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This work is devoted to prove that the nonlinear control scheme previously proposed by the (2nd, 3rd, & 5th)
authors for the global stabilization of the PVTOL aircraft with bounded inputs neglecting the lateral force
coupling, is robust with respect to the parameter characterizing such a lateral force coupling, ε, as long as
such a parameter takes small enough values. In other words, global stabilization is achieved even if ε > 0,
provided that such a parameter be sufficiently small. As far as the authors are aware, such a property has not
been proved in other existing control schemes when the value of ε is not known. The presented methodology is
based on the use of embedded saturation functions. Furthermore, experimental results of the control algorithm
implemented on a real prototype are presented.
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1 Introduction

The literature shows that the planar vertical take-off and landing (PVTOL) aircraft continuously
produces a great interest in the control community. Indeed, its mathematical model represents
a challenge in nonlinear control design. The PVTOL aircraft system is also extensively used to
develop and/or approximate models of flying vehicles. This can be confirmed through numerous
works that have been recently contributed on Unmanned Autonomous Vehicles (UAV).

The nonlinear dynamical model of the PVTOL aircraft, as presented in Hauser et al. (1992),
is given by the following equations (see Fig. 1)

ẍ = −u1 sin θ + εu2 cos θ (1a)

ÿ = u1 cos θ + εu2 sin θ − 1 (1b)

θ̈ = u2 (1c)

where x, y, and θ respectively refer to the center of mass horizontal and vertical positions
and the roll angle of the aircraft with the horizon; as conventionally, a dot and a double dot
above respectively denote velocity and acceleration. The variables u1 and u2 are respectively the
thrust and the angular acceleration inputs. The constant ‘−1’ is the normalized gravitational
acceleration and ε is a (generally small) coefficient which characterizes the coupling between the
rolling moment u2 and the lateral acceleration of the aircraft.

A large number of authors have proposed control methodologies for the stabilization or the
trajectory tracking of the PVTOL aircraft system. To cite a few of them, such studies include
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Figure 1. The PVTOL aircraft

Hauser et al. (1992), Lin et al. (1999), Marconi et al. (2002), Martin et al. (1996), Olfati-Saber
(2002), Saeki and Sakaue (2001), Sepulchre et al. (1997), Setlur et al. (2001), Teel (1996), Zavala-
Rı́o et al. (2003). Some authors have also contributed works supporting their algorithms through
experimental PVTOL aircraft setups (see for instance Lozano et al. (2004), Palomino et al.
(2003)). Some others have also been interested in designing observers when the full state of the
PVTOL system is not completely measurable. Indeed, Do et al. (2003) proposed an output-
feedback tracking controller considering no velocity measurements in the system and Sanchez
et al. (2004) presented a nonlinear observer design for the PVTOL aircraft in order to estimate
the angular position of the system.

Recently, Wood and Cazzolato (2007) proposed a nonlinear control scheme using a feedback law
that casts the system into a cascade structure and proved its global stability. Global stabilization
was also achieved by Ye et al. (2007) through a saturated control technique by previously trans-
forming the PVTOL dynamics into a chain of integrators with nonlinear perturbations. Further,
a nonlinear prediction-based control approach was proposed by Chemori and Marchand (2008)
for the stabilization problem; the control method is based on partial feedback linearization and
optimal trajectories generation to enhance the behaviour and the stability of the systems internal
dynamics. Tracking and path following controllers have also been developed. Indeed, on the one
hand, an open-loop exact tracking for the VTOL aircraft with bounded internal dynamics via
a Poincaré map approach was presented in Consolini and Tosques (2007). On the other hand,
a path following controller was proposed in Nielsen et al. (2008) that drives the center of mass
of the PVTOL aircraft to the unit circle and makes it traverse the circle in a desired direction;
instead of using time parametrization of the path, they use a nested set stabilization approach.

In the previously cited works, either the lateral coupling was neglected (by regarding the
coupling constant ε as so small that ε = 0 is supposed in (1); see for instance (Hauser et al. 1992,
§2.4)), or the exact knowledge of this term was considered to design the controllers. On the other
hand, from all the previously cited works, Zavala-Rı́o et al. (2003) was the first to simultaneously
consider the bounded nature of both inputs and the positive character of the thrust to develop
a globally stabilizing scheme. Nevertheless, robustness of the previously proposed algorithms to
uncertainties on the coupling parameter ε has hardly been addressed. The optimal control setting
of Lin et al. (1999) was designed under the consideration of such uncertainties, but a nominal
value of ε is required by the proposed algorithm. Further, Teel (1996) proposed a control law
based on the exact value of ε and showed robustness of his approach, but only through numerical
simulations and for initial conditions being close enough to the origin. Numerical simulations were
also used in Chemori and Marchand (2008) to evaluate and show robustness of their algorithm
towards uncertain values of ε. Now, due to its dependence on the physical parameters of the
aircraft, the supposition that ε is exactly known could be defended (see, for instance, Olfati-Saber
(2002)). Nevertheless, its exact value can be difficult to measure or estimate in real experiments.

In the present paper, the crucial contribution consists in demonstrating that through the use
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of the control methodology previously presented in Zavala-Rı́o et al. (2003), where ε = 0 was
supposed, global stabilization is achieved even if ε > 0, provided that such a parameter takes
small enough values. This corroborates the robustness of such a control approach. The algorithm
is based on the use of the embedded saturation function methodology proposed by Teel (1992).
The strength of the presented analysis relies on the fact that no modification on the original
control algorithm was required. Furthermore, the applicability of the method has been validated
by experimental results. Indeed, we present in this paper an experiment where we have applied
the proposed control design methodology on a four-rotor helicopter.

The paper is organized as follows. Section 2 states the notation used throughout the paper.
Section 3 recalls the approach presented in Zavala-Rı́o et al. (2003). Section 4 details the stability
analysis of the closed-loop system including the lateral force coupling. Some experimental results
are presented in Section 5. Finally, conclusions are given in Section 6.

2 Notation

Let IR+ represent the set of nonnegative real numbers. We denote 0n the origin of IRn. For any
x ∈ IRn, xi represents its ith element. Let A ∈ IRn×n be a symmetric matrix, i.e. AT = A. The
maximum and minimum eigenvalues of A will be respectively denoted λmax(A) and λmin(A). In

denotes the n × n identity matrix.
Throughout the paper, ‖ · ‖ will represent the standard Euclidean vector norm and induced

matrix norm, i.e. ‖x‖ ,
[
∑n

i=1 |xi|2
]1/2

for any x ∈ IRn, and ‖B‖ =
[

λmax(B
TB)

]1/2
for any

B ∈ IRm×n. Other type of norms will be explicitly expressed. For instance, the infinite induced
matrix norm will be denoted ‖B‖∞, i.e. ‖B‖∞ , maxi

∑n
j=1 |bij |, where bij represents the

element in row i and column j of matrix B.
Let A and E be subsets (with nonempty interior) of some vector spaces A and E respectively.

We denote Cm
L (A; E) the set of m-times continuously differentiable functions from A to E whose

mth derivative is Lipschitz-continuous. Consider a scalar function h ∈ C2
L(IR; IR). The following

notation will be used: h′ : s → d
ds

h and h′′ : s → d2

ds2
h, while h′′′ : s → D+h′′, where D+

denotes the upper right-hand (Dini) derivative (see for instance (Khalil 2002, Appendix C2)).
Let us note that if a scalar function v(s) is differentiable at s, then D+v(s) = dv

ds (s). For a
Lipschitz-continuous function v(s) that is not differentiable at a finite number of values of s, say
s1, s2, ..., sn, D+v(s) is a function with bounded discontinuities but well defined at such points,
s1, s2, ..., sn.

3 Globally stabilizing controller

In view of the small value that ε usually takes (see, for instance, Hauser et al. (1992)), a control
scheme for the PVTOL aircraft was proposed in Zavala-Rı́o et al. (2003) by considering ε = 0
in (1), i.e. modelling the system dynamics as

ẍ = −u1 sin θ , ÿ = u1 cos θ − 1 , θ̈ = u2 (2)

Under this consideration, the control objective achieved in Zavala-Rı́o et al. (2003) was the
global asymptotic stability of the closed-loop system trivial solution (x, y, θ)(t) ≡ (0, 0, 0) avoid-
ing input saturation, i.e. with 0 ≤ u1(t) ≤ U1 and |u2(t)| ≤ U2, ∀t ≥ 0, for some constants
U1 > 1 and U2 > 0.1

1Notice, from the vertical motion equation in the system dynamic model, whether the lateral force coupling is neglected as
in (2) or considered as in (1), that U1 > 1 is a necessary condition for the PVTOL to be stabilizable at any desired position.
Indeed, any steady-state condition implies that the aircraft weight be compensated.
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The approach developed in Zavala-Rı́o et al. (2003) is based on the use of linear saturation
functions, as defined in Teel (1992), and a special type of them stated in Zavala-Rı́o et al. (2003)
and referred to as two-level linear saturation functions, whose definitions are recalled here.

Definition 3.1: Given positive constants L and M , with L ≤ M , a function σ : IR → IR is
said to be a linear saturation for (L,M) if it is a nondecreasing Lipschitz-continuous function
satisfying

(a) σ(s) = s when |s| ≤ L
(b) |σ(s)| ≤ M for all s ∈ IR

Definition 3.2: Given positive constants L+, M+, N+, L−, M−, and N−, with L± ≤
min{M±, N±}, a function σ : IR → IR is said to be a two-level linear saturation for
(L+,M+, N+, L−,M−, N−) if it is a nondecreasing Lipschitz-continuous function satisfying

(a) σ(s) = s for all s ∈ [−L−, L+]
(b) −M− < σ(s) < M+ for all s ∈ (−N−, N+)
(c) σ(s) = −M− for all s ≤ −N−

(d) σ(s) = M+ for all s ≥ N+

We recall the control scheme proposed in Zavala-Rı́o et al. (2003), where the thrust u1 and
the rolling moment u2 were defined as

u1 =
√

r2
1 + (1 + r2)2 (3)

u2 = σ41(αd) − σ32

(

θ̇ − σ42(ωd) + σ31(θ̇ − σ43(ωd) + θ − θd)
)

(4)

where

r1 = −kσ12(ẋ + σ11(kx + ẋ)) (5)

r2 = −σ22(ẏ + σ21(y + ẏ)) (6)

θd = arctan(−r1, 1 + r2) (7)

arctan(a, b) represents the (unique) angle α such that sin α = a/
√

a2 + b2 and cos α =
b/
√

a2 + b2; k in (5) is a positive constant smaller than unity, i.e.

0 < k < 1 (8a)

σij(·) in (5) and (6) are functions on C2
L(IR; IR) satisfying Definition 3.2, for given (L+

ij , M+
ij , N+

ij ,

L−
ij , M−

ij , N−
ij ) such that

(kM12)
2 +

(

1 + M−
22

)2
< U2

1 (8b)

M+
22 < 1 (8c)

Mi1 <
Li2

2
, ∀i = 1, 2 (8d)

with Mij , max{M−
ij ,M+

ij } and Lij , min{L−
ij , L

+
ij}, i = 1, 2, j = 1, 2; the functions σmn(·) in

(4) are linear saturations for given (Lmn,Mmn) such that

M41 + M32 < U2 (9a)
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M41 + 2M42 + 2M31 < L32 (9b)

M41 + M42 + 2M43 + 2Bθd
< L31 (9c)

with

Bθd
, arctan

(

kM12, 1 − M+
22

)

(10)

and

ωd ,
dθd

dt

∣

∣

∣

∣

ε=0

and αd ,
d2θd

dt2

∣

∣

∣

∣

ε=0

whose expressions, calculated considering equations (2) as the system dynamics, are given by

ωd = kω̄d (11a)

with

ω̄d =
r̄1ρ2 − (1 + r2)ρ1

u2
1

(11b)

and

αd = kᾱd (12a)

with

ᾱd =
r̄1ϕ2 − (1 + r2)ϕ1

u2
1

− 2µ1ω̄d

u1
(12b)

where

r̄1 ,
r1

k
= −σ12(s12) (13a)

ρ1 ,
dr̄1

dt

∣

∣

∣

∣

ε=0

= −σ′
12(s12)[−u1 sin θ + σ′

11(s11)(kẋ − u1 sin θ)] (13b)

ρ2 ,
dr2

dt

∣

∣

∣

∣

ε=0

= −σ′
22(s22)[u1 cos θ − 1 + σ′

21(s21)(ẏ + u1 cos θ − 1)] (13c)

ϕ1 ,
d2r̄1

dt2

∣

∣

∣

∣

ε=0

= − σ′′
12(s12)[−u1 sin θ + σ′

11(s11)(kẋ − u1 sin θ)]2

− σ′
12(s12)

[

− u1θ̇ cos θ − µ1 sin θ + σ′′
11(s11)(kẋ − u1 sin θ)2

+ σ′
11(s11)(−ku1 sin θ − u1θ̇ cos θ − µ1 sin θ)

]

(13d)
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ϕ2 ,
d2r2

dt2

∣

∣

∣

∣

ε=0

= − σ′′
22(s22)[u1 cos θ − 1 + σ′

21(s21)(ẏ + u1 cos θ − 1)]2

− σ′
22(s22)

[

− u1θ̇ sin θ + µ1 cos θ + σ′′
21(s21)(ẏ + u1 cos θ − 1)2

+ σ′
21(s21)(u1 cos θ − 1 − u1θ̇ sin θ + µ1 cos θ)

]

(13e)

µ1 ,
du1

dt

∣

∣

∣

∣

ε=0

=
k2r̄1ρ1 + (1 + r2)ρ2

u1
(13f)

with

s11 , kx + ẋ , s12 , ẋ + σ11(s11)

s21 , y + ẏ , s22 , ẏ + σ21(s21)
(13g)

Remark 1 : One can easily verify, from the above stated equations, that if x = y = θ = ẋ =
ẏ = θ̇ = 0, then r1 = r2 = θd = 0, u1 = 1, ωd = αd = u2 = 0, and consequently, from the system
dynamics in Eqs. (1), we have that ẍ = ÿ = θ̈ = 0.

4 Main Result

Proposition 4.1: Consider the PVTOL aircraft dynamics (1) with input saturation bounds
U1 > 1 and U2 > 0. Let the input thrust u1 be defined as in (3),(5),(6), with constant k and
parameters (L+

ij , M+
ij , N+

ij , L−
ij, M−

ij , N−
ij ) of the twice differentiable two-level linear saturation

functions σij(·) in (5) and (6) satisfying inequalities (8), and the input rolling moment u2 as in
(4),(7),(11),(12), with parameters (Lmn,Mmn) of the linear saturation functions σmn(·) in (4)
satisfying inequalities (9). Then, provided that k and ε are sufficiently small,

(i) global asymptotic stability of the closed-loop system trivial solution (x, y, θ)(t) ≡ (0, 0, 0)
is achieved, with

(ii) 0 < 1 − M+
22 ≤ u1(t) ≤

√

(kM12)
2 +

(

1 + M−
22

)2
< U1 and |u2(t)| ≤ M41 + M32 < U2,

∀t ≥ 0.

Proof Item (ii) of the statement results from the definition of u1, u2, r1, and r2. Its proof is
consequently straightforward. We focus on the proof of item (i). Let us consider the state vector

z =
(

z1 z2 z3 z4 z5 z6

)T
,
(

x ẋ y ẏ θ θ̇
)T

(14)

evolving within the normed state space (IR6, ‖ · ‖). The closed-loop system dynamics gets a
consequent state-space representation ż = f(z), with f(06) = 06 (see Remark 1). The present
stability analysis is carried out showing that under such a state space representation, provided
that ε and k are small enough, the origin is asymptotically stable and globally attractive (Rouche
et al. 1977, §2.11), or equivalently for the latter property, with IR6 as region of attraction (Rouche
et al. 1977, §2.10), (Hahn 1967, §26), (Sepulchre et al. 1997, §2.3.1), that is, with every solution
converging to the origin whatever its initial condition is in IR6 (Khalil 2002, §4.1), (Sastry 1999,
Definition 5.8).

The asymptotic stability of the origin is proved through the linearization (or indirect Lya-
punov) method (see for instance (Khalil 2002, Theorem 4.7)), considering that, provided that k
is small enough, within a sufficiently small neighborhood around the origin, we have that the val-
ues of all the saturation functions in equations (4)–(6) are equal to their respective arguments
(this is analytically corroborated in (Zavala-Rı́o et al. 2003, Appendix B) and (López-Araujo
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2008, Appendix A)), i.e.

r1 = −2kz2 − k2z1 , r2 = −2z4 − z3 , u2 = αd − 2(z6 − ωd) − (z5 − θd)

Under this consideration, the Jacobian matrix of f(z) evaluated at the origin, A ,
∂f
∂z

∣

∣

∣

z=06

, is

given by

A =

















0 1 0 0 0 0

εk2 2εk(k + 1) 0 0 −1 − ε[k(k + 4) + 1] −2ε(k + 1)

0 0 0 1 0 0

0 0 −1 −2 0 0

0 0 0 0 0 1

k2 2k(k + 1) 0 0 −k(k + 4) − 1 −2(k + 1)

















Further, its characteristic polynomial, P (λ) , |λI − A|, is given by

P (λ) = (λ + 1)2
[

λ4 + 2(k + 1)(1 − εk)λ3 + (k2 + 4k + 1 − εk2)λ2 + 2k(k + 1)λ + k2
]

Applying the Routh-Hurwitz criterion, one can verify that if εk < 0.8, all the roots of P (λ) have
negative real parts (this is shown in (López-Araujo 2008, Appendix B)) and, consequently, the
origin of the closed-loop system is indeed asymptotically stable.

The proof of the global attractivity of the origin is divided in 6 parts. The first part shows that
θd, ωd, and αd, respectively in (7), (11), and (12), are bounded signals whose bounds are directly
influenced by the parameter k. The second part shows that for any initial condition vector
z(0) ∈ IR6, provided that k is small enough, there exists a finite time t2 ≥ 0 after which the
trajectories of the rotational motion dynamics evolve within a positively invariant set S0 ⊂ IR2

where the value of every linear saturation function σmn(·) in (4) is equal to that of its argument.
By defining θ̇d = dθd

dt

∣

∣

ε≥0
and the error variable vector e = (e1 e2)

T , (z5 − θd z6 − θ̇d)
T ,

the third part shows that, for any z(t2) ∈ IR4 × S0, there exists a finite time t3 ≥ t2 such that
‖e(t)‖ ≤ εkBē, ∀t ≥ t3, for some Bē > 0, or equivalently e(t) ∈ B1 , {e ∈ IR2 : ‖e‖ ≤ εkBē},
∀t ≥ t3. By defining zT , (z1 z2 z3 z4)

T and ζ = (zT
T eT )T , the fourth part shows that for

any ζ(t3) ∈ IR4 × B1, provided that εk is small enough, there exists a finite time t′ ≥ t3 after
which the trajectories of the translational motion closed-loop dynamics, zT (t), evolve within a
positively invariant set S12 ⊂ IR4 where the value of every linear saturation function σij(·) in (5)
and (6) is equal to that of its argument. The fifth part shows that, for any ζ(t′) ∈ S12×B1, there
exists a finite time t8 ≥ t′ such that ‖ζ(t)‖ ≤ εkBζ̄ , ∀t ≥ t8, for some Bζ̄ > 0, or equivalently

ζ(t) ∈ B2 , {ζ ∈ IR6 : ‖ζ‖ ≤ εkBζ̄}, ∀t ≥ t8. The sixth part proves that for any ζ(t8) ∈ B2,
provided that ε is small enough, ζ(t) → 06 as t → ∞. Since ζ = 06 ⇐⇒ z = 06, and in view of
the intermediate results obtained in the precedent parts, global attractivity of the origin of the
closed-loop system is concluded.

First part. From the strictly increasing nature of the arctan function and the definitions of r1

and r2 in (5) and (6), it can be seen that |θd(t)| ≤ Bθd
(see (10)), ∀t ≥ 0. Furthermore, note that

∂Bθ
d

∂k = M12(1−M+

22)

(kM12)2+(1−M+

22)
2
≤ M12

1−M+

22

, ∀k > 0, whence we have Bθd
≤ M12

1−M+

22

·k, ∀k > 0, which shows

that Bθd
is directly influenced by k. Now, twice differentiability of σij(s) (i = 1, 2; j = 1, 2)

on IR guarantees boundedness of σ′
ij(s) and σ′′

ij(s) on [−N−
ij , N+

ij ] (see for instance (Apostol

1974, Theorem 4.17)), i.e. there exist positive constants Aij and Bij such that |σ′
ij(s)| ≤ Aij

and |σ′′
ij(s)| ≤ Bij , ∀s ∈ [−N−

ij , N+
ij ]. On the other hand, σ′

ij(s) = σ′′
ij(s) = 0 when |s| ≥ N±

ij .

Therefore, for any scalar p > 0, |spσ′
ij(s)| ≤ Np

ijAij and |spσ′′
ij(s)| ≤ Np

ijBij, ∀s ∈ IR, ∀i, j = 1, 2,
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with Nij , max{N−
ij , N+

ij }. Hence (see Eqs. (13))

|ρ1(t)| ≤ A12[Bu1
+ A11C1] , Bρ1

|ρ2(t)| ≤ A22[Bu1
+ A21C2 + 1] , Bρ2

|µ1(t)| ≤
M12Bρ1

1 − M+
22

+ Bρ2
, Bµ1

∀t ≥ 0, with

Bu1
,

√

M2
12 + (1 + M−

22)
2 (15)

C1 , N12 + M11 + Bu1
, and C2 , N22 + M21 + Bu1

+ 1. Therefore,

|ωd(t)| ≤ Bω̄d
k

t ≥ 0, with

Bω̄d
,

M12Bρ2

(1 − M+
22)

2
+

Bρ1

(1 − M+
22)

(see Eqs. (11)), showing that wd is bounded and that its bound is directly influenced by k.
Furthermore, assuming the existence of a finite time t1 ≥ 0 such that |θ̇(t)| ≤ D, ∀t ≥ t1, for
some initial-condition-independent positive constant D,1 we have (see Eqs. (13))

|ϕ1(t)| ≤ B12

(

Bρ1

A12

)2

+ A12[C3 + B11C
2
1 + A11C4] , Bϕ1

|ϕ2(t)| ≤ B22

(

Bρ2

A22

)2

+ A22[C3 + B21C
2
2 + A21(C4 + 1)] , Bϕ2

∀t ≥ t1, with C3 ,

√

(Bu1
D)2 + B2

µ1
and C4 ,

√

(Bu1
D)2 + (Bu1

+ Bµ1
)2. As a result

|αd(t)| ≤ Bᾱd
k (16)

t ≥ t1, with

Bᾱd
,

M12Bϕ2

(1 − M+
22)

2
+

Bϕ1
+ 2Bµ1

Bω̄d

(1 − M+
22)

(see Eqs. (12)), which shows that αd is ultimately bounded and that its ultimate bound is also
directly influenced by k.

1Such an assumption will be proved to be satisfied with D = M41 + M42 + M31 in the second part of the proof.
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Second part. Consider the rotational motion closed-loop dynamics, (1c) and (4), expressed in its
state space representation defined according to (14):

ż5 = z6 (17a)

ż6 = σ41(αd) − σ32

(

z6 − σ42(ωd) + σ31(z6 − σ43(ωd) + z5 − θd)
)

(17b)

Let us define the positive scalar function V1 , z2
6 . Its derivative along the trajectories of subsys-

tem (17), V̇1, is given by

V̇1 = 2z6ż6 = 2z6[σ41(αd) − σ32(s32)] (18)

where

s32 , z6 − σ42(ωd) + σ31(z6 − σ43(ωd) + z5 − θd)

Suppose for the moment that z6 > M41 + M42 + M31 > 0. Under such an assumption, we have

s32 = z6 − σ42(ωd) + σ31(·) > z6 − M42 − M31 > M41 > 0

Then, according to Definition 3.1, either σ32(·) ∈ (0, L32], implying

ż6 = σ41(·) − z6 + σ42(·) − σ31(·) < M41 + M42 + M31 − z6 < 0

or σ32(·) ∈ (L32,M32], entailing

ż6 = σ41(·) − σ32(·) < M41 − L32 < M41 + 2M42 + 2M31 − L32 < 0

(see (9b)), i.e.

z6 > M41 + M42 + M31 > 0 =⇒ ż6 < 0 (19)

Similarly, if z6 < −M41 − M42 − M31 < 0, then

s32 = z6 − σ42(ωd) + σ31(·) < z6 + M42 + M31 < −M41 < 0

Hence, either σ32(·) ∈ [−L32, 0), entailing

ż6 = σ41(·) − z6 + σ42(·) − σ31(·) > −M41 − M42 − M31 − z6 > 0

or σ32(·) ∈ [−M32,−L32), implying

ż6 = σ41(·) − σ32(·) > −M41 + L32 > −M41 − 2M42 − 2M31 + L32 > 0

(according to (9b)), i.e.

z6 < −M41 − M42 − M31 < 0 =⇒ ż6 > 0 (20)

Hence, from (19) and (20), one sees that

|z6| > M41 + M42 + M31 =⇒ sign(z6) = −sign(ż6) =⇒ V̇1 < 0
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This proves that, for any initial state vector z(0) ∈ IR6, there is a finite time t1 ≥ 0 such that

|z6(t)| ≤ M41 + M42 + M31 , D

∀t ≥ t1.
1 Then, for all t ≥ t1, we have

|s32| ≤ |z6| + M42 + M31 ≤ M41 + 2M42 + 2M31 < L32

(in view of (9b)). Therefore, according to Definition 3.1, σ32(s32) = s32 and (17b) becomes

ż6 = σ41(αd) − z6 + σ42(ωd) − σ31(z6 − σ43(ωd) + z5 − θd) (21)

from t1 on. At this stage, let us define q , z5 + z6 and the positive scalar function V2 , q2. The
derivative of V2 along the trajectories of subsystem (17a) and (21), V̇2, is given by

V̇2 = 2qq̇ = 2q[σ41(αd) + σ42(ωd) − σ31(s31)]

where

s31 , q − σ43(ωd) − θd

Following a reasoning similar to the one developed for the analysis of V̇1 in (18) (relying on the
satisfaction of inequality (9c)), one sees that

|q| > M41 + M42 + M43 + Bθd
=⇒ sign(q) = −sign(q̇) =⇒ V̇2 < 0

proving that, for any z(0) ∈ IR6, there exists a finite time t2 ≥ t1 such that

|q(t)| ≤ M41 + M42 + M43 + Bθd

∀t ≥ t2. Hence, for all t ≥ t2, we have

|s31| ≤ |q| + M43 + Bθd
< M41 + M42 + 2M43 + 2Bθd

< L31

(see (9c)). Thus, according to Definition 3.1, σ31(s31) = s31 and (21) becomes

ż6 = σ41(αd) − (z6 − σ42(ωd)) − (z6 − σ43(ωd)) − (z5 − θd) (22)

from t2 on. Now, from the first part of the proof, one sees that a sufficiently small value of k can
be chosen such that |ωd(t)| < min{L42, L43} and |αd(t)| < L41, ∀t ≥ t1. Therefore, provided that
such a choice of k is made, the value of every linear saturation function in (22) is equal to that
of its arguments (according to Definition 3.1) from t1 on. Hence, for all t ≥ t2, the rotational
motion closed-loop dynamics, expressed in the original variables, becomes

θ̈ = αd − 2(θ̇ − ωd) − (θ − θd) = u2 (23)

Observe that this part of the proof shows that for any z(0) ∈ IR6, provided that k is small
enough,

(θ(t), θ̇(t)) ∈ S0 ,
{

(θ, θ̇) ∈ IR2 : |θ̇| ≤ D , |θ + θ̇| ≤ M41 + M42 + M43 + Bθd

}

1Recall that this was assumed in the first part of the proof. Thus, it is shown that such an assumption is actually a fact.
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∀t ≥ t2, where the value of every linear saturation in u2 (see (4)) is equal to that of its argument.

Third part. Let

θ̇d ,
dθd

dt

∣

∣

∣

∣

ε≥0

and θ̈d ,
d2θd

dt2

∣

∣

∣

∣

ε≥0

From the definition of θd in equation (7), the system dynamics in (1), and the proposed scheme,
we get, from t2 on (consequently taking u2 as in (23)):

θ̇d = ωd + εk∆1 (24)

θ̈d = αd + εk∆2 (25)

with ∆1 and ∆2 as expressed in Appendix A.

Remark 2 : Carrying out a procedure similar to the one followed in the first part of the proof,
it can be shown that there exist positive constants B∆1

and B∆2
such that |∆1| ≤ B∆1

and
|∆2| ≤ B∆2

for any value of the system states. Estimations of these bounds were obtained in
(López-Araujo 2008, Appendix D).

Let

e =

(

e1

e2

)

,

(

θ − θd

θ̇ − θ̇d

)

From equations (23)–(25), we have that

ė = A0e + h(t, e) (26)

from t2 on, with

A0 =

(

0 1

−1 −2

)

and h(t, e) = −εk

(

0

2∆1 + ∆2

)

(where the trajectories of the translational motion dynamics, involved in h, are being considered
external time-varying functions). Let us define a quadratic positive definite function V3(e) ,

eT P0e, where P0 is the (unique) solution of the Lyapunov equation P0A0 + AT
0 P0 = −I2, i.e

P0 =

(

3
2

1
2

1
2

1
2

)

. For such a P0, we have that λmax(P0) = 2+
√

2
2 and λmin(P0) = 2−

√
2

2 > 0. The

derivative of V3(e) along the trajectories of subsystem (26) is given by

V̇3(e) = eT P0[A0e + h(t, e)] + [A0e + h(t, e)]T P0e

= −eT e + 2eT P0h(t, e)

≤ −‖e‖2 + 2λmax(P0)‖e‖‖h(t, e)‖

≤ −‖e‖2 + εk(2 +
√

2)‖e‖(2B∆1
+ B∆2

)

(see Remark 2). Defining B∆ , 2B∆1
+ B∆2

, we can rewrite the foregoing inequality as

V̇3(e) ≤ −(1 − φ1)‖e‖2 − ‖e‖
[

φ1‖e‖ − εk(2 +
√

2)B∆

]
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where φ1 is a strictly positive constant less than unity, i.e. 0 < φ1 < 1. Then

V̇3(e) ≤ −(1 − φ1)‖e‖2 ∀‖e‖ ≥ εk(2 +
√

2)B∆

φ1

Thus, from (Khalil 2002, Theorem 4.18), there exists a finite time t3 ≥ t2 such that

‖e(t)‖ ≤ εkBē ∀t ≥ t3 (27)

with

Bē ,
(4 + 3

√
2)B∆

φ1

In other words, for any z(t2) ∈ IR4 × S0,

e(t) ∈ B1 ,
{

e ∈ IR2 : ‖e‖ ≤ εkBē

}

t ≥ t3 (28)

Fourth part. Let

zT ,
(

z1 z2 z3 z4

)T
and ζ ,

(

zT
T eT

)T

Remark 3 : One can verify, from the expressions defining θd and θ̇d, that ζ = 06 ⇐⇒ z = 06.

Observe that, from t3 on, the translational motion closed-loop dynamics, (1a), (1b), (3)–(7),
can be expressed as

ż1 = z2 (29a)

ż2 = −kσ12(z2 + σ11(kz1 + z2)) + R1(ζ) (29b)

ż3 = z4 (29c)

ż4 = −σ22(z4 + σ21(z3 + z4)) + R2(ζ) (29d)

where

R1(ζ) = −u1 [sin(e1 + θd) − sin θd] + εu2 cos(e1 + θd)

and

R2(ζ) = u1 [cos(e1 + θd) − cos θd] + εu2 sin(e1 + θd)

with

u2 = αd − 2e2 − e1 + 2εk∆1 (30)

Let us note that from (27), (30), and the facts that |αd| ≤ kBᾱd
(see (16)), | sin(e1 + θd)−sin θd| ≤

|e1|, | cos(e1 + θd)− cos θd| ≤ |e1|, |e1| ≤ ‖e‖, and |2e2 + e1| = |(1 2)e| ≤ ‖(1 2)‖‖e‖ =
√

5‖e‖,
we have

|Ri(ζ(t))| ≤ εkBR̄i
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i = 1, 2, ∀t ≥ t3, with

BR̄i
, Bᾱd

+ 2εB∆1
+ B′Bē

where B′ , Bu1
+

√
5ε, with Bu1

as defined in (15). Further, observe that in view of the
boundedness of the terms involved in the translational motion closed-loop dynamics, i.e. (1a),
(1b), (3)–(7), zT (t) exists and is bounded at any finite time t ≥ 0.1

We begin by analyzing the vertical motion closed-loop dynamics, i.e. equations (29c) and
(29d). Suppose that εk is small enough to satisfy

εkBR̄i
≤ min{L21, L22 − 2M21, kL11, k(L12 − 2M11)} (31)

Let us define the positive scalar function V4 = z2
4 . Its derivative along the system trajectories is

given by

V̇4 = 2z4ż4 = 2z4 [−σ22(z4 + σ21(z3 + z4)) + R2(ζ)] (32)

Suppose for the moment that z4 > M21 + εkBR̄i
> 0. Under such an assumption, we have

z4 + σ21(·) ≥ z4 − M21 > εkBR̄i
> 0

Then, according to Definition 3.2, either σ22(·) ∈ (0, L+
22], implying

ż4 = −z4 − σ21(·) + R2(ζ) < −z4 + M21 + εkBR̄i
< 0

or σ22(·) ∈ (L+
22,M

+
22], entailing

ż4 = −σ22(·) + R2(ζ) < −L+
22 + εkBR̄i

< 0

since, according to (31), εkBR̄i
≤ L22 − 2M21 < L22 ≤ L+

22. Hence,

z4 > M21 + εkBR̄i
> 0 =⇒ ż4 < 0 (33)

Similarly, if z4 < −M21 − εkBR̄i
< 0, which implies

z4 + σ21(·) ≤ z4 + M21 < −εkBR̄i
< 0

then either σ22(·) ∈ [−L−
22, 0) entailing

ż4 = −z4 − σ21(·) + R2(ζ) > −z4 − M21 − εkBR̄i
> 0

or σ22(·) ∈ [−M−
22,−L−

22) implying

ż4 = −σ22(·) + R2(ζ) > L−
22 − εkBR̄i

> 0

since, according to (31), εkBR̄i
≤ L22 − 2M21 < L22 ≤ L−

22. Thus,

z4 < −M21 − εkBR̄i
< 0 =⇒ ż4 > 0 (34)

1In particular, for any τ ≥ 0, |z2(t)| ≤ |z2(0)| + Fτ and |z1(t)| ≤ |z1(0)| + |z2(0)|τ + F

2
τ2, ∀t ∈ [0, τ ], where F ,

√

B2
u1

+ (εBu2
)2, with Bu2

= M41 + M32, while |z4(t)| ≤ |z4(0)| + (F + 1)τ and |z3(t)| ≤ |z3(0)| + |z4(0)|τ + (F+1)
2

τ2,

∀t ∈ [0, τ ].
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14 D.J. López-Araujo et al.

Therefore, from (33) and (34), we see that

|z4| > M21 + εkBR̄i
=⇒ sign(z4) = −sign(ż4) =⇒ V̇4 < 0

This proves that, for any ζ(t3) ∈ IR4 ×B1, there exists a finite time t4 ≥ t3 such that

|z4(t)| ≤ M21 + εkBR̄i

∀t ≥ t4. Then, for all t ≥ t4, we have

|z4 + σ21(·)| ≤ |z4| + M21 ≤ 2M21 + εkBR̄i
≤ L22

since, from (31), εkBR̄i
≤ L22 − 2M21. Consequently, according to item (a) of Definition 3.2,

σ22(z4 + σ21(·)) = z4 + σ21(·)

and (29d) becomes

ż4 = −z4 − σ21(z3 + z4) + R2(ζ) (35)

from t4 on. Let us now define q1 , z3+z4 and the scalar positive function V5 , q2
1 . The derivative

of V5 along the system trajectories is given by

V̇5 = 2q1q̇1 = 2q1 [−σ21(q1) + R2(ζ)]

Following a reasoning similar to the one developed for the analysis of V̇4 in (32), one sees that

|q1| > εkBR̄i
=⇒ sign(q1) = −sign(q̇1) =⇒ V̇5 < 0

Hence, for any ζ(t3) ∈ IR4 × B1, there exists a finite time t5 ≥ t4 such that

|q1(t)| ≤ εkBR̄i
≤ L21

(see (31)), ∀t ≥ t5. Consequently, according to item (a) of Definition 3.2,

σ21(z3 + z4) = z3 + z4

and (35) becomes

ż4 = −z3 − 2z4 + R2(ζ)

from t5 on. At this point, we have that, for any ζ(t3) ∈ IR4 × B1, provided that εk is small
enough,

(z3(t), z4(t)) ∈ S1 ,

{

(z3, z4) ∈ IR2 : |z4| ≤ M21 + εkBR̄i
, |z3 + z4| ≤ L21

}

(36)

∀t ≥ t5, where the value of every two-level linear saturation function involved in r2 (see (6)) is
equal to that of its arguments.

Let us now analyze the horizontal motion closed-loop dynamics, i.e. equations (29a) and (29b).
We define the positive scalar function V6 = z2

2 . Its derivative along the system trajectories is
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given by

V̇6 = 2z2ż2 = 2z2 [−kσ12(z2 + σ11(kz1 + z2)) + R1(ζ)]

Following a procedure similar to the one developed above for the analysis of V̇4 in (32), one sees
that

|z2| > M11 + εBR̄i
=⇒ sign(z2) = −sign(ż2) =⇒ V̇6 < 0

This proves that, for any ζ(t3) ∈ IR4 ×B1, there exists a finite time t6 ≥ t3 such that

|z2(t)| ≤ M11 + εBR̄i

∀t ≥ t6. Then, for all t ≥ t6

|z2 + σ11(·)| ≤ |z2| + M11 ≤ 2M11 + εBR̄i
≤ L12

since, from (31), εBR̄i
≤ L12 − 2M11. Consequently, according to item (a) of Definition 3.2,

σ12(z2 + σ11(·)) = z2 + σ11(·)

and (29b) becomes

ż2 = −kz2 − kσ11(kz1 + z2) + R1(ζ) (37)

from t6 on. Let us now define q2 , kz1 + z2 and the positive scalar function V7 , q2
2. The

derivative of V7 along the system trajectories is given by

V̇7 = 2q2q̇2 = 2q2 [−kσ11(q2) + R1(ζ)]

Following a reasoning similar to the one developed above, one sees that

|q2| > εBR̄i
=⇒ sign(q2) 6= sign(q̇2) =⇒ V̇7 < 0

Hence, for any ζ(t3) ∈ IR4 × B1, there exists a time t7 ≥ t6 such that

|q2(t)| ≤ εBR̄i
≤ L11

(see (31)), ∀t ≥ t7. Consequently, according to item (a) of Definition 3.2,

σ11(kz1 + z2) = kz1 + z2

and (37) becomes

ż2 = −k2z1 − 2kz2 + R1(ζ)

from t7 on. Thus, we have that, for any ζ(t3) ∈ IR4 × B1, provided that εk is small enough,

(z1(t), z2(t)) ∈ S2 ,

{

(z1, z2) ∈ IR2 : |z2| ≤ M11 + εBR̄i
, |kz1 + z2| ≤ L11

}

(38)
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∀t ≥ t7, where the value of every two-level linear saturation function involved in r1 (see (5)) is
equal to that of its argument. Finally, from (36) and (38) we see that, for any ζ(t3) ∈ IR4 × B1,
provided that εk is small enough,

zT (t) ∈ S12 , S1 × S2 ∀t ≥ t′ , max{t5, t7}

where the value of every two-level linear saturation in u1 (see (3)) is equal to that of its argument.
More generally, considering (28),

ζ(t) ∈ S12 × B1 ∀t ≥ t′ (39)

where the value of every linear saturation in u1 and u2 (see (3) and (4)) is equal to that of its
arguments.

Fifth part. As a consequence of the precedent analysis, the closed-loop system may be expressed,
from t′ on, as

ζ̇ = A1ζ + g(ζ)

where

A1 =





















0 1 0 0 0 0

−k2 −2k 0 0 0 0

0 0 0 1 0 0

0 0 −1 −2 0 0

0 0 0 0 0 1

0 0 0 0 −1 −2





















, g(ζ) =





















0

−u1 sin(e1 + θd) + u1 sin θd + εu2 cos (e1 + θd)

0

u1 cos (e1 + θd) − u1 cos θd + εu2 sin (e1 + θd)

0

εk(2∆1 + ∆2)





















The characteristic polynomial of A1 is given by |λI6 − A1| = (λ + k)2(λ + 1)4 wherefrom it is
clear that A1 is Hurwitz. Hence there exists a (unique) positive definite symmetric matrix P1

that solves the Lyapunov equation P1A1 + AT
1 P1 = −I6. Let us, on the other hand, note that,

on S12 × B1 (see (39) and (28)):

‖g(ζ)‖2 = (−u1 sin (e1 + θd) + u1 sin θd + εu2 cos (e1 + θd))
2

+ (u1 cos (e1 + θd) − u1 cos θd + εu2 sin (e1 + θd))
2 + (εk)2(2∆1 + ∆2)

2

= u2
1

[

(sin (e1 + θd) − sin θd)
2 + (cos (e1 + θd) − cos θd)

2
]

− 2εu1u2 [sin (e1 + θd) cos θd − sin θd cos (e1 + θd)]

+ (εu2)
2
[

sin2 (e1 + θd) + cos2 (e1 + θd)
]

+ (εk)2(2∆1 + ∆2)
2

= u2
1

[

(sin (e1 + θd) − sin θd)
2 + (cos (e1 + θd) − cos θd)

2
]

− 2εu1u2 sin e1 + (εu2)
2 + (εk)2(2∆1 + ∆2)

2

≤ 2B2
u1
|e1|2 + 2εkBu1

Bū2
|e1| + (εk)2B2

ū2
+ (εk)2(2B∆1

+ B∆2
)2

≤ 2B2
u1
‖e‖2 + 2εkBu1

Bū2
‖e‖ + (εk)2B2

ū2
+ (εk)2(2B∆1

+ B∆2
)2

≤ (εk)2
[

2Bu1
Bē(Bu1

Bē + Bū2
) + B2

ū2
+ (2B∆1

+ B∆2
)2
]
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i.e.

‖g(ζ)‖ ≤ εkBḡ

with

Bḡ ,

√

2Bu1
Bē(Bu1

Bē + Bū2
) + B2

ū2
+ (2B∆1

+ B∆2
)2

where Bū2
= Bᾱd

+ ε
√

5Bē + 2εB∆1
and the facts that |αd| ≤ kBᾱd

(see (16)), |2e2 + e1| =
|(1 2)e| ≤ ‖(1 2)‖‖e‖ =

√
5‖e‖, | sin(e1 + θd) − sin θd| ≤ |e1|, | cos(e1 + θd) − cos θd| ≤ |e1|,

|e1| ≤ ‖e‖, and (27), have been considered.
Now, let us define the quadratic Lyapunov candidate function V8(ζ) = ζTP1ζ. On S12 × B1

(see (39)), its derivative along the system trajectories is given by

V̇8(ζ) = ζT P1[A1ζ + g(ζ)] + [A1ζ + g(ζ)]T P1ζ

= −ζT ζ + 2ζT P1g(ζ)

≤ −‖ζ‖2 + 2λmax(P1)‖ζ‖‖g(ζ)‖

≤ −(1 − φ2)‖ζ‖2 − φ2‖ζ‖2 + 2εkBḡλmax(P1)‖ζ‖

≤ −(1 − φ2)‖ζ‖2 , ∀‖ζ‖ >
2εkBḡλmax(P1)

φ2

where φ2 is a strictly positive constant less than unity, i.e. 0 < φ2 < 1. Thus, according to
(Khalil 2002, Theorem 4.18), there exists a finite time t8 ≥ t′ such that

‖ζ(t)‖ ≤ εkBζ̄ (40)

for all t ≥ t8, with

Bζ̄ ,
2Bḡλmax(P1)

φ2

√

λmax(P1)

λmin(P1)

In other words, for any ζ(t′) ∈ S12 × B1,

ζ(t) ∈ B2 ,
{

ζ ∈ IR6 : ‖ζ‖ ≤ εkBζ̄

}

∀t ≥ t8 (41)

where, according to the precedent parts of the proof, the value of every linear saturation in u1

and u2 is equal to that of its argument.

Remark 4 : Observe that B2 is a positively invariant compact set containing 06.

Sixth part. From t8 on, the closed-loop system dynamics may be written as

ζ̇ = A2ζ + ḡ(ζ)
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where

A2 =





















0 1 0 0 0 0

−k2 −2k 0 0 −1 0

0 0 0 1 0 0

0 0 −1 −2 0 0

0 0 0 0 0 1

0 0 0 0 −1 −2





















and

ḡ(ζ) = g̃(ζ) + εĝ(ζ) (42)

with

g̃(ζ) =





















0

−u1[sin(e1 + θd) − u1 sin θd] + e1

0

u1[cos (e1 + θd) − u1 cos θd]

0

0





















and ĝ(ζ) =





















0

u2 cos (e1 + θd)

0

u2 sin (e1 + θd)

0

k(2∆1 + ∆2)





















and ζ evolves in B2 (see (41)) where σij(sij) = sij in u1 and σmn(smn) = smn in u2, and
consequently σ′

ij(·) = 1, σ′′
ij(·) = σ′′′

ij (·) = 0, and σ′
mn(·) = 1, σ′′

mn(·) = 0. Let us note that, after
several basic developments, we have

∂g̃2

∂zi
= (1 − cos e1)ik

3−i ∀i = 1, 2

∂g̃2

∂zj
= (j − 2) sin e1 ∀j = 3, 4

∂g̃2

∂e1
= −u1[cos(e1 + θd) − cos θd] − r2

∂g̃2

∂e2
= 0

and

∂g̃4

∂zi
= −ik3−i sin e1 ∀i = 1, 2

∂g̃4

∂zj
= (2 − j)(cos e1 − 1) ∀j = 3, 4

∂g̃4

∂e1
= −u1[sin(e1 + θd) − sin θd] + r1

∂g̃4

∂e2
= 0
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Hence

6
∑

i=1

∣

∣

∣

∣

∂g̃2

∂ζi

∣

∣

∣

∣

≤ k(k + 2)|1 − cos e1| + 3| sin e1| + u1| cos(e1 + θd) − cos θd| + |(1 2) · (z3 z4)
T |

≤ (k2 + 2k)|e1| + 3|e1| + Bu1
|e1| +

√
5‖(z3 z4)‖

≤ (k2 + 2k + 3 +
√

5 + Bu1
)‖ζ‖

and

6
∑

i=1

∣

∣

∣

∣

∂g̃4

∂ζi

∣

∣

∣

∣

≤ k(k + 2)| sin e1| + 3| cos e1 − 1| + u1| sin(e1 + θd) − sin θd| + |(k2 2k) · (z1 z2)
T |

≤ (k2 + 2k)|e1| + 3|e1| + Bu1
|e1| + k

√

k2 + 4‖(z1 z2)‖

≤ (k2 + 2k + 3 + k
√

k2 + 4 + Bu1
)‖ζ‖

≤ (k2 + 2k + 3 +
√

5 + Bu1
)‖ζ‖

where the facts that | sin e1| ≤ |e1|, | cos e1 − 1| ≤ |e1|, |e1| ≤ ‖ζ‖, |(1 2)(z3 z4)
T | ≤

‖(1 2)‖ · ‖(z3 z4)‖ =
√

5‖(z3 z4)‖, |(k2 2k)(z1 z2)
T | ≤ ‖(k2 2k)‖ · ‖(z1 z2)‖ ≤

k
√

k2 + 4‖(z1 z2)‖ ≤
√

5‖(z1 z2)‖, and ‖(zj zj+1)‖ ≤ ‖ζ‖ with j = 1 or j = 3, were consid-
ered. Then,

∥

∥

∥

∥

∂g̃

∂ζ

∥

∥

∥

∥

∞
≤ (k2 + 2k + 3 +

√
5 + Bu1

)‖ζ‖

and consequently

∥

∥

∥

∥

∂g̃

∂ζ

∥

∥

∥

∥

≤
√

6(k2 + 2k + 3 +
√

5 + Bu1
)‖ζ‖

since
∥

∥

∥

∂g̃
∂ζ

∥

∥

∥ ≤
√

6
∥

∥

∥

∂g̃
∂ζ

∥

∥

∥

∞
(see for instance Exercise 2.2 in the 2nd edition of Khalil (2002)). Hence

∥

∥

∥

∥

∂g̃

∂ζ

∥

∥

∥

∥

≤ εkBg̃ ∀ζ ∈ B2

with

Bg̃ ,
√

6(k2 + 2k + 3 +
√

5 + Bu1
)Bζ̄

where (40) has been considered. From this and the easily verifiable fact that g̃(06) = 06, we have
that ‖g̃(ζ)‖ ≤ εkBg̃‖ζ‖, ∀ζ ∈ B2, according to (Khalil 2002, Lemma 3.3). On the other hand, by
analyzing every term involved in ĝ(ζ), one can easily see that ĝ(ζ) is continuously differentiable

on B2. Hence, the Jacobian matrix of ĝ(ζ), ∂ĝ
∂ζ , exists and is continuous on B2. Moreover, ∀ζ ∈ B2,

∂ĝ
∂ζ is bounded in view of the compactness of B2, and consequently L = maxζ∈B2

∥

∥

∥

∂ĝ
∂ζ

∥

∥

∥
exists and

is finite. From this and the easily verifiable fact that ĝ(06) = 06, we have that ‖ĝ(ζ)‖ ≤ L‖ζ‖,
∀ζ ∈ B2, according to (Khalil 2002, Lemma 3.3). Thus, from (42), we have that

‖ḡ(ζ)‖ ≤ ‖g̃(ζ)‖ + ε‖ĝ(ζ)‖ ≤ εB̃‖ζ‖ ∀ζ ∈ B2 (45)
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20 D.J. López-Araujo et al.

with B̃ = kBg̃ + L.
Now, the characteristic polynomial of A2 is given by |λI6 −A2| = (λ+ k)2(λ+ 1)4 whence one

sees that A2 is Hurwitz. Then, according to (Khalil 2002, Theorem 4.6), there exists a (unique)
symmetric positive definite matrix P2 that solves the Lyapunov equation P2A2 + AT

2 P2 = −I6.
Consider the positive definite scalar function V9(ζ) = ζT P2ζ. Its derivative along the closed-loop
system trajectories is given by

V̇9(ζ) = ζT P2[A2ζ + ḡ(ζ)] + [A2ζ + ḡ(ζ)]T P2ζ

= −ζT ζ + 2ζT P2ḡ(ζ)

≤ −‖ζ‖2 + 2λmax(P2)‖ζ‖‖ḡ(ζ)‖

≤ −
(

1 − 2εB̃λmax(P2)
)

‖ζ‖2

∀ζ ∈ B2, where (45) has been considered. Then, for a sufficiently small value of ε, such that

ε <
1

2B̃λmax(P2)
, V̇9(ζ) is negative definite on B2. Moreover, recall that B2 is compact and

positively invariant (see Remark 4). Observe, on the other hand, that E , {ζ ∈ B2 : V̇9(ζ) =
0} = {06}. Consequently, the largest invariant set contained in E is E itself. Therefore, from
LaSalle’s invariance principle (see for instance (Khalil 2002, Theorem 4.4)), we conclude that,
for any ζ(t8) ∈ B2, ζ(t) → 06 as t → ∞. Finally, from the precedent parts of the proof and
Remark 3, we conclude that, for any z(0) ∈ IR6, z(t) → 06 as t → ∞.

Conclusion. Since, according to the proof, the origin is asymptotically stable and, for any
z(0) ∈ IR6, z(t) → 06 as t → ∞ (which equivalently states that the region of attraction is
IR6), then according for instance to (Khalil 2002, §4.1), (Sastry 1999, Definition 5.8), (Hahn
1967, §26), (Sepulchre et al. 1997, §2.3.1), and (Rouche et al. 1977, §2.10–2.11), 06 is a globally
asymptotically stable equilibrium for the closed-loop system.

�

Remark 5 : Let us note that if ε = 0, in which case θ̇d = ωd and θ̈d = αd, then the third part
proves that, for any z(t2) ∈ IR4 × S0, e(t) → 02 as t → ∞. Further, through the application of
La Salle’s invariance principle, the fifth part proves that, for any ζ(t′) ∈ S12 × B1, ζ(t) → 06 as
t → ∞. Consequently, in the ε = 0 case, the fifth part ends the proof.

Remark 6 : From the proof of Proposition 4.1, one sees that the simultaneous satisfaction of

k ≤ min

{

L41

Bᾱd

,
L42

Bω̄d

,
L43

Bω̄d

}

(46a)

ε <
1

2B̃λmax(P2)
(46b)

εk < min

{

L21

BR̄i

,
L22 − 2M21

BR̄i

,
kL11

BR̄i

,
k(L12 − 2M11)

BR̄i

, 0.8

}

(46c)

states a sufficient condition to satisfy the small enough requirement for k and ε that the algorithm
imposes for the global stabilization goal to be achieved. These inequalities come respectively from
the first, sixth, and fourth parts of the proof of Proposition 4.1. Note however that the worst
case character implicitly adopted along the proof renders restrictive such criterion. Small enough
values of k and ε not necessarily satisfying inequalities (46) may be chosen leading however to
the globally stabilizing goal.
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Figure 2. Four-rotor Draganflyer III helicopter
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Figure 3. System states and control inputs (— real data, · – · reference)

5 Experimental results

Numerical results with several values of ε 6= 0 are presented in (Zavala-Rı́o et al. 2003, §4) and
(López-Araujo 2008, Chapter 4). The control objective is indeed shown to be achieved avoiding
input saturation on each of the cases considered therein. Here, we present some experimental
results obtained when the control scheme in (3)–(7) is applied to a real prototype: the four-rotor
Draganflyer III helicopter (see Fig. 2). In this device, the front and rear motors rotate counter
clockwise while the other two rotate clockwise. When the yaw and roll angles are set to zero, this
helicopter reduces to a PVTOL system. We have used a Futaba Skysport 4 radio for transmitting
the control signals; these are referred as the throttle (u1) and the pitch (u2) control inputs. They
are constrained in the radio to satisfy 0.66V < u1 < 4.70V and 1.23V < u2 < 4.16V. In order
to measure the position (x, y) and the orientation θ of the mini helicopter, we have used a 3D
tracker system (POLHEMUS). The computation of the control input requires the knowledge of
various angular and linear velocities. We have obtained the angular velocity by means of a gyro
Murata ENV-05F-03. Linear velocities were approximated as q̇ = qt−qt−T

T where T is the sampling
period (T = 0.05 sec, in our experiment). The initial conditions and desired configuration were
(x0, y0, θ0) = (0, 30 cm, 0.1 rad) and (xd, yd, θd) = (0, 50 cm, 0). In order to ease the displacement
of the helicopter altitude, small step inputs were gradually added to yd around the reference
value (50 cm) between 10 sec and 80 sec. In Fig. 3, we can see that the altitude y follows
the reference. Concerning the position x, we observe a small deviation (2 cm) due to, among
others, uncertainties and cables connections between the PC and the mini helicopter. The angle
θ converges to zero and the control inputs are bounded. In all figures, we note that the signals are
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corrupted by noise due to mechanical gears of motors and propellers. Furthermore, uncertainties
in the responses are also caused by the difficulty to adjust gains and couplings existing in the
four-rotors helicopter, which have not been taken into account in the analysis. However, the
experimental results presented here show that the control strategy works on a real experiment.

6 Conclusions

In this work, global stabilization of the PVTOL aircraft with lateral force coupling and bounded
inputs has been addressed. The control approach had been developed considering ε = 0. Here,
it has been proven that such an algorithm achieves the global stabilization objective even with
ε 6= 0, provided that such a value is small enough. A certain degree of robustness of such a control
scheme with respect to uncertain (small enough) values of ε is thus concluded. The proposed
methodology takes into account the positive nature of the thrust. The presented analysis was
based on the use of embedded saturation functions. The demonstration does not involve any
change in the proposed algorithm. Finally, the applicability of the control design methodology
has been shown by experimental results on a real mini-helicopter.

Appendix A:

∆1 and ∆2, respectively in (24) and (25), are given by the following expressions:

∆1 =
u2

u2
1

[

(1 + r2)∆ ˙̄r1
− r̄1∆ṙ2

]

(A1a)

where

∆ ˙̄r1
= σ′

12(s12)[1 + σ′
11(s11)] cos θ (A1b)

∆ṙ2
= σ′

22(s22)[1 + σ′
21(s21)] sin θ (A1c)

and

∆2 = ∆ ˙̄ωd
+ ∆̇1 (A1d)

where

∆ ˙̄ωd
=

u2

u2
1

[

2ω̄d∆u̇1
+ (1 + r2)∆ρ̇1

+ ρ1∆ṙ2
− r̄1∆ρ̇2

− ρ2∆ ˙̄r1

]

(A1e)

∆̇1 =
u2

u2
1

[

(1 + r2)∆̇ ˙̄r1
+ ṙ2∆ ˙̄r1

− r̄1∆̇ṙ2
− ˙̄r1∆ṙ2

]

− 2u̇1

u1
∆1 +

u̇2

u2
1

[

(1 + r2)∆ ˙̄r1
− r̄1∆ṙ2

]

(A1f)

with

∆u̇1
= k2r̄1∆ ˙̄r1

+ (1 + r2)∆ṙ2
(A1g)
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∆ρ̇1
= σ′′

12(s12)
(

1 + σ′
11(s11)

)(

− u1 sin θ + σ′
11(s11)(kẋ − u1 sin θ)

)

cos θ

+ σ′
12(s12)

(

kσ′
11(s11) + σ′′

11(s11)(kẋ − u1 sin θ)
)

cos θ

+
σ′

12(s12)

u1

(

1 + σ′
11(s11)

)

∆u̇1
sin θ

(A1h)

∆ρ̇2
= σ′′

22(s22)
(

1 + σ′
21(s21)

)(

u1 cos θ − 1 + σ′
21(s21)(ẏ + u1 cos θ − 1)

)

sin θ

+ σ′
22(s22)

(

σ′
21(s21) + σ′′

21(s21)(ẏ + u1 cos θ − 1)
)

sin θ

− σ′
22(s22)

u1

(

1 + σ′
21(s21)

)

∆u̇1
cos θ

(A1i)

˙̄r1 = ρ1 − εu2∆ ˙̄r1
(A1j)

ṙ2 = ρ2 − εu2∆ṙ2
(A1k)

∆̇ ˙̄r1
= σ′′

12(s12)ṡ12

(

1 + σ′
11(s11)

)

cos θ + σ′
12(s12)σ

′′
11(s11)ṡ11 cos θ

− σ′
12(s12)

(

1 + σ′
11(s11)

)

θ̇ sin θ
(A1l)

∆̇ṙ2
= σ′′

22(s22)ṡ22

(

1 + σ′
11(s11)

)

sin θ + σ′
22(s22)σ

′′
21(s21)ṡ21 sin θ

+ σ′
22(s22)

(

1 + σ′
21(s21)

)

θ̇ cos θ
(A1m)

u̇1 = µ1 − ε
u2

u1
∆u̇1

(A1n)

u̇2 = α̇d − 2
[

αd − 2(θ̇ − ωd) − (θ − θd) − ω̇d

]

− (θ̇ − θ̇d) (A1o)

ω̇d = αd − εk∆ ˙̄ωd
(A1p)

α̇d =
k

u2
1

[

r̄1ϕ̇2 + ˙̄r1ϕ2 − (1 + r2)ϕ̇1 − ṙ2ϕ1

]

− 2

u1

[

u̇1αd + ωd

(

u̇1

u1
µ1 + µ̇1

)

+ µ1ω̇d

]

(A1q)

µ̇1 = − u̇1

u1
µ1 +

k2r̄1ρ̇1 + k2 ˙̄r1ρ1 + (1 + r2)ρ̇2 + ṙ2ρ2

u1
(A1r)

ρ̇1 = ϕ1 − εu2∆ρ̇1
(A1s)

ρ̇2 = ϕ2 − εu2∆ρ̇2
(A1t)
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ϕ̇1 = − σ′′′
12(s12)ṡ12

(

− u1 sin θ + σ′
11(s11)(kẋ − u1 sin θ)

)2

− 2σ′′
12(s12)

(

− u1 sin θ + σ′
11(s11)(kẋ − u1 sin θ)

)(

− u1θ̇ cos θ − u̇1 sin θ

+ σ′′
11(s11)ṡ11(kẋ − u1 sin θ) + σ′

11(s11)(kax − u1θ̇ cos θ − u̇1 sin θ)
)

− σ′′
12(s12)ṡ12

[

− u1θ̇ cos θ − µ1 sin θ + σ′′
11(s11)(kẋ − u1 sin θ)2

+ σ′
11(s11)(−ku1 sin θ − u1θ̇ cos θ − µ1 sin θ)

]

− σ′
12(s12)

[

− u1u2 cos θ + u1θ̇
2 sin θ − u̇1θ̇ cos θ − µ1θ̇ cos θ − µ̇1 sin θ

+ σ′′′
11(s11)ṡ11(kẋ − u1 sin θ)2

+ 2σ′′
11(s11)(kẋ − u1 sin θ)(kax − u1θ̇ cos θ − u̇1 sin θ)

+ σ′′
11(s11)ṡ11(−ku1 sin θ − u1θ̇ cos θ − µ1 sin θ)

+ σ′
11(s11)

(

− ku1θ̇ cos θ − ku̇1 sin θ − u1u2 cos θ + u1θ̇
2 sin θ

− u̇1θ̇ cos θ − µ1θ̇ cos θ − µ̇1 sin θ
)

]

(A1u)

ϕ̇2 = − σ′′′
22(s22)ṡ22

(

u1 cos θ − 1 + σ′
21(s21)(ẏ + u1 cos θ − 1)

)2

− 2σ′′
22(s22)

(

u1 cos θ − 1 + σ′
21(s21)(ẏ + u1 cos θ − 1)

)(

− u1θ̇ sin θ + u̇1 cos θ

+ σ′′
21(s21)ṡ21(ẏ + u1 cos θ − 1) + σ′

21(s21)(ay − u1θ̇ sin θ + u̇1 cos θ)
)

− σ′′
22(s22)ṡ22

[

− u1θ̇ sin θ + µ1 cos θ + σ′′
21(s21)(ẏ + u1 cos θ − 1)2

+ σ′
21(s21)(u1 cos θ − 1 − u1θ̇ sin θ + µ1 cos θ)

]

− σ′
22(s22)

[

− u1u2 sin θ − u1θ̇
2 cos θ − u̇1θ̇ sin θ − µ1θ̇ sin θ + µ̇1 cos θ

+ σ′′′
21(s21)ṡ21(ẏ + u1 cos θ − 1)2

+ 2σ′′
21(s21)(ẏ + u1 cos θ − 1)(ay − u1θ̇ sin θ + u̇1 cos θ)

+ σ′′
21(s21)ṡ21(u1 cos θ − 1 − u1θ̇ sin θ + µ1 cos θ)

+ σ′
21(s21)

(

− u1θ̇ sin θ + u̇1 cos θ − u1u2 sin θ − u1θ̇
2 cos θ

− u̇1θ̇ sin θ − µ1θ̇ sin θ + µ̇1 cos θ
)

]

(A1v)

and

ṡ12 = ax + σ′
11(s11)ṡ11 , ṡ11 = kẋ + ax , ax = −u1 sin θ + εu2 cos θ (A1w)

ṡ22 = ay + σ′
21(s21)ṡ21 , ṡ21 = ẏ + ay , ay = u1 cos θ + εu2 sin θ − 1 (A1x)
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