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We present an approach to generate multiscroll attractors via destabilization of piecewise linear systems based on Hurwitz matrix
in this paper. First we present some results about the abscissa of stability of characteristic polynomials from linear differential
equations systems; that is, we consider Hurwitz polynomials. The starting point is the Gauss–Lucas theorem, we provide lower
bounds for Hurwitz polynomials, and by successively decreasing the order of the derivative of the Hurwitz polynomial one obtains
a sequence of lower bounds. The results are extended in a straightforward way to interval polynomials; then we apply the abscissa
as a measure to destabilize Hurwitz polynomial for the generation of a family of multiscroll attractors based on a class of unstable
dissipative systems (UDS) of affine linear type.

1. Introduction

Consider the parametric dynamical system

ẋ = 𝑓 (x, 𝜇) , (1)

where x ∈ R𝑛 is the state vector, 𝜇 ∈ R𝑚 is a parameter
vector, and 𝑓 is an enough smooth vector field. Several
techniques have been proposed in the analysis of the solutions
behavior of a dynamical system. The Hartman–Grobman
theorem establishes that its internal evolution is determined
by its Jacobian matrix. That is, the behavior of its solutions
is described by the spectrum of its linearization. If all of the
solutions of a dynamical system converge to an equilibrium
point then it is said to be a locally asymptotically stable system.
The importance of studying Hurwitz polynomials is due to
its usefulness in the stability analysis of linear systems: if the
characteristic polynomial of a linearized system is Hurwitz

(roots with negative real part) then it is asymptotically stable.
This has motivated researchers working on applications seek-
ing such polynomials. Maxwell [1] posed the problem in the
following way: How can one find the necessary and sufficient
conditions to decide whether a polynomial has all its roots
with negative real part? A solution was given by Hurwitz
[2] and it is known as the Routh–Hurwitz criterion. Related
information about Hurwitz polynomials can be found in [3–
6].

The study of stability with a polynomial approach had
an important impulse when Kharitonov’s theorem was pub-
lished in 1978. This theorem gives conditions for the stability
of an interval family of polynomials (see [7]). Since then,
a lot of works related to this theorem have been published
(see, e.g., [8–12]). The importance of studying the stability
of families of polynomials can be appreciated in applica-
tions where the presence of uncertainties in the polynomial
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coefficients has to be taken into account. Other families of
polynomials that have been investigated are the segments
of polynomials (see [13–16]). Good references on families of
stable polynomials are [3, 17–19].The importance of knowing
the abscissa of stability has been pointed out in [20–22].
Lower bounds were reported in [23, 24]; these are the first
works about the abscissa of stability; and upper bounds
were obtained in Bialas [25], Henrici [26], and Olifirov
[27].

However, stability is not always required. For example,
there is a class of chaotic dynamical systems based onunstable
equilibria. Several times a structural change is given by
one bifurcation parameter of 𝜇 that generates bifurcation in
the solutions of the system. Generating chaotic behavior is
the subject of interest in several areas in mathematics and
engineering insomuch that researchers have taken the task of
design systems with diverse techniques undergoing chaotic
behavior with and without equilibria. One of the different
chaotic behaviors is the presence of multiscroll attractor.
Good references where the generation of multiscrolls has
been studied are the works [28–35]. In this paper we use
the abscissa of stability of Hurwitz polynomials to study the
stability of systems in order to generate multiscroll attractors.
To achieve the design of a chaotic system, a technique
involving lower bounds for stabilizing and breaking down the
stability to make multiscroll attractors arise is described. The
rest of the paper is organized as follows: In Section 2, basic
definitions and results needed for the development of our
technique are given. In Section 3, the relation between the
abscissas of stability 𝜎𝑝 and 𝜎𝑝, of a Hurwitz polynomial 𝑝(𝑡)
and its derivative polynomial 𝑝(𝑡), respectively, is studied.
Therein the relationship is the following inequality 𝜎𝑝 < 𝜎𝑝
which is used to obtain a lower bound for the abscissa of
stability of a polynomial or an interval family of Hurwitz
polynomials. We use the Gauss–Lucas Theorem 2 to analyze
the Hurwitz stability of a polynomial and its derivative.
Finally, in Section 4 an application of the lower bound to
generate chaos is given.

2. Preliminaries

Consider an asymptotically stable linear system given by

ẋ = 𝐴x, (2)

where x is the state vector of the system and 𝐴 ∈ R𝑛×𝑛 is a
linear operator. Let 𝑝(𝑡) be the characteristic polynomial of𝐴. The abscissa of stability of polynomial 𝑝(𝑡) is given by the
following definition.

Definition 1. If𝑝(𝑡) is a Hurwitz polynomial and 𝑧1, 𝑧2, . . . , 𝑧𝑛
are its zeros then 𝜎𝑝 the abscissa of stability of 𝑝(𝑡) is defined
by 𝜎𝑝 = max

1≤𝑖≤𝑛
{Re 𝑧𝑖} . (3)

If 𝜎𝑝 and 𝜎𝑝 are numbers such that 𝜎𝑝 ≤ 𝜎𝑝 ≤ 𝜎𝑝, then they
are named lower and upper bound, respectively.

In Section 4 we consider a polynomial 𝑝(𝑡 − 𝑟), so that,
varying the parameter 𝑟, then we get destabilization of the
polynomial 𝑝(𝑡) and we get the generation of multiscroll. In
Section 4we give the details.Nowwepresent a useful theorem
in our results.

Theorem 2 (Gauss–Lucas [36]). Let𝐾 be any convex polygon
enclosing all the zeros of the polynomial 𝑓(𝑧). Then the zeros of𝑓(𝑧) lie in 𝐾.

Remark 3. Let us recall that a set of points is convex if it
contains, with any two points𝑃,𝑄 in the set, the line segment
joining 𝑃 and 𝑄.

The abscissa of stability 𝜎𝑝 of the characteristic poly-
nomial of system (2) gives certain minimum rate of decay.
Zakian and Al-Naib indicated that in computer-aided design
of dynamical and control systems the numerical computation
of the abscissa of stability is required (see [21, 37–39]) to
warrant stability under perturbations.

3. Main Results

3.1. Abscissa of Hurwitz Polynomials: An Inequality between𝜎𝑝 and 𝜎𝑝 . Consider the polynomial 𝑝(𝑡) = 𝑎𝑛𝑡𝑛 +𝑎𝑛−1𝑡𝑛−1 +⋅ ⋅ ⋅ + 𝑎1𝑡 + 𝑎0 with 𝑎𝑖 ∈ R for all 𝑖 = 0, . . . , 𝑛.
Theorem4. If𝑝(𝑡) = 𝑎𝑛𝑡𝑛+𝑎𝑛−1𝑡𝑛−1+⋅ ⋅ ⋅+𝑎1𝑡+𝑎0 is aHurwitz
polynomial (𝑛 ≥ 2) and 𝜎𝑝 and 𝜎𝑝 are the abscissas of stability
of 𝑝 and 𝑝 = 𝑑𝑝/𝑑𝑡, respectively, then 𝜎𝑝 ≤ 𝜎𝑝.
Proof. Let 𝑝(𝑡) be a Hurwitz polynomial. If 𝜉1, 𝜉2, . . . , 𝜉𝑛 are
the roots of 𝑝(𝑡) then its abscissa of stability 𝜎𝑝 is given by𝜎𝑝 = −𝑅, where 𝑅 = max{𝑟 > 0 : 𝜉1 + 𝑟, 𝜉2 + 𝑟, . . . , 𝜉𝑛 +𝑟 ∈ C−, ∀𝑟 < 𝑟}. Then 𝜎𝑝 = −𝑅, where 𝑅 = max{𝑟 >0 : 𝑝(𝑡 − 𝑟) is a Hurwitz polynomial, ∀𝑟 < 𝑟}. Now, by
the Gauss–Lucas Theorem 2 if 𝑝(𝑧) is Hurwitz then 𝑝(𝑡) is
Hurwitz. Consequently, if 𝑝(𝑡 − 𝑟) is a Hurwitz polynomial
then 𝑝(𝑡 − 𝑟) is a Hurwitz polynomial. This implies that𝜎𝑝 ≤ 𝜎𝑝, as we claim.

Example 5. Consider the polynomial 𝑝(𝑡) = 𝑡3 + (19/6)𝑡2 +(8/3)𝑡 + 2/3. The abscissa of stability of 𝑝(𝑡) is 𝜎𝑝 = −0.5
and the abscissa of stability of 𝑝(𝑡) = 3𝑡2 + (19/3)𝑡 + 8/3 is𝜎𝑝 ≈ −0.58. We see that 𝜎𝑝 < 𝜎𝑝.
Example 6. Consider𝑝(𝑡) = 𝑡4+(25/6)𝑡3+(35/6)𝑡2+(10/3)𝑡+2/3. The abscissa of stability of 𝑝(𝑡) is 𝜎𝑝 = −0.5 and the
abscissa of stability of 𝑝(𝑡) = 4𝑡3 + (25/2)𝑡2 + (35/3)𝑡 + 10/3
is 𝜎𝑝 ≈ −0.57. Therefore 𝜎𝑝 < 𝜎𝑝.
Example 7. Let 𝑝(𝑡) = 𝑡3+4𝑡2+5𝑡+2.The abscissa of stability
of 𝑝(𝑡) is 𝜎𝑝 = −1 and the abscissa of stability of 𝑝(𝑡) = 3𝑡2 +8𝑡 + 5 is 𝜎𝑝 = −1. In this case we have that 𝜎𝑝 = 𝜎𝑝.
Remark 8. Theorem 4 leads to glimpsing the following open
problem: if 𝑝(𝑡) is a Hurwitz polynomial, find necessary and
sufficient conditions to make the equality 𝜎𝑝 = 𝜎𝑝 hold.
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3.2. A Lower Bound of the Abscissa of Stability of a Polynomial

Theorem 9. Let 𝑝(𝑡) = 𝑎𝑛𝑡𝑛 +𝑎𝑛−1𝑡𝑛−1 +𝑎𝑛−2𝑡𝑛−2 + ⋅ ⋅ ⋅ + 𝑎2𝑡2 +𝑎1𝑡 + 𝑎0 be a Hurwitz polynomial with positive coefficients and
denote Δ 𝑝 = [2(𝑛 − 1)𝑎𝑛−1]2 − 8𝑛(𝑛 − 1)𝑎𝑛𝑎𝑛−2. The following
inequalities hold:

(a) If Δ𝑝 ≥ 0, then−2 (𝑛 − 1) 𝑎𝑛−1 + √Δ𝑝2𝑛 (𝑛 − 1) 𝑎𝑛 ≤ 𝜎𝑝. (4)

(b) If Δ 𝑝 < 0, then −𝑎𝑛−1/𝑛𝑎𝑛 ≤ 𝜎𝑝.
Proof. If 𝑝(𝑡) = 𝑎𝑛𝑡𝑛 + 𝑎𝑛−1𝑡𝑛−1 + 𝑎𝑛−2𝑡𝑛−2 + ⋅ ⋅ ⋅ + 𝑎1𝑡 + 𝑎0 is a
Hurwitz polynomial then 𝑝(𝑛−2)(𝑡) = 𝑛(𝑛 − 1) ⋅ ⋅ ⋅ 3𝑎𝑛𝑡2 + (𝑛 −1)(𝑛−2) ⋅ ⋅ ⋅ 2𝑎𝑛−1𝑡 + (𝑛−2) ⋅ ⋅ ⋅ 2𝑎𝑛−2 is a Hurwitz polynomial.
By Theorem 4 we have that 𝜎𝑝(𝑛−2) ≤ 𝜎𝑝(𝑛−3) ≤ ⋅ ⋅ ⋅ ≤ 𝜎𝑝 ≤ 𝜎𝑝.
But 𝑝(𝑛−2)(𝑡) = 0 if and only if 𝑛(𝑛 − 1)𝑎𝑛𝑡2 + 2(𝑛 − 1)𝑎𝑛−1𝑡 +2𝑎𝑛−2 = 0. If Δ𝑝 ≥ 0, then−2 (𝑛 − 1) 𝑎𝑛−1 + √Δ𝑝2𝑛 (𝑛 − 1) 𝑎𝑛 = 𝜎𝑝(𝑛−2) ≤ 𝜎𝑝 (5)

and (a) is established. The proof of (b) follows in the same
way.

Example 10. For the polynomial 𝑝(𝑡) = 6𝑡5 + 43𝑡4 + 110𝑡3 +125𝑡2 + 64𝑡 + 12 we have that 𝑛 = 5, 𝑎𝑛−2 = 110, 𝑎𝑛−1 = 43,𝑎𝑛 = 6, and Δ𝑝 = 12736 ≥ 0. By part (a) of Theorem 9 we
have that −2 (𝑛 − 1) 𝑎𝑛−1 + √Δ𝑝2𝑛 (𝑛 − 1) 𝑎𝑛 (6)

is a lower bound of 𝜎𝑝; that is, −0.96 ≤ −1/2 = 𝜎𝑝.
Example 11. Consider 𝑝(𝑡) = 𝑡4+3𝑡3+5𝑡2+4𝑡+2. Here 𝑛 = 4,𝑎𝑛−2 = 5, 𝑎𝑛−1 = 3, 𝑎𝑛 = 1, and Δ𝑝 = −156 ≤ 0. By part (b)
of Theorem 9 we have that −𝑎𝑛−1/𝑛𝑎𝑛 is a lower bound of 𝜎𝑝;
that is, −3/4 ≤ −1/2 = 𝜎𝑝.
Remark 12. Consider

𝑆𝑚𝑖 = −[[(𝑛𝑚)−1 (𝑛𝑖)(𝑎𝑚𝑎𝑖 )]]
1/(𝑖−𝑚)

for 𝑚 = 0, 1, . . . , 𝑖 − 1, 𝑖 = 1, . . . , 𝑛. (7)

Note that (7) is a set of lower bounds that were obtained in
[23, 24].The bound obtained inTheorem 9(b) −𝑎𝑛−1/𝑛𝑎𝑛 is in
the set of lower bounds given in (7): taking 𝑚 = 𝑛 − 1 and𝑖 = 𝑛 we can see that 𝑆(𝑛−1)𝑛 = −𝑎𝑛−1/𝑛𝑎𝑛.

In fact, another way to obtain 𝑆(𝑛−1)𝑛 is by mean of the
abscissa of stability of the (𝑛 − 1)th derivative 𝑝(𝑛−1)(𝑡) =

𝑛(𝑛−1) ⋅ ⋅ ⋅ 2𝑎𝑛𝑡+(𝑛−1)(𝑛−2) ⋅ ⋅ ⋅ 2𝑎𝑛−1. Note thatTheorem9(a)
is a new lower bound for the abscissa of stability and since it
depends on three coefficients of 𝑝(𝑡) while the lower bounds
in (7) only depend on two coefficients of 𝑝(𝑡), the bound
in Theorem 9(a) is in some cases better than the bound in
Theorem 9(b) as is illustrated by the following example.

Example 13. Consider the following polynomial 𝑝(𝑡) = 6𝑡5 +43𝑡4 + 110𝑡3 + 125𝑡2 + 64𝑡 + 12. Here 𝑛 = 5, 𝑎𝑛−2 = 110,𝑎𝑛−1 = 43, and 𝑎𝑛 = 6. By item (a) from Theorem 9 we have
that −2 (𝑛 − 1) 𝑎𝑛−1 + √Δ𝑝2𝑛 (𝑛 − 1) 𝑎𝑛 ≈ −0.96 (8)

is a lower bound of 𝜎𝑝 = −1/2 and −𝑎𝑛−1/𝑛𝑎𝑛 = −1.43 <−0.96 < −1/2 = 𝜎𝑝.
Example 14. Let 𝑝(𝑡) = 6𝑡3 + 19𝑡2 + 16𝑡 + 4. Here 𝑛 = 3,𝑎𝑛−2 = 16, 𝑎𝑛−1 = 19, and 𝑎𝑛 = 6. By item (a) fromTheorem 9
we have that −2 (𝑛 − 1) 𝑎𝑛−1 + √Δ𝑝2𝑛 (𝑛 − 1) 𝑎𝑛 ≈ −0.58 (9)

is a lower bound of 𝜎𝑝 = −1/2 and −𝑎𝑛−1/𝑛𝑎𝑛 < −0.58 < 𝜎𝑝.
3.3. Lower Bounds for the Abscissa of Stability of an Interval
Family of Hurwitz Polynomials. For a family of Hurwitz
polynomials of degree 𝑛 of the form

F = {{{𝑓 (𝑡) : 𝑓 (𝑡) = 𝑛∑
𝑗=0

𝑎𝑛−𝑗𝑡𝑛−𝑗, 𝑎𝑖 ∈ [𝛼𝑖, 𝛽𝑖] , 𝑖
= 0, 1, . . . , 𝑛}}}

(10)

the abscissa of stability is defined by max𝑝∈F𝜎𝑝.
Theorem 15. Consider the family of Hurwitz polynomials𝑓(𝑡) = 𝑎𝑛𝑡𝑛 + 𝑎𝑛−1𝑡𝑛−1 + ⋅ ⋅ ⋅ + 𝑎1𝑡 + 𝑎0 with 0 < 𝛼𝑗 ≤ 𝑎𝑗 ≤ 𝛽𝑗,𝑗 = 0, 1, . . . , 𝑛; we have that

(a) −𝛽𝑛−1/(𝑛𝛼𝑛) is a lower bound for the abscissa of
stability of the family of polynomials;

(b) if [2(𝑛−1)𝛼𝑛−1]2−8𝑛(𝑛−1)𝛽𝑛𝛽𝑛−2 ≥ 0, then−𝛽𝑛−1/𝑛𝛼𝑛
and−2 (𝑛 − 1) 𝛽𝑛−1 + √[2 (𝑛 − 1) 𝛼𝑛−1]2 − 8𝑛 (𝑛 − 1) 𝛽𝑛𝛽𝑛−22𝑛 (𝑛 − 1) 𝛽𝑛 (11)

are lower bounds for the abscissa of stability of the
family of polynomials.

Proof. From item (b) of Theorem 9, −𝑎𝑛−1/(𝑛𝑎𝑛) is a lower
bound for the abscissa of stability of 𝑓(𝑡) = 𝑎𝑛𝑡𝑛 + 𝑎𝑛−1𝑡𝑛−1 +



4 Mathematical Problems in Engineering⋅ ⋅ ⋅ + 𝑎1𝑡 + 𝑎0. On the other hand, since −𝛽𝑛−1 ≤ −𝑎𝑛−1 ≤−𝛼𝑛−1 and 1/𝛽𝑛 ≤ 1/𝑎𝑛 ≤ 1/𝛼𝑛, we have that −𝛽𝑛−1/𝑛𝛼𝑛 ≤−𝑎𝑛−1/𝑛𝑎𝑛.
For item (b) of Theorem 9 suppose that [2(𝑛 − 1)𝛼𝑛−1]2 −8𝑛(𝑛 − 1)𝛽𝑛𝛽𝑛−2 ≥ 0. From𝛼𝑛−2 ≤ 𝑎𝑛−2 ≤ 𝛽𝑛−2,𝛼𝑛−1 ≤ 𝑎𝑛−1 ≤ 𝛽𝑛−1,𝛼𝑛 ≤ 𝑎𝑛 ≤ 𝛽𝑛, (12)

the next inequalities are obtained:

(1) 2(𝑛 − 1)𝛼𝑛−1 ≤ 2(𝑛 − 1)𝑎𝑛−1 ≤ 2(𝑛 − 1)𝛽𝑛−1,
(2) 8𝑛(𝑛 − 1)𝛼𝑛𝛼𝑛−2 ≤ 8𝑛(𝑛 − 1)𝑎𝑛𝑎𝑛−2 ≤ 8𝑛(𝑛 − 1)𝛽𝑛𝛽𝑛−2,
(3) 1/𝛽𝑛 ≤ 1/𝑎𝑛 ≤ 1/𝛼𝑛,
(4) −2(𝑛 − 1)𝛽𝑛−1 ≤ −2(𝑛 − 1)𝑎𝑛−1,
(5) [2(𝑛 − 1)𝛼𝑛−1]2 − 8𝑛(𝑛 − 1)𝛽𝑛𝛽𝑛−2 ≤ [2(𝑛 − 1)𝑎𝑛−1]2 −8𝑛(𝑛 − 1)𝑎𝑛𝑎𝑛−2,
(6) 1/2𝑛(𝑛 − 1)𝛽𝑛 ≤ 1/2𝑛(𝑛 − 1)𝑎𝑛.

Thus−2 (𝑛 − 1) 𝛽𝑛−1 + √[2 (𝑛 − 1) 𝛼𝑛−1]2 − 8𝑛 (𝑛 − 1) 𝛽𝑛𝛽𝑛−22𝑛 (𝑛 − 1) 𝛽𝑛≤ −2 (𝑛 − 1) 𝑎𝑛−1 + √Δ𝑝2𝑛 (𝑛 − 1) 𝑎𝑛 . (13)

This proves Theorem 15.

Remark 16. Note that for every interval family of Hurwitz
polynomials we give the lower bound −𝛽𝑛−1/(𝑛𝛼𝑛). If addi-
tionally the family satisfies [2(𝑛−1)𝛼𝑛−1]2−8𝑛(𝑛−1)𝛽𝑛𝛽𝑛−2 ≥0 then we can give a second lower bound given by−2 (𝑛 − 1) 𝛽𝑛−1 + √[2 (𝑛 − 1) 𝛼𝑛−1]2 − 8𝑛 (𝑛 − 1) 𝛽𝑛𝛽𝑛−22𝑛 (𝑛 − 1) 𝛽𝑛 . (14)

Remark 17. In Theorem 15 we have two lower bounds, but
there could be more lower bounds. The abscissa is the
maximum of all of them. That is, another way of obtaining
the abscissa of stability is to take the maximum of the lower
bounds.

Example 18. Consider the family of Hurwitz polynomials𝑓 (𝑡) = 𝑎4𝑡4 + 𝑎3𝑡3 + 𝑎2𝑡2 + 𝑎1𝑡 + 𝑎0, (15)

where 10 ≤ 𝑎0 ≤ 20, 23 ≤ 𝑎1 ≤ 34, 18 ≤ 𝑎2 ≤ 19, 5 ≤ 𝑎3 ≤ 7,
and 1 ≤ 𝑎4 ≤ 1. Here 𝛼0 = 10, 𝛽0 = 20, . . . , 𝛼4 = 1, 𝛽4 = 1,
and 𝑛 = 4.

Since [2(𝑛 − 1)𝛼𝑛−1]2 − 8𝑛(𝑛 − 1)𝛽𝑛𝛽𝑛−2 = −828 < 0 by
part (a) of Theorem 15 we have that −𝛽𝑛−1/𝑛𝛼𝑛 = −𝛽3/4𝛼4 =−7/4 is a lower bound of the abscissa of stability of the family
Hurwitz polynomials.

Example 19. Consider the family of Hurwitz polynomials𝑓 (𝑡) = 𝑎3𝑡3 + 𝑎2𝑡2 + 𝑎1𝑡 + 𝑎0, (16)

where 0.25 ≤ 𝑎0 ≤ 1.25, 0.75 ≤ 𝑎1 ≤ 1.25, 2.75 ≤ 𝑎2 ≤ 3.25,
and 0.25 ≤ 𝑎3 ≤ 1.75. Here 𝛼0 = 0.25, 𝛽0 = 1.25, . . . , 𝛼3 =0.25, 𝛽3 = 1.75, and 𝑛 = 3. Since [2(𝑛 − 1)𝛼𝑛−1]2 − 8𝑛(𝑛 −1)𝛽𝑛𝛽𝑛−2 = 46 > 0, by item (b) fromTheorem 15 we have that−2 (𝑛 − 1) 𝛽𝑛−1 + √[2 (𝑛 − 1) 𝛼𝑛−1]2 − 8𝑛 (𝑛 − 1) 𝛽𝑛𝛽𝑛−22𝑛 (𝑛 − 1) 𝛽𝑛≈ −0.41, (17)

which is a lower bound of the abscissa of stability of the family
of Hurwitz polynomials.

4. The Abscissa to Generate
Instability and Multiscrolls Attractors

In the study of multiscroll attractors different aspects are
interesting and one of them is when the multiscroll attractor
exists for a particular set of system’s parameters; then the
interest is about robustness against parametric perturbation.
For instance, we would like to know the variation of the
values of parameters of a given system in order to preserve the
multiscroll attractor. In this direction a polynomial approach
has been used to find the maximal robust dynamics [40] and
for studying the maximum range for a set of parameters to
preserve the useful instability for the generation ofmultiscroll
attractors [41]. Now, let us apply the abscissa approach for
finding the lower bound of the abscissa of hyperbolicity and
instability needed in UDS to generate multiscroll attractors.
The linear system (2) under a control action is given as
follows: �̇� = 𝐴𝑥 + 𝐵𝑢, (18)

with Hurwitz characteristic polynomial of 𝐴, 𝑝(𝑡) = 𝑡𝑛 +𝑎𝑛−1𝑡𝑛−1 + ⋅ ⋅ ⋅ + 𝑎1𝑡 + 𝑎0. Define 𝑓𝑟(𝑡) = 𝑝(𝑡 − 𝑟), with 𝑟 ≥ 0.
Note that 𝑓𝑟(𝑡) is a set of polynomials such that 𝑓0(𝑡) = 𝑝(𝑡)
is a Hurwitz polynomial and the abscissa of stability can be
calculated by𝜎𝑓𝑟 = −max

𝑟
{𝑟 > 0 | 𝑓𝑟 (𝑡) is Hurwitz ∀𝑟, 𝑟 < 𝑟} . (19)

Now, by Taylor’s theorem 𝑓𝑟(𝑡) = 𝑝(𝑡 − 𝑟) can be rewritten as

𝑓𝑟 (𝑡) = 𝑡𝑛 + 𝑝(𝑛−1) (−𝑟)(𝑛 − 1)! 𝑡𝑛−1 + ⋅ ⋅ ⋅ + 𝑝 (−𝑟)1! 𝑡 + 𝑝 (−𝑟)= 𝑡𝑛 + 𝐴𝑛−1 (𝑟) 𝑡𝑛−1 + ⋅ ⋅ ⋅ + 𝐴1 (𝑟) 𝑡 + 𝐴0 (𝑟) . (20)

If 𝑟 = −𝜎𝑝 then 𝑓𝑟(𝑡) has roots in the imaginary axis. Thence,
the system is unstable in the interval (−𝜎𝑝,∞). Let us describe
the class of instabilities by considering the following system
in R3.
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Definition 20. We have the following system:�̇� = 𝐴𝑥, (21)

where 𝑥 ∈ 𝑅3 is the state vector, 𝐴 ∈ 𝑅3×3 is a linear operator
with eigenvalues 𝜆𝑖, and 𝑖 = 1, 2, 3 is said to be dissipative if∑3𝑖=1 𝜆𝑖 < 0. The system is said to be unstable and dissipative
of type I (UDS-I) if one of its eigenvalues is a negative real
number and the other two are complex conjugate numbers
with positive real part; and it is said to be of type II (UDS-II)
if one of its eigenvalues is a positive real number and the other
two are complex conjugate numbers with negative real part.

This work is based on UDS-I, so a generalization of the
above definition forUDS-I with dimension greater than three
can be given as follows.

Definition 21. The system given by (21) where 𝑥 ∈ R𝑛,𝐴 ∈ R𝑛×𝑛, and eigenvalues 𝜆𝑖, 𝑖 = 1, 2, . . . , 𝑛, is said to be
dissipative if ∑𝑛𝑖=1 𝜆𝑖 < 0. The system is said to be unstable
and dissipative of type I (UDS-I) if 𝑛 − 2 of its eigenvalues
are negative real numbers and the other two are complex
conjugate numbers with positive real part.

Due to the relation between the linear system like (21)
and its characteristic polynomial, we shall say that an 𝑛-
degree polynomial 𝑝(𝑡) is dissipative if the sum of its roots
is negative. In a similar way, 𝑝(𝑡) will be a UDS-I polynomial
if its roots satisfy Definition 21 for systems of type I. Notice
that Definition 21 is only one possibility to define UDS
considering 𝑛 − 2 negative real numbers.

Lemma 22. Let 𝑝(𝑡) be a real 𝑛-degree Hurwitz polynomial
with roots 𝑡1, . . . , 𝑡𝑛. If 𝑓𝑟(𝑡) = 𝑝(𝑡 − 𝑟) is unstable and
dissipative, then the following conditions are satisfied:

(i) 𝑟 > −𝜎𝑝.
(ii) 𝑟 < 𝑈𝑑𝑖𝑠𝑠(𝑝) = −(1/𝑛)∑𝑛𝑗=1 𝑡𝑗.

Proof. The proof of (i) is obvious. We will focus on the proof
of (ii). Firstly, it is not too hard to see that if the root 𝑡𝑗 of 𝑝(𝑡)
has nonzero imaginary part, then its translation 𝑟 + 𝑡𝑗 and its
conjugate are roots of 𝑓𝑟(𝑡), with 𝑟 ∈ R. Namely, by writing𝑝(𝑡) = ∏𝑛𝑗=1(𝑡 − 𝑡𝑗), then𝑓𝑟 (𝑡) = 𝑛∏

𝑗=1

[𝑡 − 𝑟 − 𝑡𝑗] = 𝑛∏
𝑗=1

[𝑡 − (𝑟 + 𝑡𝑗)] . (22)

Thence,
𝑛∑
𝑗=1

(𝑟 + 𝑡𝑗) = 𝑛∑
𝑗=1

𝑡𝑗 + 𝑛𝑟, (23)

and since ∑𝑛𝑗=1 𝑡𝑗 < 0, then −(1/𝑛)∑𝑛𝑗=1 𝑡𝑗 > 0 and
𝑛∑
𝑗=1

𝑡𝑗 + 𝑛𝑟 < 0 ⇐⇒
𝑟 < −1𝑛 𝑛∑

𝑗=1

𝑡𝑗. (24)

Therefore, if 𝑓𝑟(𝑡) is unstable and dissipative, then 𝑟 <−(1/𝑛)∑𝑛𝑗=1 𝑡𝑗, as we claim.

Remark 23. The previous lemma provides an upper bound
for dissipativity. However, it may happen that −𝜎𝑝 = 𝑈diss(𝑝)
in the case when Re(𝑡𝑗) = 𝑐, for all 𝑗 = 1, . . . , 𝑛.

Given the fact that a Hurwitz polynomial 𝑝(𝑡) can be
perturbed to be unstable for (𝜎𝑝,∞) and that 𝑈diss(𝑝) is an
upper bound for the dissipativity, it is possible to carry the
system from stability to instability in the sense of UDS if at
least one of its roots has different real part than the others.
The following result is immediate from the aforementioned
discussion.

Corollary 24. Consider the Hurwitz polynomial 𝑝(𝑡) =∏𝑛𝑗=1(𝑡−𝑡𝑗), with 𝑛−2 real roots and a pair of conjugate complex
roots, say, 𝑡𝑖, 𝑡𝑖+1, for some 1 ≤ 𝑖 ≤ 𝑛. Then

(i) 𝑓𝑟(𝑡) is Hurwitz if and only if 𝑟 < −𝜎𝑝.
(ii) If Re(𝑡𝑖) ̸= 𝑡𝑗, 𝑖 ̸= 𝑗, then 𝑓𝑟(𝑡) is UDS if and only if𝑟 ∈ (−𝜎𝑝, 𝑈𝑑𝑖𝑠𝑠(𝑝)).
In order to generate multiscroll attractors, let us consider

the control system

ẋ = Ax + B𝑆 + 𝑏𝑢, (25)

where x = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 ∈ R𝑛 is the state vector, B ∈ R𝑛

stands for a real affine vector, and A = [𝑎𝑖𝑗] ∈ R𝑛×𝑛 with𝑖, 𝑗 = 1, 2, . . . , 𝑛 denotes a nonsingular linear matrix.
Let 𝑝𝐴(𝑡) be the characteristic polynomial of the system,𝑏𝑇 = (0, 0, . . . , 0, 1), and 𝑆 is the following step function:

𝑆 = {{{{{{{{{{{{{{{{{
𝑠1 for 𝑐1 < 𝑥1,𝑠2 for 𝑐2 < 𝑥1 ≤ 𝑐1,...𝑠𝑚 for 𝑐𝑚 < 𝑥1 ≤ 𝑐𝑚−1,

(26)

where the values 𝑐𝑖’s must be chosen in a suitable way that will
be explained below. Define the linear control 𝑢 = 𝑐𝑇(𝑟)𝑥 =(𝑎0 − 𝐴0(𝑟), 𝑎1 − 𝐴1(𝑟), . . . , 𝑎𝑛−1 − 𝐴𝑛−1(𝑟))𝑥, where 𝐴𝑗(𝑟) =𝑝𝑗(−𝑟)/𝑗. Then the controlled system is

ẋ

= ( 0 1 0 ⋅ ⋅ ⋅ 00 0 1 ⋅ ⋅ ⋅ 0... ... 0−𝐴0 (𝑟) −𝐴1 (𝑟) −𝐴2 (𝑟) ⋅ ⋅ ⋅ −𝐴𝑛−1 (𝑟)) x

+ B𝑆 = Acx + B𝑆.
(27)
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Thus, the closed-loop characteristic polynomial is given by𝑓𝑟 (𝑡) = 𝑡𝑛 + 𝐴𝑛−1 (𝑟) 𝑡𝑛−1 + ⋅ ⋅ ⋅ + 𝐴0 (𝑟)= 𝑡𝑛 + 𝑝𝑛−1 (−𝑟)(𝑛 − 1)! 𝑡𝑛−1 + ⋅ ⋅ ⋅ + 𝑝 (−𝑟)0!= 𝑝𝐴 (𝑡 − 𝑟) . (28)

When 𝑟 = 0, 𝐴0 is a stable matrix and 𝑓0(𝑡) = 𝑝𝐴(𝑡)
but when 𝑟 > −𝜎𝑝𝐴 we can obtain dissipative systems
with unstable dynamics and the possibility of generating
multiscroll attractors. As described in Definition 21, a system
with stability index 𝑛 − 2 will be addressed as a system of the
UDS type I. Besides, the following considerations have to be
made in order to call (25) a UDS of type I that in addition
generates an attractorA.

(a) The linear part of the system must satisfy the dissipa-
tive condition∑𝑛𝑖=1 𝜆𝑖 < 0, where𝜆𝑖, 𝑖 = 1, 2, . . . , 𝑛, are
eigenvalues ofAc. Consider also that 𝑛−2 eigenvalues
are negative real numbers, and two 𝜆𝑖 values are
complex conjugate eigenvalues with positive real part
Re{𝜆𝑖} > 0, resulting in an unstable focus-saddle
equilibrium X∗. This type of equilibria presents a
stable manifold 𝑀𝑠 = span{𝑉𝜆1 , . . . , 𝜆𝑛−2} ∈ R𝑛 with
a fast eigendirection and an unstable manifold𝑀𝑢 =
span{𝑉𝜆𝑛−1 , 𝑉𝜆𝑛} ∈ R𝑛 with a slow spiral eigendirec-
tion, where 𝑉𝜆𝑖 corresponds to the eigenvector of A
regarding the eigenvalue 𝜆𝑖.

(b) The affine vector BSmust be considered as a discrete
function that changes depending on which domain
D𝑖 ⊂ R𝑛 the trajectory is located at. Accordingly
R𝑛 = ⋃𝑘𝑖=1D𝑖. Then a switching system based on (25)
is given by

Ẋ = AcX + BS (X) ,
S (X) = {{{{{{{{{{{{{{{{{

𝑠1, if 𝑋 ∈ D1;𝑠2, if 𝑋 ∈ D2;... ...𝑠𝑘, if 𝑋 ∈ D𝑘.
(29)

The equilibria of system (29) are X∗𝑖 = −Ac
−1BS, with𝑖 = 1, . . . , 𝑘, and each entry 𝑠𝑖 of the switching system

is considered in order to preserve bounded trajectories of
system (29). Thence, the choice of 𝑐𝑖’s in the definition of the
step function S will determine the commutation regionsD𝑖’s
that enclose each equilibrium X∗𝑖 .

The commuting system given by (29) induces in phase
space R𝑛 the flow (𝜑𝑡), 𝑡 ∈ R, such that each forward
trajectory of the initial point X0 = X(𝑡 = 0) is the set {X(𝑡) =𝜑𝑡(X0) : 𝑡 ≥ 0}. Furthermore, these systems have a dissipative
bounded regionΩ ⊂ R𝑛 named basin of attraction, such that
the flow 𝜑𝑡(Ω) ⊂ Ω for every 𝑡 ≥ 0. The attractor A is the
largest attracting invariant subset ofΩ.

Definition 25. Consider a system given by (29) in R𝑛 and
equilibrium points X∗𝑖 , with 𝑖 = 1, . . . , 𝑘 and 𝑘 ≥ 2. We say
that system (29) can generate multiscroll attractors with the
minimum of equilibrium points, if for any initial condition𝑋0 ∈ B ⊂ R𝑛 in the basin of attraction the orbit 𝜑(𝑋0)
generates an attractor A ⊂ R𝑛 with oscillations around each
X∗𝑘 .

We exemplify the theory by presenting a case inR3 where
the following theorem holds.

Theorem 26. Consider system (25) for the particular case
where the dimension is three. That is, consider a 3D-control
system with characteristic Hurwitz polynomial 𝑝𝐴(𝑡) = (𝑡 +𝜁)(𝑡 + 𝜁)(𝑡 + 𝜌), where Im(𝜁) ̸= 0. If Re(𝜁) ̸= 𝜌, then the
closed-loop system with the control 𝑢 = 𝑐𝑇(𝑟)𝑥 is UDS for all𝑟 ∈ (−𝜎𝑝𝐴 , 𝑈𝑑𝑖𝑠𝑠(𝑝𝐴)).
Proof. Note that the closed-loop system (25) with the feed-
back 𝑢 = 𝑐𝑇(𝑟)𝑥 has a characteristic polynomial to the poly-
nomial family 𝑓𝑟(𝑡) = 𝑝𝐴(𝑡 − 𝑟). Then by Corollary 24 𝑓𝑟(𝑡)
is UDS for all 𝑟 ∈ (−𝜎𝑝𝐴 , 𝑈diss(𝑝𝐴)). This completes the
proof.

A system satisfying the previous theorem is candidate to
generate multiscroll attractors emerging from its equilibria
with a suitable step function 𝑆. The number of scrolls in the
attractorA is due to the step function 𝑆. Next, let us illustrate
the generation of multiscroll attractors. Consider the system

�̇� = ( 0 1 00 0 1−50 −20 −7)𝑥 +( 007.0278)𝑆 +(001)𝑢 (30)

with step function

𝑆 (𝑥1) = {{{{{{{{{{{{{{{
3, for 0.5 < 𝑥1;2, for 0.3 < 𝑥1 ≤ 0.5;1, for 0.1 < 𝑥1 ≤ 0.3;0, for 𝑥1 ≤ 0.1. (31)

𝑢 = (50−𝑝(−𝑟), 20−𝑝(−𝑟)/1!, 7−𝑝(−𝑟)/2!)𝑥, where 𝑝(𝑡) =𝑡3 + 7𝑡2 + 20𝑡 + 50 is Hurwitz.
The controlled system is

�̇� = ( 0 1 00 0 1−𝑝 (−𝑟) −−𝑝 (−𝑟)1! −−𝑝 (−𝑟)2! )𝑥
+( 007.0278)𝑆.

(32)

Denote 𝑓𝑟(𝑡) = 𝑡3 + (𝑝(−𝑟)/2!)𝑡2 + (𝑝(−𝑟)/1!)𝑡 + 𝑝(−𝑟) for𝑟 = 0. 𝑓0(𝑡) = 𝑝(𝑡) = 𝑡3+7𝑡2+20𝑡+50 is aHurwitz polynomial
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Figure 1: Projections of the solution of system (30) onto the planes: (a) (𝑥1, 𝑥2); (b) (𝑥1, 𝑥3); and (c) (𝑥2, 𝑥3).
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Figure 2: Projections of the attractor onto the planes: (a) (𝑥1, 𝑥2); (b) (𝑥1, 𝑥3); and (c) (𝑥2, 𝑥3).
and there is no multiscroll. Figure 1 shows the projection of
the stable solution onto the planes: (a) (𝑥1, 𝑥2); (b) (𝑥1, 𝑥3);
and (c) (𝑥2, 𝑥3).

The abscissa of 𝑓0(𝑡) is 𝜎𝑓0 = −1. Then other behavior
could appear when 𝑟 ∈ (1,∞). For example, for 𝑟 = 1.1,𝑓2(𝑡) = 𝑡3 + 3.7𝑡2 + 8.23𝑡 + 35.139; hence ∑3𝑗=1 𝑡𝑗 < 0;
consequently system (32) is dissipative when 𝑟 = 1.1 and in
Figure 2 the generation of multiscroll attractor is illustrated.
Another reference where multiscroll attractors have been
studied is [40].

The equilibria of the system for 𝑟 = 1.1 are given by
X∗1 = (0.6, 0, 0)𝑇, X∗2 = (0.4, 0, 0)𝑇, X∗3 = (0.2, 0, 0)𝑇,
and X∗4 = (0, 0, 0)𝑇. Between equilibria, the commutation
surfaces at the planes are as follows: 𝑃𝑖 = {(𝑥1, 𝑥2, 𝑥3)𝑇 ∈ R3 |𝑥1 = 0.1+0.2∗(𝑖−1)}, with 𝑖 = 1, 2, 3, dividing the space into
four domains D1,2,3,4 given by D1 = {(𝑥1, 𝑥2, 𝑥3)𝑇 ∈ R3 |0.5 < 𝑥1}, D2 = {(𝑥1, 𝑥2, 𝑥3)𝑇 ∈ R3 | 0.3 < 𝑥1 ≤ 0.5},
D3 = {(𝑥1, 𝑥2, 𝑥3)𝑇 ∈ R3 | 0.1 < 𝑥1 ≤ 0.3}, and D4 ={(𝑥1, 𝑥2, 𝑥3)𝑇 ∈ R3 | 𝑥1 ≤ 0.1}. Notice two important facts
about the system; first the scrolls are increasing their size due

to the unstable manifold; this can be better appreciated at
the projection of the attractor onto the (𝑥1, 𝑥3) plane from
Figure 2(b). Second, the trajectory of the system oscillating
around the equilibrium point X∗4 in A ∩ D4 escapes from
the domain D4 located in the left side of the commutation
surface. This occurs near the unstable manifold 𝐸𝑢 ⊂ D4
where it crosses the commutation surface and it is attracted
by the stablemanifold𝐸𝑠 ⊂ D3 to the equilibriumpointX∗3 in
the domain D3 located at the right side of the commutation
surface 𝑃1.The process is repeated in the inverse way forming
scrolls around each equilibrium point.

5. Conclusion

In this paper we use the Gauss–Lucas theorem for obtaining
an inequality between the abscissas of stability of a Hurwitz
polynomial and its derivative. Then we use such inequality
for getting a lower bound for the abscissa of a polynomial
and for an interval family of polynomials. We have compared
the lower bounds obtained with other works and we can
say that the obtained bounds in this paper are easy to
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calculate and sometimes are better that others. Based on the
aforementioned results, an approach to generate multiscroll
attractors was presented. We consider that this result is
important to help in understanding the emergence of chaos
in stable systems. Using the abscissa of stability we can
generate multiscroll attractors from a Hurwitz polynomial.
One interesting aspect is that we can generate multiscroll
attractor with the change of only one parameter.
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[16] J.-A. López-Renteria, B. Aguirre-Hernández, and F. Verduzco,
“The boundary crossing theorem and the maximal stability
interval,” Mathematical Problems in Engineering, Article ID
123403, 13 pages, 2011.

[17] J. Ackerman, Robust Control. The Parameter Space Approach,
Springer-Verlag, New York, 2002.

[18] R. B. Barmish, New Tools for Robustness of Linear Systems,
MacMillan Publishing Co, New York, 1994.

[19] P. Dorato, R. Tempo, and G. Muscato, “Bibliography on robust
control,” Automatica. A Journal of IFAC, the International
Federation of Automatic Control, vol. 29, no. 1, pp. 201–213, 1993.

[20] O. Taussky-Todd, “On stable matrices,” in Colloques Interna-
tionaux Du Centre National De La Recherche Scientifique, vol.
165, pp. 75–88, Paris, France, 1968.

[21] V. Zakian and U. Al-Naib, “Design of dynamical and control
systems by the method of inequalities,” Proceedings of the
Institution of Electrical Engineers, vol. 120, no. 11, pp. 1421–1427,
1973.

[22] V. Zakian, “New formulation for the method of inequalities,”
Proceedings of the Institution of Electrical Engineers, vol. 126, no.
6, pp. 579–584, 1979.

[23] G. Schrack F, Lower Bounds for the Abscissa of Stability of Stable
Polynomials. Dissertation 4065 [M.sc. thesis], Eidgenossische
Technische Hochschule, Zurich, 1967.

[24] G. F. Schrack, “Lower bounds to the abscissa of stability of a
stable polynomial from symmetric functions,” SIAM Journal on
Applied Mathematics, vol. 21, pp. 373–379, 1971.

[25] S. Bialas, “Upper bounds for the abscissa of stability of a stable
interval polynomial,” Bulletin of the Polish Academy of Sciences.
Mathematics, vol. 32, no. 1-2, pp. 1–9, 1984.

[26] P. Henrici, “Upper bounds for the abscissa of stability of a stable
polynomial,” SIAM Journal on Numerical Analysis, vol. 7, pp.
538–544, 1970.

[27] K. L. Olifirov, “Determination of a neighborhood of the
imaginary axis which is disjoint from the spectrum of a real
polynomial,” Mathematical Notes of the Academy of Sciences of
the USSR, vol. 22, no. 2, pp. 581–584, 1977.

[28] E. Campos-Cantón, J. G. Barajas-Ramı́rez, G. Soĺıs-Perales, and
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