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Abstract

This paper provides further Lyapunov results for the exponential stability of
linear continuous time difference system involving discrete and distributed
delays. We consider such a class of systems in the case when the discrete
and distributed delays are independent thus completing the recent Lyapunov
results obtained for the case when the delays are dependent.
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1. Introduction and problem formulation

Consider the following class of linear continuous time difference system:

x(t) = Ax(t− h) +

� 0

−τ

G(θ)x(t+ θ)dθ, (1)

where A is a Schur stable matrix, G(θ) is a matrix function with piecewise
continuous bounded elements defined in the interval [−τ , 0], while h and τ

are positive independent scalars.
Such systems can be found as delay approximations of the partial differ-

ential equations for describing the propagation phenomena in excitable media
[1], in the stability analysis of additional dynamics introduced by some sys-
tem transformations [5, 8, 9], in delay-dependent stability analysis of neutral
type systems [7], and in the stability analysis of some difference operators in
neutral type functional differential equations [2, 6].
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In [11] (see also [10]), motivated from some limitations on the application
of existing Lyapunov approaches [3, 4, 12, 13, 14] to the stability analysis
of systems of the form in (1), we introduced a new Lyapunov-Krasovskii
approach for properly addressing the stability of (1) in the special case when
the discrete and distributed delays are equal, i.e., h = τ . For such a case,
we derived delay-dependent stability conditions providing less conservative
results than the existing ones in the literature based on matrix norms [2, 6].
In the current paper we extend the Lyapunov results in [11] for the more

general of case (1) where the discrete delay h and the distributed delay τ are
completely independent. We derive exponential stability conditions which
are delay-independent w.r.t. discrete delays and delay-dependent w.r.t. dis-
tributed delays, a result certainly expected from Schur property of the matrix
A, but that, to the best of our knowledge, it has not been derived by means
of Lyapunov approaches in the literature. On the other hand, we show that
the corresponding exponential estimates for the solutions depend on the par-
ticular values of both the discrete and distributed delays.
The remaining part of the paper is organized as follows: Section 2 presents

some preliminaries. After revising some facts about solutions, the Lyapunov-
Krasovskii theorem in [11] is modified for the case of system (1). The main
results are given in section 3. Examples illustrating the results are provided
in section 4 and concluding remarks end the paper in section 5.

2. Preliminaries

2.1. Solutions and stability concept

Let r = max {h, τ} . In order to define a particular solution of (1) an
initial function ϕ(θ), θ ∈ [−r, 0) , should be given. We assume that ϕ ∈
C ([−r, 0) ,Rn) , the space of continuous vector functions mapping [−r, 0) to
Rn equipped with the uniform convergence norm �ϕ�r = supθ∈[−r,0) �ϕ(θ)� .
For a given initial function ϕ ∈ C ([−r, 0) ,Rn) there exists a unique

solution x(t, ϕ) of (1) defined for all t ≥ 0, see [2]. This solution presents jump
discontinuities which distribution on time can be very difficult to describe in
the general case. Clearly, at t = 0 the jump discontinuity is explicitly given
by

∆x(0) � x(0)− ϕ(−0) = Aϕ(−h) +

� 0

−τ

G(θ)x(t+ θ)dθ.

When τ = h, the jump discontinuities of the solutions occur at time instants
multiple of the delay h, see [11] for more details.
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In the following we adopt this concept of exponential stability.

Definition 1. [2] System (1) is said to be exponentially stable if there exist
α > 0 and µ > 0 such that any solution of (1) satisfies the inequality

�x(t, ϕ)� ≤ µe−αt �ϕ�r ,∀t ≥ 0. (2)

2.2. Lyapunov-Krasovskii conditions

For a given t ≥ 0, we define the natural state xt(ϕ) = x(t + θ, ϕ), θ ∈
[−r, 0) . When the initial function is irrelevant we simply write x(t) and xt
instead of x(t, ϕ) and xt(ϕ). Based on the discontinuities of the solutions
it results that xt(ϕ) ∈ PC ([−r, 0) ,Rn) , the space of piecewise continuous
bounded functions mapping the interval [−r, 0) to Rn. As a consequence, in
a Lyapunov-Krasovskii functional setting, the functionals should be defined
on PC ([−r, 0) ,Rn) .
The following result is a modification of the Lyapunov-Krasovskii theorem

introduced in [11] to the case of system (1) where the discrete and distributed
delays are independent.

Theorem 1. Consider system (1) and assume that matrix A is Schur stable.
System (1) is exponentially stable if there exists a functional
v : PC ([−r, 0) ,Rn) → R such that t → v(xt(ϕ)) is differentiable and the
following conditions hold:

1. α1
� 0
−r
�ϕ(θ)�2 dθ ≤ v(ϕ) ≤ α2

� 0
−r
�ϕ(θ)�2 dθ, for some 0 < α1 ≤ α2,

2. d
dt
v(xt(ϕ)) ≤ −β

� 0
−r
�x(t, ϕ)�2 dθ, for some β > 0.

Moreover, for any initial function ϕ ∈ C ([−r, 0) ,Rn) , the corresponding
solution x(t, ϕ) satisfies the exponential upper bound (2) with

µ = η
�
1 + γ +

γ

heε

�
and α = min

�
β

2α2
, ν

�
− ε. (3)

Here ε ∈
�
0,min

�
β

2α2
, ν
��

, γ =
�	

α2
α1

rτ
� 

supθ∈[−τ,0] �G(θ)�

�
, while η > 0

and ν > 0 are such that
��Ak

�� ≤ ηe−ν(kh), k = 0, 1, 2, . . .
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3. Main Results

3.1. A general case

Proposition 2. Let system (1) be given and assume that matrix A is Schur
stable. System (1) is exponentially stable if there exist positive definite ma-
trices W0,W1 and Q such that

τ



sup
θ∈[−τ,0]

�G(θ)�
�2

<
λmin(W1)

λmax(P + PAW−1
0 ATP )

, (4)

with P the unique positive definite solution of the Lyapunov matrix equation

ATPA− P = − (W0 + τW1 +Q) . (5)

Furthermore, an exponential estimate for the solutions of (1) is given by (2)
where µ and α are as given in (3) and

α1 = λmin(0.5Q), (6)

α2 = λmax


ATPA+W0

�
+ λmax(τW1) + λmax(Q), (7)

β = λmin(0.5r
−1Q), (8)

where r = max {h, τ} .

Proof. Consider the following functional candidate:

v(ϕ) =

� 0

−h

ϕT (θ)
�
ATPA+W0

�
ϕ(θ)dθ +

� 0

−τ

ϕT (θ) (θ + τ)W1ϕ(θ)dθ

+0.5

� 0

−r

ϕT (θ)
�
Q+ (θ + r) r−1Q

�
ϕ(θ)dθ, (9)

where W0,W1, Q are any positive definite matrices and P is the unique pos-
itive definite solution of the Lyapunov matrix equation (5).
The functional satisfies the following inequalities:

α1

� 0

−r

�ϕ(θ)�2 dθ ≤ v(ϕ) ≤ α2

� 0

−r

�ϕ(θ)�2 dθ,

with 0 < α1 ≤ α2 determined by (6) and (7), respectively.
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The time derivative of the functional (9) along solutions of (1) is

dv(xt)

dt
= xT (t)

�
ATPA+W0 + τW1 +Q

�
x(t)− 0.5xT (t− r)Qx(t− r)

−xT (t− h)
�
ATPA+W0

�
x(t− h)−

� 0

−τ

xT (t+ θ)W1x(t+ θ)dθ

−0.5r−1
� 0

−r

xT (t+ θ)Qx(t+ θ)dθ.

By using the Lyapunov matrix equation (5) and substituting the right-hand
side of (1) we obtain

d

dt
v(xt) = xT (t− h)ATPAx(t− h) + 2xT (t− h)ATP

� 0

−τ

G(θ)x(t+ θ)dθ

−0.5xT (t− r)Qx(t− r)− 0.5r−1
� 0

−r

xT (t+ θ)Qx(t+ θ)dθ

−xT (t− h)
�
ATPA+W0

�
x(t− h)−

� 0

−τ

xT (t+ θ)W1x(t+ θ)dθ

+

�� 0

−τ

G(θ)x(t+ θ)dθ

�T
P

�� 0

−τ

G(θ)x(t+ θ)dθ

�
.

The Jensen integral inequality implies

�� 0

−τ

G(θ)x(t+ θ)dθ

�T
P

�� 0

−τ

G(θ)x(t+ θ)dθ

�

≤ τ

� 0

−τ

xT (t+ θ)GT (θ)PG(θ)x(t+ θ)dθ.

As a consequence we arrive at the following upper bound for the derivative:

d

dt
v(xt) ≤ −

� 0

−τ

�
xT (t− h) xT (t+ θ)

�
N (θ)

�
x(t− h)
x(t+ θ)

�
dθ

−0.5xT (t− r)Qx(t− r)− 0.5r−1
� 0

−r

xT (t+ θ)Qx(t+ θ)dθ,

where for θ ∈ [−τ , 0]

N (θ) =
�

1
τ
W0 −ATPG(θ)

−GT (θ)PA W1 − τGT (θ)PG(θ)

�
.
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If the inequality (4) holds then

λmin(W1)− τλmax(P + PAW−1
0 ATP )



sup
θ∈[−τ,0]

�G(θ)�
�2

> 0,

which in turn implies

W1 − τGT (θ)
�
P + PAW−1

0 ATP
�
G(θ) > 0, ∀θ ∈ [−τ , 0] .

The above inequality is equivalent to N (θ) > 0,∀θ ∈ [−τ , 0] , by Schur
complement. Thus, if (4) holds then

d

dt
v(xt) ≤ −β

� 0

−r

�x(t+ θ)�2 dθ,

with β > 0 given by (8), and the exponential stability of (1) follows.
By calculating the positive constants α1, α2 and β from the expressions

(6),(7) and (8), respectively, the exponential estimate for the solutions di-
rectly follows from Theorem 1.

Remark 1. Notice that the Lyapunov functional (9) has an additional term,
the one involving matrix Q and delay r = max {h, τ} , to the functional used
in [11] for addressing the case when h = τ . This additional integral term
allows us to derive the desired discrete delay-independent/distributed delay-
dependent stability conditions. On the other hand, the exponential decay rate
α and the µ-factor in the exponential estimate for the solutions depend on
both the discrete and distributed delays.

Remark 2. When τ = h, the inequality (4) becomes

h



sup
θ∈[−h,0]

�G(θ)�
�2

<
λmin(W1)

λmax(P + PAW−1
0 ATP )

while the Lyapunov matrix equation (5) takes the form

ATPA− P = − (W0 + hW1 +Q) .

Since W0,W1 and Q are free positive definite matrices then by choosing Q =
εI, ε > 0, and letting ε → 0 we directly get the stability conditions given in
[11].

Remark 3. As a consequence of the above observation, we have that the best
possible result that can be obtained for the case of independent discrete and
distributed delays by using the new stability conditions (4) and (5) it is the
one obtained for the case when the delays are equal.
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3.2. A particular case
Now let us consider the following perturbed system:

x(t) = (A+∆A)x(t− h) +
m�

j=1

(Gj +∆Gj)

� 0

−τj

x(t+ θ)dθ, (10)

where 0 < h is the discrete delay and 0 ≤ τ1 ≤ τ 2 ≤ · · · τm are the distributed
delays, A,Gj ∈ Rn, j = 1, 2, . . . ,m, are known matrices and ∆A,∆Gj, j =
1, 2, . . . ,m, are unknown constant matrices such that

�∆A� ≤ δ and �∆Gj� ≤ ρj, j = 1, 2, . . . ,m. (11)

System (10) is a particular case of (1), where the kernel G(θ) is a piecewise
constant matrix, see [9] for details in the case of pure integral delay systems.
The particular perturbed case of (10) when there exists only one integral

delay term and the discrete and distributed delays are equal was investigated
in [11].
Our problem here is to derive conditions for the exponential stability

of (10) for all perturbations ∆A,∆Gj , j = 1, 2, . . . ,m, satisfying (11) and
without any assumption between the discrete and distributed delays.
Following [11], we assume that matrix A+∆A remains Schur stable for

all perturbations ∆A satisfying (11).

Proposition 3. The perturbed system (10) is exponentially stable for all per-
turbations satisfying (11) if there exist positive definite matrices
P,Q,Wj , j = 0, 1, . . . ,m, and a positive constant λ such that the following
inequalities hold:

N n
j − λN p1

j − λN p2
j > 0, (12)

ATPA+ λδ (2 �A�+ δ) I +W0 +
m�

j=1

τ jWj +Q− P < 0, (13)

λI − P > 0, (14)

where for j = 1, 2, . . . ,m,

N n
j =

� 1
mτj

W0 −ATPGj

−GT
j PA Wj −mτ jG

T
j PGj

�
, (15)

N p1
j =

�
(�A�+ δ) ρj + δ �Gj�

�� I 0
0 0

�
, (16)

N p2
j =

�
(�A�+ δ) ρj + δ �Gj�+mτ jρj



2 �Gj�+ ρj

�� � 0 0
0 I

�
. (17)
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Moreover, for any initial function ϕ ∈ C ([−r, 0) ,Rn) , r = max {h, τm} , the
corresponding solution x(t, ϕ) of the perturbed system (10) satisfies the expo-
nential upper bound (2) with µ and α given by (3), while

γ =
�	

α2
α1

rτ
���m

j=1



�Gj�+ ρj

��
,

α1 = λmin(0.5Q), (18)

α2 = λmax(P ) (�A�+ δ)2 +
m�

j=1

λmax (τ jWj) + λmax (Q) , (19)

β = λmin(0.5r
−1Q). (20)

Proof. Consider the following functional candidate:

v(ϕ) =

� 0

−h

ϕT (θ)
�
(A+∆A)T P (A+∆A) +W0

�
ϕ(θ)dθ (21)

+
m�

j=1

� 0

−τj

ϕT (θ) (θ + τ j)Wjϕ(θ)dθ

+0.5

� 0

−r

ϕT (θ)
�
Q+ (θ + r) r−1Q

�
ϕ(θ)dθ,

where Q,Wj, j = 0, 1, . . . ,m, are any positive definite matrices and P is the
positive definite solution of the Lyapunov inequality

(A+∆A)T P (A+∆A)− P < −


W0 +
m�

j=1

τ jWj +Q

�

. (22)

From (21) we get the following inequalities for the functional:

α1

� 0

−r

�ϕ(θ)�2 dθ ≤ v(ϕ) ≤ α2

� 0

−r

�ϕ(θ)�2 dθ,

where 0 < α1 ≤ α2 are determined by (18) and (19), respectively.
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The time derivative of the functional (21) along solutions of (10) is

dv(xt)

dt
= −xT (t− h)

�
(A+∆A)T P (A+∆A) +W0

�
x(t− h)

−
m�

j=1

� 0

−τj

xT (t+ θ)Wjx(t+ θ)dθ

+xT (t)

�

(A+∆A)T P (A+∆A) +W0 +
m�

j=1

τ jWj +R+ rS

�

x(t)

−0.5xT (t− r)Qx(t− r)− 0.5r−1
� 0

−r

xT (t+ θ)Qx(t+ θ)dθ.

Taking into account the inequality (22) and substituting the right-hand side
of (10) we get

dv(xt)

dt
≤ −xT (t− h)W0x(t− h)− 0.5r−1

� 0

−r

xT (t+ θ)Qx(t+ θ)dθ

+


m�

j=1

(Gj +∆Gj)

� 0

−τj

x(t+ θ)dθ

�T
P


m�

j=1

(Gj +∆Gj)

� 0

−τj

x(t+ θ)dθ

�

+2xT (t− h) (A+∆A)T P


m�

j=1

(Gj +∆Gj)

� 0

−τj

x(t+ θ)dθ

�

−
m�

j=1

� 0

−τj

xT (t+ θ)Wjx(t+ θ)dθ − 0.5xT (t− r)Qx(t− r).

By using the Jensen inequality the following inequality:


m�

j=1

(Gj +∆Gj)

� 0

−τj

x(t+ θ)dθ

�T
P


m�

j=1

(Gj +∆Gj)

� 0

−τj

x(t+ θ)dθ

�

≤ m

m�

j=1

τ j

� 0

−τj

xT (t+ θ) (Gj +∆Gj)
T
P (Gj +∆Gj) x(t+ θ)dθ
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holds. As a consequence we get the following upper bound for the derivative:

dv(xt)

dt
≤ −

m�

j=1

� 0

−τj

�
xT (t− h) xT (t+ θ)

� �
N n
j −N p

j

� � x(t− h)
x(t+ θ)

�
dθ

−0.5r−1
� 0

−r

xT (t+ θ)Qx(t+ θ)dθ − 0.5xT (t− r)Qx(t− r),

where N n
j , j = 1, 2, . . . ,m, are defined by (15) and

N p
j =

�
0 ATP (∆Gj) + (∆A)T PGj + (∆A)T P (∆Gj)

∗ GT
j P (∆Gj) + (∆Gj)

T
PGj + (∆Gj)

T
P (∆Gj)

�
.

Here ∗ denotes the symmetric term of the symmetric matrix.
Using Lemma 7 in the appendix of [11] for bounding the terms involving

perturbation in the matrices N p
j we obtain, after simple but tedious calcula-

tions, the following upper bound for the derivative:

dv(xt)

dt
≤ −0.5r−1

� 0

−r

xT (t+ θ)Qx(t+ θ)dθ − 0.5xT (t− r)Qx(t− r)

−
m�

j=1

� 0

−τj

�
xT (t− h) xT (t+ θ)

� �
N n
j − λN p1

j − λN p2
j

� � x(t− h)
x(t+ θ)

�
dθ

where N p1
j ,N p2

j , j = 1, 2, . . . ,m, are respectively defined by (16) and (17)
and λ > 0 is such that (14) holds. Clearly, if (12) holds then

dv(xt)

dt
≤ −β

� 0

−r

�x(t+ θ)�2 dθ,

with β > 0 given by (20), and the exponential stability of the perturbed
system (10) follows. Noting that the inequality (13) subject to the restriction
(21) implies (22) the stability result is concluded.
Finally, after respectively computing the positive constants α1, α2 and

β from the expressions (18),(19) and (20), the exponential estimate for the
solutions of the perturbed system (10) is directly obtained from Theorem 1
by observing that, in this case,

sup
θ∈[−τ,0]

�G(θ)� ≤
m�

j=1



�Gj�+ ρj

�
.

10



In the nominal case, when (10) does not have uncertainty

x(t) = Ax(t− h) +
m�

j=1

Gj

� 0

−τj

x(t+ θ)dθ, (23)

sufficient conditions for the exponential stability can be directly obtained
from Proposition 3.

Corollary 4. System (23) is exponentially stable if there exist positive defi-
nite matrices P,Q,Wj , j = 0, 1, . . . ,m, such that for j = 1, 2, . . . ,m,

N n
j =

� 1
mτj

W0 −ATPGj

−GT
j PA Wj −mτ jG

T
j PGj

�
> 0,

where P is the unique positive definite solution of the matrix Lyapunov in-
equality

ATPA+W0 +
m�

j=1

τ jWj +Q− P < 0. (24)

Furthermore, for any initial function ϕ ∈ C ([−r, 0) ,Rn) , r = max {h, τm} ,
the corresponding solution x(t, ϕ) of (23) satisfies the exponential upper bound
(2) with µ and α given by (3), while

γ =

��
α2

α1
rτ

� m�

j=1

�Gj�
�

,

α1 = λmin(0.5Q),

α2 = λmax(P ) �A�2 +
m�

j=1

λmax (τ jWj) + λmax (Q) ,

β = λmin(0.5r
−1Q).

Remark 4. Analogously to Remarks 1,2 and 3, the stability conditions in
Proposition 3 and Corollary 4 are discrete delay-independent/distributed
delay-dependent, the exponential estimate for the solutions depends on both
the discrete and distributed delays and the best possible result is obtained for
the case when τm = h.
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4. Examples

Example 1. Let us consider the following system:

x(t) = Ax(t− h) +G

� 0

−τ

x(t+ θ)dθ, (25)

where

A =

�
0.2 1
−0.1 −0.2

�
.

System (25) has been studied in [11] when the discrete and distributed delays
are exactly the same, i.e., h = τ . It was shown there that (25) is exponentially
stable for h = τ = 1 and any matrix G ∈ R2×2 such that �G� < 0.2082, a
result that improve the one obtained by combining similarity transformations
and the known norm inequality �A�+ τ �G� < 1, see [11] for details.

By using our results in Proposition 2 and Remark 3 we directly conclude
that (25) is exponentially stable for τ = 1, any matrix G ∈ R2×2 satisfying
�G� < 0.2082, and any arbitrary discrete delay h. In particular, this result
is obtained from the inequality (4) and matrix equation (5) for the following
positive matrices: W0 = 2.3I2,W1 = 2.7I2 and Q = 0.0018I2.

We now use Proposition 2 for computing exponential estimates for the
solutions of (25). To this aim let us select W0 = W1 = Q = I2 and τ = 1.
For these values we get that (25) is exponentially stable for any arbitrary
discrete delay h and any matrix G ∈ R2×2 satisfying �G� < 0.1426.

For h1 = 1 and h2 =
√
2 the inequalities

��Ak
�� ≤ ηje

−νj(khj), j = 1, 2, k =
0, 1, 2, . . . , respectively holds with η1 = η2 = 1.05, ν1 = 0.0073 and ν2 =
0.0051. Direct calculations derived from Proposition 2 lead to the following
exponential decay rates α and µ−factors:

µh1 = 65.7162 and αh1 = 0.0036,

µh2 = 77.9516 and αh2 = 0.0026.

Example 2. Consider the following perturbed system:

y(t) = (A+∆A) y(t− h) + (G1 +∆G1)

� 0

−τ1

y(t+ θ)dθ

+(G2 +∆G2)

� 0

−τ2

y(t+ θ)dθ, (26)

12



where

A =

�
0 1
0.01 0

�
, G1 =

�
−1.1 −0.2
−0.1 −1.1

�
, G2 =

�
0.1 0
2 0.1

�
,

matrices ∆A,∆G1,∆G2 are unknown satisfying

�∆A� ≤ 0.1, �∆G1� ≤ 0.1, �∆G2� ≤ 0.1 (27)

The induced matrix norms are �A� = 1, �G1� = 1.2511 and �G2� = 2.005.
Hence, even in the nominal case, the known inequality �A�+�2

j=1 τ j �Gj� <

1 cannot be applied to conclude stability of (26).
On the other hand, since matrix A is Schur stable then we can use our

results to get stability conditions for (26) in both nominal and perturbed cases.
For simplicity of the calculations and clarity of the presentation let us fix

τ1 = 0.15 and search for τ 2 ≥ τ1 such that (26) is exponentially stable.
By using Corollary 4 we found that the nominal system (26) is expo-

nentially stable for all constant discrete delay h > 0 and distributed delays
0 ≤ τ 1 ≤ 0.15 ≤ τ 2 ≤ 0.48.

By using Proposition 3 we found that the perturbed system (26) is expo-
nentially stable for all perturbations ∆A,∆G1,∆G2 satisfying (27), all posi-
tive constant values of the discrete delay h, and distributed delays 0 ≤ τ1 ≤
0.15 ≤ τ 2 ≤ 0.37.

Now let us select τ1 = 0.15 and τ 2 = 0.3, for which the perturbed system
(26) is exponentially stable, and compute exponential estimates corresponding
to different values of the discrete delay h.

For h1 = 0.5 and h2 =
√
3 the inequalities

���(A+∆A)k
��� ≤ ηje

−νj(khj), j =

1, 2, k = 0, 1, 2, . . . , respectively hold with η1 = η2 = 1.2, ν1 = 0.1740 and
ν2 = 0.034. Direct calculations derived from Proposition 3 lead to the follow-
ing exponential decay rates α and µ−factors:

µh1 = 4.2197× 103 and αh1 = 0.0034

µh2 = 7.8527× 103 and αh2 = 9.84× 10−4.

5. Conclusions

In this paper, additional results on the exponential stability of linear
continuous time difference systems including discrete and distributed delay
terms are presented. The contribution extends previous results in several
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ways. Firstly, it presents Lyapunov-Krasovskii conditions for the exponen-
tial stability of such class of systems in the more general case when the dis-
crete and distributed delays are independent. Secondly, by using the general
Lyapunov-Krasovskii result, several Lyapunov functionals are constructed for
providing stability and robust stability conditions which are discrete delay-
independent/distributed delay-dependent. Finally, a constructive procedure
for deriving exponential estimates for the solutions that depend on both the
discrete and distributed delays is given.
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