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Output-Feedback Global Continuous Finite-Time and Exponential
Stabilization of Bounded-Input Mechanical Systems

Griselda I. Zamora-Gómez, Arturo Zavala-Rı́o and Daniela J. López-Araujo

Abstract— This work proposes an output-feedback global
continuous controller for the finite-time or (local) exponential
stabilization of bounded-input mechanical systems. The control
design is carried out within the analytical framework of local
homogeneity. The proposed approach avoids velocity measure-
ments on the feedback through the use of a dynamic dissipator
expressed in a generalized non-linear form. The analytical re-
sults are supported through simulation tests. In particular, such
implementations show the performance differences obtained
through diverse particular dynamic dissipator structures, as
well as the contrast among the finite-time and exponential
convergence achievable through the proposed scheme.

I. INTRODUCTION

Output-feedback control is often implemented involving
observers. These techniques imply the exact knowledge of
the system structure and parameters. Such a model de-
pendence has been proven to be alleviated in the case of
mechanical systems with unavailable velocity measurements,
by involving the dirty derivative instead [1]. However, it is
not yet clear how can such a simple dynamic dissipation tech-
nique be adapted to achieve global finite-time stabilization
through a continuous control law. Such a design challenge
becomes more complex under the consideration of bounded
inputs. This additional realistic consideration complicates the
use of traditional analytical tools that are often involved to
characterize finite-time stability of continuous vector fields,
such as homogeneity [2]. However, such analytical restriction
can be relaxed through alternative related notions [3].

A debuting study on continuous finite-time control ad-
dressed to robotic manipulators was introduced in [4] dis-
regarding input constraints. The proposed state-feedback
controller included Proportional (P) and Derivative (D) type
terms. The design was built upon the traditional framework
of homogeneity.

Another work treating the finite-time control of mechan-
ical manipulators, assuming unconstrained inputs, appeared
later in [5]. The state-feedback scheme proposed therein was
designed so as to compensate for the nominal dynamics
of the entire system. The rest of the design is carried out
employing backstepping. The synthesis is then completed
using a Lyapunov-redesign type procedure to cope with
system uncertainties, which a priori renders discontinuous
the resulting controller. Alternative approximations of certain
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control terms were suggested so as to avoid discontinuities
and singularities implied by the developed approach.

A different continuous control strategy for the finite-
time stabilization of mechanical systems was more recently
presented in [6] similarly disregarding input constraints. The
proposed state-feedback scheme is based on the definition of
a (positively invariant) manifold where the system converges
to the zero (desired) state in a finite time T1. An appropriate
closed loop form guaranteeing convergence of the system
variables to such a manifold in a finite time T2 is then
obtained. The controller is then synthesized through exact
dynamic compensation so as to impose the closed-loop form
found in the last step.

Lately, a state-feedback continuous controller for the
global stabilization with finite-time or (local) exponential
convergence of constrained-input mechanical systems was
proposed in [7]. It has a generalized saturating PD-type
structure involving compensation of the natural conservative
terms only.

From the above-cited state-feedback approaches, only that
in [4] formulates an output-feedback extension of the pro-
posed controller. It is a finite-time-observer-based controller
that achieves stabilization only locally. The considered ob-
server involves the whole system dynamics (and parameters),
and reconstructs the whole set of position and velocity
variables. Although a bounded variation of such an observer-
based approach, with the conventional saturation function in-
volved in the P and D type actions, was further contemplated,
no formal closed-loop analysis was presented for this case,
which does not fit within the analytical framework where the
proposed unconstrained schemes were developed.

Thus, in this work, we propose an output-feedback global
continuous control scheme for mechanical systems with
bounded inputs, giving rise to finite-time or (local) expo-
nential stabilization. The choice on the type of convergence
is fixed via a simple control parameter. Moreover, the for-
mulated problem is solved avoiding the use of observers
but rather ensuring motion dissipation dynamically from the
exclusive feedback of the position variables. This has been
made possible through a dirty-derivative-based nonlinear
dynamic dissipator presented in a generalized form. The
proposed controller keeps an SP-SD structure that does not
need to compensate for the system dynamic terms other than
the natural conservative force vector. A simulation section
showing the efficiency of the proposed scheme is included.



II. PRELIMINARIES

Let X and y be an m × n matrix and an n-dimensional
vector, respectively. We denote Xij the entry of X at its ith

row and jth column, Xi the ith row of X , and yi the ith

element of y. 0n stands for the origin of Rn. Rn>0 denotes
the set of n-tuples with positive entries. ‖ · ‖ stands for the
standard Euclidean norm for vectors and induced norm for
matrices. Let Sn−1c = {x ∈ Rn : ‖x‖ = c}: an (n − 1)-
dimensional sphere of radius c > 0 on Rn. We will consider

the sign function as sign(ς) =

{
ς/|ς| if ς 6= 0

0 if ς = 0
, and the

standard saturation function as sat(ς) = sign(ς) min{|ς|, 1}.
The contents of the following subsections were mostly
included in [7]; for the sake of completeness and ease of
reading, they are reproduced here.

A. Mechanical systems

The n-degree-of-freedom (DOF) fully-actuated mechani-
cal system dynamics is given by [8, §6.1]

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are the position (generalized coordinates),
velocity, and acceleration vectors; the inertia matrix H(q) ∈
Rn×n is a continuously differentiable positive definite sym-
metric matrix function; the Coriolis (and centrifugal effect)
matrix C(q, q̇) ∈ Rn×n satisfies [8, §6.1.2] [9, §2.3]

q̇T
[

1

2
Ḣ(q, q̇)− C(q, q̇)

]
q̇ = 0 (2)

∀(q, q̇) ∈ Rn × Rn, where Ḣ denotes the rate of change of
H , i.e. Ḣ : Rn × Rn → Rn×n with Ḣij(q, q̇) =

∂Hij

∂q (q)q̇,
i, j = 1, . . . , n, and C(x, y)z = C(x, z)y, ∀x, y, z ∈ Rn,
whence we have that

C(q, aq̇)bq̇ = C(q, abq̇)q̇ = C(q, bq̇)aq̇ = C(q, q̇)abq̇ (3)

∀q, q̇ ∈ Rn, ∀a, b ∈ R; g(q) = ∇U(q) with U : Rn → R
being the potential energy function of the open-loop system;
and τ ∈ Rn is the external input (generalized) force vector.

We consider the bounded input case, where each input τi
is constrained by a saturation bound Ti > 0. More precisely,
letting ui represent the control variable (controller output)
relative to the ith degree of freedom, we have that

τi = Tisat(ui/Ti) (4)

Assumption 1: The conservative (generalized) force vec-
tor g(q) is bounded, or equivalently: |gi(q)| ≤ Bgi, i =
1, . . . , n, ∀q ∈ Rn, for some positive constants Bgi.

Assumption 2: Ti > Bgi, ∀i ∈ {1, . . . , n}.

B. Local homogeneity, finite-time / δ-exponential stability

Fundamental in this study is the notion of family of
dilations δrε , defined as δrε(x) =

(
εr1x1, . . . , ε

rnxn
)T

, ∀x ∈
Rn, ∀ε > 0, with r = (r1, . . . , rn)T , where the dilation
coefficients r1, . . . , rn are positive scalars.

Definition 1: [3] A function V : Rn → R, resp. vector
field f =

∑n
i=1 fi

∂
∂xi

(with fi : Rn → R), is locally

homogeneous of degree α with respect to the family of
dilations δrε —or equivalently, it is said to be locally r-
homogeneous of degree α— if there is an open neighborhood
of the origin D ⊂ Rn —referred to as the domain of
homogeneity— such that, for every x ∈ D and all ε ∈ (0, 1]:
δrε(x) ∈ D and V (δrε(x)) = εαV (x), resp. fi(δrε(x)) =
εα+rifi(x), i = 1, . . . , n.

Subsequently, an r-homogeneous norm [10] [11] —
denoted ‖·‖r— will conventionally be considered to refer to
an r-homogeneous p-norm, i.e. ‖x‖r =

[∑n
i=1 |xi|p/ri

]1/p
,

with p > maxi{ri}. An r-homogeneous (n − 1)-sphere of
radius c > 0 is the set Sn−1r,c = {x ∈ Rn : ‖x‖r = c}.

Consider an n-th order autonomous system

ẋ = f(x) (5)

where the vector field f is continuous on an open neigh-
borhood of the origin D ⊂ Rn and f(0n) = 0n, and let
x(t;x0) represent the system solution with initial condition
x(0;x0) = x0. A fundamental concept underlying this
work is that of a (globally) finite-time stable equilibrium,
as defined in [2].

Remark 1: The origin is a globally finite-time stable
equilibrium of system (5) if and only if it is globally
asymptotically stable and finite-time stable.

Theorem 1: [3] Consider system (5) with D = Rn.
Suppose f is a locally r-homogeneous vector field of degree
α with domain of homogeneity D ⊂ Rn. Then, the origin is
a globally finite-time stable equilibrium of system (5) if and
only if it is globally asymptotically stable and α < 0.
The following definition is stated under the additional con-
sideration that, for some r ∈ Rn>0, f in (5) is locally r-
homogeneous with domain of homogeneity D ⊂ D.

Definition 2: [10], [11] The equilibrium point x = 0n of
(5) is δ-exponentially stable with respect to the homogeneous
norm ‖·‖r if there exist a neighborhood of the origin, V ⊂ D,
and constants a ≥ 1 and b > 0 such that ‖x(t;x0)‖r ≤
a‖x0‖re−bt, ∀t ≥ 0, ∀x0 ∈ V .

Remark 2: Definition 2 becomes the usual definition of
exponential stability when ri = 1, i = 1, . . . , n.

Lemma 1: [7] Assume that f in (5) is a locally r-
homogeneous vector field of degree α = 0 with domain of
homogeneity D ⊂ D. Then, the origin is a δ-exponentially
stable equilibrium if and only if it is asymptotically stable.

Remark 3: If a vector field f is locally r-homogeneous of
degree α = 0 with dilation coefficients ri = r0, i = 1, . . . , n,
for some r0 > 0, then f is locally r∗-homogeneous of degree
α = 0 with dilation coefficients r∗i = r∗0 , i = 1, . . . , n, for
any r∗0 > 0 [7, Remark 2.5]. Hence, if f in (5) is locally
r-homogeneous of degree α = 0 with dilation coefficients
ri = r0, i = 1, . . . , n, for some r0 > 0, then (keeping
Remark 2 in mind) the origin turns out to be exponentially
stable if and only if it is δ-exponentially stable.

Consider an n-th order autonomous system of the form

ẋ = f(x) + f̂(x) (6)

where f and f̂ are continuous vector fields such that f(0n) =
f̂(0n) = 0n.



Lemma 2: [7] Assume that, for some r ∈ Rn>0, f in (6)
is a locally r-homogeneous vector field of degree α < 0,
resp. α = 0, with domain of homogeneity D ⊂ Rn, and that
0n is a globally asymptotically, resp. δ-exponentially, stable
equilibrium of ẋ = f(x). Then, the origin is a finite-time,
resp. δ-exponentially, stable equilibrium of system (6) if

lim
ε→0+

f̂i(δ
r
ε(x))

εα+ri
= 0

i = 1, . . . , n, ∀x ∈ Sn−1c , resp. ∀x ∈ Sn−1r,c , for some c > 0
such that Sn−1c ⊂ D, resp. Sn−1r,c ⊂ D.

Remark 4: The condition required by Lemma 2 may be
equivalently verified through the fulfilment of

lim
ε→0+

∥∥ε−αδ−rε (f̂(δrε(x))
)∥∥ = 0

∀x ∈ Sn−1c (resp. Sn−1r,c ).

C. Scalar functions with particular properties

Definition 3: A continuous scalar function σ : R → R
will be said to be:

1) bounded (by M ) if |σ(ς)| ≤ M , ∀ς ∈ R, for some
positive constant M ;

2) strictly passive if ςσ(ς) > 0, ∀ς 6= 0;
3) strongly passive if it is a strictly passive function

satisfying |σ(ς)| ≥ κ
∣∣a sat(ς/a)

∣∣b = κ
(

min{|ς|, a}
)b

,
∀ς ∈ R, for some positive constants κ, a and b.

Remark 5: Equivalent characterizations of strictly passive
functions are: ςσ(ς) > 0 ⇐⇒ sign(ς)σ(ς) > 0 ⇐⇒
sign

(
σ(ς)

)
= sign(ς), ∀ς 6= 0.

Lemma 3: [7] Letting σ : R→ R, σ0 : R→ R, σ1 : R→
R be strongly passive functions and k a positive constant:

1)
∫ ς
0
σ(kν)dν > 0, ∀ς 6= 0;

2)
∫ ς
0
σ(kν)dν →∞ as |ς| → ∞;

3) σ0 ◦ σ1 is strongly passive.
Lemma 4: [7] Let σ0 : R → R be strictly increasing,

σ1 : R→ R be strictly passive, and k be a positive constant.
Then: ς1

[
σ0
(
σ1(kς1)+ ς2

)
−σ0(ς2)

]
> 0, ∀ς1 6= 0, ∀ς2 ∈ R,

or equivalently sign
(
σ0
(
σ1(kς1) + ς2

)
−σ0(ς2)

)
= sign(ς1).

As a (simple) illustrative example, let σ(ς) = sign(ς)|ς|β ,
σi(ς) = sign(ς)|ς|βi , i = 0, 1, for positive constants β, βi,
i = 0, 1, and k be a positive constant. We have

∫ ς
0
σ(kν)dν =

kβ |ς|β+1/(β + 1), which is clearly positive definite and
radially unbounded; σ0

(
σ1(ς)

)
= sign(ς)|ς|β0β1 , whence we

have that ςσ(ς) = |ς|β0β1+1 > 0, ∀ς 6= 0, and
∣∣σ0(σ1(ς)

)∣∣ =

|ς|β0β1 ≥ κ
(

min{|ς|, a0}
)β0β1 ≥ κ

(
min{|ς|, a1}

)b
for any

positive constants κ ≤ 1, a0 ≥ 1, a1 ≤ 1 and b ≥ β0β1. The
proof of Lemma 4 is developed in [7].

III. THE PROPOSED OUTPUT-FEEDBACK SCHEME

We define the following SP-SD type control law

u(q, ϑ) = −s1(K1q̄)− s2(K2ϑ) + g(q) (7)

where q̄ = q − qd, for any constant (desired equilibrium
configuration) qd ∈ Rn; ϑ ∈ Rn is the output vector variable
of an auxiliary subsystem defined as

ϑ̇c = −Asd(ϑ, q̄) , ϑ = ϑc +Bq̄ (8)

Ki = diag[ki1, . . . , kin], i = 1, 2, A = diag[a1, . . . , an]
and B = diag[b1, . . . , bn], with kij > 0, aj > 0 and
bj > 0, ∀j = 1, . . . , n; for any x ∈ Rn, si(x) =(
σi1(x1), . . . , σin(xn)

)T
, i = 1, 2, with, for each j ∈

{1, . . . , n}, σij being strongly passive functions, locally
Lipschitz-continuous on R \ {0}, and such that

Bj , max
ς∈R

∣∣σ1j(ς) + σ2j(ς)
∣∣ < Tj −Bgj (9)

and sd (in (8)) is a continuous vector function whose
components satisfy

sign
(
sdj(ϑ, q̄)

)
= sign(ϑj) (10)

j = 1, . . . , n.
Proposition 1: Consider system (1)-(4) in closed loop

with the proposed control scheme in Eqs. (7)-(8). Thus, for
any positive definite diagonal matrices K1, K2, A and B:
global asymptotic stability of the closed-loop trivial solution
q̄(t) ≡ 0n is guaranteed with |τj(t)| = |uj(t)| < Tj ,
j = 1, . . . , n, ∀t ≥ 0.

Proof: Notice that —for every j ∈ {1, . . . , n}— by
(9), we have that, for any (q, ϑ) ∈ Rn × Rn: |uj(q, ϑ)| ≤∣∣σ1j(k1j q̄j)+σ2j(k2jϑj)

∣∣+ |gj(q)| ≤ Bj +Bgj < Tj . From
this and (4), one sees that Tj > |uj(q, ϑ)| = |uj | = |τj |,
∀(q, ϑ) ∈ Rn × Rn, which shows that, along the system
trajectories, |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥
0. This shows that, under the proposed scheme, the input
saturation values, Tj , are never attained. Thus, the closed-
loop dynamics takes the (equivalent) form

H(q)q̈ + C(q, q̇)q̇ = −s1(K1q̄)− s2(K2ϑ)

ϑ̇ = −Asd(ϑ, q̄) +Bq̇

Defining x1 = q̄, x2 = q̇, x3 = ϑ and x = (xT1 , x
T
2 , x

T
3 )T ,

the closed-loop dynamics adopts a 3n-order state-space rep-
resentation in the form of (6) with

f(x) =

f(1)(x)
f(2)(x)
f(3)(x)

 , f̂(x) =

f̂(1)(x)

f̂(2)(x)

f̂(3)(x)

 (11)

where f(1)(x) = x2, f(2)(x) = −H−1(qd)
[
s1(K1x1) +

s2(K2x3)
]
, f(3)(x) = −Asd(x3, x1) + Bx2, f̂(1)(x) =

f̂(3)(x) = 0n, and

f̂(2)(x) = −H−1(x1 + qd)C(x1 + qd, x2)x2

−H(x1)
[
s1(K1x1) + s2(K2x3)

] (12)

with H(x1) = H−1(x1 +qd)−H−1(qd). Hence, the closed-
loop stability property stated through Proposition 1 is corrob-
orated by showing that x = 03n is a globally asymptotically
stable equilibrium of the state equation ẋ = f(x) + f̂(x),
which is proven through the following theorem.

Theorem 2: Under the stated specifications, the origin is a
globally asymptotically stable equilibrium of the state equa-
tion ẋ = f(x) and the (closed-loop) system ẋ = f(x)+f̂(x),
with f(x) and f̂(x) defined through Eqs. (11).



Proof: For every ` ∈ {0, 1}, let us define the continu-
ously differentiable scalar function

V`(x) =
1

2
xT2H(`x1 + qd)x2 + I1(x1) + I2(x3)

I1(x1) ,
∫ x1

0n
sT1 (K1ν)dν =

∑n
j=1

∫ x1j

0
σ1j(k1jνj)dνj ,

I2(x3) ,
∫ x3

0n
sT2 (K2ν)B−1dν =

∑n
j=1

∫ x3j

0
σ2j(k2jrj)

bj
drj .

From the positive definiteness of the inertia matrix and
Lemma 3, V`(x), ` = 0, 1, are concluded to be positive
definite and radially unbounded. Further, for every ` ∈
{0, 1}, the derivative of V` along the trajectories of ẋ =
f(x) + `f̂(x), is obtained as

V̇`(x) = xT2H(`x1 + qd)ẋ2 +
`

2
xT2 Ḣ(x1 + qd, x2)x2

+ sT1 (K1x1)ẋ1 + sT2 (K2x3)B−1ẋ3

= xT2
[
− `C(x1 + qd, x2)x2 − s1(K1x1)− s2(K2x3)

]
+
`

2
xT2 Ḣ(x1 + qd, x2)x2 + sT1 (K1x1)x2

+ sT2 (K2x3)B−1
[
−Asd(x3, x1) +Bx2

]
= −sT2 (K2x3)B−1Asd(x3, x1)

= −
n∑
j=1

aj
bj
σ2j(k2jx3j)sdj(x3, x1) (13)

where, in the case of ` = 1, (2) has been applied. Note,
from the strictly passive character of σ2j , j = 1, . . . , n
(see Remark 5), and the definition of sd (see (10)), that
V̇` ≤ 0, ∀(x1, x2, x3) ∈ Rn × Rn × Rn, with Z` ,
{(x1, x2, x3) ∈ Rn × Rn × Rn : V̇` = 0} = {(x1, x2, x3) ∈
Rn × Rn × Rn : x3 = 0n}. Further, from the system
dynamics ẋ = f(x) + `f̂(x) —under the consideration of
the strictly passive character of σ1j , j = 1, . . . , n, and
the positive definiteness of H(q) and K1— one sees that
x3(t) ≡ 0n =⇒ ẋ3(t) ≡ 0n =⇒ x2(t) ≡ 0n =⇒
ẋ2(t) ≡ 0n =⇒ s1

(
K1x1(t)

)
≡ 0n ⇐⇒ x1(t) ≡

0n (which shows that (x1, x2, x3)(t) ≡ (0n, 0n, 0n) is
the only system solution completely remaining in Z`), and
corroborates that at any (x1, x2, x3) ∈ Z` \ {(0n, 0n, 0n)},
the resulting unbalanced force terms act on the closed-
loop dynamics [ẋ = f(x1, x2, 0n) + `f̂(x1, x2, 0n) with
(x1, x2) 6= (0n, 0n)], forcing the system trajectories to
leave Z`, whence {(0n, 0n, 0n)} is concluded to be the only
invariant set in Z`, ` = 0, 1. Therefore, by the invariance
theory [12, §7.2], x = 03n is concluded to be a globally
asymptotically stable equilibrium of both the state equation
ẋ = f(x) and the (closed-loop) system ẋ = f(x) + f̂(x).

Remark 6: One notes from the proof of Theorem 2 that
as long as the controlled-system state variables are not
in equilibrium, the closed loop energy function V1 keeps
continually decreasing, showing the dissipative role of the
auxiliary subsystem, through the analytical properties of sd
(and s2, ensuring negativity of the right-hand side of (13)).

IV. FINITE-TIME / EXPONENTIAL STABILIZATION

Let r̂i = (ri1, . . . , rin)T , i = 1, 2, 3.

Proposition 2: Consider the proposed control scheme
under the additional consideration that, for every j ∈
{1, . . . , n}, σij , i = 1, 2, are locally ri-homogeneous of
degree αi = 2r2 − r1 > 0 —i.e. r1j = r1, r2j = r2
and α1j = α1 = 2r2 − r1 = α2 = α2j > 0 for all
j ∈ {1, . . . , n}— with domain of homogeneity Dij = {ς ∈
R : |ς| < Lij ∈ (0,∞]} and sdj is locally (r̂T1 , r̂

T
1 )T -

homogeneous of degree αd = r2 —i.e. r3j = r3 = r1 and
αdj = αd = r2 for all j ∈ {1, . . . , n}— with (common)
domain of homogeneity Dd. Thus, for any positive definite
diagonal matrices K1, K2, A and B: |τj(t)| = |uj(t)| < Tj ,
j = 1, . . . , n, ∀t ≥ 0, and the closed-loop trivial solution
q̄(t) ≡ 0n is:

1) globally finite-time stable if r2 < r1;
2) globally asymptotically stable with (local) exponential

stability if r2 = r1.
Proof: Since the proposed control scheme is applied —

with all its previously stated specifications— Proposition 1
holds and consequently |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n,
∀t ≥ 0. Then, all that remains to be proven is that the
additional considerations give rise to the specific stability
properties claimed in items 1 and 2 of the statement. In
this direction, let r = (r̂T1 , r̂

T
2 , r̂

T
3 )T , Di , {xi ∈ Rn :

Kixi ∈ Di1 × · · · × Din} = {xi ∈ Rn : |xij | <
Lij/kij , j = 1, . . . , n}, i = 1, 2, Dce , D1 × D2 × Rn,
Dde , {(z1, z2, z3) ∈ Rn × Rn × Rn : (z3, z1) ∈ Dd},
D , Dce ∩ Dde, and consider the previously defined state
(vector) variables and the consequent closed-loop state-space
representation ẋ = f(x) + f̂(x), with f and f̂ as defined
through Eqs. (11). Since D defines an open neighborhood
of the origin, there exists ρ > 0 such that Bρ , {x ∈
R3n : ‖x‖ < ρ} ⊂ D. Moreover, for every x ∈ Bρ and all
ε ∈ (0, 1], we have that δrε(x) ∈ Bρ (since ‖δrε(x)‖ < ‖x‖,
∀ε ∈ (0, 1)), and, for every j ∈ {1, . . . , n}:

f(1)j(δ
r
ε(x)) = εr2x2j = ε(r2−r1)+r1x2j

= ε(r2−r1)+r1jf(1)j(x)

f(2)j(δ
r
ε(x)) = −H−1j (qd)

[
s1(εr1K1x1) + s2(εr3K2x3)

]
= −H−1j (qd)

[
εα1s1(K1x1) + εα2s2(K2x3)

]
= −ε2r2−r1H−1j (qd)

[
s1(K1x1) + s2(K2x3)

]
= ε(r2−r1)+r2jf(2)j(x)

f(3)j(δ
r
ε(x)) = −Asd(εr3x3, εr1x1) + εr2Bx2

= −Aεα3sd(x3, x1) + εr2Bx2

= εr2
[
−Asd(x3, x1) +Bx2

]
= ε(r2−r1)+r3jf(3)j(x)

whence one concludes that f is a locally r-homogeneous vec-
tor field of degree α = r2−r1, with domain of homogeneity
Bρ. Hence, by Theorems 1 and 2, Lemma 1 and Remark
3, the origin of the state equation ẋ = f(x) is concluded
to be a globally finite-time stable equilibrium if r2 < r1,
and a globally asymptotically stable equilibrium with (local)
exponential stability if r2 = r1. Thus, by Theorem 2, Lemma



2, and Remarks 1 and 4, the origin of the closed-loop system
ẋ = f(x) + f̂(x) is concluded to be a globally finite-time
stable equilibrium provided that r2 < r1, and a globally
asymptotically stable equilibrium with (local) exponential
stability provided that r2 = r1, if

L0 , lim
ε→0+

∥∥ε−αδ−r̂2ε

(
f̂(2)(δ

r
ε(x))

)∥∥
= lim
ε→0+

∥∥ε−α−r2 f̂(2)(δrε(x))
∥∥

= lim
ε→0+

εr1−2r2
∥∥f̂(2)(δrε(x))

∥∥ (14)

= 0

for all x ∈ S3n−1
c = {x ∈ R3n : ‖x‖ = c} (resp. x ∈

S3n−1
r,c = {x ∈ R3n : ‖x‖r = c}), for some c > 0 such that
S3n−1
c ⊂ Bρ (resp. S3n−1

r,c ⊂ Bρ). Hence, from (12) and (3),
we have, for all such x ∈ S3n−1

c (resp. x ∈ S3n−1
r,c ):∥∥f̂(2)(δrε(x))

∥∥
≤
∥∥∥−H−1(εr1x1 + qd)C(εr1x1 + qd, x2)ε2r2x2

∥∥∥
+
∥∥∥H(εr1x1)

[
εα1s1(K1x1) + εα2s2(K2x3)

]∥∥∥
≤
∥∥∥− ε2r2H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥
+
∥∥∥H(εr1x1)ε2r2−r1

[
s1(K1x1) + s2(K2x3)

]∥∥∥
≤ ε2r2

∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥
+ε2r2−r1

∥∥∥H(εr1x1)
[
s1(K1x1) + s2(K2x3)

]∥∥∥
and consequently, from (14), we get

L0 ≤ lim
ε→0+

εr1
∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥
+ lim
ε→0+

∥∥∥H(εr1x1)
[
s1(K1x1) + s2(K2x3)

]∥∥∥
≤
∥∥H−1(qd)C(qd, x2)x2

∥∥ lim
ε→0+

εr1

+
∥∥s1(K1x1) + s2(K2x3)

∥∥ lim
ε→0+

∥∥H(εr1x1)
∥∥

≤
∥∥s1(K1x1) + s2(K2x3)

∥∥ · ∥∥H(0n)
∥∥ = 0

which completes the proof.

V. PARTICULAR STRUCTURES

The vector function sd in (8) may be defined (based on
Lemma 4) for instance as

sd(ϑ, q̄) = s5
(
s3(ϑ) + s4(q̄)

)
− s5

(
s4(q̄)

)
(15)

where, for any z ∈ Rn and i = 3, 4, 5, si(z) =(
σi1(z1), . . . , σin(zn)

)T
, with, for every j = 1, . . . , n:

σ3j(·) being strictly passive, locally Lipschitz-continuous on
R \ {0}, and locally r1-homogeneous of degree α3 —i.e.
r3j = r3 = r1 and α3j = α3 for all j ∈ {1, . . . , n}—
with domain of homogeneity D3j = {ς ∈ R : |ς| <
L3j ∈ (0,∞]}; σ4j(·) being locally Lipschitz-continuous
on R \ {0} and locally r1-homogeneous of degree α3 —
i.e. α4j = α4 = α3 for all j ∈ {1, . . . , n}— with domain

of homogeneity D4j = {ς ∈ R : |ς| < L4j ∈ (0,∞]};
and σ5j(·) being strictly passive, strictly increasing, locally
Lipschitz-continuous on R\{0} and locally α3-homogeneous
of degree r2 —i.e. r5j = r5 = α3 and α5j = α5 = r2 for all
j ∈ {1, . . . , n}— with domain of homogeneity D5j = {ς ∈
R : |ς| < L5j ∈ (0,∞]}.

Another (more direct) choice of sd is the particular case
of (15) obtained by taking s5(z) ≡ z, i.e.

sd(ϑ, q̄) = s3(ϑ) (16)

with s3 as previously defined, taking α3 = r2.
A common choice for the elements of the vector functions

si involved in the control scheme is: σij(ς) = sign(ς)|ς|βi ,
∀|ς| ≤ Lij ∈ (0,∞], j = 1, . . . , n. For this choice, the
stabilization goal with (15) is achieved taking β2 = β1,
β4 = β3, β5β3 = (1 + β1)/2, and 0 < β1 < 1 or β1 = 1
for finite-time or exponential convergence, respectively; the
requirements of the proposed scheme are thus corroborated
to be satisfied for any r1 > 0 and r2 = (1 + β1)r1/2. Note
that taking β5 = 1 and L5j = ∞, the (simple) case of (16)
takes place with β3 = (1 + β1)/2.

VI. SIMULATION RESULTS

The proposed scheme was tested through computer simu-
lations considering the model of a 2-DOF mechanical manip-
ulator corresponding to the experimental robotic arm used in
[13]. For such a robot, the various terms characterizing the
system dynamics in Eq. (1) are given by

H(q) =

(
2.351 + 0.168 cos q2 0.102 + 0.084 cos q2

0.102 + 0.084 cos q2 0.102

)

C(q, q̇) =

(
−0.084q̇2 sin q2 −0.084(q̇1 + q̇2) sin q2

0.084q̇1 sin q2 0

)

g(q) =

(
38.465 sin q1 + 1.825 sin(q1 + q2)

1.825 sin(q1 + q2)

)
Assumption 1 is thus fulfilled with Bg1 = 40.29 Nm and
Bg2 = 1.825 Nm. Furthermore, the input saturation bounds
are T1 = 150 Nm and T2 = 15 Nm for the first and
second links respectively, whence one can corroborate that
Assumption 2 is satisfied as well. For the sake of simplicity,
units will be subsequently omitted.

For the implementation of the proposed design methodol-
ogy, let us define the functions

σu(ς;β, a) = sign(ς) max{|ς|β , a|ς|} (17a)

σb(ς;β, a,M) = sign(ς) min{|σu(ς;β, a)|,M} (17b)

for constants β > 0, a ∈ {0, 1} and M > 0. Examples and
alternative function definitions are presented in [7]. Based on
the functions in Eqs. (17), we define —for every j = 1, 2—
those involved in the tests performed here as

σij(ς) =

{
σb(ς;βi, aij ,Mij) i = 1, 2

σu(ς;βi, aij) i > 2
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Fig. 1. Position errors (q̄1, q̄2), control signals (u1, u2), ‖x(t)‖, ‖u(t)‖

Notice that through these definitions we have Bj = M1j +
M2j , j = 1, 2 (see (9)). Hence, by fixing M11 = M21 = 50
and M12 = M22 = 6.5, the inequalities from expression (9)
are satisfied. The tests were implemented taking initial con-
ditions as q(0) = q̇(0) = ϑc(0) = 02 and desired position at
qd =

(
π/4 π/2

)T
. As a performance comparison indicator,

we will obtain the %-stabilization time ts% , inf{ts ≥ 0 :

‖x(t)‖ ≤ % ∀t ≥ ts}, with x ,
(
q̄T q̇T ϑT

)T
.

We implemented a test where the aim is to corroborate the
performance difference among the closed-loop trajectories
obtained through the proposed finite-time controller with the
different cases of sd presented in Section V, taking β1 =
β2 = 1/2. For the case of (15) —referred to as FTg— we
further took β3 = β4 = 1 and β5 = 3/4, while for the
case of (16) —referred to as FTs— we fixed β3 = 3/4.
The test included a further implementation with the analog
exponential stabilizer, i.e. with β1 = β2 = β3 = 1 [= β4 =
β5]. All the rest, including control and auxiliary subsystem
gains, remained unchanged. The implementations were run
fixing aij = 0, for all i and j.

Fig. 1 shows results obtained taking K1 = K2 =
B = diag[70, 20] and A = diag[30, 30]. One sees that the
stabilization objective was achieved by every implemented
controller avoiding input saturation. Moreover, different per-
formance among the use of (15) [FTg] and (16) [FTs] is
appreciated as well as the contrast among the different types
of trajectory convergence, in accordance to the corresponding
controller nature (finite-time vs exponential). In particular,
it is seen that, with the finite-time controllers, the position
errors, and actually the (norm of the) whole state vector in
the extended state space [x = (q̄T q̇T ϑT )T ], converge to
zero in less than 5 seconds, remaining invariant thereafter.
The exponential controller, instead, generated asymptotically
convergent closed-loop trajectories with ts0.01 = 7.38 s and
ts0.001 = 12.8 s. Such convergence differences are corrob-
orated from the graph of the control signals ui, i = 1, 2,
and their norm ‖u‖ [u = (u1 u2)T ], where, contrarily to the
finite-time stabilizers that get to their exact steady-state value
in less than 5 seconds, the exponential controller is observed
to perform a transient variation during a short period —
where the position variables (actually the whole system

states) are considerably approached to their corresponding
equilibrium values— and a slow stabilization refinement
thereafter. Among the finite-time controllers, the use of (15)
gave rise to faster closed-loop responses: t0.01 = 0.99s
and ts0.001 = 1.97s with (15) [FTg] vs t0.01 = 2.16s and
ts0.001 = 3.32s with (16) [FTs].

VII. CONCLUSIONS

An output-feedback global continuous control scheme for
mechanical systems with bounded inputs, guaranteeing finite-
time or exponential stabilization, has been designed within
the analytical context of local homogeneity. The choice
among the type of trajectory convergence is left to the user
through a simple control parameter. The proposed controller
avoids velocity measurements on the feedback by involving
a dirty-derivative-based dynamic dissipator expressed in a
generalized form. Such a generalized form increases the
degree of design flexibility which may be useful for closed-
loop performance improvement. This has been corroborated
and shown through simulation implementations, although a
deeper study is still needed to draw more concrete conclu-
sions about such a useful aspect. The contrast among the
different type of trajectory convergence, namely finite-time
vs exponential, has also been appreciated through simulation
results, showing advantages of the former over the latter.
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global continuous control for mechanical systems with constrained
inputs: finite-time and exponential stabilization, International Journal
of Control, vol. 90, 2017, pp. 1037–1051.

[8] B. Brogliato, R. Lozano, B. Maschke and O. Egeland, Dissipative
Systems Analysis and Control, 2nd ed., Springer, London; 2007.

[9] R. Ortega, A. Lorı́a, P.J. Niclasson and H. Sira-Ramı́rez, Passivity-
based control of Euler-Lagrange systems, Springer, London; 1998.

[10] R.T. M’Closkey and R.M. Murray, Exponential stabilization of drift-
less nonlinear control systems using homogeneous feedback, IEEE
Transactions on Automatic Control, vol. 42, 1997, pp. 614–628.

[11] M. Kawski, Homogeneous stabilizing feedback laws, Control Theory
and Advanced Technology, vol. 6, 1990, pp. 497-516.

[12] A.N. Michel, L. Hou and D. Liu, Stability of Dynamical Systems,
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