INTRODUCTION

STRUCTURAL PROPERTIES OF NANOPARTICLES

Nanotechnology is a leading interdisciplinary science that is emerging as a dis-

tinctive field of research. Its advances and applications will result in technical ca-

pabilities that will allow the development of novel nanomaterials with applications

that will revolutionize the industry in many areas [3, 4]. It is now well established

that dimensionality plays a critical role in determining the properties of materials

and its study has produced important results in chemistry and physics [5].

Figure 1.3: The periodic table of the elements in 3D. The first dimension represents the knowl-

edge about atoms, molecules and low dimensional systems (surfaces and clusters); the second

dimension represents the well known bulk properties of the elements. The third dimension rep-

resents jerarchical systems based on nanostructures–clusters, nanostructures and arrays of so

called super-atoms–with periodicity and crystal structure, with totally new, unexpected and rele-

vant chemical and physical properties [13].

Nanoparticles are one of the cornerstones of nanotechnology. Indeed, even

when the research on this field has been going on for a long time, many present
6



and future applications are based on nanoparticles. For instance, the electron tun-

neling through quantum dots has led to the possibility of fabricating single electron

transistors [6–11]. One concept particularly appealing is a new three-dimensional

periodic table based on the possibility of generating artificial atoms from clusters

of all the elements [12]. This idea is based on the fact that several properties of

nanoparticles show large fluctuations, which can be interpreted as electronic or

shell closing properties with the appearance of magic numbers. Therefore, it is

conceivable to tailor artificial super-atoms with given properties by controlling the

number of shells on a nanoparticle. This idea is illustrated in Fig.1.3.

The development of nanotechnology can be approached from several direc-

tions; mesoscopic physics, microelectronics, materials nanotechnology and clus-

ter science. The different fields are now coming together and a completely new

area is emerging [14, 15]. Figure 1.4 illustrates how the different approaches are

converging; it exhibits the domains of clusters and nanoparticles with different

structures that result from an increase on the number of atoms. The different

possible structures include nanorods, nanoparticles, fullerenes, nanotubes, and

layered materials.

Figure 1.4: Domains of nanoparticles and clusters with different structures.

The shape of metallic nanoparticles with diameters in the region of few nanome-
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ters is a topic of extreme importance in all the research fields on nanotechnology.

The atomic packing of a particle will define its surface orientation and, as a con-

sequence, its catalytic activity, as well as the optical, mechanical, magnetic, elec-

tronic, etc., properties [16–19]. In addition, the shape of nanoparticles is strongly

dependent on the preparation method [20–22], thus they can be in a metastable

or even in non-equilibrium state [23, 24]. Dramatic variations in their structure

can be understood in terms of the energy landscape concept [13], whereby many

structures, or isomers, are represented in a free-energy landscape by minima

of similar energies and separated by relatively small energy barriers, see the

picture-concept illustrated in Fig. 1.5. This fact is clearly observed in the so called

quasi-melting states, where a nanoparticle changes its shape in a very dramatic

way under an electron beam, an effect that has been extensively studied by sev-

eral authors and is a direct proof of the energy landscape concept [23,24].

Now, the fundamental question of how matter properties develop from the atom

to the bulk has been the subject of many studies facing the problem in so many

ways and at different levels. For example, the magnetic behavior of systems with

reduced dimensions are expected to have higher magnetic moments than the

corresponding bulk value, mainly due to the reduced atomic coordination, thus

increasing the electron localization and a correspondingly reduced valence band

width. Studying small NiN clusters from photo-emission data, Ganteför and Eber-

hardt [26] have identified that the spectra corresponding to Ni clusters is surpris-

ingly similar to small CuN clusters. From that point, they had outlined the roots

of magnetism, showing how the magnetism increases in open shell metals and

reduces its magnitude as the system size increases, and how the magnetism is

quenched in closed shell metals.

8



Figure 1.5: A simplified but useful cartoon for illustrating the relevant concept of surface energy

landscape. Structures can be in metastable states (on maxima) or local minima, all of which can

be perturbed by small amounts of energy, thus changing to another state/structure. In practice,

there are many minima in the region of configurational space that a given result or a physical

technique would give, but most likely is would not be the global minima.

Therefore, trying to understand the properties of a given system from its nature

fundaments it is a task that worths the efforts. The sole possibility that the atomic

arrangement as a function of the number of atoms presents some kind of phase

diagram is an enchanting idea. To have the certainty that at a given cluster size

range, and under a given set of physical conditions the majority of the particles

will have a predetermined structure and symmetry, it would improve applications

of nanoparticles and boost the research in nanotechnology.

This sort of phase maps or structural diagrams for small and multi-twined

particles have been discussed by Cleveland and co-workers [27], Ajayan and
9
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Marks [24], and Doye and Calvo [28]. Atomistic calculations based on the em-

bedded atom method for the structural evolution with size of nickel clusters by

Cleveland and coworkers [27] show a growth sequence of icosahedra, truncated

decahedra, single closed-packed crystallites and mono-twinned particles. Marks

and co-workers have summarized four primary models appeared in the literature

for multi-twinned growth mechanism (see Ref. [24] and references therein), con-

cluding that intrinsic equilibrium structures of lower energy are favored at small

sizes, that undergo to phase transformations as the cluster size increases. In

this sense, Doye and Calvo [28] have reported a phase diagram for Lennard-

Jones clusters from thermodynamic considerations with emphasis on metallic

particles, where the icosahedral and decahedral phases dominate in the small

size range, and as the particle size grew up the fcc phase appears, although the

phase boundaries transitions are not clear nor the thermodynamic conditions.

However, nature is still more complicated. Although, the existence of twinned

and multi-twinned decahedral particles are predominant in the small size range,

they co-exist with fcc and other particles, the formation rate is not uniform nor

independent of the element in the cluster. There exist the possibility that the par-

ticle structures are determined statistically, an alternative path where the quasi-

melting behavior would play an important role [24]. And even has been suggested

the idea of the existence of symmetries and atomic arrangements different than

the decahedral, icosahedral and fcc symmetry [29].

MECHANICAL PROPERTIES OF NANOPARTICLES

The strong interest in nanotechnology was first manifested from the materials

science community in the early 90s. The interest was based on the change of

mechanical properties with reducing the size of structures. [30–33] The rationale

for the interest in the mechanical properties of nanostructures was simple: A

metal with no defects can sustain elastic deformation up to 10%. Metals start

to yield plastically at much lower stress. The threshold stress σ (ideal) obtained
10



by ab-initio calculations is about Y/10, where Y is the Young modulus [34]. The

real strength of a solid is reduced by the presence of defects. Plastic deforma-

tion in solids is controlled by dislocations gliding; surfaces and grain boundaries

are the sink of dislocations (creating steps) and deformation will continue as long

as new dislocations are created inside the crystal. The most common mecha-

nism of dislocation creation is the Frank-Read sources [35], however, when the

size of the crystal is less than 100 nm, Frank-Read sources will not be stable

anymore. This opens the possibility of fabricating solids using nanoparticles that

would make ultra strong materials out of soft metals. Experimental work resulted

in the Hall-Petch effect, which indicated that σ (effective) ≈ kd−α where k and α

are independent constants and d is the mean grain size [36]. This result confirms

that it is possible to fabricate new materials with macroscopic flow strengths that

are better than the conventional microstructures [37]. However, the achievement

of ultra strong materials has come to the expense of ductility, thus making them

very impractical in many cases. An important development was achieved by Lu

et al. [38, 39] whom demonstrated that ductility could be increased without los-

ing strength by introducing coherent twin boundaries. These authors reported a

very unusual combination of high yield strength of 1GPa and a ductility of 14%

elongation to failure, being the optimal separation between coherent twin bound-

aries 15 nm in length. A theoretical mechanism to explain the role of coherent

twin boundaries was reported by Zhu et al. [40] and have also review the central

role of twins on plastic deformation of nanoparticles. The experimental studies

of mechanical properties of individual nanoparticles are of great interest for the

full understanding of the mechanical behavior of the matter at this size regime.

The experimental challenges are enormous and no direct studies have been re-

ported. Previous experimental work on in-situ measurements of mechanical prop-

erties using transmission electron microscopy (TEM) has been focused on metal

nanowires [41]. Zheng et al. have studied the plasticity in Au nanowires with a

size less than 10 nm [42]. They observed that plasticity of the Au nanowires is

11
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dominated by the partial dislocations (PDs) emitted from the steps of the free sur-

faces; their results were consistent with previous theoretical calculations [43–46].

In the case of nanoparticles, the only experimental work that indirectly measures

properties of individual nanoparticles is that of Sun et al. [47]. They used electron

beam irradiation to induce mechanical stress on metal crystals inside graphitic

nanocontainers. They concluded that the short-lived PDs nucleated by the for-

mation of intrinsic stacking faults.

The deformation mechanisms of nanomaterials, are particularly difficult to

study experimentally; for example, in high-strain-rate deformation of single crys-

talline fcc metals such as Cu, certain strain relaxation time scales are in the sub-

nanosecond range [48]. Atomic-scale and other fine-scale dynamical simulation

methods provide ideal means for analyzing the deformation mechanisms in duc-

tile thin films by direct monitoring of the dynamical response of the materials

at the atomic/microscopic scale [49, 50]. First-principles density functional the-

ory calculations and large-scale molecular dynamics simulations have been used

extensively toward a fundamental understanding of plastic flow initiation and nu-

cleation of dislocations, as well as investigations of plastic deformation during

nanoindentation of metal surfaces [51, 52]. Molecular dynamics simulations is

important both for providing quantitative predictions of dislocation mobility, and

for understanding the underlying atomistic mechanisms governing the complex

plastic deformation behavior in nanosized metals [53,54].

An interesting question is: How twinned nanoparticles respond to an applied

stress, for example, in a nanoindentation experiment?. This question arises from

the fact that this kind of nanoparticles, have intrinsic internal stresses due that

they are formed by fcc tetrahedral units deformed in order to complete the an-

gle needed to close them, and also it is well known that twinnings can play an

important role as dislocation barriers [38,39].
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CHAPTER 2

THEORY

The purpose of this chapter, is to remember and describe some of the basic

concepts and theory that were needed for the development of the present thesis

work.

2.1 WKB THEORY

The WKB (Wentzel, Kramers, Brillouin) approximation is, in sense to be made

clear below, a quasi-classical method for solving the one-dimensional (and effec-

tively one-dimensional, such as radial) time-independent Schrödinger equation.

The nontrivial step in the method is the connection formulas, that problem was

first solved by Lord Rayleigh [1] and as Jeffries notes [2] "it has been rediscov-

ered by several later writers" presumable referring to W., K. and B.

2.1.1 THE SEMICLASSICAL APPROXIMATION TO LEADING ORDER

Consider a particle moving along in a slowly varying one-dimensional potential.

By "slowly varying" we mean here that in any small region the wave function is

well approximated by a plane wave, and that the wavelength only changes over

distances long compared with a wavelength. We are also assuming for the mo-
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CHAPTER 2. THEORY

ment that the particle has positive kinetic energy in that region. Under these con-

ditions, it is easy to see the general form of the solution to the time independent

Schrödinger equation

−~2

2m
∂ψ(x)
∂x2 + V (x)ψ(x) = Eψ(x). (2.1)

Very approximately, ψ(x) will look like A(x)e±ip(x)x/~ where p(x) is the "local mo-

mentum" defined classically by

p(x)
2m

+ V (x) = E , (2.2)

and A(x) is slowly varying compared with the phase factor. Clearly this is a semi-

classical limit: has to be sufficiently small that there are many oscillations in the

typical distance over which the potential varies. To handle this a little more pre-

cisely, we emphasize the rapid phase variation in this semiclassical limit by writing

the wave function

ψ(x) = e
i
~σ(x). (2.3)

and writing Schrödinger’s equation for σ(x) . So from

i~ψ′(x) = −σ′(x)e
i
~σ(x), (2.4)

and

− ~2ψ′′(x) = −i~σ′′(x)e
i
~σ(x) + (σ′(x))2e

i
~σ(x), (2.5)

Schrödinger’s equation written for the phase function is:

− i~σ′′(x) + (σ′(x))2 = (p(x))2. (2.6)

Since we are assuming the system is close to classical, it makes sense to expand

σ as a series in ~:

σ = σ0 +
(
~
i

)
σ1 +

(
~
i

)2

σ2 + ... (2.7)

The zeroth order approximation is

(σ′o)2 = p2 (2.8)

20



2.1. WKB THEORY

and fixing the sign of p by

p(x) = +2m
√

(E − V (x)) (2.9)

we conclude that

σo = ±
∫

p(x)dx . (2.10)

2.1.2 REGION OF VALIDITY OF THE APPROXIMATION

From the Schrödinger equation 3.10, it is evident that this approximate solution is

only valid if we can ignore that first term. That is to say, we must have

|~σ′′(x)/(σ′(x))2| � 1, (2.11)

or ∣∣∣∣d(~/σ′)
dx

∣∣∣∣� 1. (2.12)

But in leading approximation σ′ = p, and p = 2π~/λ, so the condition is

1
2π

∣∣∣∣dλdx

∣∣∣∣� 1. (2.13)

This just means the change in wavelength over a distance of one wavelength must

be small. Obviously, this cannot always be the case: if the particle is confined by

an attractive potential, at the edge of the classically allowed region, that is, where

E = V (x) , p is zero and the wavelength is infinite. The approximation is only good

well away from that point.

2.1.3 NEXT TO LEADING CORRECTION

The second term in the expansion of the phase, σ = σ0 + (~/i)σ1 + ... satisfies

− i~σ′′0 + 2σ′0
~
i
σ′1 = 0 (2.14)

so

σ′1 = − σ′′0
2σ′0

= − p′

2p
, (2.15)
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and

σ1 = −1
2

= ln p. (2.16)

Therefore the wave function to this order is:

ψ(x) =
C1√
p(x)

e
i
~
∫

pdx +
C2√
p(x)

e−
i
~
∫

pdx . (2.17)

To interpret the p(x) factor, consider the first term, a wave moving to the right.

Since p is real, the exponential has modulus unity, and the local amplitude squared

is proportional to 1/p, that is, 1/v , where v is the velocity of the particle. This is

simple to understand physically: the probability of finding the particle in any given

small interval is proportional to the time it spends there, hence inversely propor-

tional to its speed. We turn now to the wave function in the classically forbidden

region,
p(x)2

2m
= E − V (x) < 0. (2.18)

Here p is of course pure imaginary, but the same formal phase solution of the

Schrödinger equation works, again provided that the particle is well away from

the points where E = V (x). The wave function is:

ψ(x) =
C ′1√
|p(x)|

e−
1
~
∫
|p|dx +

C ′2√
|p(x)|

e
1
~
∫
|p|dx . (2.19)

2.1.4 CONNECTION FORMULAS, BOUNDARY CONDITIONS AND

QUANTIZATION RULES

Let us assume we are dealing with a one-dimensional potential, and the classi-

cally allowed region is b ≤ x ≤ a. Clearly, in the forbidden region to the right,

x > a, only the first term in the above equation for ψ(x) appears, and for x < b

only the second term. Furthermore, in the "inside" (classically allowed) region,

b ≤ x ≤ a, the wave function has the oscillating form discussed earlier. But how

do we connect the three regions together? We make an assumption: we take

it that the potential varies sufficiently smoothly that it is a good approximation to
22



2.2. PHOTON-ASSISTED TUNELING

take it to be linear in the vicinity of the classical turning points. That is to say, we

assume that a linear potential is a sufficiently good approximation out to the point

where the short wavelength (or decay length for tunneling regions) description is

adequate. Therefore, near x = a, we take the potential to be

E − V (x) ∼= Fo(x − a) (2.20)

(so F0 would be the force) and then approximate the wave function by the known

exact solution for a linear everywhere potential: the Airy function. It is known that

for the Airy function, the solution having the form [3]

ψ(x) =
C

2
√
|p(x)|

e−
1
~
∫ x

a |p|dx (2.21)

to the right becomes

ψ(x) =
C√
|p(x)|

cos
(

1
~

∫ x

a
pdx +

π

4

)
=

C√
|p(x)|

sin
(

1
~

∫ a

x
pdx +

π

4

)
, (2.22)

for x < a. At b, the same argument gives

ψ(x) =
C√
|p(x)|

sin
(

1
~

∫ x

b
pdx +

π

4

)
. (2.23)

For these two expressions to be consistent, we must have∫ a

b
pdx +

π

2
= (n + 1)π, (2.24)

or ∮
pdx = 2π~

(
n +

1
2

)
. (2.25)

where the latter integral is over a complete cycle of the classical motion. Here n

is the number of zeros of the wave function: this is the quantization condition.

2.2 PHOTON-ASSISTED TUNELING

A penetration of a particle through a potential barrier is forbidden in classical me-

chanics. Only due to quantum effects the probability of passing across a barrier
23
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becomes finite and it can be calculated on the basis of WKB approach, which is

also called the semiclassical theory. The transition probability through the barrier,

shown in Fig. 2.1, is

W ∼ exp [−A0(E)] (2.26)

where

A0(E) =
2
~

∫
dx
√

2m [V (x)− E ] (2.27)

is the classical action measured in units of ~. The integration goes under the

barrier between two classical turning points where V (x) = E . One can use the

general estimate A0 ∼ V/~ω, where V is the barrier height and ω is the frequency

of classical oscillations in the potential well. A semiclassical barrier relates to a

big value V/~ω � 1.

What happens when the static potential barrier V (x) is acted by a weak non-

stationary electric field E(t)? In this case there are two possibilities for barrier

penetration: (i) the conventional tunneling, which is not affected by E(t), shown by

the dashed line in Fig. 2.1, and (ii) an absorption of the quantum ~Ω of the field

E(t) and subsequent tunneling with the new energy E + ~Ω. The latter process is

called photon-assisted tunneling. The total probability of penetration across the

barrier can be schematically written as a sum of two probabilities

W ∼ exp
(
− V
~ω

)
+
(

aEΩ
~

)2

exp
(
−V − ~Ω

~ω

)
(2.28)

where EΩ is the Fourier component of the field E(t) and the length a is a typical

barrier extension in space. The second term in Eq. (2.28) relates to photon-

assisted tunneling and it is a product of probabilities of two quantum mechanical

processes: absorption of the quantum ~Ω and tunneling through the reduced

barrier V − ~Ω.
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2.3. TRAJECTORIES IN IMAGINARY TIME

Figure 2.1: The path of tunneling is denoted by the dashed line. xT is the classical turning

point. E is the energy of the metastable state, V is the barrier height, and a is the typical potential

length. The particle can absorb a quantum and tunnel in a more transparent part of the barrier

with the energy E + ~Ω.

2.3 TRAJECTORIES IN IMAGINARY TIME

According to Feynman [4], when the phase of a wave function is big, it can be

expressed through classical trajectories of the particle. But in our case there are

no conventional trajectories since a classical motion is forbidden under a barrier.

Suppose a classical particle to move in the region to the right of the classical

turning point xT in Fig. 2.1 and to reach this point at t = 0. Then, close to the

point xT , x(t) = xT + ct2 (c > 0) and there is no a barrier penetration as at all

times x(t) > xT . Nevertheless, if t is formally imaginary, t = iτ , the penetration

becomes possible since x(iτ ) = xT − cτ 2 is less then xT . Therefore, one can use

classical trajectories in imaginary time to apply Feynman’s method to tunneling.

In the absence of a nonstationary field a classical trajectory satisfies Newton’s

equation in imaginary time

m
∂2x
∂τ 2 =

∂V (x)
∂x

(2.29)
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where V (x) is the static barrier in Fig. 2.1. The classical turning point xT in Fig. 2.1

is reached at τ = 0 with the initial condition ∂x/∂τ = 0. The classical trajectory

x = x(τ ) can be considered as a change of variables x → τ in the WKB exponent

(2.27) when it becomes of the form

A0 =
2
~

∫
dτ

[
m
2

(
∂x
∂τ

)2

+ V (x)− E

]
(2.30)

So, in the absence of a non-stationary field, use of classical trajectories in imagi-

nary time is obvious and it is simply reduced to a change of variable.

2.4 MOLECULAR DYNAMICS

Molecular Dynamics simulation is a technique for computing the equilibrium and

transport properties of a classical many-body system. In this context, the word

classical means that the nuclear motion of the constituent particles obeys the laws

of classical mechanics. This is an excellent approximation for a wide range of

materials.

In a Molecular Dynamics simulation, we follow exactly the same approach as

in a real experiment. First, we prepare the sample: we select a model system

consisting of N particles and we solve Newton’s equations of motion for this sys-

tem until the properties of the system no longer changes with time (we equilibrate

the system). After equilibration, we perform the actual measurement.

To measure an observable quantity in a Molecular Dynamics simulation, we

must first of all be able to express this observable as a function of the positions

and momenta of the particles in the system. For instance, a convenient defi-

nition of the temperature in a (classical) many-body system makes use of the

equipartition of energy over all degrees of freedom that enter quadratically in the

Hamiltonian of the system. In particular for the average kinetic energy per degree

of freedom, we have 〈
1
2

mv2
α

〉
=

1
2

kBT . (2.31)
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In a simulation, we use this equation as an operational definition of temperature.

In practice, we would measure the total kinetic energy of the system and divide

this by the number of dregrees of freedom Nf (= 3N−3) for a system of N particles

with fixed total momentum). As the total kinetic energy of a system fluctuates, so

does its instantaneous temperature:

T (t) =
N∑

i=1

miv2
i (t)

kBNf
. (2.32)

The relative fluctuations in the temperature will be of order 1/Nf . As Nf is typically

on the order of 102 − 103, the statisticall fluctuations in the temperature are on

the order of 5−10%. To get an accurate estimate of the temperature, one should

average over many fluctuations [5].

2.4.1 BASIC APPROACH

The essential elements for a Molecular Dynamics simulation are (i) the interaction

potential (i.e., potential energy) for the particles, from which the forces can be cal-

culated, and (ii) the equations of motion governing the dynamics of the particles.

We follow the laws of classical mechanics, mainly Newton’s law

Fi = miai . (2.33)

for each atom i in a system constituted by N atoms. Here, mi is the atom mass,

ai its acceleration and Fi the force acting upon it due to the interactions with the

other atoms. Equivalently one can solve classical Hamiltonian equation of motion

ṗi = −∂H
∂ri

, (2.34)

ṙi =
∂H
∂pi

, (2.35)

where pi and ri are the momentum and position coordinates for the ith atom. H,

the Hamiltonian, which is defined as a function of position and momenta, is given
27
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by

H(pi , ri) =
N∑

i=1

p2
i

2mi
+ V (ri). (2.36)

The force on an atom can be calculated as the derivative of energy with respect

to the change in the atom’s position

Fi = miai = −∇iV = −dE
dri

. (2.37)

Knowledge of the atomic forces and masses can then be used to solve for the

positions of each atom along a series of extremely small time steps (on the order

of femtoseconds). The velocities are calculated from the accelerations

ai =
dvi

dt
. (2.38)

Finally, the positions are calculated from the velocities

vi =
dri

dt
. (2.39)

To summarize the procedure, at each step, the forces on the atoms are com-

puted and combined with the current positions and velocities to generate new

positions and velocities a short time ahead. The force acting on each atom is

assumed to be constant during the time interval. The atoms are then moved to

the new positions, an updated set of forces is computed and new dynamics cycle

goes on. Usually molecular dynamics simulations scale by either O(N log N) or

O(N), with N as the number of atoms. This makes simulations with macroscopic

number of atoms or molecules (∼ 1023 ) impossible to handle with MD. Therefore,

statistical mechanics is used to extract the macroscopic information from the mi-

croscopic information provided by MD. Two important properties of the equations

of motion should be noted. One is that they are time reversible, i.e., they take

the same form when the transformation t → t is made. The consequence of time

reversal symmetry is that the microscopic physics is independent of the direction

of the flow of time. Molecular dynamics calculates the real dynamics, i.e. the be-

havior of the system, from which the time average of the system’s properties can
28
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be calculated. The second important property of the equations of motion is that

they conserve the Hamiltonian. This can be easily seen by computing the time

derivative of H and substituting 2.34 and 2.35 for the time derivatives of position

and momentum

dH
dt

=
N∑

i=1

[
∂H
∂ri

ṙi +
∂H
∂pi

ṗi

]
=

N∑
i=1

[
∂H
∂ri

∂H
∂pi
− ∂H
∂pi

∂H
∂ri

]
= 0. (2.40)

The conservation of the Hamiltonian is equivalent to the conservation of the

total energy of the system and provides an important link between molecular

dynamics and statistical mechanics [?].

2.5 EMBEDDED ATOM METHOD

As we have seen in the previous section, one of the essential elements for a

Molecular Dynamics simulation is the interaction potential for the particles. Be-

cause we are interested in phenomena such as growth for noble metals clusters,

the calculation scheme adopted for this study was the embedded atom method

(EAM [7,8]). It is known that EAM is able to give reasonable physical trends and

reliable calculated properties of noble metal bulk systems.

The embedded atom method evaluates the effective interactions between two

atoms depending of the environment where they are inside the system, i.e., the

study is more than only a pair potential approximation. The EAM is related to

the mean field theory, it replaces the problem of the cohesive energy of N-atoms

into a metallic system, by the sum of the interacting energies of each one of the

atoms in the system, with a host matrix that simulates the effects of the other

N − 1 atoms. The density of electrons is the physical quantity responsible of the

interaction because these methods are based on the Functional Density Theory

[6].

Daw and Baskes [7,8] proposed the idea of to consider each atom in a metallic

system as an impurity in a host formed by all the other atoms. The bonding energy
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for this system is

EB =
∑

i

[
Fi(ρ̄i) +

1
2

∑
i 6=j

φij(Rij)
]

, (2.41)

where Fi is the energy required to embedd the atom i inside the electronic density

ρ̄i in the site i , and φij(Rij) is the interaction between the core of the i th-atom and

the core of the j th-atom that are separated a distance Rij . The approximation to

the host electronic density ρ̄i is made by a superposition of the mean spherical

average of the electronic densities of the atoms that surround the i th-atom, and

is given by

ρ̄i =
∑
j(6=i)

ρj(Rij) , (2.42)

where ρj(Rij) is the electronic density of the j th-atom in the position of the core

of the i th-atom. The functions Fi and φij were empirically obtained by Daw and

Baskes [8] from the physical properties of the solid, although they can be obtained

from first principles methods [9]. In the Foile’s version of the EAM [10], the function

φij(R) that describe the core-core interaction is given by

φij(R) =
Z 2

0 (1 + βRν)2e−2αR

R
, (2.43)

where Z0 is the number of external electrons of the atom and α, β and ν are some

adjustable parameters.

The atomic densities are obtained from the Hartree-Fock atomic calculation of

Clementi and Rosetti [11] and MacLean and MacLean [12],

ρ(R) = nsρs(R)− (n − ns)ρd (R) , (2.44)

being n the total number of external electrons (s + d), ns is the number of exter-

nal electrons s, and ρs and ρd are the partial densities associated with the wave

functions s and d , respectively. Knowing the atomic densities ρ(R) and the pair

interactions φ(R), it can be defined in a unique way, the embedding energy ad-

justing the total energy given by Eq. (2.41) to the equation of state of Rose et

al. [13] for a wide set of values of the lattice parameters. In this way the functional

Fi(ρ) is obtained in a numerical form.
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2.6 DISLOCATIONS THEORY

Dislocations are crystal defects; lines along which and in the vicinity of which

the regular arrangement of the atomic planes characteristic for the crystal is dis-

rupted. Dislocations and other crystal defects determine many physical proper-

ties of crystals; such properties are called structurally sensitive properties. In

particular, the mechanical properties of crystals such as strength and plasticity

are caused by the existence of dislocations and by their special features.

2.6.1 TYPES OF DISLOCATIONS

The simplest types of dislocations are edge and screw dislocations. In an ideal

crystal, the neighboring atomic planes are parallel over their entire width, but

in a real crystal, the atomic planes frequently terminate within the crystal (Fig.

2.2 a), which gives rise to an edge dislocation, whose axis is the edge of the

"extra" plane. The use of electron microscopes of high resolving power makes it

possible to observe the arrangement of the atomic rows in some crystals that is

characteristic of edge dislocation.

Figure 2.2: Edge dislocation: (a) Disruption of the atomic plane within the crystal, (b) diagram

of the formation of an edge dislocation.

The formation of edge dislocations may be imagined by cutting the crystal
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along part of the plane ABCD (Fig. 2.2 b), displacing the lower part with respect to

the upper part by one atomic distance b in the direction perpendicular to AB, and

then again joining the atoms at the opposite sides of the cut. The remaining extra

plane terminates along the edge dislocation AB. The vector ~b, whose magnitude

is equal to the interatomic distance, is called the characteristic slip vector (known

as Burgers vector). The plane passing through the slip vector and the line of

dislocation is called the glide plane for the edge dislocation.

If the slip direction ~b is parallel rather than perpendicular to the boundary

AB of the cut, a screw dislocation results (Fig. 2.3 a). In contrast to the edge

dislocation, the glide plane for a screw dislocation may be any crystallographic

plane passing through the line AB. A crystal with a screw dislocation no longer

consists of parallel atomic planes but should be regarded as consisting of a single

atomic plane twisted into the shape of a helicoid, or spiral staircase without steps

(Fig. 2.3 b). The Fig. 2.3 c shows the arrangement of atoms above (open

circles) and below (solid circles) the glide plane in a simple cubic lattice with a

screw dislocation. If the screw dislocation emerges at the external surface of the

crystal, then the step AD, one atomic layer in height, is terminated at the point of

emergence A (Fig. 2.3 b).

This step plays an active role during the crystallization process. Atoms of

material precipitating from the vapor phase or solution readily add to the step at

the surface of the growing crystal. The number of atoms included in the step and

the rate of displacement of the step at the crystal surface are greater in the area

of the emergence of the dislocation; therefore, the step is twisted about the axis

of the dislocation. The step gradually rises from one crystal "level" to another,

which leads to the spiral growth of the crystal.

Between the extreme cases of pure edge and screw dislocations, many inter-

mediate cases are possible in which the dislocation line forms an arbitrary angle

with the slip vector (mixed dislocation). The dislocation line must not necessarily

be straight; it may be an arbitrary curve. The dislocation lines cannot terminate
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within the crystal. They must be closed, forming a loop; branched, to give several

dislocations; or emerging at the surface of the crystal. The dislocation density

in a crystal is defined as the average number of dislocation lines intersecting an

area of 1 cm2 drawn within the body. The dislocation density usually varies from

102 to 103 per cm2 in the most perfect single crystals and reaches 1011−1012 per

cm2 in strongly distorted (work-hardened) metals.

Figure 2.3: Screw dislocation: (a) Diagram of the formation of a screw dislocation, (b) arrange-

ment of atoms in a crystal with a screw dislocation (atoms are located at the corners of the cubes),

(c) arrangement of atoms in the glide plane of the screw dislocation.

2.6.2 DISLOCATIONS AS SOURCES OF INTERNAL STRESSES

The regions of the crystal in the vicinity of dislocations are in an elastically stressed

state. The stresses decrease in inverse proportion to distance from the disloca-

tion. The stress fields of the individual dislocations are made visible (in trans-

parent crystals with low dislocation density) by polarized light. Depending on the

orientation of the glide vectors of two dislocations, they may be either repelled or

attracted. The approach of two dislocations with the same glide vectors (Fig. 2.4

a) increases the compression of the crystal on one side of the glide plane and

the stretching of the crystal on the other side of the glide plane. The approach of

dislocations with opposite slip vectors leads to a compensation of the stretching
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and compression on both sides of the glide plane (Fig. 2.4 b, c, d).

Figure 2.4: (a) and (b) Attracting and repelling dislocations; (c) and (d) annihilation of attracting

dislocations.

The magnitude of the elastic energy caused by the dislocation stress field is

proportional to b2.

2.6.3 MOTION OF DISLOCATIONS.

Dislocations can move within the crystal, causing plastic deformation. Motion

of the dislocation in the glide plane is called glide. Glide of a single dislocation

through the crystal leads to a plastic shear by one interatomic distance b (Fig.

2.5). Upon displacement of a dislocation within the glide plane, interatomic bonds

are broken and re-formed at any given moment not between all of the atoms in the

glide plane (Fig. 2.5 a) but only between the atoms located near the axis of the

dislocation (Fig. 2.5 b). For this reason, dislocation glide occurs at relatively small

external stresses. These stresses are several orders of magnitude lower than

the stress leading to a plastic deformation of a perfect crystal without dislocations

(theoretical shear strength). Filament crystals (whiskers) without dislocations may

have shear strengths approaching the theoretical.

Motion of an edge or mixed dislocation in the direction perpendicular to the

glide plane is called climb. It occurs as a result of the diffusion of atoms, or the

movement of vacancies in opposite directions, from the crystal toward the edge

of the extra plane forming the dislocation (Fig. 2.6). Since the rate of diffusion de-
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Figure 2.5: Motion of a dislocation in the glide plane is accompanied by rupture and reformation

of the interatomic bonds. In a dislocation-free crystal, shear in the glide plane requires simultane-

ous rupture of all interatomic bonds.

creases very sharply (exponentially) with decreasing temperature, climb occurs

with appreciable velocity only at rather high temperatures. If the crystal contain-

ing the dislocation is under load, the fluxes of atoms and vacancies are directed

in such a way that the elastic stresses are minimized. This results in plastic de-

formation of the crystal caused not by glide but by climb of the dislocation. Thus,

the plastic deformation of a crystal with a dislocation is always motion of the dis-

location. In this case the rate of plastic deformation of the crystal is found to be

directly proportional to the density of moving dislocations and to their mean veloc-

ity. Plastic deformation of a crystal without dislocations occurs through diffusion

of point defects.

Figure 2.6: Climb of an edge dislocation. Atoms of the extra plane migrate to the vacant lattice

points.
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2.6.4 MOBILITY OF DISLOCATIONS.

Glide of dislocations is resisted not only by the strength of the interatomic bonds

that are being broken but also by the scattering of the thermal oscillations of

atoms and conduction electrons (in metals) in the elastically distorted region of

the crystal surrounding the moving dislocation, by elastic interaction with other

dislocations and with atoms of impurity elements in solid solutions, by grain bound-

aries in polycrystals, and by particles of another phase in separating alloys (twins).

Part of the work of external forces is expended on overcoming these obstacles;

as a result, the fewer defects the crystal contains, the greater the dependence of

the mobility of dislocations on the lattice structure. The rate of dislocation glide

increases sharply with stress but does not exceed the speed of propagation of

sound in the crystal. The rate of climb is proportional to the stress.

2.6.5 FORMATION AND DISAPPEARANCE OF DISLOCATIONS.

Dislocations usually arise during the formation of crystals from melts or gaseous

phase. Methods of growing single crystals containing no dislocations at all are

very complex and have been developed only for a few crystalline materials. After

careful annealing, the crystals usually contain 104 − 105 dislocations per cm2.

The smallest plastic deformation of such a crystal leads to an intensive ”multipli-

cation” of dislocations (Fig. 2.7), without which significant plastic deformation of

the crystal is impossible. If new dislocations were not generated within the crys-

tal, the deformation would terminate after the emergence onto the surface of all

dislocations present in the crystal.

Attracting dislocations with opposing glide vectors, located in the same glide

plane, annihilate each other on approach (Fig. 2.4 b, c, d). If such dislocations

are located in different glide planes, climb is required for their annihilation. For

this reason, high-temperature annealing, which favors climb, lowers the density

of dislocations.
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Figure 2.7: Diagram of a Frank-Read dislocation source. A section of the dislocation is fixed

at points A and B. The section is bent under the influence of the external force (arrow) and suc-

cessively assumes configurations (a) through (g) until the closed dislocation loop is separated,

with the regeneration of the initial section AB. The attracting regions m and n of the loop undergo

annihilation at stage (f).

2.6.6 DISLOCATIONS AS A SOURCE OF LATTICE CURVATURE.

Crystal regions separated by rows of dislocations (Fig. 2.8 a) or by dislocation net-

works have a different orientation of the atomic planes and are called crystalline

blocks (grains). If dislocations are uniformly distributed throughout the crystal

volume, the block structure does not exist, but the lattice is curved (Fig. 2.8 b).

The curvature of the atomic planes and distortion of the interplane distances

near dislocations increase the intensity of X-ray and electron scattering. This is

the basis of the X-ray and electron-microscope methods for the study of disloca-

tions.
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Figure 2.8: a) Dislocations forming a grain boundary. b) Bent crystal.

2.6.7 DISLOCATION STRUCTURE OF DEFORMED CRYSTALS: FRAC-

TURE.

The distribution of dislocations in deformed crystals is usually nonuniform. At

a low degree of deformation (usually up to 10%), dislocations are frequently lo-

cated along selected glide planes. An increase in deformation generates (usually

in metals) a block structure, which may be detected with an electron microscope

or by X-ray scattering. The size of the blocks decreases with increasing defor-

mation. Multiplication of the dislocations decreases the mean distances between

dislocations, their elastic stress fields overlap, and glide is made more difficult

(work hardening of crystals). To continue the slippage, the externally applied

stress must be increased.

Upon further multiplication of dislocations, the internal stresses may attain val-

ues approaching the theoretical strength. In this case, fracture of the crystal takes

place through the nucleation and propagation of microscopic cracks. Destruction

may also be facilitated by thermal oscillations.
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2.6.8 EFFECT OF DISLOCATIONS ON THE PHYSICAL PROPERTIES

OF CRYSTALS.

Dislocations affect not only such mechanical properties of solids as plasticity and

strength, for which the existence of dislocations is essential, but also other physi-

cal properties of crystals. For example, an increase in the number of dislocations

leads to a decrease in crystal density and internal friction, a change in the opti-

cal properties, and an increase in electrical resistance. Dislocations increase the

mean rate of diffusion within the crystal and accelerate aging and other processes

involving diffusion. Dislocations decrease the chemical stability of the crystal; as

a result, treatment of the surface with various materials (etching agents) leads to

the formation of visible etch pits at the sites of the emergence of dislocations at

the surface. This forms the basis for detecting dislocations in opaque materials

by the selective etching method.
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CHAPTER 3

PHOTON ASISTED TUNNELING

3.1 INTRODUCTION

The probability of quantum tunneling through a one-dimensional static potential

barrier is described by the theory of Wentzel, Kramers, and Brillouin (WKB) [1] if

the barrier is not very transparent. For a three-dimensional static barrier the semi-

classical approach ψ ∼ exp[iS(~r )/~] for the wave function is appropriate, where

S(~r ) is the classical action. The main contribution to the tunneling probability

comes from the extreme path linking two classically allowed regions. The path

can be parametrized as a classical trajectory in imaginary time ~r (iτ ). See, for

example, Ref. [2–4]. The trajectory is a solution of Newton’s equation in complex

time. The wave function is well defined at each point of the trajectory.

For a nonstationary barrier one can also apply the method of classical trajec-

tory in complex time [5–9]. But in contrast to the static case, this trajectory solely

connects an initial and a terminal physical points at the certain moment of time

and does not track the whole under-barrier path as in the static case. One can

say that the trajectory provides a semiclassical "bypass" of the complicated un-

derbarrier dynamics through the plane of complex time [10–12]. This is the main

difference in properties of trajectories for static and nonstationary barriers.

It follows that the underbarrier dynamics is governed by analytical proper-
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ties of the nonstationary potential in the complex time plane. For example, a

monochromatic ac field goes over into a large hyperbolic cosine [7–9] or a Lorentz

shaped pulse is also amplified due to the pole structure in the plane of complex

time [10–12].

The most delicate point of this theoretical construction is that the semiclassi-

cal approach for a wave function ψ ∼ exp[iS(x , t)/~], where S(x , t) is an action

for the nonstationary classic problem, is valid not at all times. Fast unavoidable

processes break the semiclassical approach for short periods of time [10–14].

Since an exact analytical solution is absent it is not completely clear how those

processes may influence the semiclassical "bypass".

This problem becomes extremely important when we deal with Euclidean res-

onance (an easy penetration through a classical nonstationary barrier due to an

underbarrier interference [11, 12]). This process allows a description in terms

of classical trajectories. The phenomenon of Euclidean resonance is surprising

and counterintuitive since a particle emits quanta and tunnels with lower energy

where, according to WKB, the barrier is less transparent. In this situation an

evidence of applicability of the method of classical trajectories to nonstationary

barriers would be valuable.

The goal of this study is to show by numerical calculations the validity of semi-

classical methods for description of tunneling through a nonstationary potential

barrier. The words "semiclassical methods" mean a possibility to approach a

wave function through the classical action ψ ∼ exp[iS(x , t)/~] excepting some

short time intervals of a fast dynamics. In addition, this means a possibility to

connect certain physical points by a classical trajectory which goes apart of the

complicated dynamical regions providing a "bypass" of them through the plane of

complex time.

First, we consider photon-assisted tunneling which is a known phenomenon

when an amplitude of the external nonstationary field is small and perturbation

theory works. When the amplitude of the nonstationary field is not small the
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process becomes essentially multiquantum. The tunneling particle absorbs many

quanta of the nonstationary field and exits from under the barrier with a higher

energy. In this case perturbation theory is not applicable and one should use

semiclassical methods, in particular, trajectories in complex time. It is shown

that the main dynamical properties of photon-assisted tunneling are governed by

analytical properties of classical trajectory in the plane of complex time.

Direct numerical solutions of the Schrödinger equation are obtained and com-

pared with trajectory results. We check the threshold dynamics which follows from

the main analytical properties of trajectories. A new branch of the wave function is

only created when a position of a singularity of the external Lorentz shaped field

in the plane of complex time is below compared to a singularity of the trajectory.

The trajectory singularity relates to analytical properties of a solution of New-

ton’s equation without an external nonstationary field [7–9]. We compared the

numerically computed amplitude of the output wave with the semiclassical one

as a function of an amplitude of the nonstationary perturbation. All the numerical

results are consistent with those based on the trajectory method.

In further stage, we performed some preliminary numerical calculations of Eu-

clidean resonance that corresponds to the opposite sign of the nonstationary per-

turbation. Euclidean resonance requires a more rigorous semiclassical condition

compared to photon-assisted tunneling. This is due to that a new time interval

∆t appears in the problem. This interval is not sufficiently long as can be seen

in Sec. 3.9B. We shown that in our situation the proper semiclassical parame-

ter, instead of being large, is of the order of unity. This parameter can be large

enough for more thick potential barriers. At present, this is outside of possibili-

ties of the numerical scheme used. So numerical studies of Euclidean resonance

need further efforts.

Remarkable achievements in investigation of tunneling, including nonstation-

ary barriers, are presented in Refs. [15–23].
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3.2 FORMULATION OF THE PROBLEM

We consider tunneling through the one-dimensional nonstationary barrier

V (x , t) = V − E0|x | − ~
√

2/m
√

V − E(t) δ(x), (3.1)

shown in Fig. 3.1. The function E(t) varies slowly compared to the time scale

~/V . For this reason, E(t) can be treated as a discrete energy level in the δ-well

and plays a role of a nonstationary drive. We suppose the function E(t) to be

even and E(t) < V . When t is pure imaginary the energy E(t) is real.

In references [10–12] the δ-function was static but the outside potential was

dynamical. In the present study the situation is opposite. The outside static poten-

tial enables to apply the reflectionless algorithm in the numerical calculations [24].

x
E(t)

0

V(x,t)

ψ

ψi

f

Figure 3.1: The potential energy. E(t) is a position of the discrete energy level in the δ-well. The

x axis is intersected at the point V/E0. Tunneling, assisted by quanta absorption, occurs from the

initial state ψi in the δ-well to the final state ψf localized outside the barrier.
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3.3 THE SEMICLASSICAL SOLUTION

Below we measure the spatial coordinate in units of V/E0 and time in units of
√

2mV/E0. In these units Schrödinger’s equation reads

i
B
∂ψ

∂t
= − 1

B2

∂2ψ

∂x2 + (1− x)ψ. (3.2)

The δ-function in the potential (3.1) is accounted for by the boundary condition

∂ψ(x , t)
∂x

∣∣∣∣
x=0

= −B
√

1− h(t)ψ(0, t), (3.3)

where we introduce the dimensionless discrete level h(t) = E(t)/V in the δ-well

and the large semiclassical parameter

B =
V
√

2mV
~E0

. (3.4)

The process is symmetric in x and we consider a positive x only. One can write

the wave function in the form

ψ(x , t) = a(x , t) exp [iS(x , t)] , (3.5)

where S(x , t) is the classical action, measured in the units of Planck’s constant ~

and satisfying the Hamilton-Jacobi equation [25]

1
B
∂S
∂t

+
1

B2

(
∂S
∂x

)2

+ 1− x = 0. (3.6)

In the semiclassical limit, 1� B, the preexponential function a(x , t) in Eq. (3.5) is

less significant since it provides a soft x and t dependence compared to a strong

dependence given by the exponent exp(iS). The semiclassical approximation

of the wave function ψ ∼ exp(iS) is called the exponential one. We use this

approximation below.

The boundary condition for the action follows from Eq. (3.3)

∂S(x , t)
∂x

∣∣∣∣
x=0

= iB
√

1− h(t). (3.7)
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In the static case, when h(t) = 0, the exponentially small tunneling probability is

given by the WKB expression w ∼ exp (−AWKB) [1] where

AWKB =
4B
3

. (3.8)

One can solve the equation (3.6) by the method of variation of a constant [25]

S(x , t)
B

= i
∫ x

0
dy
√

1− y − ε(x , t)− tε(x , t) + iA(ε), (3.9)

where A(ε) is the certain function to be determined. The condition of indepen-

dence of the action on the variable constant, ∂S/∂ε = 0, has the form

1
2

∫ x

0

dy√
1− y − ε(x , t)

=
∂A(ε)
∂ε

+ it . (3.10)

Under this condition
∂S(x , t)
∂x

= iB
√

1− x − ε(x , t). (3.11)

The boundary condition (5.1) is satisfied if ε(0, t) = h(t) which determines the

function t(ε) since the function h(t) is given. At x = 0 the condition (3.10) t =

i∂A(ε)/∂ε determines in a implicit form, the function A(ε) since ε is a known func-

tion of t . By means of the function τ (ε) = −it(ε) the condition (3.10) reads

1
2

∫ x

0

dy√
1− y − ε

= τ (ε) + it . (3.12)

In this equation one can consider τ as a variable and ε = h(iτ ). It is easy to show

that

x = (τ + it)
[
2
√

1− h(iτ )− τ − it
]

. (3.13)

Equation (3.13) determines the function τ (x , t). As follows from Eqs. (3.11) and

(3.13),

i
∂S(x , t)
∂x

= B
[
τ + it −

√
1− h(iτ )

]
. (3.14)

The action can be calculated from the equation

iS(x , t) = B
∫ τ

−it
dτ1

∂x
∂τ1

[
τ (x1, t) + it −

√
1− h(iτ )

]
. (3.15)
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After a short calculation we obtain

iS(x , t)
B

=
2
3

[√
1− h(iτ )− τ − it

]3
− 2

3
[1− h(iτ )]3/2

− (τ + it)h(iτ ) +
∫ τ

−it
dτ1h(iτ1). (3.16)

Equation (3.16) provides the semiclassical solution of the problem if we insert the

function τ (x , t) from equation (3.13).

3.4 PHOTON-ASSISTED TUNNELING

We specify below a time dependence of the energy level in the δ-well (3.1), E(t) =

Vh(t), in the Lorentz form

h(t) =
h

1 + Ω2t2 , (3.17)

where h and Ω are dimensionless parameters satisfying the conditions 0 < h < 1

and Ω ∼ 1. The pulse (3.17) is soft compared to the short time scale 1/B. The

particle under the barrier absorbs quanta of the external nonstationary pertur-

bation (3.17) and exits from under the barrier with a higher energy as shown in

Fig. 3.1. This process is called photon-assisted tunneling. From Eq. (3.16) one

can analyze dynamics of the wave function (3.5). At t → −∞ the barrier is static.

In this case, as follows from Eq. (3.13), 1 − x = (1 − τ )2. Eqs. (3.5) (without the

preexponent) and (3.16) result in the known WKB expression

ψ ∼ exp
(

AWKB

2
[
(1− x)3/2 − 1

])
, t → −∞. (3.18)

Eq. (3.18) relates to the branch indicated in Fig. 3.2(a) as 1.

In addition to that, as follows from Eq. (3.16), the new branch, denoted as 2

in Fig. 3.2(a), is near to be created. This means that, according to semiclassical

approximation, it exists but the proper contribution to the wave function of the type

(3.5) has zero coefficient a = 0. When h(t) reaches its maximum (t = 0) the new

branch touches the branch 1, as in Fig. 3.2(b), and the coefficient a becomes
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x0

x

(b)

(a)
2

1

2

0

trajectory

ψ

1

1
1

1

1 |   |

Figure 3.2: The branches of the wave function at 0 < h followed from the semiclassical approx-

imation. (a) t < 0. The curve 1 corresponds to the conventional WKB branch at t → −∞ when

the barrier is static. The new branch 2 still does not exist. (b) t = 0. The new branch 2 is created.

The initial point (branch 1, x = 0) and the final one (branch 2, the top point) are connected by the

classical trajectory in imaginary time (“bypass").
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nonzero. This short-time process is substantially nonsemiclassical. At positive t

the new branch 2 moves away from the barrier as a semiclassical wave packet.

The states before and after tunneling are denoted as ψi and ψf in Fig. 3.1.

The tunneling probability can be defined as w = |ψf/ψi |2 where ψi = ψ(0, 0) is

associated with the branch 1 and ψf is an amplitude value of the branch 2 in

Fig. 3.2(b). The tunneling probability, with the exponential accuracy, is given by

w ∼ exp [2iS(x0, 0)] , (3.19)

where x0 relates to the maximum of the branch 2 where ∂S(x , 0)/∂x = 0. It follows

from Eqs. (3.13) and (3.14) that x0 = τ 2
0 . The parameter τ0 satisfies the equation

1− τ 2
0 = h(iτ0). (3.20)

As follows from Eqs. (3.16) and (3.19),

w ∼ exp (−A) , A = 2B
[
τ0 −

τ 3
0

3
−
∫ τ0

0
dτh(iτ )

]
. (3.21)

Equations (3.20) and (3.21) determine the tunneling probability with the expo-

nential accuracy if we express τ0 from Eq. (3.20) and is inserted into Eq. (3.21).

In the static case, h = 0, the particle escapes from under the barrier with zero

energy. Under the nonstationary conditions the energy of the outgoing particle,

δE , is determined by its potential energy (1−x0)V at the point x0 since the kinetic

energy is zero due to the condition ∂S(x , 0)/∂x = 0 at that point. So the energy

of the outgoing particle, at the point f in Fig. 3.1, is

δE = (1− τ 2
0 )V . (3.22)

3.5 CLASSICAL TRAJECTORY

The tunneling probability is given, with the exponential accuracy, by Eqs. (3.20)

and (3.21) which follow from the the Hamilton-Jacobi formalism. In this section
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we show that the same result can be obtained by a simple method of classical

trajectories in imaginary time τ = −it . The classical trajectory starts at the top

point of the branch 2 in Fig. 3.2(b), where τ = 0 and ∂x/∂τ = 0. The trajectory

ends up at the certain imaginary time τ0 where the coordinate x(τ0) = 0 belongs

to the δ-well. This imaginary time τ0 coincides with the parameter τ0 introduced in

Sec. 3.4. The trajectory is determined by Newton’s equation

1
2
∂2x
∂τ 2 = −1,

∂x(τ )
∂τ

∣∣∣∣
τ0

= −2
√

1− h(iτ0). (3.23)

The second equation is the boundary condition which coincides with Eq. (3.20).

The solution has the form

x(τ ) = τ 2
0 − τ 2. (3.24)

We consider the wave function not in the whole (x , t) plane but on the trajectory

ψ [x(τ ), iτ ]. Then the equation holds

ψ [x(τ0), iτ0] = exp

(
B
∫ τ0

0
dτ

[
1
4

(
∂x
∂τ

)2

+ 1− x

])
ψf , (3.25)

where ψf = ψ [x(0), 0] and the expression in the square brackets is the Lagrangian.

Since the energy E(t) = Vh(t) is a slow function of t , the semiclassical relation

ψ [x(τ0), iτ0] = exp
[
B
∫ τ0

0
h(iτ )dτ

]
ψi (3.26)

is valid where ψi = ψ [x(τ0), 0]. By means of Eqs. (3.25) and (3.26) one can write

the tunneling probability w = |ψf/ψi |2 in the form w ∼ exp (−A) where

A = 2B
∫ τ0

0
dτ

[
1
4

(
∂x
∂τ

)2

+ 1− x − h(iτ )

]
. (3.27)

In this expression the parameter τ0 is determined by Eq. (3.20). If we insert the

solution (3.24) into Eq. (3.27), we obtain the previous result (3.21). The energy

of the outgoing particle is given by same expression (3.22) or, in other words,

δE = E(iτ0).

The trajectory in imaginary time provides a connection of the two points in

Fig. 3.2(b) shown by the dashed curve. This is a "bypass" through the complex
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t plane of the complicated dynamics in real time. For our Lorentz pulse (3.17), it

follows from Eq. (3.20) and (3.21) that

A
2B

= τ0 −
τ 3

0

3
− h

2Ω
ln

1 + Ωτ0

1− Ωτ0
, 1− τ 2

0 =
h

1− Ω2τ 2
0

, (3.28)

where one should choose a lowest root for τ0. In the static case (h = 0) τ0 = 1 and

A has the static limit value AWKB (3.8).

When h is not zero the parameter Ω, indicating the width of the nonstationary

pulse (3.17), plays a crucial role in the dynamics of the system. It is easy to

show in the case of a small h. When Ω < 1 the parameter τ0 hardly differs from

unity, τ0 = 1 − h/2(1 − Ω2). Under this condition, A is close to its static limit

value AWKB and the energy of the outgoing particle δE = hV/(1 − Ω2) is small.

The amplitude of the generated wave packet is close to the equilibrium value of

the wave function exp(−AWKB/2) at the conventional WKB exit point x = 1. This

means that the wave packet dynamics is not very pronounced.

When 1 < Ω, due to the singularity of the pulse, even a small parameter h can

substantially influence τ0 which becomes to approximately equal 1/Ω as follows

from Eq. (3.28). As a result, one can present the action (3.28) at a small h in the

form

A ' AWKB

1, Ω < 1

(3Ω2 − 1)/2Ω3, 1 < Ω.
(3.29)

At Ω > 1 the outgoing particle has the energy δE = (1− 1/Ω2)V .

We see that the tunneling rate is strongly increased (a reduction of A) when

Ω exceeds the threshold value Ω = 1. This is a result of analytical properties of

the function h(t) in the complex plane which has a pole at t = i/Ω. On the other

hand, in the considered limit of a small h the classical trajectory has a singularity

at t = i which is simply a time of motion to the point x = 0 of singularity of the

potential (3.1) [7–9]. At Ω < 1 the pole of the external pulse is placed higher in

the complex plane compared to the position of the trajectory singularity and the

effect is weak. Under increase of Ω the two singularities merge at Ω = 1 and at
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a larger Ω the pole of h(t) is beneath of the trajectory singularity resulting in the

strong effect.

One should note that the result (3.29) at Ω > 1 can be obtained by an approx-

imate method of representation of the total probability as a product of one due

to quanta absorption and another due to subsequent tunneling with a higher en-

ergy. An optimization with respect to a frequency of an individual quantum and a

number of those absorbed quanta is generic, to some extend, with the trajectory

method. We do not repeat the calculation here but just cite Ref. [10].

3.6 NUMERICAL STUDY OF PHOTON-ASSISTED TUN-

NELING

In order to check the above predictions we performed the direct numerical solution

of the Schrödinger equation using the finite differences scheme applied to Crank-

Nicholson’s method. The δ-function was modeled by a deep rectangular well of

the width of a few steps δx = 5 × 10−4 in coordinate. We used different steps

in time δt between 5 × 10−4 and 5 × 10−5 and different calculation precisions of

15, 30, and 100 digits. At the points x = ±6 the transparent boundary conditions

were imposed [24]. In order to match this reflectionless scheme the potential

was chosen at a non-zero x in the form (1 − |x |) at |x | < 6 and −5 otherwise.

According to quantum mechanical calculations, the reflection due to the change

of the potential slope at x = 6 is small, of the order of 10−3 [1]. In the numerical

calculations no reflection was observed. First, we calculated a wave function for

a static potential (h(t) = 0), diagonalization of the time-independent Schrödinger

equation was done using the LAPACK package [26]. Fig. 3.3 shows the wave

funtion obtained by the diagonalization and used as the initial condition for the

time-dependent calculation.
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Figure 3.3: The numerically calculated initial wave function for B = 20. The scape point predicted

by WKB theory is marked by the red dot.

After the initial wave function was calculated, we switched on the pulse (3.17)

started with a large negative t , when h(t) was very small, to exclude switch effects.

At sufficiently moderate Ω ≤ 1 no formation of an outgoing packet was ob-

served, as demonstrated in Fig. 5.6. The increase of tunneling rate, due to a

small reduction of the barrier slope, is small. This relates to the result (3.29) at

Ω < 1.
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Figure 3.4: The numerically calculated dynamics of the wave function for h = 0.1 and B = 20

when Ω is less then the threshold.

At a larger Ω ≥ 1 (Fig. 5.7) a very pronounced wave packet is formed which

propagates away from the barrier. This relates to the result (3.29) at Ω > 1.

The dynamics of the packet generation in Fig. 5.7 corresponds to the theoreti-

cal scenario sketched in Fig. 3.2. At t = 0 the wave function hardly differs from the

static one since the new branch is formed but remains hidden as in Fig. 3.2(b).

At a positive t the new branch moves to the right resulting in appearance of the

packet in Fig. 5.7 at t ' 0.8. At a larger t the wave packet smoothly disappears

at the point x = 6 where the reflectionless condition is imposed [24].

Figs. 5.6 and 5.7 relate to different regimes with respect to the threshold fre-

quency Ω = 1. Actually, the threshold behavior (3.29) occurs in the limit of a small

h. The value h = 0.1 used is small but finite and the threshold form (3.29) smears

out into a narrow crossover region around Ω = 1. This can be clearly seen in

Fig. 5.8 where for Ω = 0.5 and 0.8 the dynamics is smooth but for Ω = 1.5 and 2.0
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it changes qualitatively exhibiting a formation of the pronounced wave packet.
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Ω = 2.0

Figure 3.5: The numerically calculated dynamics of the wave function at h = 0.1 and B = 20

when Ω exceeds the threshold.
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Figure 3.6: The numerically calculated wave function at h = 0.1 and B = 20. There is the

crossover between the smooth behavior at Ω = 0.5 and 0.8 and the qualitatively different dynamics

(wave packet formation) at Ω = 1.5 and 2.0.
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Figure 3.7: The numerically calculated dependence of the wave packet amplitude for B = 20 at

the moment t = 1.0 versus h is shown by the circled curve. The theoretical dependence (without

a preexponent) at t = 0 is drawn by the solid curve.

To demonstrate a further coincidence between the trajectory predictions and

the numerical results we plot an amplitude of the wave packet versus h at Ω = 2.0

in Fig. 5.9. The theoretical curve for the moment t = 0 follows from Eq. (3.28)

where we take |ψ|max = exp(−A/2). In this expression a preexponential factor is

neglected. The numerical results are taken at the moment t = 1.0 since at t = 0

the branch is hidden. One can see from Fig. 5.9 that both dependences are in

a reasonable agreement. The difference is due to a missing preeponential factor

for the upper (theoretical) curve in Fig. 5.9. Another reason for the difference in

the curves position is due to that they are taken at different moments of time. The

preeponential factor for the branch 2 in Fig. 3.2b should be approximately 0.2 to

get a coincidence.

One should note that when a position of the energy level varies in time just
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within of 2% the semiclassical approach is still valid and the dynamics is governed

by the analytical properties of h(t) in the complex plane of time. The presented

approach should be broken at sufficiently small h which is less than 0.02.

3.7 EUCLIDEAN RESONANCE

In the previous sections we considered a positive particle energy E(t) (0 < h)

which results in a positive energy δE of the outgoing particle. In that case the en-

ergy of the state ψf in Fig. 3.1 is higher than one of the state ψi . This corresponds

to photon-assisted tunneling.

When E(t) is negative (h < 0) the exit energy δE can be negative when the

energy of ψf is lower than one of ψi . In this situation a phenomenon of Euclidean

resonance can occur when quanta emissions strongly interfere with tunneling

[11, 12]. At a negative h the formalism, developed in Secs. 3.3 and 3.5, remains

valid if to formally change the sign of h. Analogously to Fig. 3.2, one can follow

branch dynamics also at a negative h on the basis of Eqs. (3.13) and (3.16).

1. At t → −∞ the situation is static and close to WKB.

2. t < −∆t . Under increase of time the WKB-branch 1-1 deforms as shown in

Fig. 3.8. In addition to that, the new branch 2-2, indicated in Fig. 3.8 and which

still does not exist, has a tendency to appear. The parameter ∆t ∼ 1 can be

evaluated from Eqs. (3.13) and (3.16).

3. t = −∆t . The curve 2-2 touches the branch 1-1 and formation of the new

branch 2-2 occurs within the short nonsemiclassical time 1/B � 1. Since the

interval ∆t ∼ 1 is of a semiclassical order of magnitude the fast nonsemiclassical

processes, occurring within the time scale 1/B � 1, have sufficient time to form

the branch 2-2 in Fig. 3.9.
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Figure 3.8: The branches of the wave function at h < 0 and the moment t < −∆t followed from

the semiclassical approximation. The initial branch 1-1 is deformed compared to WKB state. The

new branch 2-2 almost touches the branch 1-1 having a tendency to appear.

4. −∆t < t < ∆t . The reconnected branches are shown in Fig. 3.9 at t = 0.

Forms of them can be calculated by means of Eqs. (3.13) and (3.16) where one

should substitute the function (3.17) with a negative h. There is a cubic algebraic

equation for τ 2. One solution is real related to the branch 1-2 in Fig. 3.9. Two

other complex conjugated solutions result in one branch of |ψ|. This is the branch

2-1 in Fig. 3.9. It is remarkable that during this finite interval of time the branch

1-2 starts at the potential well, x = 0, and continues up to the point of maximum

with no violation of semiclassical conditions. The maximum of the branch 1-2 in

Fig. 3.9 determines the tunneling probability given by Eqs. (3.20) and (3.21) which

can also be calculated by a classical trajectory as in Sec. 3.5. This trajectory is

denoted in Fig. 3.9 by the dashed curve.
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Figure 3.9: The branches of the wave function at h < 0 and the moment t = 0 followed from the

semiclassical approximation. The branches are already reconnected compared to Fig. 3.8. The

classical trajectory in imaginary time (the dashed curve) connects the point at the potential well,

x = 0, and the top point.

5. t = ∆t . The branches initially touch each other at some point and then they

are detached during the short nonsemiclassical time 1/B � 1.

6. ∆t < t . The new generated branch 2-2 (similar to one in Fig. 3.8) is now

physical and propagates to the right as a wave packet.

The formalism of classical trajectories in imaginary time, developed in Sec. 3.5,

results at h < 0 in the tunneling probability

w ∼ exp(−A), A = AWKBf (Ω, h) [Ω− ΩR(h)] , (3.30)

where the function f (Ω, h) is, generally, of the order of unity. At the resonance

frequency ΩR(h) the action formally equals zero. This phenomenon is called Eu-

clidean resonance [11, 12]. The approximation used allows to approach the res-

onance frequency keeping the condition of small exp(−A). Otherwise one has to
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use a multi-instanton formalism.

It is instructive to consider small |h| � 1 when one can easily obtain exact an-

alytical formulas. We omit details since analogous calculations are demonstrated

in Refs. [11,12]. In this case A has the form

A = AWKB

√
3(1 + Ω

√
3)

2Ω3 [Ω− ΩR(h)] , (3.31)

with the resonance frequency

ΩR(h) ' 1√
3

(
1− |h|

4

)
. (3.32)

The energy of the outgoing particle (3.22) is

δE =
Ω2 − 1
Ω2 V . (3.33)

The equations (3.31)-(3.33) are applicable for frequencies ΩR < Ω. There is also

an upper restriction for Ω. It should not exceed the semiclassical limit which, in the

dimensionless units, is of the order of the large parameter AWKB. In the physical

units, this condition reads ~Ω� V .

3.8 NUMERICAL STUDY OF EUCLIDEAN RESONANCE

For the case of a negative h the same numerical scheme is used described in

Sec. 3.6. We take the value h = −0.28. As follows from Eqs. (3.13) and (3.16),

the resonance frequency in Eq. (3.30) is ΩR(−0.28) ' 0.443. For calculations

the parameter Ω = 0.5 is taken. So we are a little away of the resonance. In

other words, the maximum of the branch 1-2 in Fig. 3.9 does not reach a value

of the order of |ψ(0, 0)|. By means of Eqs. (3.13) and (3.16) one can evaluate the

important time interval discussed in Sec. 3.7 as ∆t ' 0.22.
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Figure 3.10: The case of B = 20, h = −0.28, and Ω = 0.5 for the moment t = 0. The thick curve

shows the numerical result. The thin curves are analogous to ones in Fig. 3.9 and are calculated

from the semiclassical formalism of Sec. 3.3 (without a preexponent).

The result of numerical calculations is shown in Fig. 3.10 by the thick curve

that corresponds to the moment t = 0. In the same figure the two branches, 1-2

and 2-1, of Fig. 3.9 are drawn as thin curves. Those branches are calculated on

the basis of Eqs. (3.13) and (3.16) which account for only the classical action in

Eq. (3.5) without the preexponent a(x , t).

These numerical results are discussed in Sec. 3.9 B.

3.9 DISCUSIONS

3.9.1 PHOTON-ASSISTED TUNNELING

As one can see in Sec. 3.6, for photon-assisted tunneling (0 < h) the predictions

made on the basis of the semiclassical theory are well confirmed by the numerical
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calculations. Namely, it is confirmed that a classical trajectory in complex time,

defined by Newton’s equation, plays a crucial role in the underbarrier dynamics.

Without a nonstationary drive such a trajectory has a singularity in the complex

time plane which is determined by a form of the static potential barrier and a par-

ticle energy [7–9]. On the other hand, an external pulse of the Lorentz form in

time has a pole at the certain complex time. When this pole is lower in the com-

plex plane than the trajectory singularity the pronounced outgoing wave packet is

formed.

Under the action of a smooth external drive the underbarrier dynamics is semi-

classical (smooth) not at all times. At the certain moment there is a fast process

of formation of a new branch of the wave function. The classical trajectory in

complex time provides a "bypass" of that complicated dynamics since along the

complex trajectory the semiclassical approach is never violated.

One has to note that the semiclassical method, including classical trajecto-

ries, relates to a substantially multiquantum processes assisting tunneling when

a nonstationary perturbation is not very small [10–12].

3.9.2 EUCLIDEAN RESONANCE

For photon-assisted tunneling (0 < h) the new branch 2 in Fig. 3.2 is generated

at the position of the main branch 1. Therefore, during this process only a local in

space redistribution of density occurs. In contrast to that, for Euclidean resonance

(h < 0) the density redistribution should occur through a finite space interval. This

is clear from Fig. 3.9 where the maximum of the branch 1-2 is well apart of the

region close to x = 0 from where the probability should come out.

The completely semiclassical solution, shown in Fig. 3.9, exists during the

finite time 2∆t ∼ 1. The wave function from the region close to x = 0 smoothly

reaches the maximum along the curve 1-2. Suppose, this does not happen. In

this case the branch 1-2 in Fig. 3.9 intersects the branch 2-1, at the points a

and b, and goes over into the same branch 2-1 at x > b. This nonsemiclassical
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abrupt cannot be smooth in time and is associated with an instability originated

at the region a < x < b. This instability implies a short time (of the order of

1/B � 1) nonsemiclassical perturbations for which the time interval ∆t ∼ 1

is very long. The instability develops until the system reaches its semiclassical

branches (Fig. 3.9) which are almost static compared to the instability time 1/B.

By means of the formalism of classical trajectories one can connect the two points

in Fig. 3.9 providing a “bypass” of the complicated dynamics. So in the limit of

large B one has to expect, within the time interval −∆t < t < ∆t , the solution

shown in Fig. 3.9.

Let us take a look at Fig. 3.10. There is a coincidence between the numerical

curve and theoretical ones. In order to get an exact coincidence one should shift

the lower thin curve at the interval 2 < x < 6 by ln |a| where a ∼ 0.4 is the

preeponential factor in Eq. (3.5). But the part of the branch 1-2 with the maximum

is not generated. Why?

The answer relies in the fact that the time interval ∆t of existence of semiclas-

sical branches in Fig. 3.9, generally speaking, is of the order of unity. But for the

parameters chosen ∆t ' 0.22 is relatively short. This means that the two thin

curves in Fig. 3.10 are not far from positions when they did touch each other at

the moment −∆t and when a did coincide with b. For B = 20 one can estimate

B∆t ' 4.4 that is not a sufficiently large number. In other words, during the inter-

val ∆t , which is short in our case, the nonsemiclassical instability does not have

time to be developed. For photon-assisted tunneling (0 < h) the semiclassical pa-

rameter is B. For Euclidean resonance (h < 0) the analogous parameter, which

should be also large, is B∆t . We see that the conditions of Euclidean resonance

are more rigorous.

The interval ∆t does not depend on B. If to take, say, B = 100 (a very thick

barrier) the parameter B∆t ' 22 is larger which is more preferable for formation of

the maximum in Fig. 3.10. Values of B larger than 40 bring essential problems into

the numerical calculations. Fluctuations in the wave function close to x = 0 should
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be small compared to the wave function at a large distance which is exponentially

small as exp(−2B/3) or even less. Otherwise these fluctuations would transfer

toward larger x and destroy a wave function at that region.

Another way to increase the parameter B∆t is to take a larger |h| in Eq. (3.5)

keeping the same B = 20. In this case the minimum of the curve 1-2 in Figs. 3.9

and 3.10 becomes more deep. This requires a higher accuracy of calculations

which is impossible for the numerical scheme used. For this reason, numerical

studies of Euclidean resonance require further efforts.

3.10 CONCLUSIONS

The numerical solutions confirm the existing theoretical results that the main fea-

tures of photon-assisted tunneling can be described by a classical trajectory in

complex time. The probability of tunneling is governed by analytical properties of

a nonstationary field and by those of a classical trajectory in the complex plane of

time. This supports the general idea of applicability of trajectories to tunneling in

a nonstationary case.

The results obtained open a way to apply the method of classical trajecto-

ries to more complicated problems of tunneling through nonstationary barriers,

for example, to Euclidean resonance when the probability of tunneling through a

classical barrier can be not exponentially small. The preliminary numerical study

of Euclidean resonance is presented in the thesis. It is shown that Euclidean res-

onance occurs in more thick barriers compared to those allowed by the numerical

scheme used.

66



BIBLIOGRAPHY

[1] L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, New York,

1977).

[2] C. G. Callan and S. Coleman, Phys. Rev. D 16, 1762 (1977).

[3] A. Schmid, Ann. Phys. 170, 333 (1986).

[4] U. Eckern and A. Schmid, in Quantum Tunneling in Condensed Media, edited

by A. Leggett and Yu. Kagan (North-Holland, Amsterdam, 1992).

[5] L. V. Keldysh, Zh. Éksp. Teor. Fiz. 47, 1945 (1964) [Sov. Phys. JETP 20,

1307 (1965)].

[6] V. S. Popov, V. P. Kuznetsov, and A. M. Perelomov, Zh. Éksp. Teor. Fiz. 53,

331 (1967) [Sov. Phys. JETP 26, 222 (1968)].

[7] B. I. Ivlev and V. I. Melnikov, Phys. Rev. Lett. 55, 1614 (1985)

[8] B. I. Ivlev and V. I. Melnikov, Zh. Éksp. Teor. Fiz. 90, 2208 (1986) [Sov. Phys.

JETP 63, 1295 (1986)].

[9] B. I. Ivlev and V. I. Melnikov, in Quantum Tunneling in Condensed Media,

edited by A. Leggett and Yu. Kagan (North-Holland, Amsterdam, 1992).

[10] B. I. Ivlev, Phys. Rev. A 62, 062102 (2000).

[11] B. I. Ivlev, Phys. Rev. A 66, 012102 (2002).
67



BIBLIOGRAPHY

[12] B. I. Ivlev, Phys. Rev. A 70, 032110 (2004).

[13] B. Ivlev and V. Gudkov, Phys. Rev. C 69, 037602 (2004).

[14] B. Ivlev, G. Pepe, R. Latempa, A. Barone, F. Barkov, J. Lisenfeld, and A.

Ustinov, Phys. Rev. B 72, 094507 (2005).

[15] S. Keshavamurthy and W. H. Miller, Chem. Phys. Lett. 218, 189 (1994).

[16] T. Martin and G. Berman, Phys. Lett. A 196, 65 (1994).

[17] A. Defendi and M. Roncadelli, J. Phys. A 28, L515 (1995).

[18] N. T. Maitra and E. J. Heller, Phys. Rev. Letter. 78, 3035 (1997).

[19] J. Ankerhold and H. Grabert, Europhys. Lett. 47, 285 (1999).

[20] G. Cuniberti, A. Fechner, M. Sassetti, and B. Kramer, Europhys. Lett. 48, 66

(1999).

[21] M. Saltzer and J. Ankerhold, Phys. Rev. A 68, 042108 (2003).

[22] S. Zhang and E. Pollak, Phys. Rev. Lett. 91, 190201 (2003).

[23] L. Hartman, I. Gouchuk, and P. Hänggi, J. Chem. Phys. 113, 11159 (2000).

[24] M. Erhardt and A. Arnold, Rev. Mat. Univ. Parma, 6/4, 57 (2001).

[25] L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, New York, 1977).

[26] Anderson, E., LAPACK User’s Guide (Society for Industrial and Applied

Mathematics, 1999, Philadelphia, PA).

68



CHAPTER 4

SHAPE AND STRUCTURE OF

DECAHEDRAL METALLIC

NANOPARTICLES

4.1 INTRODUCTION: GEOMETRICAL CONSIDERATIONS

A cluster is defined as an aggregate of atoms; this can lead to clusters from

2 atoms (diatomic molecules), a lineal array of atoms, bidimensional or three-

dimensional arrays. This work presents the study of clusters with pentagonal

symmetry, with sizes up to thousands of atoms in arrays of spherical or concentric

layers type.

Arrays of linked atoms forming three-dimensional clusters are considered here

as sites in geometric positions attached by the edges in such a way that faces of

diverse forms are generated (triangular, squared, rombohedral, etc.). Distance

between the sites is considered as the distance to first neighbors, dNN , which is

normalized to one. There could be sites in the vertices, edges and faces, either in

the surface or internals; also there could be different types of sites, depending on

its position and the number and type of neighbors in the geometric array. There
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Figure 4.1: Decahedral polyhedra, a) bicapped hexahedron or decahedron of 7 atoms of order

1, without a central site; b) Decahedron of 23 atoms of order 1 with a central site; c) Decahedron

of 835 sites of order 5, without a central site and d) Decahedron of 1111 atoms of order 5 with a

central site.

could be also equivalent sites, which present the same geometric characteristics:

to the same distance from the center of the geometric array, in the same type of

site and with the same number and type of neighbors.

From the bicaped hexahedron or decahedron, Fig. 4.1a, pentagonal symme-

try structures can be obtained. Among the clusters with structures of pentagonal

symmetry the following structures are considered: decahedra with and without a

central site, pentadecahedra, truncated decahedra (Marks decahedra), and mod-

ified and developed decahedra.

4.1.1 DECAHEDRA

Decahedra are obtained from the bicapped hexahedra and also from attaching

two pentagonal based pyramids from their bases and sharing their sites (which

form the equator of the cluster), yielding geometrical bodies of seven vertices (2

at poles and 5 at equator), 15 edges (all from the same length, 5 at the equator)

and 10 triangular equilateral faces, 5 of them converge on each pole and by pairs

they form the edges of the equator. Decahedra can be without a central site,

Figs. 4.1a and 4.1c, and with a central site, Figs. 4.1b and 4.1d, without losing

the decahedral form. So, decahedra have the vertices at the poles, VP, vertices

at the equator, VE, at the edges over the equator, EE, edges at poles, EP, and in
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triangular faces T. It has to be noticed that coordination, i. e., distribution to first

neighbors (NN) is what makes the difference in each type of sites, although total

coordination is the same for all the sites of the corresponding cluster. Table 4.1

presents the coordination of each site, for example the poles (VP) have 5 first

neighbors (NN) with sites at their same shell, 1 NN towards the inner shell and

6 towards the exterior shell. The decahedron of order 1, without a central site,

Fig. 4.1a, has only 7 vertices in two layers; the one from order 2, is obtained from

covering the one of order one with a shell of 47 sites distributed as follows: 7 V

sites of two types, 30 E sites in three layers (10 sites of one type at the equator)

and 10 at triangular faces (sites T, one for each triangular face) in one single layer,

for a total of 54 sites in the cluster. Decahedra of superior order are formed by

coverage of this cluster of order two with successive shells of many layers each

one.

The decahedron with central site of order 1, Fig. 4.1b, has 15 sites E, one per

edge, of two types, 5 sites of one type at the equator, and 7 sites V, a total of 22

sites and the central one in five layers. The second order cluster results from the

order one cluster covered by a shell of 82 sites distributed in 8 layers; 45 E sites

in 5 layers, 30 T sites in one single layer and 7 V sites in two layers, for a total of

105 sites in the cluster, and so on for cluster of superior order.

Table 4.2 presents the geometric characteristics of decahedra with and without

a central site. First column, common for all decahedra, lists the cluster order ν.

This is followed by two groups of 9 columns each one, which correspond to the

decahedron with and without a central site. The three first columns of each group

list the number of sites on each type of site in the cluster, triangular face (T),

NT, edge (E), NE, and vertex (V) NV . The next column show the number of sites

that form a cap of the decahedron; a cap is formed for the surface sites from

the equator to the poles, which will be needed afterwards. Finally, the two last

columns of each group, the number of sites in the shell, Nσ, and the total of sites

in the cluster, N. Decahedra with (without) a central site, have an odd (even)
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Table 4.1: Coordination or number of first neighbors (NN), of the different types of sites in the

decahedron and the pentadecahedron with sites in shells in external, the same and internal shells.

type of site

Shell T EE EP EV RF VE VP

3 6 4 – – 8 6

Decahedron 6 6 6 – – 4 5

3 0 2 – – 0 1

3 6 4 6 4 8 6

Pentadecahedron 6 6 6 4 4 4 5

3 0 2 2 4 0 1

number of sites per edge.

From Table 4.2 it is observed that for both decahedron types the number of

vertices per shell is 7, 2 type VP and 5 type VE. The dependence with the cluster

order of Nσ and N is expressed in the following relations for the decahedra with a

central site,

Nσ(ν) = 20ν2 + 2, (4.1)

N(ν) =
20
3
ν3 + 10ν2 +

16
3
ν + 1, (4.2)

and for decahedra without a central site:

Nσ(ν) = 20ν2 − 20ν + 7, (4.3)

N(ν) =
20
3
ν3 +

ν

3
. (4.4)

4.1.2 PENTADECAHEDRA

The cap, defined below, or several caps are added to the decahedron to form the

pentadecahedra, Fig. 4.2, this is, a decahedron with a wide waist or developed

decahedron.

The pentadecahedra are polyhedra of 12 vertices (2 poles and 10 in vertices

at the waist), 25 edges (10 from the poles to the waist, 10 at the waist and 5 of
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Table 4.2: Geometric characteristics for the decahedra with and without a central site. ν is the

order of the cluster, NI with I = T, E and V, is the number of sites I. The number of sites in the cap,

Ncap, the number of surface sites, Nσ, and the total number of sites in the cluster are also listed.

with a central site without a central site

ν NT NE NV Ncap Nσ N NT NE NV Ncap Nσ N

1 0 15 7 16 22 23 0 0 7 6 7 7

2 30 45 7 51 82 105 10 30 7 31 47 54

3 100 75 7 106 182 287 60 60 7 76 127 181

4 210 105 7 181 322 609 150 90 7 141 247 428

5 360 135 7 276 502 1111 280 120 7 226 407 835

6 550 165 7 391 722 1833 450 150 7 331 607 1442

7 780 195 7 526 982 2815 660 180 7 456 847 2289

8 1050 225 7 681 1282 4097 910 210 7 601 1127 3416

9 1360 255 7 856 1622 5719 1200 240 7 766 1447 4863

10 1710 285 7 1051 2002 7721 1530 270 7 951 1807 6670

Figure 4.2: Pentadecahedron of 2766 atoms of order 65, obtained from a decahedron without a

central site of order 6 with 5 caps.
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other type, which join the vertices of the two pyramids, and whose length depends

on the number of caps added), 10 equilateral triangular faces and 5 rectangular

lateral faces (or squared, depending on the number of intermediate layers added)

Fig. 4.2. The number of sites in these pentadecahedra depends on the size of

the original decahedron and of how many caps are added, also, with and without

central site are considered depending on the original decahedron from which they

were generated. So, at the surface of the pentadecahedra there are the same type

and number of sites as in the decahedra, plus the waist sites, which are divided

in sites type VE, sites EE, sites at vertical edges at the width of the waist, EV and

in rectangular faces, RF. Table 4.1 presents the coordination of each type of site

in the pentadecahedron. Notice that, As expected; only the sites corresponding

to the pentadecahedron are added and those are not of the decahedron.

For pentadecahedron order it can be used νµ, ν for the decahedron order from

which it comes and µ for the number of layers at the waist, so, regular decahedra

would be pentadecahedra with µ = 1. The number of caps which are added to

the decahedron referred to generate the pentadecahedron is µ − 1. So, in order

to have the pentadecahedron of order 65 without a central site, Fig. 4.2, that is a

2766-atom pentadecahedron one has to start with a decahedron without a central

site of order 6, with 1442 atoms, and add 4 331-atom caps.

The number of sites T, EP and VP is the same as in the decahedron which

originated the pentadecahedron. The number of sites EE and VE is duplicated

respect the original decahedron. The number of EV and RF sites for the pen-

tadecahedra with and without a central site is the same, and are presented in

Table 4.3, which presents the geometric characteristics of the pentadecahedra

with and without a central site respectively, only some of µ values are presented.

There are three groups one of three columns and two of four columns respec-

tively. In the columns of first group are listed the quantities common to the two

types of pentadecahedra: cluster order ν and µ, and the number of sites EV, NEV;

for both polyhedra, in each following group the geometric characteristics for each
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Table 4.3: Geometric characteristics for the pentadecahedra with and without a central site,

obtained from the corresponding decahedron of orden ν. µ is the number of equatorial layers in

the cluster. The number of EV sites, NEV, RF sites, NRF, of sites added, Nag, surface sites, Nσ

and of total number of sites, N, in the cluster of order νµ are listed. Notice that for µ = 1 values of

Table 4.2 are obtained. Even when µ can have any value higher than cero, here only some values

are presented.

with a central site without a central site

ν µ NEV NRF Nag Nσ N NRF Nag Nσ N

1 1 0 0 0 22 23 0 0 7 7

2 0 0 16 32 39 0 6 12 13

2 1 0 0 0 82 105 0 0 47 54

2 0 0 51 102 156 0 31 62 85

3 5 15 102 122 207 10 62 77 116

3 1 0 0 0 182 287 0 0 127 181

2 0 0 106 212 393 0 76 152 257

3 5 25 212 242 499 20 152 177 333

4 1 0 0 0 322 609 0 0 247 428

2 0 0 181 362 790 0 141 282 569

4 10 70 543 442 1152 60 423 352 851

5 1 0 0 0 502 1111 0 0 407 835

2 0 0 276 552 1387 0 226 452 1061

3 5 45 552 602 1663 40 452 497 1287

5 15 135 1104 702 2215 120 904 587 1739
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polyhedron are presented, those of the pentadecahedron with and without a cen-

tral site. A list of the number of RF sites, NRF, the number of sites added, Nag, of

sites at the surface, Nσ and the total of sites, N, in the cluster of order νµ. Note

that for µ = 1 the values from Table 4.2 are obtained.

From Table 4.3, the analytic expressions for the number of sites which are

added, sites in the surface and the total of sites for pentadecahedra with central

site

Nag(ν,µ) = (µ− 1)(10ν2 + 5ν + 1), (4.5)

Nσ(ν,µ) = 20ν2 + 2 + 10ν(µ− 1), (4.6)

N(ν,µ) =
20
3
ν3 + 10ν2 +

16
3
ν + 1 + Nag(ν,µ) (4.7)

and for pentadecahedra without central site

Nag(ν,µ) = (µ− 1)(10ν2 − 5ν + 1), (4.8)

Nσ(ν,µ) = 20ν2 − 20ν + 7 + 5(2ν − 1)(µ− 1), (4.9)

N(ν,µ) =
20
3
ν3 +

ν

3
+ Nag(ν,µ). (4.10)

It must be noticed that for µ = 2ν + 1 (µ = 2ν) in the decahedron with (without)

a central site the Ino’s decahedra are obtained.

MODIFIED DECAHEDRA WITH SURFACE RECONSTRUCTION

The triangular faces in the decahedron are (111) type, as in a fcc structure the

layers follow the sequence · · ·ABCABC· · ·, that is, a layer is equal to the three

before one. Modification of surface reconstruction of a decahedron is obtained

if for each triangular face of the decahedron a stacking fault is provocated, that

is, a triangular face equal to the one before the last is added to the decahedron,

following a sequence as · · ·ABCABA. Hereafter these polyhedra are called mrdec

(Montejano’s reconstructed decahedron) [1]. Figure 4.3a shows the example of a

decahedron with a central site of 609 sites of order 4, to which 36 sites are added
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Figure 4.3: (a) Decahedron of order 4 with 609 sites and with a central site, with 360 sites

aggregated for a mrdec of 969 sites. (b) mrdec decahedron with a central site of order 4 (609

sites), with surface reconstruction (969 sites) and three caps (181 sites each one) for a total of

1331 sites in the polyhedron, or pentadecahedron with surface reconstruction.

Table 4.4: Geometric characteristics for the mrdec, decahedra with and without a central site,

modified with surface reconstruction. ν is the cluster order. The number of added sites, Nag, of

surface sites, Nσ, and of total number of sites, N, in the cluster are listed.

with a central site without a central site

ν Nag Nσ N Nag Nσ N

2 100 122 205 60 77 114

3 210 242 497 150 177 331

4 360 402 969 280 317 708

5 550 602 1661 450 497 1285

per face, this is 360 sites in total, for a mrdec of 969 sites. It should be noticed

that it seems that a decahedron with a surface channel is obtained, although the

sites which seem to form the channel are at a distance of 1.13dNN . This is why

in this modification a long bond is considered and the EP sites of the interior

decahedron do not form part of the surface. In fact, the surface of the resulting

polyhedron is formed by the added sites and the sites VE, VP and EE of the

internal decahedron, which are those which can be considered also as surface,

because the remain with free bonds.

The characteristics of these polyhedra are presented in Table 4.4. ν, is the
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original cluster order, Nag the number of sites added, Nσ, the number of sites in

the surface and N the total number of sites in the cluster.

From Table 4.4, is possible to obtain the analytic expressions as a function of

the order of the original cluster, for the different characteristics listed here and are

presented next for the polyhedron with central site:

Nag(ν) = 20ν2 + 10ν, (4.11)

Nσ(ν) = 20ν2 + 20ν + 2, (4.12)

N(ν) =
20

3
ν3 + 30ν2 +

46

3
ν + 1, (4.13)

and without central site

Nag(ν) = 20ν2 − 10ν, (4.14)

Nσ(ν) = 20ν2 − 3, (4.15)

N(ν) =
20

3
ν3 + 20ν2 −

29

3
ν. (4.16)

Alternatively it is possible to generate the pentadecahedra with surface re-

construction. For this simply add a triangular face provocating a stacking fault in

the corresponding pentadecahedron, Fig. 4.3b. Table 4.2 presents the number of

sites of the cap of the original decahedron, used to construct Table 4.5 for the

pentadecahedra with surface reconstruction.

4.1.3 TRUNCATED DECAHEDRA (MARKS DECAHEDRA)

These result from the adequate elimination of some sites of a certain decahedron.

The resulting geometry is a figure of 22 vertices (of three types), 40 edges (of 4

types, 15 from the original decahedron but shorter, and 25 which are generated

by elimination of the adequate sites), 10 pentagonal faces (triangular faces from

the original decahedron are converted to irregular pentagons) and 10 equilateral

triangular faces (at the equator and joint by pairs) Fig. 4.4a.
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Table 4.5: Geometric characteristics for the mrdec, decahedra with and without a central site,

modified with surface reconstruction and added caps. ν is the cluster order, µ is the number of

added caps in the polyhedron. Notice that for µ = 1 Table 4.4 values are obtained. Although µ can

take any value higher than zero, here are only presented some values.

with a central site without a central site

ν µ NEV NRF Nag Nσ N NRF Nag Nσ N

2 1 0 0 0 122 205 0 0 77 114

2 0 0 51 142 256 0 31 92 145

3 5 15 102 162 307 10 62 107 176

3 1 0 0 0 242 497 0 0 177 331

2 0 0 106 272 603 0 76 202 407

3 5 25 212 302 709 20 152 227 483

4 1 0 0 0 402 969 0 0 317 708

2 0 0 181 442 1150 0 141 352 849

4 10 70 543 522 1512 60 423 422 1131

5 1 0 0 0 602 1661 0 0 497 1285

2 0 0 276 652 1937 0 226 542 1511

3 5 45 552 702 2213 40 452 587 1737

5 15 135 1104 802 2765 120 904 677 2189

Figure 4.4: a) Truncated decahedron without a central site of 1372 sites of order 63; b) Truncated

decahedron without central site of order 63 with four caps, for a total of 2230 sites.a) Truncated

decahedron with surface reconstruction. b) Truncated decahedron with surface reconstruction

and with three caps.
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The adequate elimination of sites is equivalent to eliminate the end sites of the

edges which converge in the vertices of the equator of the corresponding deca-

hedron. Notice that in each elimination the equatorial edges loose two sites, while

the edges which converge also towards the poles only loose one, this causes that

edges converging to the poles are larger than the equatorial ones, but shorter

than the ones from the original decahedron.

In the first step, n = 1, the equator vertices from the equator of the exterior

shell are eliminated, last shell, 5 sites. Second step, n = 2, two sites per equatorial

edge are eliminated, and one of the rest of the edges, 20 sites that whit the

previous stage are converted in 25. Third step, n = 3, the step of the edges of

the last shell is repeated, 20 sites, plus two sites of each triangular face, 20 sites,

besides, in one shell before the last, interior decahedron, the equator vertices are

eliminated, 5 more sites in order to obtain 40 sites to be eliminated in this step,

and complete a total of 70 eliminated sites in three steps. And so on, for n < ν,

because NEE = 5(2ν − 1)[= 5(2ν − 2)] for decahedra with [without] a central site,

for ν = n − 1, there are only 3 [2] sites EE, see Table 4.6.

Table 4.6 lists the truncated decahedra, resulting from decahedra with and

without a central site respectively. The order of the truncated decahedron consists

of two numbers corresponding to the first and second column of Table 4.6, first

column is the order of the decahedron generated, ν, and second column is the

number of steps, n, needed to eliminate the adequate sites, or is the half of sites

eliminated from each edge at the equator, n = 1 means that only the vertices at

the equator are eliminated, first step in the elimination process. Third column lists

the total number of sites eliminated from the original decahedron to obtain the

truncated decahedron of order νn, N(−), in the fourth [eighth] the number of sites

per equatorial site EE remaining in the originals (take into account that in these

sites are included the two new vertices VE) per edge, for the polyhedron with a

central site [without a central site] (for n = 1 is the number of sites in edges in

the original decahedron); finally, the fifth, sixth and seventh columns [ninth, tenth
80



4.1. INTRODUCTION: GEOMETRICAL CONSIDERATIONS

Table 4.6: Geometric characteristics for the truncated decahedra, constructed from a certain

decahedra of order ν, with and without a central site. n is the half of sites eliminated from each

equator edge.

order with a central site without a central site

ν n N(−) NEE Ncap Nσ N NEE Ncap Nσ N

1 1 5 1 11 17 18 – – – –

2 1 5 3 46 77 100 2 26 42 49

2 20 1 31 62 80 – – – –

3 1 5 5 101 177 282 4 71 122 176

2 25 3 86 162 262 2 56 107 156

3 70 1 61 137 217 – – – –

4 1 5 7 176 317 604 6 136 242 423

2 25 5 161 362 584 4 121 227 403

3 70 3 136 277 539 2 96 202 358

4 150 1 100 240 459 – – – –

5 1 5 9 271 497 1106 8 221 402 830

2 25 7 256 482 1086 6 206 387 810

3 70 5 231 457 1041 4 181 362 765

4 150 3 186 422 961 2 156 327 685

5 275 1 151 377 835 – – – –

6 1 5 11 386 717 1828 10 326 602 1437

2 25 9 371 702 1808 8 311 587 1417

3 70 7 346 677 1763 6 286 562 1372

4 150 5 311 642 1683 4 251 527 1292

5 275 3 266 597 1558 2 206 482 1167

6 435 1 211 542 1378 – – – –
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and eleventh] present the number of sites of the cap, Ncap, the number of surface

sites, Nσ and the total number of sites in the resulting truncated decahedron with a

central site [without a central site]. For example, the truncated decahedron without

a central site of order 63, Fig. 4.4a, is generated from the decahedron with central

site of order 6 (1442 sites, 10 sites per edge, 386 sites in cap, are eliminated the 5

sites VE, 4 sites EE of each one of the equatorial edges of the surface, 2 sites EP

from each edge towards the poles ant the 5 VE sites from the immediate interior

shell, so the truncated decahedron of order 63 has 6 sites per equatorial edge,

70 sites are eliminated and it has 1372 in total.

The number of eliminated sites, third column of Table 4.6, is the same for the

two polyhedra, with and without a central site, and depends only on the number

of steps n given and is obtained by

N(−)(n) =
5
6

n(n + 1)(2n + 1). (4.17)

Expressions for the number of surface sites and in total for the truncated dec-

ahedra with central site:

Nσ(ν, n) = 20ν2 − 5n2 + 2, (4.18)

N(ν, n) =
20
3
ν3 + 10ν2 +

16
3
ν + 1− N(−)(n), (4.19)

and for the truncated decahedra without central site

Nσ = 20ν2 − 20ν − 5n2 + 7. (4.20)

N(ν, n) =
20
3
ν3 +

ν

3
− N(−)(n). (4.21)

The truncated decahedron is a polyhedron formed by 22 vertices, joint by 40

edges forming 10 pentagonal faces and 10 triangular. Vertices are of three types:

VP, VE, and V’; VP (2 vertices) are the same as in the original decahedron, VE

and V’ (10 vertices each one) resulted by pairs from elimination of original VE

and from elimination of sites from EE and EP; sites V’ are found were the end of

the edges converge towards the poles, this is, the edges EP join sites VP and V’.
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Table 4.7: Geometric characteristics for the truncated decahedra with and without a central site.

The number of surface sites for each type of site, the number of total surface sites and in the

polyhedron are listed.

with a central site without a central site

ν n NET NEV′ NTF NEP NEE NPF Nσ N NEP NEE NPF Nσ N

2 1 0 0 0 20 5 30 77 100 10 0 10 42 49

3 1 0 0 0 40 15 100 177 282 30 10 60 122 176

2 20 5 0 30 5 80 162 262 20 0 40 107 156

4 1 0 0 0 60 25 210 317 604 50 20 150 242 423

2 20 5 0 50 15 190 302 584 40 10 130 227 403

3 40 10 10 40 5 150 277 539 30 0 90 202 358

5 1 0 0 0 80 35 360 497 1106 70 30 280 402 830

2 20 5 0 70 25 340 482 1086 60 20 260 387 810

3 40 10 10 60 15 300 457 1041 50 10 220 362 765

4 60 15 30 50 5 240 422 961 40 0 160 327 685

Edges are of 4 types: the original EP edges (10 edges) and EE (5 edges), but

the shorter, ET (20 edges) and EV’ (5 edges) which form the triangular faces TF

(10 faces) formed upon elimination of the equatorial sites, the edges EV’ join the

vertices V’ by pairs, and the edges ET join sites VE and V’. So, any truncated

decahedron will have vertex sites type VP, VE, V’, edges type EP, EE, ET, EV’

and faces type TF and pentagonal face PF. The number of VP sites is 2, of V’ is

10 and VE is also 10. The number of remaining sites is variable and is listed in

Table 4.7 for the truncated decahedra with and without central site. The number

of surface sites is also listed as well as the total sites of the polyhedron. Columns

1 and 2 correspond to the order of the cluster ν and n respectively. Columns 3 to

8 [11 to 16] correspond to sites EP, NEP, EE, NEE, ET, NET, EV’, NEV′, PF, NPF, and

TF, NTF, respectively, and the two last columns to the surface sites, Nσ, and the

total of sites N for truncated decahedra with [without] a central site.

The same method used to generate pentadecahedra, is used here. Caps can

be added to the truncated decahedra in order to obtain polyhedra with 15 lateral
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Figure 4.5: a) Energy per atom for different nanoparticles (decahedral and fcc). At this size,

decahedral nanoparticles compete energetically with the fcc structures. Marks decahedra is even

more stable than fcc structures.

faces, 5 rectangular and 10 trapezoidal (before triangular), Fig. 4.4b. This means

that a cap is added per each layer wanted for widen the polyhedron, so the poly-

hedron of Fig. 4.4b has 4 equatorial layers; this means that 3 caps were added.

So, in a developed truncated decahedron, there will be the same sites as in one

without developing, except the TF sites, triangular face, which convert in sites

TR, trapezoidal face, and the sites generated when adding the caps, sites in the

rectangular faces RF and in the vertical edges, EV, joining the VE sites which

are duplicated. The number of sites that will be added depends on the number of

caps that the polyhedron will have, Ncap sites from the original truncated decahe-

dron are added per each layer widen. It is to be noticed that in this case, the sites

corresponding to EV and ET sites, will be added to the surface also.

Another modification of a truncated decahedron can be made with surface

reconstruction, as explained for the decahedron, which reflects in adding Nag sites

to get the developed truncated decahedron, Fig. 4.4c.
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Caps can be added to the developed truncated decahedra to obtain trun-

cated decahedra with surface reconstruction and developed, Fig. 4.4d. Figure

4.5 shows point energy calculations for some of the decahedral nanoparticles

previously discused, fcc structures as octahedral Oh and coboctahedral c-Oh are

also included. It can be seen that in this size range, the decahedral nanoparticles

energetically compete with the fcc structures, being the Marks decahedra even

more stable than the Oh. The energy reference is the cohesive energy per atom

for the icosahedral family.

4.2 THE DECMON-TYPE DECAHEDRAL MOTIF

In the 1960’s decade, Shozo Ino was the first to report a very complete study on

the structural phases for supported multiple twinned gold nanoparticles (NPs)–

tetrahedra (Th), truncated cuboctahedra (c-Oh), Mackay icosahedra (m-Ih), and

regular decahedra (s-Dh) [2], by developing a theory that accounted for the spe-

cific surface, twin boundaries, elastic strain, and the adhesive energies to the sub-

strate. This theory was the result after extensive studies of epitaxial growth of fcc

metals on rocksalt faces by the same Ino [3] and Ino and Ogawa [4], where they

proposed the multiple twinned particle model with a nucleus of (001) orientation,

now known as the Ino decahedral (i-Dh) family. The Ino decahedron is a truncated

decahedron with lower total surface-to-volume ratio that exposes higher energy

(100) facets parallel to the 5-fold axis, and is energetically more stable than the

simple (bi-pyramid) decahedra (s-Dh) but not with respect to other multi-twinned

nanoparticles (MTNPs) like the m-Ih in the small and intermediate size range (≈
10 nm) [2].

This picture was prevalent for around a decade or so, and although the ther-

modynamic processes of shape and morphology formation for fcc particles was

well understood by then by means of the Wulff construction [5], the more general

problem of twinned nanoparticles was not. With the help of a modified Wulff con-
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struction for multiple-twinned particles, Marks [6] proposed a modification to the

Ino decahedron which allowed for nonconvex re-entrant facets at the twin bound-

aries of the decahedron. This structure is now known as the Marks Decahedron

(m-Dh) and is energetically competitive with the m-Ih in the small size range, and

even more stable than other multiple-twinned particles like the s-Dh, the i-Dh and

the m-Ih structures in the medium and large size range.

Recently, Barnard and coworkers [7] have applied nonconvex re-entrant fea-

tures to the regular Mackay-Icosahedron (m-Ih) to obtain the so called Chui-

Icosahedron (c-Ih), a modified icosahedron that, in the smallest re-entrant re-

construction, each particle contains 12 atoms less than the regular m-Ih family

members. This type of reconstruction has been observed previously in experi-

ments with decahedral nanoparticles by Rodríguez-López et al. [8], and in many

reports by molecular dynamics (MD) simulations [9] (see also inside Ref. [7]).

Another related structure has been observed by Ascencio et al. [10] by means

of high resolution transmission electron microscopy (HRTEM) characterization.

They observed images with a contrast similar to the icosahedra or the truncated

decahedra in gold nanoparticles samples. However, they also observed pseudo-

square faces of type (100) toghether with triangular faces (111); then they pro-

posed a new structure termed the truncated icosahedron (t-Ih).

Thus, non-crystallographic atomic arrangements, like icosahedral (m-Ih) and

decahedral (s-Dh) symmetries and some variations of them have been widely sta-

blished, both from atomistic simulations [11] and first principles calculations [12]

in the small size range (1-2 nm) or experimentally [13–15], and even other MT-

NPs like the bi-m-Ih [6, 16] had been observed; being these non-crystallographic

symmetry structures lower in energy state than the fcc pristine structures, like

the truncated octahedra (t-Oh) and the cubo-octahedra (c-Oh). A plausible expla-

nation for this fact is that the observed MTNPs are in metastable states but with

lower free energy barrier from the liquid to the m-Ih phase compared to the barrier

from the liquid to the fcc crystalline phase [17].
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In this study, we present another kind of truncation made to the regular m-Ih,

that gives rise to a decahedral motif termed decmon (Montejano’s decahedron).

This decahedral structural motif presents exposed (100) and (111) facets, and

depending if the truncation is performed on one side or on two oposite sides, it

gives rise to the so called single truncated icosahedra (st-Ih) and double trun-

cated icosahera (dt-Ih) families. The results presented, by means of point energy

calculations for each member of these families, up to a considerable cluster size

(≈ 8nm), are able to discern the stability and energetic competition of the single

truncated icosahedra (st-Ih) with other MTNPs, such as regular decahedra (s-Dh)

and icosahedra (m-Ih). Also, results are presented for structural transitions as a

function of the cluster size, the identification of the surface reconstructions as a

key factor in the stability of MTNPs, and the outline for the path transformation

from the regular decahedra (s-Dh) to the Mackay icosahedra (m-Ih).

4.3 THE DECMON STRUCTURAL MOTIF

A classical approach to the examination of the shape and stability of nanocrys-

tals is based on the Wulff construction [5]. The Wulff construction describes the

equilibrium shape of crystals, given by the convex envelope of planes (perpen-

dicular to the surface normals) that minimizes the total surface energy for a given

enclosed volume. Equivalently, the distance of a surface plane from the center-

of-mass of the crystal is proportional to the surface energy of that plane. This

approach was first applied in metallic nanocrystals by Ino [2–4], that calculated

the free energy of tetrahedral, truncated octahedral, icosahedral, and decahe-

dral nanocrystals using macroscopic quantities such as cohesive, surface, twin-

boundary, and elastic strain energies.

Decahedral particles have also been discussed by Marks [6], who devised a

modification to the Wulff construction that allowed for re-entrant facets at the twin

boundaries of the decahedron, that resulted in a polyhedron more in keeping with
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experimental observations. This structure has since been referred to as the Marks

decahedron in the literature. Using this shape, Marks predicted the evolution of

morphology in microcrystals, with the particle size progress from icosahedral to

decahedral to truncated octahedral shapes.

Figure 4.6: Complete sequence of truncations to the icosahedron with order ν = 10 (not shown).

The single truncated icosahedra is denoted as q=1st-Ihν ; where q is termed the order of the trun-

cation made to the m-Ih, and the following relation ν = p +q holds. The decmon motif is evidenced

in the halfway between the icosahedron and the decahedron structures, and observe how the sur-

face areas with (100)-type and (111)-type atomic arrays, is changing after each truncation step, a

fact that certainly influences the energetic stability of these structures through the surface energy

contribution from these facets.

A more general thermodynamic theory was introduced recently by Barnard

and Zapol [19], that consists in a multiscale and shape-dependent theoretical
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model for unsupported and pristine (untwinned) nanostructures, and then present

new terms to describe planar defects and the associated edges at re-entrant an-

gles [20]. Lately, Barnard have extended their study to a more general analytical

model for the investigation of nanomaterials of arbitrary shape, and with any con-

figuration of planar defects [21].

The approach we will follow here is based in point energy calculations by the

method described above, on a wide range of particle sizes and structures.

The motif decmon (dm-Dh) in the truncated icosahedra comes from trunca-

tions made on the regular icosahedron, that starts drawing out the pentagonal

cap to a given icosahedron of order ν, where the order ν is defined as the num-

ber of atoms in one edge, including both vertexes (see the complete sequence of

truncations in Fig. 4.6; and the formal indexes definition on Fig. 4.7(a)), obtaining

in this way a single truncated icosahedron (q=1st-Ihν), where q is termed the order

of the truncation made to the m-Ih, and the following relation ν = p + q holds. If a

second truncation is made to a single truncated icosahedron, the top cap to be

eliminated is different than the one discussed above; now the top cap of the qst-Ihν

is formed by all the atoms of the decmon motif, i.e., atoms in arrays (100)-type

and (111)-type but is important to notice that the number of atoms in both upper

and lower caps is the same, independently whether the cap has been truncated

or not, thus the number of surface atoms in the caps remains constant.

Since the regular icosahedral models are built by shells of icosahedra (onion-

like atomic growth), the central pentagonal pyramid revealed by each truncation

corresponds to the succesive inner icosahedra that contains the structure. Thus,

only ν − 1 truncations are possible for the single truncation case in a ν-order

icosahedron. Also, is worth to note from Fig. 4.6, that in this process of trun-

cate the icosahedron, there appear facets with (100) and (111) arrays, and that

the area of these facets is changing in each truncation step, which is reflected in

the energetic behavior of the particle, as will be discussed later. At the very end

of the truncations and after the minimization process, what is obtained is a reg-
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ular decahedra (in the small size region) or a surface reconstructed decahedra

(at medium and large size regions). This geometrical description is emphasized

because (a) the lack or existence of a pentagonal cap (the upper part of the in-

ner icosahedron) has relevant implications on the energy stability of the truncated

icosahedra, and (b) the fact that the area of these facets is changing in each trun-

cation step, influences the energetic behavior of the particle, as will be discussed

below.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 4.7: The Montejano’s Decahedral (decmon) motif is shown in (a) side and (b) top views.

Indexes (p, q) –described in the text– are shown for this model. This atop decahedral motif is

shared by some decahedrons, although structurally different among them, i.e., by the single (st-

Ih) and double (dt-Ih) truncated icosahedra (Schoenflies symbol C5v ), as well as the decmon

subfamily (dm-Dh). A comparison of representative members of the Montejano’s decahedra family

is shown for 5st-Ih11 (c-d), the 5dt-Ih11 (e-f) and 3dt-Ih10 (g-h), and the regular dm-Dh(i-j). Models

are colored for to show structural differences among them.

In Fig. 4.7(a) we present a model that shows the main characteristics of this

particular truncation. It is formed by a central pentagonal pyramid of triangu-
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lar faces, where each one of these faces is connected to (100)-type array and

each vertex to (111)-type array and these two arrays are joint toghether by cou-

ples. This pyramid has been termed the decmon (Montejano’s decahedron) motif,

and it presents a decagonal base along with a pentagonal pyramid at the top,

Fig. 4.7(b). The model proposed in Fig. 4.7(a) is only the top view of the parti-

cle and full particles could adopt one of the four differents shapes presented in

Figs. 4.7[(c), (e), (g), and (i)]. These structures presented in Fig. 4.7 are only

geometrical constructions, based in the proposed truncations. Energy stability

calculations of these metastable states have been performed and are discussed

in the next section.

Successive truncations can be made for obtain either the single truncated (qst-

Ihν) or the double truncated (qdt-Ihν) icosahedron. We present single (Figs. 4.7(c)–

(d)) and double (Figs. 4.7(e)–(h)) truncations made to the icosahedra of order

ν = 11 and 10, respectively. All these structures form a new set of sub-families

with decahedral symmetry, the so called decmon family. We have determined

that the space group in Schoenflies notation for the proposed nanostructure cor-

responds to C5v , which is a subgroup of the icosahedral (Ih) group. In Table 4.8

we present a list of the symmetry operations for the st-Ih and dt-Ih structures,

compared with the icosahedral (Ih) and decahedral (D5h) groups.

As can be seen, the groups Ih and D5h have 120 and 20 symmetry operations,

respectively. The C5v subgroup has only 10 symmetry operations and therefore

there is a significant reduction in the symmetry of the particles, but as expected,

it has symmetry operations which are shared with the icosahedron and the deca-

hedron.

A regular icosahedron of order ν is a cluster with a central site and ν − 1 con-

centric icosahedra shells, and if observed perpendicularly to the five-fold sym-

metry axis, it has pentagonal pyramids at the top and the bottom; this picture

is contrasting with Fig. 4.7(c) where the st-Ih has a decmon pyramid (similar to

Figs. 4.7(a)), at the top and a pentagonal one at the bottom. Furthermore, when
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Table 4.8: The space group in Schoenflies crystallographic notation for the proposed single (st-

Ih) and double (dt-Ih) truncated icosahedra corresponds to C5v , which is a subgroup of both the

icosahedral (Ih) and the decahedral (D5h) groups. The order of the Ih group is 120, for the D5h

group is 20, and for the subgroup C5v is 10.

Schoenflies symbol

Symmetries Ih D5h C5v

E 1 1 1

Ci 1

Cs 15 6 5

C2 15 5

C3 20

C5 24 4 4

S5 4

S6 20

S10 24

the top caps of two opposite vertexes are eliminated from an icosahedron, the

double truncated icosahedron is obtained (dt-Ih), shown in Figs. 4.7(e) and 4.7(g),

with a decmon pyramid at each side, rotated 36◦.

As was mentioned before, there are ν − 1 possible truncations for the single

truncation case in a ν-order icosahedron; and the shape for any qst-Ihν is a

decmon pyramid by one side and a pentagonal one in the opossite vertex. Once

we have exhausted all the possible truncations, there is obtained a fully single

truncated icosahedron, whose atomic structure is an irregular decahedron, i.e.,

a decahedron whose tetrahedral units correspond for the icosahedron, such as

was defined by Marks [6].

With respect to the double truncations permissible in a ν-order icosahedron,

there are [ν]/2 for ν of order even and [ν − 1]/2 for ν of order odd. The shape

for any dt-Ih is formed by two opposite decmon pyramids joined by 10 trapezoidal

lateral faces. The final shape for the fully qdt-Ihν depends on whether the order

(ν) of the icosahedron is odd [Fig. 4.7(e)] or even [Fig. 4.7(g)].

The decmon type polyhedron (dm-Dh), Figs. 4.7(i)–(j), is a structure that re-
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sults when reflecting the decmon pyramid with respect to the base; thus being a

symmetric polyhedron with respect to the equator, constrasting with the 5dt-Ih11

(Figs. 4.7(e) vs. 4.7(i)), which despite looking similar, they represent very different

structural models.

4.4 RESULTS

The decmon truncation gives rise to two new sub-families with five-fold symme-

try and a external decahedral motif. This truncation exposes the internal facets

(100) and (111)–additional to the external (111) facets–of the regular icosahe-

dron. Once all the possible truncations in a given icosahedron have been ex-

hausted, in the small size region is obtained the regular decahedra, while in the

medium and large size regions, the decahedra suffers a surface reconstruction

that improves their stability.

Thus, the uncovering of these additional facets gives rise to phenomena such

as surface reconstructions and a delicate competition in the energy contribution

comming from the new facets (100) and (111) to the total surface energy, that

very interestingly arise some regions in the path from the icosahedron to the

decahedron (m-Ih→ st-Ih→ s-Dh) that becomes more stable than the icosahedra

at those sizes.

This structural path from the icosahedra to the decahedra by means of this

particular truncation, that gives rise to the external decahedral motif –the decmon–

and surface reconstruction on two different structures, is the main subject in this

study.
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Figure 4.8: Different truncations made to the regular icosahedra are shown, plotting energy

difference vs. mean diameter of the particle (d ∝ N1/3), where icosahedra energy is used as

reference. Line in blue reflects how the first truncation (q = 1, with symbols I) affects the energy

of the particles, being more stable to m-Ih structures after a given cluster size (d = 5.3 nm). The

marks A and B shown in the reference line (∆ E = 0) correspond to Mackay Ih of order ν = 15

and 16, respectively. From these clusters, succesive single truncations (symbols / and ◦) take

the structures to metastable states until a maximum in the stability (�) is obtained. From these

maxima points, a paulatine decaying is observed to the regular s-Dh (/) and to other closely related

decahedral structures; i.e., a partially surface reconstructed decahedron (◦). These truncation

paths offer evidence of a structural transformation from the m-Ih to the s-Dh symmetry structures.

As was mentioned from Fig. 4.6, we observe that in this process of truncate

the icosahedron, appear facets with (100) and (111) arrays, and that the area of

these atomic arrays is changing in each truncation step, a fact that is reflected in

the energetic behavior of the particle, since both type of facets (100) and (111)

contribute in a delicate balance to the total surface energy of the system. Thus,

there are zones that these energy contributions improve the stability of the st-Ih
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with respect to the icosahedron, and other zones that not, as can be observed in

Fig. 4.8.

As we have discussed it, the decmon structural motif results from a particular

truncation made to the regular icosahedron, being very different to that known as

the Chui truncation [7]. The former truncation is a very efficient way to optimize

the energy stability of metallic NPs, as can be observed in Fig. 4.8, where we

have used as energy reference the cohesive energy per atom for the icosahedral

family [22].

First, notice that from the (p, q) indexes that define a given st-Ih, we can keep

fixed q and varying p as a function of the number of atoms (N), or viceversa. But

we can also vary both (p, q) as a function of the number of atoms (N). Keeping

q constant in all the size range, notice how the first truncation (q = 1, curve with

symbols I) made to all the cluster sizes, begins with a high negative slope in

the small size region, and after a given cluster size (around d = 4.1 nm), this

truncation improves significantly their stability, being even more stable than the

icosahedra near d = 5.3 nm (N ≈ 5000 atoms). This change in the curvature is

size dependent and is only observed up to the truncation q = 3, this is shown

in Fig. 4.9 a . After that, succesive truncations only increase monotonically the

energy stability of the qst-Ih. We have identified this abrupt change in the curvature

of the nanoparticle’s energy stability with a surface reconstruction in the st-Ih-

particle, due to the strain release that the m-Ih structure accumulates as the size

grows up. Figures 4.9 a, b show the surface reconstruction in an icosahedral

nanopartcle.

Now, if succesive truncations are made to a given icosahedron size; lets say

ν = 15 (mark A in Fig. 4.8), with N = 10 179 atoms, and particle diameter of

d ≈ 6.6 nm, the indexes (p, q) would be changing (keeping the relation p + q = ν)

and what we obtain is a transformation path from the m-Ih to the s-Dh symmetry

structures (follow the symbols /), where each point represents the cohesive en-

ergy per atom for a different qst-Ih structure, but all of them coming from the same
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Figure 4.9: a) Energy per atom for the first five truncations made to the Icosahedron. The change

in slope of the curves is related to a surface recontruccion in some of the faces of the particles.

This change in slope disapear after the 3th truncation. b) and c) show an unreconstructed and a

reconstructed face of the nanoparticles. The reconstructed faces have hcp packing.

m-Ihν=15, as is shown in the sequence of Fig. 4.6. The first truncation slightly im-

proves its energy (because of the energy strain release described above), the

next four truncations take the particle below the icosahedral energy reference,

and then the next five truncations or structures are more stable than the icosahe-

dra around the respective qst-Ih cluster, reaching a maximum in ν − q = p = 5.

If the truncations are made until exhausting them, an irregular decahedron is

obtained, which after relaxation turns either into the structure with the same en-

ergy for a perfect decahedra (shown for reference the complete s-Dh family with

symbols •), or into a partially surface reconstructed decahedra, evidenced by the

last truncation for st-Ihν=16 (follow the curve marked B with symbols ◦). By partial

surface reconstruction in a nanoparticle, we mean that only occurred in half sur-

face of the decahedral particle, ending this surface with an hcp atomic packing

(...ABCB) in the surface. The other half surface (originally from the m-Ihstructure)

remains with fcc atomic packing (...ABCABC). A partial surface reconstruction
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Figure 4.10: Reconstructed decahedron. Some regions of the nanoparticle changed its packing

from fcc to hcp. This reconstruction improves their stability.

also appears for the regular decahedral NPs (see the curve •) with a mean diam-

eter particle around 7 nm, as can be infered from the change of slope for the data

of energetic stability of the decahedra (s-Dh), and the explanation of this surface

reconstruction for Au NPs is related with the release of the strain energy, accu-

mulated by the nanocrystal growth. Figure 4.10 shows a surface reconstructed

decahedral nanoparticle, it can be seen that some regions of the surface are in

an hcp arrangement.

The maxima with p = 5, reached in these two path of truncations made from

the m-Ih to the s-Dh structures (/ for m-Ihν = 15 and ◦ for m-Ihν = 16), is constant

over a given size range; i.e., it is dependent of the cluster size. Therefore, and

very interestingly, there are (size dependent) constants p1 < p2 < p3, a fact

that is related with the delicated competition between the release of the strain

energy due to the appearence of (100) vs. (111) facets in these single truncated

icosahedra.

Figure 4.11 shows how the decmon subfamilies (st-Ih, dt-Ih, and dm-Dh) com-
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Figure 4.11: Energy competence between the different sub-families that show the decmon dec-

ahedral motif, plotting the energy difference vs. mean diameter of the particle (d ∝ N1/3), where

icosahedra energy is used as reference. For reference also, we plot the curves for regular s-Dh (•),

and the maxima obtained for the single truncations (�). Data plotted with symbols � correspond

to 5st-Ih and with the symbol 4 is for the 2dt-Ih. The decmon (dm-Dh) structure does not compete

in energy with these qst-Ih and qdt-Ih structures, and is shown in the inset with symbol ×.

pete among them, where the cohesive energy for gold NPs is plotted as a function

of the cluster size (upper x-axis) or as a function of the relative particle diameter

(lower x-axis). We choose to plot representative truncations for each subfamily,

i.e., the 5th truncation for the st-Ih (�), the 2nd truncation for the dt-Ih(4), the

maxima for all the path truncations from the m-Ih–to the–s-Dh symmetries (�) and

in the inset, the energetically non-competitive dm-Dh structure family (×). For en-

ergy reference we plot the cohesive energy per atom for the icosahedral (m-Ih, •)
as well as the regular decahedral family (s-Dh, •).

We conclude from this figure, that up to a given truncation, these single trun-

cations made to the regular icosahedron improve its energetic stability on the
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resulting st-Ih, but that double truncations does not improve the energy of the

NPs, as seen for the dt-Ih and dm-Dh curves. However, we can conclude that the

decmon structural motif that results from this particular truncation made to the

regular icosahedron, is an efficient way to optimize the energy stability of metallic

NPs, if operated only for to obtain the single truncated icosahedra.

4.5 DISCUSSION

Figure 4.12 shows the potential energy surface for the transition from the icosa-

hedra to the decahedra, for a wide spectrum of cluster sizes. The solid-red line

is just the zero energy reference, and the main results described in Figs. 4.8

and 4.11 are evidenced in this figure, such that the surface reconstructions for

the truncated icosahedra (mark II in the beggining of the truncations, and the

mark IV in the exhausted truncated icosahedra, that follows the line with symbols

square-blue), and the maxima for the decmon motif (solid-blue line). The data for

the regular decahedra, presenting a partial surface reconstruction (mark V), cor-

respond to both the truncated icosahedra and the regular decahedral that after

relaxation, they become the same structure presenting surface reconstruction.

A more detailed discussion follows. First, notice that line with symbols bullet-

red correspond to the energy of the members of the regular decahedral family;

the line with symbols square-blue correspond to the exhausted truncated icosa-

hedra. In the small size region (mark III), there is not present still the surface

reconstruction in both structures, thus they are the same and the point energy

calculations coincide.
100



4.5. DISCUSSION

Figure 4.12: Lines with symbols red bullet correspond to the energy of the members of the regu-

lar decahedral family; and that the line with symbols with square blue correspond to the exhausted

truncated icosahedra. In the small size region (marked III), both structures are the same, thus the

point energy coincide. After a given cluster size, the exhausted truncated icosahedra –that at

this point is an irregular decahedra, suffers a surface reconstruction that improves their energy

stability (marked IV), therefore the energies of these families start to be separated. The regular

decahedra suffers a surface reconstruction at a bigger size, and then the structures become to be

the same again, but now the regular decahedra becomes an irregular decahedra, being the most

stable, such that now both structures present a surface reconstruction (marked V).

After a given cluster size, the exhausted truncated icosahedra that at this

structural point is an irregular decahedra, it experiences a partial surface recon-

struction that improves their energy stability (marked IV, line square-blue), there-

fore the energies of these two families (the regular decahedra and the truncated

icosahedra) start to be energetically separated. At bigger particle size, the regu-

lar decahedra (bullet-red line) also experiences a partial surface reconstruction,

thus both irregular and regular decahedra became the same structure again, as

is interpreted from the point energy calculations, but from now on this structure

will present a surface reconstruction (marked V). As was mentioned above, by
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partial surface reconstruction we mean an hcp stacking in the surface (...ABCB),

but only on one side of the decahedra–the side that is gradually discovered by

the truncations.

Second, in the way of transformation from the icosahedra to the decahedra,

there exists the truncated icosahedra structure (marked VI, being maxima all

along the blue line). The improved energetic stability on these structures, is due

to the competence of facets (100)and (111), a delicate competence that is related

with the exposed areas that these facets present, thus the total surface energy of

the particle has contributions from open (100) and closed (111) facets.

These results also evidence the magnitud of the energy potential barriers

among different structural motifs, and address important aspects of nanoparti-

cle growth. This path transition from the decahedral to the icosahedral symmetry

in gold metallic nanoparticles, gives the possibility to study phase structural tran-

sitions in NPs, as well as to connect the results with some previous studies on

the subject. Also, the surface reconstruction effects in these truncated icosahedra

and decahedra, that gives stability to these multi-twinned nanoparticles, would be

part of the eventual explanation of the very fundamental question of why there are

observed MTNPs at really big sizes (at the micro-scale) with non-crystallographic

symmetries?. Among other explanations for this fact, that some arguments can

come from kinetic growth and metastable energetic transitions; certainly one that

has to be considered is the surface reconstruction effect.

In conclusion, we have introduced the decmon decahedral motif for metallic

NPs, which identifies a new family of decahedral structures. The decmon motif

arises after proper truncations made on the icosahedron, it presents atomic facets

(100) and (111) exposed in the surface, and whose energetic competition, at a

given cluster size, make the structures very favorable from the energetic point of

view. Other outlined aspects that is worth to mention are, the finding of structural

transitions as a function of the cluster size, the appearing and competition of

surface reconstruction with faceting, and the outlined path transformation from
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the m-Ih to the s-Dh symmetry structures.
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CHAPTER 5

MECHANICAL PROPERTIES OF

DECAHEDRAL NANOPARTICLES:

NANOINDENTATION

In this chapter we present a theoretical analysis of uniaxial compression to study

malleability and hardening of gold nanoparticles with decahedral (Dh) shape, try-

ing to explain some recent nanoindentation experiments in this kind of nanopar-

ticles. It is found that an outstandingly high malleability up to 80% is present on

the Dh metal nanoparticles, and this plastic deformation is followed by the block-

age of partial dislocations by the coherent twin boundaries of the Dh nanoparticle,

resulting in significant strain hardening of the nanocrystal. The dislocation block-

ing at twin boundaries results in a large plastic deformation with an increase in

strength.

5.1 INTRODUCTION

Five-fold symmetry nanoparticles has fascinated researchers for more than half a

century [19, 27]. If we assume this structure is formed by five regular tetrahedral
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(Th) fcc units, the space is not filled and a gap of 7.35◦ is formed (Fig. 5.1,a).

This gap has to be closed by stressing the lattice of the Th units; Fig. 5.1,b shows

an experimental bright field (BF) image of a Au Dh nanoparticle. Recently the

resulting strain distribution on a Dh particle has been studied by HRTEM [28]. In

order to reproduce this strain distribution we have made theoretical calculations

that are in agreement with the strain profile reported in Reference [28]; Fig. 5.1,c

shows the calculated distribution of the εrθ component of the strain tensor in the

middle of the particle. From this distribution, we can plot εrθ for a given radius

(Fig. 5.1,e), and as we have mentioned, this results are in agreement with the

experiment.

Figure 5.1: Experimental and theoretical Dh nanoparticles. a, Geometry angular deficiency in

decahedral shape consisting of perfect tetrahedrons, the angle between adjacent (111) planes is

7.35◦ on projection of 〈110〉 orientation. b, Bright field (BF) image of a Au Dh nanoparticle. c,

WBDF image of the Dh particle shown in b with bent thickness lines revealing the intrinsic strain

in the structure. d, Calculated εrθ strain map for a gold Dh nanoparticle. e, εrθ vs. θ for a given

radius at the center of the particle. Scale bars in b and c are 20 nm.
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Weak-beam dark field (WBDF) method in the TEM [29] can be used to study

the strain field distribution on a Dh Au nanoparticle. This method allows us to fol-

low directly the evolution of the plastic deformation. The method takes advantage

of the enhancement of the contrast generated by the lattice deformation and thick-

ness when the corresponding plane is out off the Bragg condition. WBDF images

were taken using diffraction spots (111). Fringes which represent equal thickness

contours are formed; however, the presence of strain in the structure bends the

thickness fringes, as is shown in Fig. 5.1,c. How the existing strain in decahedral

nanoparticles affects their mechanical properties is one of the objectives of this

study.

The experimental studies of mechanical properties of individual nanoparticles

are of great interest for the full understanding of the mechanical behavior of the

matter at this size regime. The experimental challenges are enormous and no

direct studies have been reported. Previous experimental work on in-situ mea-

surements of mechanical properties using transmission electron microscopy has

been focused on metal nanowires [1]. Zheng et al. have studied the plasticity in

Au nanowires with a size less than 10 nm [13]. They observed that plasticity of

the Au nanowires is dominated by the partial dislocations (PDs) emitted from the

steps of the free surfaces; their results were consistent with previous theoretical

calculations [14,17]. In the case of nanoparticles, the only experimental work that

indirectly measures properties of individual nanoparticles is that of Sun et al. [18].

They used electron beam irradiation to induce mechanical stress on metal crys-

tals inside graphitic nanocontainers. They concluded that the short-lived PDs

nucleated by the formation of intrinsic stacking faults.

Recently, some interesting experimental results have been obtained by Prof.

José-Yacaman’s group (Department of Physics and Astronomy, University of Texas

at San Antonio). They have been able to directly measure some mechanical prop-

erties of Au nanoparticles, including decahedral and icosahedral geometries. The

deatails about this experiments will be discused in the next section.
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5.2 EXPERIMENTAL RESULTS

Four different types of gold particles were tested: an octahedral fcc with no de-

fects (Fig. 5.2,A) and three different particles containing twins: decahedral (Dh),

icosahedral (Ih), and a single twinned (Ts) nanoparticles (Fig. 5.2,B, C, D, re-

spectively).

Figure 5.2: TEM images of (A) octahedral nanoparticle, (B) Dh nanoparticle, (C) m-Ih nanopar-

ticle and (D) ST nanoparticle. Insets in (A-D) show scanning electron microscopy images of the

same morphologies. Scale bar in (A-D) is 20 nm and 50, 50, 100 and 25 nm in the insets respec-

tively.

In the experimental set up, Dh gold nanoparticles were deposited on a SiO2

substrate mounted them on a TEM specimen nano-indentation holder. Once a

particle with the selected orientation has been found, the indentation probe was

approached and the deformation initiates. Plastic deformation was produced by

a large force applied on the nanoparticles.

Figure 5.3 shows the experimental plots of true stress vs. true strain curves for

the four types of particles studied. The different behavior of the twinned particles
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Figure 5.3: These plots shows that all the Au nanoparticles have a yield strength in the order of

GPa, being the fcc the highest (yield strength not reached at 2 GPa) and the ST the lowest (around

0.5 GPa). From the Ih plot it can be seen that after the yield point there is strain hardening region

up to a deformation of 20% and after that yields dropping the stress around 0.7 GPa. For the Dh

the same thing happens, after the yield point there is a region of strain hardening up to 30% and

then the stress drops around the 0.7 GPa. For the ST there is also a strain hardening region after

the yield point, then the stress drops again around 30%, however, the is more strain hardening

from compression of 60% up to 80%, then stress finally drops.
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in comparison with the non-twinned particles is remarkable. Compression tests

at ambient temperature showed an extremely high strength and the malleability

coefficient for the single twinned particle is higher than 90% which is much higher

than anything previously reported. The compression yield strength reached as

high as 1.5 GPa for the icosahedron (0.7 GPa and 0.5 GPa for the decahedron

and single twin respectively) and as for the octahedron was higher than 2.0 GPa

but could not be reached with the particle size and hardware limitations. The

nanoparticles can sustain yield strengths an order of magnitude higher than the

bulk counterpart (25 MPa [30]) and considerably higher than gold thin films (390

MPa [31]). After the yield point on all the twinned particles there is an increase of

stress with an increase of strain which evidences a strain hardening mechanism

operating as the deformation advances. The fact that the fcc particle is brittle

clearly shows the role of the TBs on the malleability and in the work hardening

(strengthening of a metal by plastic deformation) of the nanoparticle.
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Figure 5.4: Before ( A) and after ( B) states of a Dh nanoparticle of a compression experiment.

The particle was compressed 80%. ( C-F) Sequence of a compression experiment of a Dh-

nanoparticle. In this case the nanoparticle was compressed ∼100% and the true stress vs. true

strain plot is shown in Fig. 5.3.

Figure 5.4 shows sequences of experimental images for Dh nanoparticles that

exhibit dramatic plastic deformation. First close-ups of the morphologies of a Dh

nanoparticle before and after a deformation experiment are shown in Fig. 5.4,A

and Fig. 5.4,B respectively (80% compression). Figure 5.4,C-F shows the de-

formation sequence of a different Dh nanoparticle, in which case it was deformed

∼ 100%; the true stress vs true strain for this Dh is shown in Fig. 5.3.

Dark-Field images (Fig. 5.5 b-g) were used to follow the stress distribution in a

Dh oriented on its five-fold axis (compressed ∼ 43%). When compression starts,

a strain field is produced and propagates through the grains; as the deformation

is progressing, dramatic changes on nanoparticle morphology can be observed.

The first (Fig. 5.5 a) and the last (Fig. 5.5 h) figures correspond to bright field

(BF) images whereas all the other correspond to weak beam dark field (WBDF)

images using a (111) diffraction spot.
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Figure 5.5: a, Setup of the experiment before deformation. From b to h is shown the evolution

of the strain field in the particle. Only a and h are BF images, the rest correspond to WBDF

images. The lower tetrahedron (pointed by the white arrow) showed almost no strain during the

whole process until picture g, at which point the compression was about 27% in the tip direction.

Scale bar are 50 nm.

As the compression takes place, strong strain field is produced at the termi-

nation of the twin boundaries at the surface of the particle, but the tetrahedral

unit in contact with the SiO2 substrate does not show any evident stress (marked

by a white arrow). However, after the Dh was compressed by 34% (Fig. 5.5 g),

the lower tetrahedron started to show some bend contour fringes, meaning that

strain initiated to build up there. This distribution of contrast is clearly the result

of the stress field distribution on the Dh nanoparticle. The morphologies of Dh

nanoparticle before and after deformation are shown in Figs. 5.6 a and 5.6 b.

Observe that the compression of the particle in the direction along the tip is

about 34.4% after deformation, and that the center of the five-fold axis has shifted

considerably after deformation. The same behavior was also observed in several

Au Dh nanoparticles with an even larger deformation.

In the case of the ST nanoparticle, the plastic deformation measured was
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Figure 5.6: (a) Initial state of the Dh naoparticle.(b) Final state after ∼35% of compression.

close to 90%. The octahedral nanoparticle (without twins) was tested with a max-

imum force of 5100 nN (2 GPa of stress) however, plastic deformation was not

possible showing a more brittle behavior with higher yield strength than the parti-

cles with defects.

5.3 THEORETICAL ANALYSIS

In order to understand the experimental data we have performed calculations of

the deformation process using molecular dynamics simulations.

5.3.1 METHOD

Molecular dynamics simulations were performed applying a frictionless inden-

ter for the deformation of Au nanoparticles, using LAMMPS package ??. The

velocity-Verlet integrator with a time step of 2 fs was used in the entire simulation,

under the NVE ensemble. The embedded atom method potential was used to

model the Au inter-atomic interactions. The whole simulation system was in a

finite non-periodic simulation cell that consists of (a) the indenter, (b) a friction-

less rigid plane as substrate where the NP is based and (c) the Au decahedron
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(∼140,000 atoms). One decahedron placed with one tetrahedron based on the

(100) planes (Fig. 5.7) and one decahedron is oriented with the five-fold sym-

metry axis in the direction of deformation (Fig. 5.9). The frictionless indenter

is represented by an infinite fictitious wall with a repulsive potential of the type

F = k ∗ (r − rc)2, with k=10.0, and r being the distance from the plane to the ap-

proaching atoms, for simulation in Fig. 5.7, and an sphere with radius of 10 nm for

the simulation in Fig. 5.9. This indenter was coupled with atomistic calculations

to study the elastic and plastic deformation during indentation on the Au nanopar-

ticles. Before mechanical loading, the structure of NPs was relaxed by means

of the conjugate gradient method, and then NPs were thermally equilibrated to

10K for 300 ps using a Nose-Hoover thermostat. Starting from the equilibrium

configuration of the nanocrystals, uniaxial compressive loading was applied. For

the simulations presented in this study, during the loading process, indentation

constant rate was 0.2 Å/ps, applied along the negative <100> direction (Fig. 5.7)

and along the five-fold symmetry axis (Fig. 5.9) respectively.

We started with a Dh Au particle and applied a uniform uniaxial force. In order

to understand the dynamics of the dislocations and stacking faults, we calculated

the centro-symmetry parameter P for each atom defined in terms of the atomic

coordination of the atoms [30]

P =
6∑

i=1

|~Ri + ~Ri+6|2 (5.1)

where ~Ri and ~Ri+6 are the vector or bonds corresponding to six pairs of op-

posite nearest neighbors in the fcc lattice. The 12 nearest-neighbors for each

atom are first determined in an undistorted bulk lattice with the orientation of the

slab. This number is a measure of the departure from centro-symmetry in the

immediate vicinity of any given atom and is used to determine if the atom is near

a defect. The centro-symmetry parameter is zero for atoms in a perfect fcc lattice,

24.9Å for surface atoms, 8.3Å for atoms located in an intrinsic stacking fault, and

2.1Å for atoms halfway between fcc and hcp sites, i.e., in a PD. These values
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assume that the gold nearest neighbor distance does not change in the vicinity of

these defects. In practice, the centro-symmetry parameter can readily distinguish

between these three types of environments, and as reference for Fig. 5.7, colors

have been assigned that permit the distinction between atoms in PDs (red with

P = 0.5∼4.0) and for atoms in stacking faults (pale-red with P = 4.0∼9.0) and for

surface atoms P is in the range from 9 to 20 (blue). Atoms in bulk fcc environ-

ment (P =0.0∼0.5) have been left out of the graph. The stress maps have been

calculated using the virial expression for stress and the atomic volume needed for

the stress per atom calculation was obtained by a Voronoi based algorithm [40].

5.3.2 RESULTS

For the nanoparticle compressed in the negative <100> direction, the sequence

of deformation is shown in Fig. 5.7, where the deformation is shown from the

initial, middle and latter stages of the deformation. Each frame shows the same

elapsed time for two different orientations of the Dh particle. Frames at the left

show the five-fold axis perpendicular to the observation, whereas frames on the

right show the particle tilted so that this observation point help us to understand

how partial dislocations emerge and their dynamics after a stage where enough

stress has been accumulated at the other sides of the twin boundaries (TB).

The indentator is coming from the left. At the beginning of the process partial

dislocations are nucleated near the surface (red atoms) and start the deformation.

The deformation front advances along the interface of two tetrahedral, parallel to

the twin boundary. Partial dislocations are produced along all the surface of the

tetrahedra affected by the indenter. In following steps, partial dislocations (PDs)

are emitted by the twin boundary and dislocations fronts glide toward the other

boundaries. Trailing PDs are produced. As the deformation advances the rate

of PDs emission increases and many dislocation reactions are produced which

result on the creation of many internal steps. It is remarkable that each twin

boundary on the undeformed region is still coherent per se. Once the PDs arrive
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at the twin boundaries that were previously unaffected, effects not reported before

in multi-twinned NPs are observed. The first one is seen on the two boundaries

that are opposite to the TB in which the stress is applied. In the side opposite to

the advance of the deformation we observe the formation of PDs with a burgers

vector 1/6a <112> on the (111) twin plane. As the dislocation glides it emits a

dislocation with burgers vector 1/2a <110> which immediately dissociates into

partial dislocations with burgers vectors 1/6a <112> and 1/6a <-112> on the (1-

11) slip plane [31–33]. As the dislocation motion continues they reach the surface

of the Dh particle and deformation continues. Dislocations are constantly created

on the two surfaces of tetrahedra a and b (see Fig. 5.7a ). Eventually nucleation

of PDs will begin in tetrahedra c and d at the TBs with a and b respectively.

When the dislocations reach the pristine TBs, these become incoherent and the

dislocation suffers a strong interaction in e.
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Figure 5.7: In these pictures, the atom color is related to the order parameter P. Atoms in red

are located in PDs, whereas atoms in different tonalities of pale red are located in stacking faults

(hcp environment). Bulk fcc atoms are not shown, and the indenter compressing the decahedron

along the x direction is sketched by a dotted line in a. Both views in a-d correspond to the same

time frame; just the one to the left has the five-fold axis parallel to the observation view, while the

one to the right corresponds to a tilt of the axis of ∼ 30◦ out of the perpendicular. In general,

the production and movement of partial dislocations are the result of the deformation. Image a

evidences the born and b the gliding of partial dislocations at early stages of deformation, which

were nucleated near the surface and move along the Th unit crystals. Images c and d show

advanced stages of the deformation. However, notice that the twin boundaries act as dislocation

barriers .

The results clearly show that many complex interactions and reactions are

possible between PDs and coherent twin boundaries. After the interactions the

boundary is displaced contributing to the deformation. As the deformation pro-

ceeds new internal surfaces are formed which contribute to the creation of new
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defects. It is important to note that the center of the Dh particles is displaced

as a result of the deformation process, as well as a plastic deformation by al-

most 40%, being both results in agreement with the experimental observation.

In order to further understand the remarkable properties of the Dh nanoparticles

we have performed an analysis of the magnitude of the stress per atom on the

decahedra at several stages of the deformation processes. Results for the same

deformation stages from Fig. 5.7 are shown in Fig. 5.8. Here we have color

coded the stress between 0 GPa (blue) and 4 GPa (red) frames to left and be-

tween 4 GPa (blue) and 20 GPa (red) frames to right and the scale in between

(green tones). Both images complement each other. Atoms with a stress below

4 GPa are represented as voids, and are mainly located at the right side of the

decahedron. Region of atoms with stress near or greater than 20 GPa can be

observed mainly at the left of the decahedron, and a remarkable fact is that there

are internal regions in the deformation front that present stress greater than 20

GPa, also represented by voids. Notice that in an advanced deformation stage

the red colored atoms remain in the front line, along the heavily deformed region,

and still the twin boundaries around the five-fold center of intersection of the five

boundaries are almost undeformed, with a much lower stress ∼10GPa. In fact

they are still coherent boundaries. The tetrahedron to the far right of the figure

which is in contact with the substrate presents virtually no stress. In other words,

the very particular geometry of the twin boundaries on Dh particles makes them

a kind of filter for stress. Though the left side of the particle is under very heavy

deformation, the right side is just slightly stressed, due to the efficient load dis-

tribution made by the twin boundaries in opposite to the deformation front. This

fact is a very unique behavior in multi-twinned metallic nanoparticles. In fact we

have calculated more advanced stages of deformation in which the deformation

front has reach the center of the particle (the five-fold symmetry point) and still

the TBs act as heavy dislocation blockers, being the last tetrahedron of the Dh

almost undeformed.
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Figure 5.8: Sequence of images showing the σxx component of the stress tensor per atom,

which is equivalent to the force per atom per unit area during the deformation of the decahedron.

Frames to the left show a range stress from 0 GPa to 4 GPa, and to the right, the range stress is

from 4 GPa to 20 GPa. In (a) stress builds up at the junction of the two tetrahedra separated by

the twin boundary where the stress is applied. We can see that there is virtually no stress on the

other 3 tetrahedra (8% compression). (b), Stress increments on the left side affecting the same

leftmost tetrahedra. Stress is still very low on the other 3 tetrahedra (12% compression). (c),

Stress starts to build up on the upper right and lower right tetrahedra at a compression of 20%.

Tetrahedra on the left are highly deformed and there are atoms with stress greater than 20 GPa.

(a), At a compression of 42% the two left tetrahedra are completely destroyed but remarkably the

tetrahedron on the right just starts to have atoms with a stress higher than 4 GPa.
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For the nanoparticle compressed in the five-fold symmetry axis, a sequence

of deformation is shown in Fig. 5.9. This reproduces the experimental situation

of Fig. 5.2. As expected, strain builds up around the contact point of the tip

(Fig. 5.9a). This is also connected to the strain previously existing on the particle.

At a strain of 20%, PDs nucleate and start to move along the TBs as shown

in Fig. 5.9b (the dislocations start at the point where |εrθ| is maximum), until

eventually they reach the surface and then move laterally creating steps at the

surface (Fig. 5.9c). This process is repeated many times and is the onset of

the plastic deformation. As the processes advances (Fig 5.9d), PDs parallel to

the TBs are formed in the central part of each tetrahedron. We can see the

multiplication of PDs with Burgers vectors 1/6a <112> on the (111) twin planes

and the formation of many new SFs parallel to the TBs (Fig. 5.9e). Finally in

Fig. 5.9f the Dh is 70% compressed with many SFs still moving in the tetrahedra.

Figure 5.9g shows the true strain vs true strain plot calculated from the simulation

which resembles the experimental curve. It has a first maximum around 0.5 GPa

and then a second maximum around 0.6 GPa. While the strain value is different

the magnitude of the stress is similar; this difference in strain can be attributed to

the difference in size of the nanoparticle used in the simulation and those used

in experiments. Fig. 5.9g also shows the correlation between the curve and the

deformation process, it can be seen that the drops of stress are directly related

with the slips of SFs parallel with the TBs.

5.4 DISCUSSION

In this chapter, we have presented a detailed study of indentation of individual

multi-twinned metallic nanoparticles. Our results indicate that Dh gold nanopar-

ticles show an outstanding high malleability. Based in our simulations we can

propose a model to explain the ability of Dh nanoparticles to retain high compres-

sive ductility while still being an strong material. The key roles are the nucleation
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Figure 5.9: (A) First stage of deformation at 13% compression. (B) First PDs nucleated near

and parallel the surface of the Dh moving along the TBs (pointed by the arrows) and eventually

reaching the surface creating a step (at 20% compression). (C) At 24% compression the same

type of PDs multiply and keep moving near the surfaces along the TBs creating more steps at the

surfaces (pointed by the arrows). (D) At this point (42%) a new type of dislocation parallel to the

twins contributes to the deformation of the Dh. We can see (pointed by arrows) that PDs move

across the entire tetrahedron subunits moving in the direction of the twin creating further steps.

(E) At this stage the stress dropped after reaching a maximum (around 48%) due to the formation

of PDs parallel to the TBs. (F) There is another drop of stress and deformation continuous until

the simulation ends at 80% of compression. (G) Calculated true stress vs true strain plot.
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of partial dislocations and its interaction with coherent twin boundaries. This has

been well established experimentally in many other cases [34]. If as result of the

stress applied by the indenter the dislocations start to glide, it means that a critical

resolved stress value on that direction has been passed. In order to describe the

dislocation nucleation and reactions, it is convenient to use the standard Thomp-

son notation [6] for the Burgers vectors. The Shockley partials generated are

1/6a<11-2> Bα, Aβ, γD and δC on the slip planes (a), (b), (c) and (d) respectively

(see Fig. 5.10). When the PDs are nucleated at the stress sites that exist on the

s-Dh nanoparticle (which are the result of the need of achieving stability at larger

sizes), they start to glide on the (111) planes and on the <112> direction. If we

assume that each tetrahedron is an fcc unit (which for nanocrystals of the size

used on this study is a very good assumption), there will be four slip planes and

six slip directions. If we use again the Thompson notation, there will be four slip

systems (primary), (conjugate), (cross) and (critical), (see Fig. 5.10). When two

tetrahedrons are joined forming a twin boundary, the geometry of the slip sys-

tems becomes symmetrical. So when the stress is applied along the TB between

a and b (Fig. 5.7a) and PDs are nucleated, they glide on symmetrical regions

on the twins. Thus the formation of Lomer-Cotrell (LC) locks become very likely.

Lomer-Cotrell locks are formed by the following reactions: a/2<011> -> a/6<112>

+ a/6<-121> and a/2<10-1> -> a/6<11-2> + a/6<2-1-1>, the combination of this

leading dislocations, gives

a/6<112> + a/6<11-2> -> a/3<110>

The resulting dislocation is along the crystal face, which is not a slip plane in

fcc. When new PDs move they have to overcome the LC locks. Therefore this is

an effective mechanism of strain hardening which operates on the middle stages

of the deformation. As deformation proceeds and the deformation front reaches

the central part of the particle. The two TBs between a and c, and between b and

d (fig 5.7c) separate two grains that are also located on asymmetrical orientation

with respect to the slip systems. Therefore when PDs are nucleated on those
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grains will also produce locks and will further contribute to stop dislocations. In

fact these TBs are the ones that more contribute to the strain hardening. Passing

these is very difficult and as a result the deformation advances significantly in the

same perpendicular direction. Finally the new PDs cross the TBs or are nucleated

at the right of these TBs and deformation advances.

In the case shown in Fig. 5.9 There are two well defined steps on the defor-

mation mechanism. The PDs will move along the coherent twin boundaries and

reach the surface producing steady state of deformation. This stage can be con-

sidered as "moderate" deformation. A next stage on the deformation is produced

at the highest point of the stress in which new SFs parallel to the original TB are

formed. This produces a catastrophic deformation which eventually leads to a

star shaped nanoparticle. Our results clearly prove that particles that do not con-

tain linear defects have much higher yield strength being more brittle than those

with twins. In contrast particles containing twins show malleability that can be as

high as 100%. The key phenomenon is the nucleation and multiplication of PDs

that sustains plastic deformation, and their interaction with coherent TBs results

in strain hardening.

5.5 CONCLUSIONS

Twenty years after the pioneering work of Gleiter was published, it has become

clear that a route to achieve one of the original goals of nanotechnology: To

develop ultra strong materials (smaller is stronger), is to introduce in a controlled

way, internal coherent boundaries in the nanocrystalline grains [37]. Controlled

introduction of coherent and stable nanostructured internal boundaries offers the

possibility for introducing outstanding ductility.

In this chapter we have demonstrated that gold twinned nanoparticles com-

bine a very high yield strength (0.5 to 2 GPa) with an outstanding malleability

when subjected to stress, deforming plastically up to 100%. In addition, the effect
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Figure 5.10: a) The Thompson tetrahedron representing the four {111} slip planes and the six

slip directions. The four principal slip systems for a crystal with its axis located in the center region

of the standard triangle are shown. The primary system (PM) is (11-1) [101], shown as Îş on the

tetrahedron. The additional slip systems, conjugate (CO), critical (CT), and cross-slip (CR), are

also shown in both the projection and the tetrahedron. b), Opened out Thompson tetrahedron.

Here the notation [110〉 is used in place of the usual notation [110] to indicate the sense of the

vector direction.
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of strain hardening can be observed, which means that particles also increase

their strength. These results open up potentially new exciting applications of

twinned nanoparticles. Shapes such as the Dh and Ih are metastable and can

be easily grown in different metals such as Au, Ag, Cu, Pd, Ir, It, and semicon-

ductors such as Ge, Si, and in diamond. In the case of metals, it is possible to

grow Dh particles in a very large range of sizes from 1 nm to 1 µm as is shown in

Fig. 5.11. In recent years, it has been possible to produce high sample rates with

at least 80% of decahedra [38]. This opens up the possibility of fabricating nanos-

tructured materials with much better mechanical properties. The large plasticity

and strengthening exhibited of the Dh nanoparticles can also be used to fabricate

ultra efficient lubricants either by themselves or by mixing them with lubricant oils.

When located between two metal surfaces and pressure is applied, nanoparticles

would fill out the surface voids and irregularities on the surfaces, thus reducing

friction losses and wear at the maximum possible level.

5.6 GENERAL CONCLUSIONS

The general conclusions of this thesis are:

The numerical solutions confirm the existing theoretical results that the main

features of photon-assisted tunneling can be described by a classical trajectory

in complex time. The probability of tunneling is governed by analytical properties

of a nonstationary field and by those of a classical trajectory in the complex plane

of time. This supports the general idea of applicability of trajectories to tunneling

in a nonstationary case.

The results obtained open a way to apply the method of classical trajecto-

ries to more complicated problems of tunneling through nonstationary barriers,

for example, to Euclidean resonance when the probability of tunneling through a

classical barrier can be not exponentially small. The preliminary numerical study
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Figure 5.11: Different sizes for Au Dh nanoparticles. Particles in (a-e) correspond to high

angle annular dark field STEM images. (f) corresponds to a SEM image formed using secondary

electrons. This evidences the possibility to grow Dh nanoparticles in a wide range of sizes. Scale

bars are 0.5 nm, 2 nm, 10 nm, 20 nm, 100 nm and 1 µm respectively.
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of Euclidean resonance is presented in the tesis.

We have introduced the decmon decahedral motif for metallic NPs, which

identifies a new family of decahedral structures. The decmon motif arises af-

ter proper truncations made on the icosahedron, it presents atomic facets (100)

and (111) exposed in the surface, and whose energetic competition, at a given

cluster size, make the structures very favorable from the energetic point of view.

We have finding structural transitions as a function of the cluster size, the ap-

pearing and competition of surface reconstruction with faceting, and the outlined

path transformation from the m-Ih to the s-Dh symmetry structures.

A way to develop ultra strong materials, is to introduce in a controlled way, in-

ternal coherent boundaries in the nanocrystalline grains. Controlled introduction

of coherent and stable nanostructured internal boundaries offers the possibility

for introducing outstanding ductility.

We have demonstrated that gold twinned nanoparticles combine a very high

yield strength (0.5 to 2 GPa) with an outstanding malleability when subjected to

stress, deforming plastically up to 100%. In addition, the effect of strain hardening

can be observed, which means that particles also increase their strength. These

results open up potentially new exciting applications of twinned nanoparticles.

The large plasticity and strengthening exhibited of the Dh nanoparticles can

also be used to fabricate ultra efficient lubricants either by themselves or by mix-

ing them with lubricant oils. When located between two metal surfaces and pres-

sure is applied, nanoparticles would fill out the surface voids and irregularities

on the surfaces, thus reducing friction losses and wear at the maximum possible

level.
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CHAPTER 6

APENDIX

6.1 FINITE DIFFERENCES

The finite difference methods have dominated computational science since

its inception and were the method of choice in the 1960s and 1970s. While

other methods, such as the finite element method and boundary element

have enjoyed recent popularity, finite difference methods are still utilized for

a wide array of computational engineering and science problems. In the fi-

nite differences methods, the derivatives are approximated by differences

between neighboring points on a grid. In a one-dimensional (1D) problem

on the x-axis with x ∈ [0, L], a finite difference method introduces a set

of grid points x0, x1, ..., xN where a sought function u(x) takes the values

u(x0), u(x1), ... , u(xN).

Let us denote as uj the values u(xj) (discretization of the function u(x)), then

uj = u(xj) = u(j∆x), j = 0, ... , N (6.1)

where ∆x = L/N.
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A basic role to estimate the error involved in finite difference approximations

of function derivatives is played by the well-known Taylor’s series expansion

f (x + ∆x) = f (x) +
n−1∑
h=1

f (h)(x)
(∆x)h

h!
+ f (n)(x + θ∆x)

(∆x)n

n!
, (6.2)

where 0 < θ < 1 and f (h) denotes the hth derivative of f . This equation can

also be written as

f (x + ∆x) = f (x) +
n−1∑
h=1

f (h)(x)
(∆x)h

h!
+ O((∆x)n), (6.3)

here O((∆x)n) represents the error of the aproximation and is proportional to

(∆x)n.

Now, if we apply 6.3 to uj gives

u(xj + ∆x) = u(xj) + u
′
(xj)∆x + O((∆x)2) (6.4)

which, by using notation 6.1, is written as

uj+1 = uj + u
′

j∆x + O((∆x)2) (6.5)

that is,

u
′

j =
uj+1 − uj

∆x
+ O(∆x). (6.6)

Hence, it follos the aproximation formula for the derivative of u, called forward

approximation,

u
′

j ≈
uj+1 − uj

∆x
. (6.7)
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Equation 6.12 implies a leading error of order ∆x . The backward approxima-

tion is inferred in analogous way, that is,

u
′

j ≈
uj − uj−1

∆x
. (6.8)

Now, let us define the central approximation. Applying Taylor’s expansion 6.3

with n = 4 yields

uj+1 = uj + u
′

j∆x + u
′′

j
(∆x)2

2!
+ u

′′′

j
(∆x)3

3!
+ O((∆x)4), (6.9)

uj−1 = uj − u
′

j∆x + u
′′

j
(∆x)2

2!
− u

′′′

j
(∆x)3

3!
+ O((∆x)4) (6.10)

Substracting 6.10 from 6.9 gives

uj+1 − uj−1 = 2u
′

j∆x + O((∆x)3) (6.11)

that is,

u
′

j =
uj+1 − uj−1

2∆x
+ O((∆x)2). (6.12)

Then, the central approximation for u′ is

u
′

j ≈
uj+1 − uj−1

2∆x
, (6.13)

with a leading error of order (∆x)2.

For the second order derivative u′′j the central approximation can be obtained

summing equations 6.9 and 6.10, and solving with respect to u′′j , that is,

u
′′

j ≈
uj+1 − 2uj + uj−1

(∆x)2 . (6.14)

The leading error of this formula is of order (∆x)2 as 6.13.
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6.2 NUMERICAL SOLUTION OF THE

SCHRÖDINGER’S EQUATION

The Schrodinger equation can be written as

i~
∂ψ

∂t
= Hψ (6.15)

where H is the Hamiltonian operator,

H = − ~2

2m
∂2ψ

∂x2 + V (x)ψ (6.16)

The formal solution of equation 6.19 is

ψ(x , t) = exp
(
− i
~

Ht
)
ψ(x , 0) (6.17)

Various schemes have been proposed to approximate the exponential func-

tion, one of the most used is the Crank-Nicholson scheme (CN). In this

scheme the exponential function is approximated by a Cayley transforma-

tion, i. e. by a rational approximation with two first degree polynomials:

ψ(t + ∆t) =
1− iH∆t/2~
1 + iH∆t/2~

ψ(t) + O((∆t)3) (6.18)

The spatial interval [xmin, xmax ] is divided into equally spaced points with

separation ∆x , resulting in a net xmin = x0, x1, ... , XJ = xmax . The solution

in time n at the point j is denoted by ψn
j . To calculate Hψn

j is necessary to

approximate the second derivative appearing in the Hamiltonian. In the CN

scheme, this approach is done using finite differences

∂2ψ

∂x2 ≈
ψn

j+1 − 2ψn
j + ψn

j−1

∆x2 (6.19)
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Then, using a matrix notation, the wave function is obtained from the wave

function at the previous time through the relation

(
I +

i∆t
~

H
)

n+1 =
(

I− i∆t
~

H
)

n (6.20)

where I is the identity matrix, and ∆t is the time step that has been used

in the discretization of the problem. As can be seen from Eq. 6.20, each

iteration of the algorithm requires the solution of a system of linear equations,

which will result in the wave function at each time step. The CN scheme has

the advantage that is unconditionally stable and preserves the norm of the

wave function, besides being of second order in ∆t and ∆x .

6.2.1 TRANSPARENT BOUNDARY CONDITIONS

The time dependent Schröedinger equation, is a parabolic type partial difer-

ential equation which is normally defined in an infinite domain with well de-

fined boundary conditions (usually the solution must tend to zero at the ends

of the domain). However, for a numerical treatment of the problem, it is nec-

essary to restrict the original problem to a finite interval. This approach re-

sults in the emergence of reflections on the boundaries that affect the wave

function dynamics and therefore the generation of errors in the calculation

of physical quantities. One solution is to increase the range of integration,

but in most cases it is necessary to use very large intervals, which increases

the computational cost and memory requirements. In order to eliminate or

at least reduce these reflections, special procedures have been developed,

allowing then to use smaller spatial domains. In these procedures special

boundary conditions are imposed, which obviously must be consistent with

the original boundary conditions on the total space. One of the best methods

is the one proposed by Ehrhardt and Arnold [1]. This method avoids the nu-
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merical reflections at the borders in addition to maintaining the unconditional

stability of the CN scheme.

By using this procedure, the resulting boundary conditions are:

ψn
1 − s(0)

0 ψn
0 =

n−1∑
k=1

s(n−k )
0 ψk

0 − ψn−1
1 , n ≥ 1, (6.21)

ψn
J−1 − s(0)

J ψn
J =

n−1∑
k=1

s(n−k )
J ψk

J − ψn−1
J−1, n ≥ 1, (6.22)

where

s(n)
j =

[
1− i

R
2

+
σj

2

]
δ0

n +
[
1 + i

R
2

+
σj

2

]
δ1

n + αje−inϕj
Pn(µj)− Pn−2(µj)

2n − 1
,

ϕj = arctan
2R(σj + 2)

R2 − 4σj − σ2
j
, µj =

R2 + 4σj + σ2
j√

(R2 + σ2
j )[R2 + (σj + 4)2]

,

σj =
2∆x2

~2 Vj , αj =
i
2

[(R2 + σ2
j )(R2 + (σj + 4)2)]

1
4 eiϕj/2, j = 0, J.

Pn denotes the Legendre polynomials (P−1 ≡ P−2 = 0) and δn
ij is the Kronecker

delta. Note that these boundary conditions are nonlocal in time, i. e., it is

necessary to know the value of the wave function on the ends of the domain

for all previous times, so the calculation time increases with each iteration.
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