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1 Introduction

Since the dynamic fluid-flow model for describing the behavior of the trans-
mission control protocol (TCP) in computer networks was introduced in [10],
several control structures have been proposed as active queue management
(AQM) to allow the routers to assist TCP management for congestion avoid-
ance. Thus, proportional (P), proportional-integral (PI) and H∞ AQM con-
trollers have been proposed based on the linearization of the model in [3] and
[12]. It was shown there that such controllers improve the performance ob-
tained with standard AQM controllers (e.g. based on Random Early Detection
(RED)).
Due to their simplicity, the P and PI controllers proposed in [3] has become

a reference for the development of new AQM controllers as they are currently
implemented in the Network Simulator [11]. However, such controller designs
are based only on sufficient conditions for closed-loop stability of the lineariza-
tion and, therefore, they do not provide the set of all locally stabilizing P and
PI gain values. The knowledge of the set of stabilizing controllers results im-
portant for the designer on determining some performance objectives as well
as on considering system and controller perturbations.
In the recent paper [7], the complete set of P controllers that locally stabi-

lizes the equilibrium point of a simplified version of the model was obtained.
Despite this, to the best of the author’s knowledge, there are no specific re-
sults for the problem of finding the complete set of PI stabilizing controllers,
and one of the aims of this chapter is to focus on it.
In this chapter, we first develop a local stability analysis of a simplified

version of the model introduced in [10] for a PI control-based AQM strategy.
Necessary and sufficient conditions for stability of the closed-loop linearized
system are derived. More explicitly, for a given set of network parameters
(round-trip time, number of TCP loads and link capacity), we obtain the
complete set of PI controllers that locally stabilizes the equilibrium point.
As a subsidiary result, the complete set of robust stabilizing controllers is
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also obtained. Then, we suggest a delay-dependent controller for a simplified
version the model based on the feedback control laws which assign a finite
closed-loop spectrum to delay-systems. Stability conditions for a numerically
safe implementation of the controller are provided. It is shown that for any
given network parameters there is always a delay-dependent controller for
which a safe implementation can be obtained.
The chapter is organized as follows: Section 2, introduces the fluid-flow

mathematical model. The main results for PI controllers are presented in sec-
tion 3. Section 4 is devoted to the design of delay-dependent AQM controllers
and their practical implementation. We provide numerical examples where
appropriate, and conclude in section 5.

2 Fluid-Flow Mathematical Model

We consider the dynamic fluid-flow model introduced in [10] for describing
the behavior of n homogeneous TCP-controlled sources and a single congested
router (

ẇ(t) = 1
τ(t) −

1
2
w(t)w(t−τ(t))
τ(t−τ(t)) p(t− τ(t)),

q̇(t) = n(t)w(t)τ(t) − c,

where w(t) denotes the average of TCP windows size (packets), q(t) is the aver-
age queue length (packets), τ(t) = q(t)

c +τp is the round-trip time (secs) where
τp represents the propagation delay, c is the link capacity (packets/secs), n(t)
is the number of TCP sessions, and p(·) is the probability of a packet marking
which represents the AQM control strategy.
For the study of PI AQM controllers we approximate these dynamics by

assuming that n(t) ≡ n and τ(t) ≡ τ are constants as in [3, 7, 12]. As a result
we have the following simplified dynamics:½

ẇ(t) = 1
τ −

1
2τw(t)w(t− τ)p(t− τ),

q̇(t) = n
τ w(t)− c.

(1)

For a desired equilibrium queue length q0, the equilibrium (w0, q0, p0) of (1)
is determined by

w20p0 = 2 and w0 =
τc

n
.

In order to get basic results on delay-dependent AQM controller for more gen-
eral cases, we will consider in section 4 the following dynamic approximation
of (1):

ẇ(t) = 1
τ −

1
2τw

2(t)p(t− τ),
q̇(t) = n

τ w(t)− c.
(2)

System (2) approximates the local behavior of (1) about the equilibrium under
the assumption w0 À 1, see for instance [7] for a mathematical justification.
Our investigation will rely on linearization of the above systems around the

equilibrium. Thus, stability will mean local stability near equilibrium, where
for simplicity we use stability for the asymptotic stability concept.
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3 Proportional-Integral AQM Controller

In order to design a stabilizing PI controller via the linearization of (1) about
the equilibrium point, we introduce σ(t) =

R t
0
(q(s)− q0) ds, and consider the

augmented system ⎧⎨⎩ ẇ(t) = 1
τ −

1
2τw(t)w(t− τ)p(t− τ),

q̇(t) = n
τ w(t)− c,

σ̇(t) = q(t)− q0.
(3)

We now consider a PI controller of the form

p(t) = kpq(t) +
kp
I
σ(t), (4)

where kp
I 6= 0. It can be easily verified that the closed-loop system (3)-(4) has

a unique equilibrium point (w0, q0, σ0), where σ0 = I
kp
(p0 − kpq0) .

The linearization of the closed-loop system (3)-(4) about the equilibrium
(w0, q0, σ0) is

ξ̇(t) = Aξ(t) +Bξ(t− τ), (5)

where ξ(t) =

⎛⎝ w̃(t)
q̃(t)
σ̃(t)

⎞⎠ , A =

⎛⎝− n
τ2c 0 0
n
τ 0 0
0 1 0

⎞⎠ , B =

⎛⎝− n
τ2c −

τc2

2n2 kp −
τc2

2n2
kp
I

0 0 0
0 0 0

⎞⎠ ,

w̃(t) = w(t)− w0, q̃(t) = q(t)− q0, and σ̃(t) = σ(t)− σ0.
Assume for the moment that it is possible to find controller’s gains that

make (5) stable. Then, it follows that all solutions of (3) starting sufficiently
close to (w0, q0, σ0) approach it as t tends to infinity.
It is clear that one cannot investigate the stability of (5) for the delay-free

case (τ = 0). This is a particular property of TCP/AQM network systems,
where the delay value (round-trip time) cannot be considered zero. Thus, the
approach developed in [13], which is based on first determining the set of PI
stabilizing controllers for the delay-free system, cannot be directly applied to
determine the set of PI stabilizing controllers for (5).

3.1 Stability Analysis

It is well known that (5) is stable if and only if the characteristic function

f(s) = s3 +
n

τ2c
s2 +

∙
n

τ2c
s2 +

c2

2
kp

µ
s+

1

I

¶¸
e−τs

has no zeros with nonnegative real parts [2].

Theorem 1. System (5) is stable if and only if the controller gains (I, kp)
belong to the stability region Φ(n,τ,c), plotted in Fig. 1, whose boundary in the
controller gains space (I, kp) is described by



4 Daniel Melchor-Aguilar

∂Φ(n,τ,c) =

(
(I, kp) : I=

ω cos(ωτ) + n
τ2c sin(ωτ)

ω
¡

n
τ2c (1 + cos(ωτ))− ω sin(ωτ)

¢ ,
kp=

2nω

c2

³
ω cos(ωτ) +

n

τ2c
sin(ωτ)

´
, ω ∈ (0, ω∗)

¾
,

where ω∗ is the solution of

tan
³ωτ
2

´
=

n

τ2cω
, ω ∈

³
0,
π

τ

´
. (6)

Proof. First observe that since kp
I 6= 0, s = 0 is not a zero of f(s). Suppose

that f(s) has a pure imaginary zero s = jω 6= 0. Then, a direct calculation
yields ⎧⎨⎩kp =

2n
c2 ω

¡
ω cos(ωτ) + n

τ2c sin(ωτ)
¢
,

I =
ω cos(ωτ)+ n

τ2c
sin(ωτ)

ω( n
τ2c

(1+cos(ωτ))−ω sin(ωτ))
.

(7)

This parameterization defines a countable number of curves in the parameter
space (I, kp) and each one of them is obtained by varying ω in the following

intervals: (0, ω∗0) ,
³
ω∗k,

(2k+1)π
τ

´
and

³
(2k+1)π

τ , ω∗k+1

´
, k = 0, 1, 2, ..., where

ω∗k is the solution of

tan
³ωτ
2

´
=

n

τ2cω
, ω ∈

µ
2kπ

τ
,
(2k + 1)π

τ

¶
. (8)

Since (8) is a transcendental equation we look directly for a numerical solution.
This can be found by plotting the two functions tan

¡
ωτ
2

¢
and n

τ2cω , see Fig.
2. These curves divide the plane (I, kp) into a set of connected domains. From
the argument principle is easy to show that for all (I, kp) values inside the
open domain Φ(n,τ,c), bounded by the curve obtained by varying ω in the
interval (0, ω∗0) and the coordinate axis kp = 0, the function f(s) has no zeros
with strictly positive real part.

Remark 1.When τ → +0, the stability region Φ(n,τ,c) tends to the whole first
quadrant of the plane (I, kp). In other words, for small round-trip time (delay),
arbitrarily PI controller’s gains locally stabilizes the equilibrium point of (3).

Proof. From parametrization (7) it is not difficult to see that I(ω)→ τ2c
2n +

τ
2

and kp (ω) → kp (0) = 0 when ω → +0. On the other hand, it holds that
I(ω) → +∞ and kp (ω) → kp (ω

∗) = 2n
c2 (ω

∗)2 when ω → −ω∗. From the
above and the fact that ω∗ → +∞ when τ → +0, see Fig. 2, the remark
follows.

Remark 2. Given nominal network parameters (n0, τ0, c0) and unknown net-
work parameters (n, τ , c) satisfying

n ≥ n0, τ ≤ τ0 and c ≤ c0, (9)

then Φ(n0,τ0,c0) ⊆ Φ(n,τ,c) holds.
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Fig. 1. Stability Regions Φ(n,τ,c) and Φ(n0,τ0,c0) for (n0, τ0, c0) and (n, τ , c) satis-
fying (9).

tan(ωτo/2)
no/(τ2

ocoω)

tan(ωτ/2)
n/(τ2cω)

π/τ0 π/τ ω
0
*  ω* 0 

Fig. 2. Numerical solutions ω∗0 and ω∗ of (6) for (n0, τ0, c0) and (n, τ, c) satisfying
(9).

Proof. The remark follows directly from Proposition 2 in [3], which states that
stabilizing against the largest expected values of τ and c, and the smallest
expected value of n yields a robust stabilizing controller.
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Fig. 3. Stability region Φ(n0,τ0,c0) for n0 = 40, τ = 0.7 and c = 300

3.2 Example

Let us consider nominal network parameters n0 = 40 TCP sessions, τ0 = 0.7
secs and c0 = 300 packets/secs. As real network parameters we take the follow-
ing values: n = 50 TCP sessions, τ = 0.533 secs and c = 250 packets/secs. In
Fig. 3 we plot the stability region Φ(n0,τ0,c0) in the controller’s gains space. In
Fig. 4 we plot the response of q(t) for the two pairs of gains A = (7, 3.5×10−4)
and B = (15, 4.5×10−4) inside of Φ(n0,τ0,c0), see Fig. 3. The simulations were
carried out on the nonlinear model (3). The operation point was chosen as
q0 = 200 packets.
It can be seen that the robust stabilization is reached. On the other hand,

the responses obtained for the two different pairs of gains show the impor-
tance of knowing the complete set of controller parameter values that locally
stabilize the closed-loop system.

4 Delay-Dependent AQM Controllers

As it can be seen from the previous section, a PI AQM stabilizing controller
results in a closed-loop system governed by a retarded delay differential equa-
tion for which controlling its spectrum is not practically feasible. When in
addition to stabilization, a desired closed-loop dynamic is required, delay-
dependent controllers could result more convenient if certain knowledge of
the previous dynamic information and delay are assumed. A delay-dependent
AQM controller has been recently proposed in [4]. However, the well-known
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Fig. 4. The response of q(t) for the A and B gains, respectively.

instability mechanism of the numerical implementation of such kind of con-
trollers was not addressed.
In this section, we suggest the design of a delay-dependent AQM controller

based on the feedback control laws proposed by Manitus and Olbrot in [5]
for finite spectrum assignment of time-delay systems, and provide stability
conditions for a safe numerical implementation of the controller.

4.1 Finite Spectrum Assignment

Let us briefly discuss the feedback control laws for finite spectrum assignment
of time-delay systems and their numerical implementation problem.
Consider the linear system with delayed input

ẋ(t) = Ax(t) +Bu(t− h), (10)

where h > 0, x(t) ∈ Rn and u(t) ∈ Rm represent the state and control vectors,
and A,B are real constant matrices of appropriate dimensions. The control
law

u(t) = x(t) +K

Z 0

−h
e−A(h+θ)Bu(t+ θ)dθ (11)

assigns a finite spectrum to the closed-loop system (10)-(11) which coincides
with the spectrum of the matrix A+ e−AhBK, see [5].
The practical value of such a result is limited by the instability mechanism

of the numerical approximation of the integral term in (11), see [1, 8, 14] and
the references therein. It has been shown there that if the integral is approx-
imated by a finite sum, then the closed-loop system may become unstable if
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the controller (11) is not internally stable. So, the internal stability of (11) is
an essential condition for its successful implementation.
Motivated from the limitations imposed by the internal stability require-

ment of (11), the introduction of a low-pass filter (implicitly and/or explicitly)
in the control loop has been proposed as remedy to overcome the implemen-
tation problems, see for instance [9]. However, such a solution could make the
implementation unnecessarily complicated in the case of those parameters of
(10) for which the internal dynamics of (11) are stable, see [6].
The internal dynamics of (11) are described by the following integral delay

system:

z(t) = K

Z 0

−h
e−A(h+θ)Bz(t+ θ)dθ. (12)

The characteristic function associated to (12) is

f(s) = det

µ
I −K

Z 0

−h
e−A(h+θ)Besθdθ

¶
.

Here I denote the identity matrix of appropriate dimension. The following
result provides simple-to-check stability conditions for (12).

Proposition 1. System (12) is stable if

max
θ∈[−h,0]

°°°Ke−A(h+θ)B
°°°h < 1. (13)

Proof. First observe that for any h > 0 and any s with Re(s) ≥ 0 the following
inequality holds: ¯̄̄̄

1− e−hs

s

¯̄̄̄
≤ h.

Now assume that f(s) has a zero, s0, with nonnegative real part. Then there

exists a complex vector ν 6= 0 such that
³
I −K

R 0
−h e

−A(h+θ)Bes0θdθ
´
ν = 0.

It follows that

1 ≤ max
θ∈[−h,0]

°°°Ke−A(θ+h)B
°°° ¯̄̄̄1− e−hs0

s

¯̄̄̄
≤ max

θ∈[−h,0]

°°°Ke−A(θ+h)B
°°°h.

The last inequality contradicts the condition of the proposition.

4.2 Controller Design

As mentioned before, in order to get basic results for more general cases we
develop the controller design for the linearization of the simplified model (2).
The linearization of (2) about the equilibrium (w0, q0, p0) is

ξ̇(t) = Aξ(t) + bp̃(t− τ), (14)
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where ξ(t) =
µ
w̃(t)
q̃(t)

¶
, A =

µ
− 2n

τ2c 0
n
τ 0

¶
, b =

µ
− τc2

2n2

0

¶
, w̃(t) = w(t) − w0,

q̃(t) = q(t)−q0 and p̃(t) = p(t)−p0. The corresponding control law (11) which
assigns a closed-loop finite spectrum to (14) has the following form:

p̃(t) = k1w̃(t) + k2q̃(t)−
τc2

2n2
k1

Z 0

−τ
e
2n
τ2c

(τ+θ)p̃(t+ θ)dθ

−τ
2c3

4n2
k2

Z 0

−τ

³
1− e

2n
τ2c

(τ+θ)
´
p̃(t+ θ)dθ. (15)

Here we assume that the whole state is accessible and that network parameters
are known. The closed-loop ideal spectrum is determined by the zeros of the
polynomial

m(λ) = λ2 +

∙
2n

τ2c
+

τc2

2n2
k1e

2n
τc +

τ2c3

4n2
k2

³
1− e

2n
τc

´¸
λ+

c2

2n
k2.

The internal dynamics of (15) are governed by the integral delay system

z(t) = − τc2

2n2
k1

Z 0

−τ
e
2n
τ2c

(τ+θ)z(t+θ)dθ−τ
2c3

4n2
k2

Z 0

−τ

³
1− e

2n
τ2c

(τ+θ)
´
z(t+θ)dθ.

(16)
Thus, a successful implementation of (15) can be achieved if there exists a
pair (k1, k2) such that both the polynomial m(λ) and system (16) are stable.
The polynomial m(λ) is stable if and only if

k2 > 0 and
2n

τ2c
+

τc2

2n2
k1e

2n
τc +

τ2c3

4n2
k2

³
1− e

2n
τc

´
> 0. (17)

From (13) we have that (16) is stable if

max
θ∈[−τ,0]

τ2c2

2n2

¯̄̄
e
2n
τ2c

(τ+θ)k1 +
τc

2

³
1− e

2n
τ2c

(τ+θ)
´
k2

¯̄̄
< 1. (18)

In Fig. 5 we plot the stability regions determined by (17) and (18) in the plane
(k1, k2).We denote by Rs the intersection of the two regions. The intersection
points of the lines determining the boundaries of the stability regions with

the coordinate axis are defined by a = − 8n3

τ4c4

µ
1

1−e
2n
τc

¶
, b = − 4n3

τ3c3 e
− 2n
τc ,

d = − 4n2

τ3c3

µ
1

1−e
2n
τc

¶
, e = 2n2

τ2c2 e
− 2n
τc and f = 2n2

τ2c2 . The following relationship

a

b
=

d

−e =
2

τce−
2n
τc

³
1− e

2n
τc

´
holds, and taking into account that w0 À 1 we have a < d and b > −e.
Remark 3. For a given set of network parameters (n, τ , c), there is always a
pair (k1, k2) of controller’s gains for which both system (16) and the ideal
closed-loop system (14)-(15) are stable.
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Fig. 5. Stability regions of (16) determined by (18) (- -) and for the ideal closed-loop
stability determined by (17) (-). Rs denotes the intersection of the two regions.

4.3 Example

Consider the nominal network parameters considered in section 3. In Fig. 8 we
plot the corresponding stability region Rs. In Fig. 9 we present the closed-loop
response of q(t) with the approximated control law (15) (by using a trapezoidal
rule) for a (k1, k2) = (0.07, 0.6 × 10−3) inside of Rs. For these particular
values the ideal closed-loop eigenvalues are λ1 = −1.55 and λ2 = −0.43.
The operation point was chosen as q0 = 300 packets with initial condition
q(0) = 400 packets. The simulations were carried out on the nonlinear system
(2).

5 Conclusion

In this chapter we addressed the local stability of two AQM controllers sup-
porting TCP flows. We first considered a PI controller for which we derived
necessary and sufficient conditions for closed-loop stability of the lineariza-
tion. This result provides the complete set of PI AQM controllers that locally
stabilizes the equilibrium point in counterpart with the existing works in the
literature which give only estimates of this set. Then, we proposed a delay-
dependent AQM controller based on feedback control laws for finite spectrum
assignment of time-delay systems. Stability conditions for a numerically safe
implementation of the controller are given. Numerical examples that illustrate
the capabilities of the results for determining performance objectives and for
sensitivity analyses with respect to perturbations of the system and controller
have been performed.
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