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México
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In this paper we analyze a nonlinear dynamical system that describes the kinetic

mechanism between tectonic plates on the crust’s earth undergoing stick slip move-

ment. The analysis includes friction effects and an empirical friction law of granite

rocks. The phenomena involved in the analyzed model are Stribeck’s effect; Dieterich-

Ruina’s law; and properties of media as a presence of fluids and deformation. Out-

comes arise from analysis of the system, which is conceived by a single slider block

of one degree of freedom over a roughness and lubricated surface and formulated by

space-state model through a differential equation system. We describe the oscillatory

behavior for both continuous and switched conditions in terms of the mathematical

solutions. Periodic and aperiodic orbits exist under a driven force and even more com-

plex behavior. A relationship is given between the stability of the switched system

and the parameter related with the oscillation frequency associated to characteristic

longitude of displacement of slider. A necessary condition for stability in an unsta-

ble regime is deduced, under certain conditions in terms of frictional and seismic

parameters of the analyzed model. Thus, we show the stationary and aperiodic solu-

tions that describe the friction mechanism inducing earthquakes with a complex and

nonlinear behavior.
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Many systems in nature can depict very complex dynamical phenomena. One

of them is relative to the earthquakes mechanism, which can be mathematically

modeled by spring blocks in order to capture the behavior stick slip. It should be

noted that the friction is a resistance force that introduces nonlinear dynamics

into natural systems. Thus, the effect of a friction force (namely Dieterich-

Ruina’s law) related to displacement between existing geological faults suggests

that nonlinear behavior can be depicted. We propose a model describing this

phenomenon. The model departs from classical 2nd order differential equation

but the Dieterich-Ruina’s laws induces an additional dimension to the model.

That is, the proposed model is a 3rd order dynamical system with interesting

dynamical properties. It is our believe these results can open transdisciplinary

studies about earthquakes dynamics.

I. INTRODUCTION

Study of earthquakes and seaquakes is of great scientific interest due to complex charac-

teristics and behaviors that are observed in nature2,4,17,33,47–49. Complexity of earthquake’s

mechanism arises from the amount of variables and processes involved at the displacement

of tectonic plates18; its dynamics is considered a nonlinear oscillatory process,9,11,13–17 how-

ever, the nature of such phenomena suggests the friction is related to the nonlinear complex

behavior. Typically, earthquakes occur in the upper ten kilometers of the earth’s crust

and they arise as a consequence of frictional instabilities that cause stress, which is accu-

mulated by large-scale plate motions over periods of hundreds of years, therefore sudden

stick-slip events are generating showing recurrence with irregular slip during large events

and pronounced asperities in the slip distribution3,4. Since seminal contribution by Brace

and Byerlee (1966)5, the stick-slip is proposed as a possible earthquakes mechanism and

a great amount of spring-block models have arisen, as the simplest analogy to represent

the earthquakes mechanism on a single fault or a collection faults.1,3,7–10,12,16,19,22–24 These

models consist of an elastically coupled chain of blocks in contact with a moving rough sur-

face, in which the friction laws are introduced and obey Newton’s laws of motion. Since the

spring-block model by Burridge and Knopoff (1967)7(Figure 1), others have been proposed;

e.g., Carlson et al. (1994)3 and Pelletier (2000)24. A classical approach at most such models
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Figure 1. Burridge and Knopoff model7 it consists of N identical blocks of mass M moving over

a rough surface and coupled through coil springs of constant Kp to a driving plate with constant

velocity vp, representing the other side of the fault, and Kc is the spring coefficient between blocks.

of the friction laws is to lump it in a single term with static features, more recently Dragoni

and Santini (2010)13and Amendola and Dragoni (2013)11 introduce a static or dynamic law

of friction for purely elastic and viscoelastic cases, respectively. Another is related to the

mathematical framework, which is related to dynamical systems with stochastic boundary

conditions.

An additional fact is the nature of the frictional instabilities and the conditions under

which they occur25,26 have been determined experimental work. Classical experimental

approaches have allowed to model the friction terms without dynamical properties, other

approaches model the friction as dynamical phenomenon27–29,39, actually, some of friction

laws are obtained directly from laboratory experiments, explain fault instabilities associ-

ated to friction with dynamical features25,30,31. In regard to the dynamical system with

stochastic initial or boundary conditions; Brown et al. (1991)6 and Nakanishi (1991)21 used

an approach based on automata cellular with deterministic dynamics and included initial

randomness in the block position. Otsuka (1992)32 assigned values to the spring constants

and frictional parameters with random stochastic fluctuations. Bak and Tang (1989)33

presented an automata cellular model bases on stochastic dynamics, Barriere and Turcotte

(1991)34, and Ito and Matsizaki (1990)35 introduced randomness incrementing the stress

randomly time until some uniform threshold have been reached, in those models a site is

chosen randomly during each time step and a unit of stress is added. When a site has four
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units of stress accumulated on it, the site becomes unstable and redistributes stress to its

nearest neighbors.24

We propose a system for the generation and analysis of a model nonlinear deterministic.

We introduce heterogeneities in the medium (i.e., matrix of the rock surrounding the fault

surface) in a way which allows us to study (i) the model dependence on heterogeneity; and

(ii) the presence of fluid between surfaces in contact with stick slip friction and shear stress.

Our main contribution is the analysis of a dynamical model, that introduce friction terms

associated to phenomena described by Dieterich-Ruina25,26 and Stribeck36, such analysis in-

volve that the vector field representing the system is hybrid. The model takes into account

three issues (i) the evolution of frictional stress depending of grade of asperities contact as

a consequence of the layer of fluid between the surfaces, (ii) a state variable (i.e., the renew

of contact with asperities, from Dieterich-Ruina’s law of friction), and (iii) a switching in

the system. Moreover, our proposal analysis to considers the presence of an external force

driving the system attributable to vibrations of neighboring faults. These features make

more realistic the description of movement between the tectonic plates.

The ideas in manuscript are presented in the following order. The Section 2 comprises an

explanation of the model including the motion equation, friction effects and the dimensionless

system of differential equations. The analysis of the system is in Section 3, where for

existence, uniqueness, equilibrium points and stability are discussed for both cases: the

homogeneous and the perturbed scenarios so also for continuous and switched cases. Finally,

the section 4 has the manuscript with concluding remarks.

II. SPACE-STATE MODEL

In order to model the relative movement of tectonic blocks, with normal stress constant

along time, we consider a viscoelastic system with single degree of freedom undergoing

frictional slip. This system is represented by a slider block of mass M , which slips over a

rough lubricated surface with speed v and is connected by a stiffness spring k to a plate

point where motion is enforced at constant speed v0 (Figure 2). It should be noted that the

connected plate point represents the other side of the plate.
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Figure 2. Single degree of freedom slider block model14,24 is a slider in a viscoelastic medium with

dynamic viscosity coefficient β3, coupled by spring with coefficient k to a driving plate with constant

velocity v0 that represents the other side of plate. The slider of mass M is moving with relative

velocity v over a rough and lubricated surface under a combined friction law: Dieterich-Ruina,

Stribeck, Coulomb and viscous friction36.

The motion equation of the system is given by the following equation

Mü + F (u̇, θ) + ku = τ(t), (1)

where u = x− v0t is the relative horizontal displacement of the block respect to the tectonic

plate which has constant velocity v0; and u̇ is the relative velocity of the displacement

between block and plate where ẋ = v, ü stand for the block acceleration and θ represents

sliding history effects50.

The first term of Equation (1) contains the inertial forces, the second, F (u̇, θ) = F (v, θ),

includes all friction effects that will be discussed in the next section, and third is the force

due to the deformation of the spring with stiffness k. The term τ(t) is an external force that

disturbs the system.

The relative position u is available from measurements using Global Positional System (GPS)

data37 and nominal values of the parameters k and M can be derived from geophysical and

geological observations. Friction forces F (v, θ) in plates are unknown during a seismic event,

although have been studied in laboratory experiments5,25,38,39.
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A. On the friction effects

Up today, we know that the friction effects at moderated and low velocities have a

strong influence on the dynamical behavior of mechanical systems36,40. A model based on

slider block of mass M is essentially a mechanical representation. Henceforth, our analysis

includes, among others, the friction components in mechanical systems, which is a function

for increasing bounded velocity by an upper limit equal to the static force Fmax and a lower

limit equal to the Coulomb force Fc. Such friction effects are induced by displacement of

granite blocks in the presence of fluids. At velocity close to zero, a friction Fc predominates

between two dry surfaces but, complementarily, at high velocity a hydrodynamic friction Fv

becomes dominant. The minimal friction is reached after intermediate velocity depending on

the pressure of the fluid between the solid surfaces in presence of asperities, thus the static

friction has been overcome, the friction decreases exponentially with respect to velocity

and is called Stribeck friction (denoted with Fs). When the motion direction changes the

frictions Fc and Fs change of sign and are defined for all velocities except to zero. These

friction forces are represented as follows:

Fc(u̇) = β1sign(u̇) Fs(u̇) = β2e
−µ/u̇/sign(u̇) Fv(u̇) = β3u̇. (2)

where real positive constants β1, β2, β3, and µ are determined as follows: β1 is equal to the

product of normal force and dynamic frictional coefficient of granite; β2 = Fmax−β1; β3 is a

scalar representing the dynamical viscosity coefficient of fluid due to the energy dissipation

of fluid between the surfaces ; and µ denotes the slip constant in the Stribeck friction Fs.

Because of the slider block velocity v is relative to velocity of plate v0, we consider negative

direction when velocity of the block is lower than the moving plate and it is positive on the

contrary. Thus, the function sign(u̇) = sign(v − v0) : R → {−1, 0, 1} at equation (2) is

defined by

sign(v) =



















−1, if v < v0,

0, if v = v0,

1, if v > v0.

(3)

Friction forces Fc and Fv combined case (Figure 3(a)) show linear dependence on the ve-

locity, whereas when being combined with the Fs, the behavior of friction is nonlinear with

respect to velocity (Figure 3(b)).
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Figure 3. Velocity versus Friction forces in mechanical systems: (a) Coulomb friction plus viscous

and (b) combination of Coulomb, viscous and Stribeck friction, from static level, nonlinear behavior

is observed. (c) Frictional response versus displacement with the friction law of Dieterich-Ruina14.

When the sliding velocity v0 increase instantaneously 4v, the frictional stress, initially in τ0,

increases to τ0 +A, following by a constant sliding velocity in v0 +4v where the frictional stress

decreases exponentially B until τ0− (A−B), L is the characteristic distance required to renew the

contact population (from the variable θ to a new steady-state θ0).

Extensive investigations on the stick-slip phenomenon in rocks have been performed due to

the relevance into the mechanism of crustal earthquakes. Such investigations have disclosed

that friction depends on sliding historical effects. This characteristic is exhibited by rocks

and denoted by θ in geosciences argot and θ is interpreted as a measure of the average age

of load-supporting contacts between sliding surfaces42,50. In order to capture such historical

effects on friction terms, we include the dependence on rate and state of the frictional con-

stitutive relations, named Fdr(v, θ), for the single slider block (Figure 2). Fdr(v, θ) describes

accurately the experimental results from rocks mechanics27,28 obtained over a range of slip

speeds v. It should be noted that the force associated to Fdr(v, θ) is opposite to the relative

displacement of the granite plates and considers the renovation of asperities between them;

such opposition is not included in above friction terms. Although Fdr(v, θ) has been iso-

lately used to model earthquake dynamics (cf. with recent reports14,15), the combination of

Fdr(v, θ), Fc(v), Fs(v) and Fv(v) offers an alternative model. Taking into account all friction
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forces, the friction becomes

F (v, θ) = Fdr(v, θ) + Fc(v) + Fs(v) + Fv(v). (4)

Now, Fdr(v, θ) is shown to derive the proposed model (more details on Fdr(v,θ) are in

Figure 3(c), in the appendix; Marone (1998)25and Daub and Carlson (2008)26). The friction

stress depends additively on a term A ln(v) and the state variable θ. The friction stress

is characterized by a change from A ln(v) to the term −B ln(v), where the scalars A and

B depend on the material properties and determine the sign of the velocity dependence.

Instabilities attributable to stick-slip arise only in friction laws with steady-state velocity

weakening, i.e., steady-state friction decreases when slip velocity increases43. Thus, we

assumed B > A > 0 is satisfied (Figure 3(c)). L is the characteristic sliding displacement

required to stabilize the friction to satisfy F after a change of sliding conditions42. Fdr(v, θ)

is given by two equations28:

Fdr(v, θ) = θ + A ln(v/v0)

θ̇ = −(v/L)[θ +B ln(v/v0)]







(5)

which are coupled to the second order Equation (1) to construct the single slider block

model.

B. A single slider block model for complex dynamical behavior

By combining the Equations (1), (4), the dynamical model for single slider block can be

formulated as the following system of first order differential equations:

θ̇ = −(v/L)[θ +B ln(v/v0)]

u̇ = v − v0

v̇ = −(1/M)[ku+ F (v, θ)] + τ(t)



















(6)

where F (v, θ) is given by Equation (4). The dimensionless version of system (6) can be

derived by defining new variables θ̂, û, v̂ and t̂ as is suggested by Erickson et al. (2008)14;

or equivalently θ = Aθ̂, v = v0v̂, u = Lû, and t = (L/v0)t̂:

˙̂
θ = −v̂[θ̂ + (1 + ε) ln v̂]

˙̂u = v̂ − 1

˙̂v = −γ2[û+ (1/ξ)(θ̂ + ln v̂)] + αF0(v̂) + τ(t̂)



















(7)
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where α = (α1, α2, α3) = (1/M)(β1, β2, β3), F0(v̂) = (sign(v̂−1), e−µ|v̂−1|sign(v̂−1), v̂−1)T .

The parameters Π = (ε, ξ, γ) ⊂ Rp are directly related to earthquakes dynamics as follows:

ε = (A − B)/A ∈ R is a measure related to the sensitivity of the velocity relaxation and

is associated with the stress drop during displacement; ξ = kL/A ∈ R stands for the

dimensionless spring constant; and γ =
√

(k/M)(L/v0) ∈ R regards the dimensionless

oscillation frequency of the single slider block. In what follows, the dynamical system given

by (7) is analyzed in two parts as study cases towards the discussion about the complexity

of friction effects on earthquakes.

III. ANALYSIS OF THE DYNAMICAL SYSTEM

The theory of nonlinear dynamical systems plays an important role in almost all the areas

of science due to the phenomena of the real world are in most cases nonlinear. The theory

of dynamical deterministic systems is particularly useful in the study of complex behaviors

like the earthquake mechanism. Generally, the analysis of the behavior of nonlinear systems

is, at the beginning, local dynamic analysis in sense of the space state of system (7). Such

a local analysis allows us to focus on the discussion, as a first step, to simplify the system

while its qualitative properties are preserved. Next, we analyze the system behavior for two

study cases. Each of both cases is firstly analyzed unforced (τ( t̂ )=0 for all t) and after

that forcing is added (τ ( t̂ )=sin(ωt̂) for all t) to show the complex behavior:

Case 1: Smoothness. We assume that the vector field in the model (7) is continuously

differentiable to explorer its behavior with αF0(v̂) = α1 + α2e
−µv̂ + α3v̂. It should be noted

that friction terms are included concerning to Coulomb, Stribeck and Viscous. That is, we

firstly assume friction effects except to change of sign, attributable to change in movement

sense, but including the grade of contact of asperities as a consequence of the layer of fluid

between surfaces.

Case 2: Discontinuity. By other hand, since Dieterich-Ruina’s friction shows that the rock

behavior obeys non-smooth friction terms, the smoothness assumption in Case 1 is relaxed to

suppose the vector field captures a behavior related to the non-continuous differentiability.

Such a discontinuity can appear of natural way in physical systems that involve friction

forces. In particular, in the analyzed model, given by system (7), a discontinuity exists at

v̂ = 1 for Equation (3). Note that v̂ = 1 means that the single slider block and plate are
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moving in same sense with equal velocity. In order to capture non-continuous differentiability

of vector field in system (7), the function of variable structure is considered to be αF0(v̂) =

α1sign(v̂− 1)+α2e
−µ/v̂−1/sign(v̂− 1)+α3(v̂− 1) and the system is referred like a switched

system.

A. Case 1: Smoothness

1. Unforced, τ(t̂)= 0 for all t

Let us re-write the Equation (7) as ẋ = f(x) where x = (θ̂, û, v̂)T denotes the state vector.

The vector field f : U → R3 is a smooth function (C1) in a set U ⊂ R3, and becomes

f(x) =











−v̂[θ̂ + (1 + ε) ln v̂]

v̂ − 1

−γ2[û+ (1/ξ)(θ̂ + ln v̂)] + αF0(v̂)











(8)

where Π = (ε, ξ, γ) stands for the parameter vector, the initial condition x(0) = x0 ∈ U

and Π ⊂ Rp. The vectorial field f generates a flow Φt : U → Rn, where Φt = Φ(x, t) is a

smooth defined function for all x ∈ U and t ∈ I = (a, b) ⊆ R. Φt is solution of ẋ = f(x)

in sense that it satisfies the Equation (7). Then, the following results holds for the system

ẋ = f(x).

Theorem III.1. 44 Let U ⊂ Rn be an open set of the euclidian real space, f : U → Rn a

differentiable function (C1), and a point x0 ∈ U . Then, there exist a real scalar c > 0 and a

unique solution φ : (−c, c) → U such that φ satisfies the differential equation ẋ = f(x) with

initial condition x(0) = x0 and for all t ∈ (−c, c).

Actually, only it is required that f is locally Lipchitz for existence and uniqueness of solu-

tion x(t), i e., ‖ f(y)−f(x) ‖≤ K ‖ x−y ‖ for some real constant K <∞. For the existence

and uniqueness of equilibrium point x?, belonging to domain of vector field (8), is needed

for the analysis of stable behavior of the single slider block. A point x = x? in the space

state is defined to be an equilibrium point of a vector field if f(x?) = 0 for all t. Thus, given

the parameter value Π, we found that the vector field (8) has a unique equilibrium point

whose components are at x? = (θ̂?, û?, v̂?) = (0, η, 1), where second component depends on
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parameter as follows: η = (α1 + α2e
−µ + α3)/γ

2. Note that η is a bijective function of γ

implying there is not multiplicity. The second component, û∗ = η, corresponds to relative

position of the single slider block. This means that x? → (0, 0, 1) as γ → ∞. The sta-

bility of x? is analyzed with the indirect method of Lyapunov stated in the following theorem:

Theorem III.2. 45 Let x? be an equilibrium point of the nonlinear system ẋ = f(x), where

f : D → Rn with D ⊂ Rn is continuously differentiable and D is a surroundings of the x?.

Let us denote the Jacobian matrix as D?
f = (∂fi(x)/∂xj) |x? , with i, j = 1, 2, 3, and let λi

be the eigenvalues of D?
f . It follows that the equilibrium point x? is locally asymptotically

stable if the real part of all the eigenvalues is negative, i.e. Re(λi) < 0, and, contrary, it is

unstable if Re(λi) ≥ 0 for one or more eigenvalues of D?
f .

Now, defining a change of variable y = x− x?, the system (7) is approached by

ẏ = Df(x
?)y (9)

at the neighborhood of x?. For the specific form of vector field, given by Equation (9), the

Jacobian matrix becomes

Df =











−v̂ 0 −θ̂ − (1 + ε)(1 + ln v̂)

0 0 1

−γ2

ξ
−γ2 −γ2

ξ
1
v̂
+ α∂F0(v̂)

∂v̂











(10)

where α∂F0(v̂)/∂v̂ = −α2µe
−µv̂ + α3; and α∂F0(v̂)/∂v̂ |x?= −φ; with φ = α2µe

−µv̂ − α3.

Evaluating the Jacobian matrix at the equilibrium point x? = (θ̂?, û?, v̂?) = (0, η, 1), Df

takes the form

D?
f =











−1 0 −(1 + ε)

0 0 1

−γ2

ξ
−γ2 −γ2

ξ
− φ











(11)

whose polynomial characteristic is

P (λ) = a0λ
3 + a1λ

2 + a2λ+ a3 (12)

where

a0 = 1, a1 = 1 + γ2/ξ + φ, a2 = γ2(1− ε/ξ) + φ, a3 = γ2. (13)
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Note that a1 =-trace(D?
f), a3 =-det(D?

f). The dynamics of the linear system (9) is

characterized by the set of eigenvalues {λ1, λ2, λ3} ∈ C . We assume that the system (9) is

naturally dissipative, i.e., trace(D?
f) =

∑

λI < 0. Next, by definition, ξ = kL/A > 0

and γ2 = (k/M)(L/v0) > 0, then 1 + γ2/ξ = (Mv0 + A)/Mv0 > 0; in addition,

φ = α2µe
−µ − α3 = (β2/)µe

−µ − β3/M . Hence, 1 + γ2/ξ + φ = (Mv0 + A)/Mv0 +

(β2/M)µe−µ − β3/M ⇒trace(D?
f ) = −(1 + γ2/ξ + φ) < 0 if (Mv0 + A)/v0 + β2µe

−µ > β3;

as a consequence, the system is dissipative at the neighborhood of x? in sense that sum of

all eigenvalues is strictly real negative as this condition is satisfied.

Complementarily, det(D?
f ) = −γ2 = −(k/M)(L/v0) < 0. As a consequence of facts

trace(D∗
f ) < 0 and det(D∗

f ) < 0, x? is dissipative and hyperbolic the equilibrium point if

(Mv0 + A)/v0 + β2µe
−µ > β3. The physical interpretation is as follows: Since (i) the value

of the decay parameter µ for mixed lubricated surfaces is within the interval 1 < µ < 5 (see

references from36,40), (ii) α2, α3 are constants whose dimensionless magnitude is of order

10−2; from where |φ| < 1 implying that φ < 1 + γ2/ξ. Moreover, it should be noted that

the analyzed model allows one to determine mathematical properties in terms of friction

coefficients as the involved at Viscous and Stribeck friction terms.

Now, we analyze the condition for stability/instability of x?. Note that x? is unstable if

at least one of eigenvalues of (11) has real positive part. In order to determine how many

eigenvalues of D?
f , given by the roots of polynomial (12), are real, we use the Descartes

rule of signs. The coefficient signs of the polynomial (12) are (+,+, sign(a2),+) when

(Mv0 + A)/v0 + β2µe
−µ > β3 is satisfied. Now, if sign(a2) > 0, there are two possibilities

on the three eigenvalues of D?
f : The first possibility involves all eigenvalues are negative

real. The second involves one eigenvalue is negative real and the other two are conjugated

complex with positive real part; which corresponding to the oscillatory behavior. Note that

the sign(a2) > 0 if γ2(1 − ε/ξ) + φ > 0 or, equivalently, ε < ξψ with ψ = 1 + φ/γ2 We

are interested in analysing the stability for the case ε > 0, which means that the stress

drop is positive B − A > 0 involving relative displacement between plates. Since ξ > 0 the

stability conditions for x? are such that ψ > 0 ⇒ γ2 > −φ. That is, it is necessary that

kL/v0 + β − 2µe−µ > β3. As summary, a necessary condition to x? is stable if ε < ξψ and

is unstable if ε > ξψ. Next, if sign(a2) < 0, the unique possibility implies there are two

positive real roots and one negative real root. This is possible only if the condition ε < ξψ
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is not satisfied.

The Figures 4(a) and (b) show the locus of the {λ1, λ2, λ3} ∈ C for fixed γ = 0.8, 10
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Figure 4. Real Part of eigenvalues for fixed γ. (a) For γ = 0.8 the real part of eigenvalues for the

oscillatory behavior is observed approximately for values of ε between (0.2 to 2), (0.24 to 3.2) and

(0.26 to 4.4), for ξ = 0.4, 0.7, 1, respectively. (b) For fixed γ = 10 the variation of ε goes from

(0.4 to 1.6 ), (0.7 to 2.3) and (1 to 3) for ξ = 0.4, 0.7, 1, respectively. The oscillatory behavior

corresponds to the conjugated complex eigenvalues. After the branch point there are two real

positive eigenvalues.

respectively; the oscillatory behavior increases when the value of ξ increases but the range of

variation for ε in (a) is greater than (b); with the increasing of γ, one of the real eigenvalues

tends to infinity more quickly as is illustrated in Figure 5(a) and (b). The oscillatory

behavior can be displayed to the complex eigenvalues located before the branching. After

the branching there are two positive real eigenvalues, one tends to zero and the other tends

to infinity. After the branch point the system ceases to oscillate. Note that x? is stable for

ε < ξψ with γ2 > −φ (Figure 6).

Some comments on above mathematical rationale are in order. Local stability of equilibrium

x? = (0, η, 1), in the Lyapunov sense, can be interpreted in the sense of the frictional

stability in earthquakes4,50 because of the frictional stability is related with a critical value

σc = kL/(A−B) which depends on the properties of the rocks surrounding, the earthquake

nucleation point, and the frictional parameters (A−B,L, k). The critical value σc is derived

for a single degree of freedom oscillator coupled from Dieterich-Ruina friction term Fdr(v, θ)

and corresponds to the normal effective stress (or normal stress less pore pressure). As
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Figure 5. Real Part of eigenvalues for fixed ξ. (a) For ξ = 0.7 the real part of eigenvalues for the

oscillatory behavior is observed approximately for values of ε between (0.6 to 2.4), for γ > 0.8, and

for γ = 0.8 this range is greater than first(0.24 to 3.2). (b) For fixed ξ = 1 the variation of ε goes

from (0.9 to 3.1 ) for γ > 0.8 and (0.7 to 2.3) for γ = 0.8. The oscillatory behavior corresponds to

the conjugated complex eigenvalues, before the branch.

any normal stress σ satisfies σ ≥ σc, then changes in the frictional properties occur such

that they cause the earthquakes; this phenomenon is named frictional instability. The

necessary condition ε < ξψ and the critical value σc are related as follows. By dividing

ξ/ε = −kL/(A − B) = σc. Then, we get (ξ/ε)ψ = −kL/(A − B)ψ = σcψ. As ε < ξψ is

satisfied, we get that 1 < σcψ is necessary for stability. In this manner, we derive a corrected

critical value σ?
c = σcψ, which combines the frictional parameters from Dieterich-Ruina law

and Stribeck effect. Complementarily, 1 > σcψ implies instability and the critical criterion

for stability becomes σ?
c = σcψ = 1.

Figure 7(a) shows the evolution of state variables for a set of parameters Π = (0.8, 1, 10)

where the equilibrium point is asymptotically stable, that means the slider oscillates and

later becomes stabilized in x? = (0, η, 1), with η = (α1+α2e
−µ+α3)/γ

2 the relative position

of the block is η, its velocity is the velocity of the driver plate but there are not asperities;

the phase portrait (Figure 7(b)) shows that the vector field (9) converges to a point making

an inward spiral; by the other hand, for the set Π = (0.25, 0.8, 0.8), the Jacobian matrix

D?
f has two of its eigenvalues with null real part, so the equilibrium point is unstable, and

would become stable or not, that means it is sensible to disturbs of medium; the variables

oscillate around the x? (Figures 7(c) and (d))
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Figure 6. Stability of stationary solutions for different values of Π . We fixed ξ and varied ε and

γ. A necessary condition to stability is ε < ξψ, here ξ = 0.5, 0.7, 1.0, for (a) to (c), respectively;

the stability region is bounded by a parabolic relation between ε and γ.

2. Forced, τ(t̂) = sin(ωt̂) for all t

Now, we investigate the effects of an external, deterministic and periodic force acting

onto the system (7). This is motivated because of geological faults are in a complex system

interacting with others faults. As a consequence, the motion of a fault might be affected

by neighboring faults represented as an external force that disturbs the system (7). From

dynamical systems theory this involve that the system (7) with τ(t̂) 6= 0 can display complex

behavior. The complex behavior is illustrated varying the angular frequency ω within the

interval (0, 0.3) for the parameter values of Π1 = (0.25, 0.8, 0.8) implying σ?
c < 1 (i.e.,

x∗ = (0, η, 1) is unstable). Specifically, we show the phase portrait for ω = 0.1(Figure 8(a)).

For any value of ω at (0.8, 1.3) a periodic orbit is found. The phase portrait of system (7) is

depicted for ω = 1.2, note that the periodic orbit has period 2 (Figure 8(b)). For frequencies

larger than 1.3, the system trajectories converge to limit cycle with period 1 (Figure 8(c)).

The Figure 9 shows the effect of viscosity on the behavior of the system for ω = 0.1; the

sub-damped system behavior (Figure 9(a)) is more complex than the cases damped and

over-damped (Figures 9(b) and (c))and the range of values for v and u increases as the value

of α3
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Figure 7. Stationary solution of system (7). (a) Here Π = (.8, 1, 10), and σ?c = 1.2491. After

a transient region in which the slider oscillate , its velocity stays at a constant rate v̂ = 1 as it

moves with the driver plate, its relative position u is η = 0.0151 and asperity contact θ̂ is zero.

The equilibrium point is local and asymptotically stable. (b) The phase portrait (û, v̂) shows an

inward spiral, and the convergency to a point x? = (0, η, 1). Periodic solution of system are shown

in (c) where Π = (.25, 0.8, 0.8), after the slider goes by a transient region in which the amplitude

of signal varies, its velocity stays oscillating around the rate v̂ = 1 , its relative position u around

η = 2.3593 and asperity contact θ̂ around zero; (c) the phase portrait shows the convergency to a

periodic orbit and σ?c = 2.84

B. Case 2: Discontinuity

Analysis in previous paragraphs allows us to provide relevant information about dynami-

cal behavior. However, seeking completeness, we have to relax the assumptions on continuity

to recognize that the structure of the vector field in system (7) includes discontinuous terms

induced by switching. Specifically, the term αF0(v̂) = α1sign(v̂ − 1) + α2e
−µ/v̂−1/sign(v̂ −

1) + α3(v̂− 1) depends on function sign(·), which is related to the Coulomb friction Fc and

Stribeck terms Fs. The presence of such discontinuous terms might induce oscillations that

are characteristic in nonlinear switched systems like chaotic behavior. In this section we

explore computationally the behavior of the system with discontinuities.
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Figure 8. Solutions for perturbed and sub-damped system for (α1 = 1.6,α2 = 0.2,α3 = 0.1,µ = 3).

Phase portrait (û, v̂) for Π = (.25, 0.8, 0.8) with variable ω. With ω = 0.1 (a) shows the regions

in conflict caused by the flow generated by the friction effects, (b) with ω = 1.2 the trajectory

makes a closed orbit with a single perfect curl, (c) for ω = 2 the region in conflict is weak and the

trajectory quickly forms a closed orbit.

1. Unforced, τ(t̂) = 0 for all t

The existence and uniqueness hold as the vector field f be piecewise continuous in t. The

concept of fundamental solution can be exploited in order to prove existence and unique-

ness, namely, a continuous function x(·) that satisfies the corresponding integral equation:

x(t) = x0 + ŵ
∫

τ
f(τ, x(t))dτ . The stability can be analyzed via Lyapunov stability theory

as follows46: Given a positive definite continuously differentiable (C1) function V : Rn → R,

we will say that V is a Lyapunov function common for the family of systems ẋ = fp(x),

p ∈ P (where P is some index set, typically a vector lineal field) if there exists a positive

definite continuous function W : Rn → R such that

∂V

∂x
fp(x)−W ∀x, ∀p ∈ P. (14)

Next, we analyze the equilibrium points and stability. The equilibrium point is x? =

(0, 0, 1) = (θ̂?, û?, v̂?). The condition (3)imposes the existence of δ̂i , i = 1, 2, 3 such that

it has the family of functions generated by the vector field ẋ = fi(x) = δ̂(x) + δ̂i(x), for

all x = (θ̂, û, v̂), where δ̂1(x) = α1 + α2e
−µ(v̂−1) + α3(v̂ − 1), δ̂2(x) = 0 , and δ̂3(x) =

−α1 − α2e
µ(v̂−1) + α3(v̂− 1); this implies to find Vi = xTPx > 0 where P = P T , P > 0, and
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Figure 9. Solutions for perturbed and damped system for (α1 = 1.6,α2 = 0.2,ω = 0.1,α3 =

0.1, 0.2, 0.4,µ = 3). Phase portrait (û, v̂) for Π = (.25, 0.8, 0.8) with variable α3. With α3 = 0.1

(a) shows sub-damped system behavior, (b) for α3 = 0.2 a damped system, and (c) with α3 = 0.4

for an overdamped system.

we find conditions under which ∂Vi/∂t = ẋTPx+ xTP ẋ < 0 such that ẋ = fi(x), i = 1, 2, 3

have separately stables equilibrium points. With P = I, a candidate Lyapunov function

takes the form V = θ̂2 + û2 + v̂2 > 0 for all x = (θ̂, û, v̂)T . This function V could be the

common Lyapunov function for the family ẋ = fi(x), if ∂V/∂t < 0 holds for i = 1, 2, 3;

subsequently ∂V/∂t takes the following form for each member of the family ẋ = fi(x),

∂Vi/∂t = θ̂[−v̂(θ̂ + (1 + ε) ln v] + û(v̂ − 1) + v̂[−γ2û − γ2/ξ(θ̂ + ln v̂)] + v̂δi(x). For the

values of Π = (ε, ξ, γ) > 0, θ̂ û ∈ R, and v̂ > 0 we found that the parameters ε and ξ are

not directly related to the release of energy of the system, the inequality ∂V/∂t ≤ 0, for all

x = (θ̂, û, v̂)T , is determined by the values of γ.

Taking W = −∂V/∂t > 0 and W = ∂V/∂t the condition (14) is satisfied. Some numerical

solutions show the vector field for Π = (0.8, 1, 10) as show the Figures 10(a) and (b).

2. Forced, τ(t̂) = sin(ωt̂)

Now, for the forced case, following the solution of system (7) is numerically explored with

Π = (0.25, 0.8, 3) and ω = 1.3. The Figures 10(c), and (d) show the complex dynamical be-

havior, possibly chaotic. The Figure 10(c) depicts the time series of the forced and switched
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Figure 10. Homogeneous and forced switched system. At v̂ = 1 exists a no-differentiability in the

vector field. (a) and (b) the space phases and the phase portrait, respectively, show an outward

spiral for the homogeneous case with Π = (.8, 1, 10); (c) the time series show the non-smoothness

of the vector field for the forced system; and (d) the space phases for the switched and perturbed

system with Π=(0.25, .8, 3,ω = 1.3) shows a more complex behavior than the homogeneous case.

system (7), note the signal is quite rich in dynamical components. Figure 10(d) shows the

phase portrait. Note that a single multiscroll is displayed around the equilibrium point. An

interesting challenge is to identify the geophysical properties with the complex time series

displayed by such a complex behavior, this is beyond the goals of present manuscript and

could be reported elsewhere.

IV. CONCLUSIONS

The analysis of the slider block model (in a viscoelastic medium and over a rough and

lubricated surface) with friction laws, including Dieterich-Ruina and the Stribeck’s effect, let

us to analyze mathematical properties in terms of seismic parameters and friction coefficients

that describe a type of behavior observed in the nature of the earthquakes. In stationary

state for smoothness and homogeneous case, the stability or instability can appear depending

on the parameters (ε, ξ, γ) whose interpretation related to seismic parameters. A necessary

condition for stability of equilibrium point is that the parameter related to drop stress, ε,
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is lower than the parameter related to medium elasticity and friction coefficients, ξψ, under

sub-damped conditions. In this sense, we found a necessary condition for frictional stability

within an unstable regime (in the Scholz’s (1998)50 sense) that depends on parameters of

Stribecks effect when γ < 10, approximately. That is, as γ > 10, the necessary condition

only depends on the parameter ξ. Other result is that the position coordinate of the slider

(relative displacement) depends on η as a function of α, γ, and µ. Particularly, for γ > 10,

the position η ≈ 0, which means that the relative position of the plate and the block

does not depends on the Stribeck parameters. We notice that ψ and η are functions the

oscillation frequency γ, which is function of that the characteristic distance to renew the

contact population (see Fig. 3), L; i.e., ψ = ψ(γ(L)) and η = η(γ(L)).

Additionally, our analysis shows if the system equilibrium is stable, the slider can be

in coupled motion with the driver plate and, as a consequence, the frictional instability

(earthquake) is not expected. Since the variable θ̂ is related with the asperities of frictional

surface, it converges to zero; nevertheless, if the equilibrium system is unstable, the system

stays around it and can be more sensible to disturbances by the medium, which can induce

resonance or other phenomena.

As summary, we found periodic and aperiodic trajectories and complex behavior like in

chaotic systems. For the smoothness case the trajectories tend to a closed orbit (Figure 8(b))

with a curl for low frequencies with small values for parameters Π and converge to limit cycle

with period 1 for frequencies ω > 1.3 (Figure 8(c)); we found a special complex behavior

for some values of parameters (Figure 8(a)) strongly related with the parameter of viscosity

α3 (Figure 9). The phase space shows an inward spiral for smoothness case; contrary to the

switched case where an outward spiral is shown (Figures 10(c) and (d)). It should be noted

that when a discontinuity is introduced (case 2) the released energy of the system depends

on the values of γ and the system can display a complex behavior for the forced case even

for small values of Π.
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V. APPENDIX

A. Law of friction of Dieterich-Ruina

Daub and Carlson (2008)26, and Scholz (1998)50 made a summary of the Dieterich-Ruina’s

Law of friction Fdr, that it is a phenomenological friction law introduced to capture experi-

mental observations of steady state and transient friction. The Fdr is a rate and state friction

law that assumes dependence on a single dynamic state variable. Shear stress τ is a function

of rate (slip velocity v) and the state variable θ. The dependence is logarithmic41:

τ = σ[f0 + A ln(v/v0) +B ln(θv0/L)]
dθ

dt
= 1−

θv

L
. (15)

Here σ is the normal stress, constants A and B are material properties determining the

rate and state dependence, L is the critical slip distance or length scale and reference and is

often interpreted as the sliding distance required to renew the contact population, friction

coefficient f0 is the steady-state friction at v = v0 and θ evolves according to second equation

of (15). The variable θ has dimensions of time and is often interpreted as the lifetime of

surface asperity contacts. When the slider moves at constant velocity vss (steady-state),

θss = L/vss and the shear stress is τ = σ[f0 + (A− B) ln(vss/v0)].

According to Rice (1983)43 A = ∂τ/∂ ln v = v(∂τ/∂v) is a measure of the direct velocity

dependence, while (A− B) = ∂τss/∂ ln vss = v∂τss/∂v is a measure of steady-state velocity

dependence. A and B determine the velocity dependence of friction, and there is a fixed

L for transient effects. Equation (15) are the Dieterich’s law, in last equation state (and

friction) evolves even for truly stationary contact at v = 0 which has been referred to as

aging25. Ruina (1983)28 proposed a different evolution law in which velocity and slip, rather

than time, were of primary importance (Ruina’s law):

τ = σ[f0 + A ln(v/v0) +B ln(θv0/L)]
dθ

dt
= −

θv

L
ln(vθ/L). (16)

While Dieterich’s model (15) casts friction primarily in terms of time dependence and static

friction, Ruina’s model (16) says that any change in friction requires slip.

22



REFERENCES

1J. B. Rundle, D. L. Turcotte, R. Shcherbakov, W. Klein, and C. Sammis, Rev. of Geophys.,

41, 1-30 (2003).

2J. D. Gran, J. B. Rundle and D. L. Turcotte, Geophys. J. Int., 191, 459 (2012).

3J. M. Carlson, J. S. Langer and B. E. Shaw, Rev. Mod. Phys., 66, 654 (1994).

4C. H. Scholz, The Mechanics of Earthquakes and Faulting, 2nd edn. (Cambridge University

press, 2002).

5W. F. Brace and J. D. Byerlee, Science, 153, 990 (1966).

6S. R. Brown, C. H. Scholz, and J. B. Rundle, Geophys. Res. Lett. 18, 215 (1991).

7R. Burridge and L. Knopoff, Seis. Soc. Am. Bull., 57, 341 (1967).

8J. M. Carlson, J. S. Langer and B. E. Shaw, Phys. Rev. A , 40, 6470 (1989).

9M. De Sousa Vieira, Phys. Rev. A 46,6288 (1992).

10M. De Sousa Vieira, Phys. Rev. E 49, 4534 (1994).

11A. Amendola and M. Dragoni, Non. Process. Geophys., 20, 1(2013).

12J. H. Dieterich, J. Geophys. Res., 77, 360 (1972).

13M. Dragoni and S. Santini, Non. Process. Geophys., 17, 777 (2010).

14B. Erickson, B. Birnir and D. Lavallée, Non. Process. Geophys., 15, 1 (2008).

15B. Erickson, B. Birnir and D. Lavalle, Geophys. J. Int., 187, 178 (2011).

16J. Gu, J. R. Rice, A. Ruina and S. Tse, J. Mech. Phys. Solids, 32, 167 (1984).

17T. Matcharashvili, T. Chelidze, and Z. Javakhishvili, Non. Process. Geophys.,7, 9 (2000).

18J. R. Rice and Y. Ben-Zion. Proc. Natl Acad. Sci. USA; 93, 3811(1996).

19J. Huang, G. Narkounskaia, and D. L. Turcotte, Geophys. J. Int., 111, 259 (1992).

20H. Nakanishi, Phys. Rev. A, 41, 7086 (1990).

21H. Nakanishi, Phys. Rev. A, 43, 6613 (1991).

22J. Naussbaum and A. Ruina, Pageoph., 125, 631 (1987).

23He Changrong, Science in China series D, 46, 67 (2003).

24J. D. Pelletier, Geophys. Monogr., 120, 27 (2000).

25C. Marone, Annu. Rev. Earth Planet Sci., 26, 643 (1998).

26E. G. Daub and J. M. Carlson, J. Geophys. Res., 113(B12309):1-20, 2008.

Doi:10.1029/2007JB005377

27J. H. Dieterich, Geophys. Monogr., 24, 103 (1981).

23



28A. Ruina, J. Geophys. Res., 88, 10359 (1983).

29C. H. Scholz and T. Engelder, Int. J. Rock Mech. Min. Sci., 13, 149 (1976).

30S. T. Tse and J. R. Rice, J. Geophys. Res., 91, 9452 (1986).

31J. Szkutnik, B. Kawecka-Magiera, and K. Kulakowski, Tribology series, 43, 529 (2003).

32M. Otsuka, J. Phys. Earth, 20, 35 (1992).

33P. Bak and C. Tang, J. Geophys. Res. 94, 15635 (1989).

34B. Barriere and D. L. Turcotte, Geophys. Res. Lett., 18, 2011 (1991).

35K. Ito and M. Matsuzaki, J. Geophys. Res., 95, 6853 (1990).

36J. Alvarez-Ramı́rez, R. Garrido and R. Femat, Phys. Rev. E, 51, 6235 (1995).

37Y. Bock and L. Prawirodirdjo, Geophys. Res. Lett. doi:10.1029/2003GL019150.

38J. D. Byerlee, Int. J. Rock Mech. Min. Sci., 7, 577 (1970).

39J. D. Byerlee, Pageoph., 116, 615 (1978).

40S. Andersson, A. Sø̈derberg and S. Bjø̈rklund, Tribology Int., 40, 580 (2007).

41J. H. Dieterich, J. Geophys. Res., 84, 2161 (1979).

42J. H. Dieterich and B. Kilgore, Pageoph. 143, 1/2/3 (1994).

43J. R. Rice and A. Ruina, J. Appl. Mech., 50, 343 (1983).

44J. Guckenheimer and P. Holmes, Nonlinear oscillations, Dynamical Systems, and Bifurca-

tion of Vector Fields. Springer, 1983.

45H. Khalil, Nonlinear Systems. 2nd edn. Prentice-Hall, 1996.

46D. Liberzon, Switching in Systems and Control. Birkhuser, Boston, c/o Springer-Verlag

New York, USA, 1973.

47C. E. Maloney and M. O. Robbins, Chaos, 17, 041105 (2007).

48B. W. levin, Chaos, 6, 405 (1996).

49N. V. Sarlis and S. R. G. Christopoulos, Chaos, 22, 023123 (2012).

50C. H. Scholz, Nature, 391, 37 (1998).

24


