
This is the Author's Post-print version of the following article: Hugo Cabrera
Ibarra, David A. Lizárraga Navarro, An algorithm based on 3-braids to solve
tangle equations arising in the action of Gin DNA invertase, Applied
Mathem atics and Computation, Volume 216, Issue 1, 2010, Pages 95-106,
which has been published in final form at:
https://doi.org/10.1016/j.amc.2010.01.007 This article may be used for
non-commercial purposes in accordance with Terms and Conditions for
Self-Archiving.

https://doi.org/10.1016/j.amc.2010.01.007

BIOINFORMATICS Vol. 00 no. 00 2008
Pages 1–5

An algorithm based on 3-braids to solve tangle equations
arising in the action of Gin DNA invertase
Hugo Cabrera Ibarra∗ and David A. Lizárraga Navarro
Division of Applied Mathematics
Instituto Potosino de Investigación Científica y Tecnológica, IPICYT
Camino a la Presa San José 2055
78216, San Luis Potosí, S.L.P., México
email: cabrera@ipicyt.edu.mx, D.Lizarraga@ipicyt.edu.mx
Received on ; revised on ; accepted on

Associate Editor:

ABSTRACT
The tangle model of Ernst and Sumners is an effective tool in the

topological analysis of enzymes, a particular application of which
aims at deducing the action mechanism of site-specific recombination
mediated by the Gin DNA invertase, an enzyme that involves 3-
string tangles. In order to determine the enzyme’s action mechanism,
the tangle model yields equations that involve tangle indeterminates
that must be solved for. While some of the available methods for
solving such equations judiciously exploit the theory of 2-tangles,
an algorithm is introduced in this note, based on 3-braid–theoretical
results in (Cabrera-Ibarra and Lizárraga-Navarro, 2008), which
allowed the authors to discover previously unreported solutions for the
action of Gin DNA invertase. More generally, the algorithm allows one
to exhaustively solve tangle equations under the assumption that two
or more rounds of recombinations are given by known 2-bridge knots.
Rather than a specific language implementation, the listing below
provides a pseudo-code description of the algorithm that permits its
implementation in a variety of computer languages and, possibly, its
inclusion into more powerful analysis software.
Contact: cabrera@ipicyt.edu.mx

1 INTRODUCTION
In DNA site-specific recombination, a recombination enzyme
attaches to a pair of DNA specific sites, breaks both and then
recombines them to different ends, thus modifying the original
topology of the molecule. Electron micrographs of recombinases
bound to DNA show the enzyme as a blob from which two or three
DNA loops emerge, depending on the enzyme. In the specific case
of Gin, three DNA loops stick out of the blob, thus making of the
theory of 3-tangles a particularly useful analysis tool.

The tangle model, introduced in (Sumners et al., 1995), was
applied under reasonable biological assumptions to model the site-
specific recombinase Tn3 resolvase as well as other enzymes such
as λ-Int (Crisona et al., 1999) and Xer (Vazquez et al., 2005). The
cases under study in those references involved actions of enzymes
on 2-tangles, a favorable situation since rational 2-tangles have
been completely classified. Nevertheless, some enzymes, such as

∗to whom correspondence should be addressed

Gin and Hin integrase recombinases, act on 3-tangles instead of 2-
tangles. In order to cope with the latter case, Vazquez and Sumners
(2004) introduced the assumption that one of the strings may be
neglected—so that the molecule may be regarded as a 2-tangle—
which allowed them to solve the action of the Gin enzyme with
inversely and directly repeated sites.

Based on the theory and results developed in (Cabrera-Ibarra,
2003), in the more recent reference (Cabrera-Ibarra and Lizárraga-
Navarro, 2008) we applied the properties of standard braid
diagrams, along with the main ideas of the tangle model, to
analyze knotted products of site-specific recombination mediated
by the Gin enzyme. As a result, for both the directly and inversely
repeated cases we obtained two solutions to the Gin action under the
assumption that the tangles involved were 3-braids. To the extent
of our knowledge, two of the four solutions reported in (Cabrera-
Ibarra and Lizárraga-Navarro, 2008) were not previously available
in the literature. Instrumental in obtaining those solutions was a
computer algorithm that allows one to solve 3-braid equations when
the product of two rounds of recombinations are equal to two known
2-bridge knots. The purpose of this paper is to give a detailed
pseudo-code listing of that algorithm, from which implementations
in a variety of computer languages may be easily derived. Our
algorithm adds to the list of powerful software implementations
developed by other researchers, among whom (Saka and Vázquez,
2002; Darcy and Scharein, 2006), and it might conceivably be
incorporated into those or other existing software realizations.

2 2-BRIDGE KNOTS AND THE TANGLE MODEL
The family of 2-bridge knots and links has been profusely studied,
to the point that it is completely classified. The classification, which
assigns a couple of integers (α, β) (satisfying some requirements)
to any 2-bridge knot b(α, β), states that two such knots b(α, β)
and b(α′, β′) are equivalent iff α = α′ and either β = β′

mod α or ββ′ = 1 mod α. As shown in Fig. 1, the standard
diagram of a 2-bridge knot may be seen as the closure, denoted by
A(T (a1, . . . , an)), of a braid T (a1, . . . , an).

The tangle model of (Ernst and Sumners, 1990) permits
the analysis of knotted and linked products of site-specific
recombination mediated by a given enzyme. Biologically, the

c© Oxford University Press 2008. 1

Hugo Cabrera Ibarra and David A. Lizárraga Navarro

a1

a2

a3

an−1

an

Fig. 1. Standard diagram of a 2-bridge knot as the A-closure of a braid
T (a1, . . . , an)

model assumes that (1) the enzyme acts by a mechanism that is
independent of phenomena such as supercoiling and the linking
of the substrate population, (2) the recombination takes place in
the interior of the enzyme ball, and (3) the substrate configuration
outside the enzyme ball remains unchanged while the strand
reconnection takes place inside the ball. Mathematically, it is
assumed that the recombination process may be modeled by tangle
addition (concatenation). The action of an enzyme on an unknotted
circular DNA molecule as substrate is schematically shown in
Fig. 2.

writhing recombination

enzyme

Fig. 2. Site specific enzyme-mediated recombination: An enzyme acts on a
writhed molecule, possibly modifying its topology.

In view of the biological and mathematical assumptions, and
considering the products obtained after several recombination
events of the Gin enzyme from experimental results, its action
mechanism may be schematically depicted as in Fig. 3.

''

''

O SS

SS

T

TTTTT

A(S + O) = Unknot A(S + T) = Unknot

A(S + 2T) = b(3, 1) A(S + 3T) = b(5, 2)

Fig. 3. The tangle model for the Gin enzyme acting on a DNA molecule

3 APPLICATION: TANGLE SOLUTIONS TO THE
ACTION OF GIN

In the case of Gin with inversely repeated sites, our algorithm
provides 32 families of solutions, which reduce to 12 if they
are required to satisfy an additional equation. Moreover, by

disregarding inessential differences, the 12 merge into 2 essentially
distinct families, one of which was previously unreported. Using
these results one may even predict the outcome of the nth
recombination. As a matter of fact, for n = 4, the predicted
recombination coincides with the product obtained in the fourth
round in an experiment involving Gin invertase enzyme for substrate
with inversely oriented gix sites (Kanaar et al., 1990). In (Cabrera-
Ibarra and Lizárraga-Navarro, 2008), the algorithm was also applied
to the Gin with directly repeated sites, leading to the discovery of 2
essentially different families of solutions, one of them previously
unreported as well.

It is worth mentioning that, although we have mainly focused on
the Gin DNA invertase enzyme, the essential ideas and the algorithm
are equally applicable for the analysis of other enzymes acting in
similar ways.

4 THE ALGORITHM
Our algorithm provides an implementable way to solve tangle
equations using the theory developed in (Cabrera-Ibarra and
Lizárraga-Navarro, 2008). The Reader may wish to consult the latter
reference for a detailed description of concepts and results alluded to
below. Specific implementations in a variety of computer languages
may easily be obtained from the listed pseudo-code, which adheres
to the conventions set forth in the now classical reference (Cormen
et al., 2001). As an additional convention, if A is an array, A[j . . k]
denotes the (finite) sequence A[j], A[j + 1], . . . , A[k]. Due to
space limitations, the procedure listing does not include any data
validation or exception handling.

4.1 Families of Procedures
The algorithm takes, via GET-P-AND-Q(A, B), two 2-bridge knots
A = b(α, β) and B = b(α′, β′), specified by two pairs of integers,
and returns two families Px,y and Qx,y , x, y ∈ N, of 3-braids
satisfying A(Px,y + Qx,y) = b(α, β) and A(Px,y + 2Qx,y) =
b(α′, β′). The algorithm proceeds by first finding all families Sx

and Ty of 3-braids having A closures equal to the given knots:
A(Sx) = b(α, β) and A(Sy) = b(α′, β′). It then computes
Px,y = Sx − Ty + Sx and Qx,y = −Sx + Ty . The remaining
procedures may be classified into five families according to the data
type they operate on or the solutions they provide:

• Basic structures: Besides basic data types, (abstract,
multidimensional) arrays are a fundamental data structure for
the algorithm; APPEND, CONCATENATE and STRIP-ZEROES

handle operations on arrays.

• Continued fractions: Continued fractions are represented as
arrays of integers or multinomials; procedures which handle
them include GET-CF-EXPANSION, APPLY-LAGRANGE-AT

and REMOVE-ZEROES.

• Braids: A braid T (a1, . . . , an) + kE is represented by
a structure B with fields fraction[B] = [a1, . . . , an]
and index [B] = k. Since families of braids (typically
indexed by indeterminates) occur in the algorithm, the
entries a1, . . . , an usually represent multinomials. The
group operation on braids—concatenation—is performed
by CONCATENATE-BRAIDS; the inverse is computed via

2

An algorithm based on 3-braids to solve tangle equations

INVERT-BRAID; and braids are transformed into their standard
form using GET-STANDARD-FORM.

• Multinomials: DETECT-SIGN and DETECT-SIGN-CHANGE.

• Solutions to the 2-bridge knot congruences: Procedures
that allow one to find 3-braids whose closures equal a
specified 2-bridge knot are SOLVE-2BK-CONGRUENCES and
GET-SOLUTION-EXPANSION.

4.2 Brief description of the procedures
Here we present a brief description of the procedures involved.

• APPEND(A, x) Appends the element x at the end of array A.

• CONCATENATE(A, B) Concatenates arrays A and B, in that
order.

• STRIP-ZEROES(F) Returns an array that possibly differs from
the array of integers F in that it contains no zero entry.

• GET-CF-EXPANSION(n, long-format) Gets the continued
fraction expansion of a rational n. The argument long-format
indicates whether the long or short format is required.

• APPLY-LAGRANGE-AT(F, k, plus-to-minus) Applies a flype
move (or Lagrange’s rule) to the continued fraction F ,
represented as an array of multinomials, at position
k ∈ {1, . . . , length[F]}. If plus-to-minus = TRUE,
the rule a + 1

−b
= a − 1 + 1

1+ 1
b−1

is applied,

so that if F = [f1, . . . , fk−1, a,−b, fk+2, . . . , fn], it
returns [f1, . . . , fk−1, a − 1, 1, b − 1,−fk+2, . . . ,−fn].
If plus-to-minus = FALSE, the rule −a + 1

b
=

−a + 1 + 1

−1+ 1
−b+1

is applied, so that if F =

[f1, . . . , fk−1,−a, b, fk+2, . . . , fn], it returns [f1, . . . , fk−1,
−a + 1,−1,−b + 1,−fk+2, . . . ,−fn].

• REMOVE-ZEROES(F) Takes a continued fraction F , given by
an array, then removes zeros and simplifies according to the
rules of continued fractions.

• CONCATENATE-BRAIDS(A, B, X) Takes braids A and B (cf.
GET-STANDARD-FORM (B, X) for the description of braids)
and concatenates (i.e., adds) them, expressing the result in
standard form.

• INVERT-BRAID(A) Inverts braid A under concatenation in
the braid group (cf. GET-STANDARD-FORM(B, X) for the
description of braids).

• GET-STANDARD-FORM(B, X) Takes a braid B, given by
T (fraction[B]) + index [B]E and puts it in the standard form
AD + kE. fraction[B] is an array of multinomials in the
indeterminates X .

• DETECT-SIGN(P, X) Takes a degree-one multinomial P =
a0 + a1X[1] + · · · + alength[X]X[length[X]] in the
indeterminates X[i] and returns a structure indicating whether
P is sign-definite and, in such case, sign(P). Sign-definiteness
is tested under the assumptions that multinomials are evaluated
and that the indeterminates take strictly positive values.

• DETECT-SIGN-CHANGE(A, I, X) Takes an array A of
multinomials in the indeterminates X and, starting from the
Ith position, determines whether there is a sign change. In such
case, the position p at which it occurred, and the sign of A[p]

are also returned. Sign-detection is based on the rules applied
by DETECT-SIGN.

• SOLVE-2BK-CONGRUENCES(α, β) Returns an array of
couples of integers [a, b] that solve the two-bridge knot
congruences: a = α and (b ≡ β mod α or bβ ≡ 1
mod α).

• GET-SOLUTION-EXPANSION(α, β, X) Returns an array of
braids. Each braid B is in standard form and satisfies
(F (B))1 ≥ 1. These braids represent the totality of solutions
to equation A(B) = b(α,−β).

• GET-P-AND-Q(A, B) Given two 2-bridge knots b(A[1], A[2])
and b(B[1], B[2]), returns braid families P and Q such that
A(P + Q) = b(A[1], A[2]) and A(P + 2Q) = b(B[1], B[2]).

4.3 Pseudo-code listing
APPEND(A, x)

1 return [A[1 . . length[A]], x]

CONCATENATE(A, B)

1 return [A[1 . . length[A]], B[1 . . length[B]]]

STRIP-ZEROES(F)

1 R ← []
2 for i ← 1 to length[F]
3 do if F [i] 6= 0
4 thenR ← APPEND(R, F [i])
5 return R

GET-CF-EXPANSION(n, long-format)

1 R ← sign(n)GETCONTINUEDFRACTION(|n|)
2 if long-format
3 thenR[length[R]] ← R[length[R]]− sign(n):
4 R ← APPEND(R, sign(n))
5 return R

APPLY-LAGRANGE-AT(F, k, plus-to-minus)

1 n ← length[F]
2 if n < 2 or k 6∈ {1, . . . , n− 1}
3 thenreturn F
4 if plus-to-minus
5 thenreturn

[F [1 . . k − 1], F [k]− 1, 1,−F [k + 1]− 1,−F [k + 2 . . n]]
6 else return

[F [1 . . k − 1], F [k] + 1,−1,−F [k + 1] + 1,−F [k + 2 . . n]]

REMOVE-ZEROES(F)

1 R ← F ; last-zero ← 3
2 while length[R] > 1 and any entry of

R[last-zero . . length[R]− 1] equals 0
3 do n ← length[R]
4 for i ← last-zero−1 to n− 1
5 do if R[i] = 0
6 thenR ← [R[1 . . i− 2],

R[i− 1] + R[i + 1], R[i + 2..n]]
7 last-zero ← max{i, 3}
8 break ¤ Break for loop; jump to 2
9 if length[R] > 1 and R[length[R]] = 0

10 thenR ← [R[1.. length[R]− 1]]
11 return R

3

Hugo Cabrera Ibarra and David A. Lizárraga Navarro

CONCATENATE-BRAIDS(A, B, X)

1 fa ← fraction[A]; fb ← fraction[B];
2 na ← length[fa]; nb ← length[fb]
3 index [R] ← index [A] + index [B]
4 if index [A] ∈ 2Z
5 thenif na ∈ 2Z
6 thenfraction[R] ← CONCATENATE(fa, fb)
7 else fraction[R] ← [fa[1 . . na − 1],

fa[na] + fb[1], fb[2 . . nb]]
8 else if na ∈ 2Z
9 thenfraction[R] ← [fa[1 . . na − 1],

fa[na]− fb[1],−fb[2 . . nb]]
10 else fraction[R] ← CONCATENATE(fa,−fb)
11 return GET-STANDARD-FORM(R)

INVERT-BRAID(A)

1 n ← length[fraction[A]]; k ← index [A]
2 F ← []
3 if k ∈ 2Z
4 thenif n ∈ 2Z
5 thenF ← [0]
6 F ← APPEND(F, [− fraction[A][n . . 1]])
7 else if n ∈ 2Z+ 1
8 thenF ← [0]
9 F ← APPEND(F, [fraction[A][n . . 1]])

10 fraction[R] ← REMOVE-ZEROES(F)
11 index [R] ← −k
12 return R

GET-STANDARD-FORM(B, X)

1 n ← length[fraction[B]]; F ← REMOVE-ZEROES(fraction[B])
2 a ← 0; ` ← 4
3 c ← DETECT-SIGN-CHANGE(F, `− 3, X)
4 while sign-changed [c]
5 do F ← REMOVE-ZEROES(APPLY-LAGRANGE-AT(
6 F, position[c]− 1, plus-to-minus[c]))
7 if plus-to-minus[c]

8 thena ← a + (−1)position[c]

9 else a ← a− (−1)position[c]

10 ` ← max{position[c], 4}
11 c ← DETECT-SIGN-CHANGE(F, `− 3, X)
12 fraction[R] ← F
13 index [R] ← index [B] + a
14 return R

DETECT-SIGN(P, X)

¤ P is assumed to be given by
¤ P = a0 + a1X[1] + · · ·+ alength[X]X[length[X]]

¤ It is assumed that sign(n) = 0 if and only if n = 0
1 s = [sign(a0), . . . , sign(alength[X])]

2 s ← STRIP-ZEROES(s)
3 if length[s] = 0
4 thenis-definite[R] ← TRUE

5 sign[R] ← 0
6 else
7 m ← min{s[1 . . length[s]]}
8 M ← max{s[1 . . length[s]]}
9 if m = M

10 thenis-definite[R] ← TRUE

11 sign[R] ← m
12 else is-definite[R] ← FALSE

13 sign[R] ← 0
14 return R

DETECT-SIGN-CHANGE(A, I, X)

1 sign-changed [R] ← FALSE

2 position[R] ← 0
3 plus-to-minus[R] ← FALSE

4 if length[A] ≤ 1
5 thenreturn R
6 create array s of size [1 . . length[A]− I + 1]
7 for i ← I to length[A]
8 do s[i− I + 1] ← DETECT-SIGN(A[i], X)
9 for i ← 2 to length[s]

10 do if is-definite[s[i]]
11 then
12 ¤ Detect first A[j] to the left of A[i] with
13 ¤ definite sign and compare
14 for j ← i− 1 downto 1
15 do if is-definite[s[j]] and sign[s[j]] 6= 0
16 then
17 if sign[s[j]] 6= sign[s[i]]
18 thensign-changed [R] ← TRUE

19 position[R] ← i + I − 1
20 if sign[s[j]] > sign[s[i]]
21 then plus-to-minus[R] ← TRUE

22 return R
23 return R

SOLVE-2BK-CONGRUENCES(α, β)

1 T ← {β}
2 if |α + β| < α
3 thenT ← T ∪{α + β}
4 if | − α + β| < α
5 thenT ← T ∪{−α + β}
6 for ` ← −|β| to |β|
7 do b ← α

β
` + 1

β

8 if b ∈ Z and |b| < |α|
9 thenT ← T ∪{b}

10 create array R of size [1 . . length[T]]
11 for i ← 1 to length[R]
12 do a[R[i]] ← α
13 b[R[i]] ← T [i]
14 return R

GET-SOLUTION-EXPANSION(α, β, x)

1 C ← SOLVE-2BK-CONGRUENCES(α, β)
2 R ← []
3 for i ← 1 to length[C]
4 do
5 F ← a[C[i]]/ b[C[i]]
6 for j ← 1 to 2
7 do
8 if j = 1
9 thenfraction[S] ← GET-CF-EXPANSION(F, FALSE)

10 else fraction[S] ← GET-CF-EXPANSION(F, TRUE)
11 fraction[S] ← APPEND(fraction[S], sign(F)x)
12 index [S] = length[fraction[S]] mod 2
13 R ← APPEND(R, S)
14 return R

4

An algorithm based on 3-braids to solve tangle equations

GET-P-AND-Q(A, B)

1 Xs ← GET-SOLUTION-EXPANSION(A[1], A[2], a)
2 Ys ← GET-SOLUTION-EXPANSION(B[1], B[2], b)
3 create array R of size [1 . . length[Xs], 1 . . length[Ys]]
4 for i ← 1 to length[Xs]
5 do for j ← 1 to length[Ys]
6 do Q ← CONCATENATE-BRAIDS(INVERT-BRAID(Xs[i]),

Ys[j], [a, b])
7 P ← CONCATENATE-BRAIDS(Xs[i],

INVERT-BRAID(Q), [a, b])
8 X[R[i, j]] ← Xs[i]
9 Y [R[i, j]] ← Ys[j]

10 P [R[i, j]] ← P
11 Q[R[i, j]] ← Q
12 return R

5 CONCLUSIONS
An algorithm was developed to exhaustively solve pairs of 3-braid
equations in the sense that, given two 2-bridge knots K and L, find
all 3-braids P and Q such that A(P + Q) = K and A(P + 2Q) =
K, where “+” denotes braid concatenation and A(·) denotes “A
closure.” Equations of this class typically arise in applications of
the tangle model to deduce or analyze the action mechanism of
several enzymes. In the particular case of the action of Gin DNA
invertase, the algorithm has allowed the authors to find solutions
previously unreported in the literature. What is more, the algorithm
might also prove useful as a computational tool in applications that
extend beyond the determination of the action of enzymes, such as
in research or education in braid and tangle theory. Finally, the
description of the algorithm using pseudo-code does not enforce
coding in any specific language, which enhances its potential for
different implementations.

ACKNOWLEDGEMENTS
This research was partially funded by grants from CONACYT, Fdo.
Inst. 66912 S-3124 and 66912 S-3122, as well as CONCYTEG No.
06-02-K117-84.

REFERENCES
Cabrera-Ibarra, H. (2003). On the classification of rational 3-tangles. J. Knot Theory

Ramifications, 12(7), 921–946.
Cabrera-Ibarra, H. and Lizárraga-Navarro, D. (2008). Braid solutions to the action of

the gin enzyme. (Submitted, manuscript available from the authors).
Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2001). Introduction to Algorithms.

The MIT Press, 2nd edition.
Crisona, N., Weinberg, R., Peter, B., Sumners, D., and Cozzarelli, N. (1999). The

topological mechanism of phage λ integrase. Journal of Molecular Biology, 289,
747–775.

Darcy, I. and Scharein, R. (2006). TopoICE-R: 3D visualization modeling the topology
of dna recombination. Bioinformatics, 22(14), 1790–1791.

Ernst, C. and Sumners, D. (1990). A calculus for rational tangles: Applications to DNA
recombination. Math. Proc. Cambridge Philos. Soc., 108, 489–515.

Kanaar, R., Klippel, A., Shekhtman, E., Dungan, J., Kahmann, R., and Cozzarelli, N.
(1990). Processive recombination by the phage Mu Gin system: Implications for the
mechanisms of DNA strand exchange, DNA site alignment, and enhancer action.
Cell, 62, 353–366.

Saka, Y. and Vázquez, M. (2002). TangleSolve: topological analysis of site-specific
recombination. Bioinformatics, 18(7), 1011–1012.

Sumners, D., Ernst, C., Cozzarelli, N., and Spengler, S. (1995). Mathematical analysis
of the mechanisms of DNA recombination using tangles. Quart. Review Biophysics,
28, 253–313.

Vazquez, M. and Sumners, D. (2004). Tangle analysis of Gin site-specific
recombination. Math. Proc. Cambridge Philos. Soc., 136(3), 565–582.

Vazquez, M., Colloms, S., and Sumners, D. (2005). Tangle analysis of Xer
recombination reveals only three solutions, all consistent with a single three-
dimensional topological pathway. Journal of Molecular Biology, 346, 493–504.

5

