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Global Trajectory Tracking Through Static
Feedback for Robot Manipulators With

Bounded Inputs

Emeterio Aguiiaga-Ruiz, Arturo Zavalai®, Victor Santilaiiez, and Fernando Reyes

Abstract

In this work, two globally stabilizing bounded control schemes for the trackontrol of robot manipulators with
saturating inputs are proposed. They may be seen as extensions ofdhllesl PD+ algorithm to the bounded input
case. With respect to previous works on the topic, the proposed ap@oaive a global solution to the problem
through static feedback. Moreover, they are not defined using afispggmoidal function, but any one on a set of
saturationfunctions. Consequently, each of the proposed schemes actuallytutssa family of globally stabilizing
bounded controllers. Furthermore, the bound of such saturatiotidnads explicitly considered in their definition.
Hence, the control gains are not tied to satisfy aayuration-avoidancénequality and may consequently take any
positive value, which may be considered beneficial for performadfestment/improvement purposes. Further, a
class ofdesired trajectorieghat may be globally tracked avoiding input saturation is completely chaizede For
both proposed control laws, global uniform asymptotic stabilization of tbeed-loop system solutions towards the
pre-specified desired trajectory is proved through a strict Lyapumostion. The efficiency of the proposed schemes
is corroborated through experimental results.

I. INTRODUCTION

A fundamental scheme for the global trajectory trackingnedegree-of-freedomn{DOF) robot manipulators
is the well-known PD+ control law proposed in [11]. Such agoaithm considers a continuous calculation of a
special form of the robot dynamics, where the current pmsitiector is considered at every of its terms (gravity,
inertial, and centrifugal and Coriolis calculated forcectees), the desired acceleration vector is involved in the

computed inertial force vector, and both the current andrels/elocity vectors are considered in the Coriolis
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and centrifugal calculated force vector. This gives risatstrategic closed loop form wherefrom it is clear that
the desired trajectory is a solution of the closed-loopesystBut such terms do not guarantee, by themselves, the
stabilization towards the desired trajectory. This is aehd through the additional consideration of positiomerr
(P) and velocity-error (D) linear correction terms. Nehetess, because of the linearity of suchproportional

on the position error) and D (proportional on tterivativeof the position error) terms and that of the computed
Coriolis and centrifugal force vector on the current vefpaiector, the PD+ controller turns out to be unbounded.
As a consequence, when such an algorithm is implemented actml application, the resulting control signals
may try to force the actuators to go beyond their natural lodipas, undergoing the well-known phenomenon of
saturation Unfortunately, this may give rise to undesirable effeats pointed out for instance in [4], [7], and [15,
§5.2].

In order to avoid the above-mentioned problem, a boundedrmdjcal extension of the PD+ algorithm has been
proposed in [8]. To begin with, the current velocity vecterreplaced by the desired velocity trajectory in the
computed Coriolis and centrifugal force vector. Hence, bysidering twice continuously differentiable desired
position trajectories whose 1st and 2nd time-derivative. yelocity and acceleration) vectors are bounded, the
computed (special form of the) system dynamics turns outtbdunded. Further, the P and D gains are applied to
sigmoidal functions —specifically, the hyperbolic tangentfthe closed loop error variables, giving rise to bounded
nonlinear P and D terms. Moreover, an auxiliary (interngiamical subsystem is considered for the asymptotic
estimation of the system velocity error variables. Consetly, only position measurements are involved in the
developed algorithm. In a frictionless setting, such a @@nécheme was proven to semi-globally stabilize the
closed-loop system.

By considering viscous friction in the open-loop dynamiasglobally stabilizing version of the control law in
[8] was achieved in [13]. The developed scheme keeps thetgteuof the controller in [8], but the viscous friction
force vector is added to the computed robot dynamics, ramgabe current velocity vector by the desired velocity
trajectory. Under such considerations, global trackingdkieved for suitable trajectories.

Two alternative dynamical approaches were proposed ingdfh consider P and D correction terms where the
hyperbolic tangent of the tracking error and filtered tragkérror variables, respectively, are involved. The firgt on
includes a bounded adaptive compensation of the robot dgsaimvolving position and velocity measurements.
The second one, on the contrary, is free of velocity measemémn keeping £omputed-Torqudéike structure (see
for instance [5, Chapter 10]). It considers the same fornhefgravity, viscous friction, and Coriolis and centrifugal
calculated force vectors used in [13], but a special forrmeftial (complemented) force vector where the bounded
nonlinear P and D terms are included. Semi-global trackéngchieved by both controllers.

More recently, revisited versions of the controller in [13¥ve been developed in [9] and [10]. In the first
of these works, [9], gains scaling the argument of the hygerliangents are incorporated. In the second one,
[10], the hyperbolic tangents are replaced by a more gemémab of saturating functions. In both works, local
exponential stability was proved through singular petidn theory. Contrarily to the previously mentioned works

the developed algorithms were experimentally tested ampeaoed to other bounded and unbounded schemes (being



[10] more exhaustive at this point).

Let us note that by the way the bounded nonlinear P and D terendefined in the previous works, the P and
D gains are tied to satisfy saturation-avoidancénequality (since these define the bounds of the P and D terms)
Consequently, such control gains cannot takey (positive) value, which restricts theprerformance-adjustment
natural role. Let us further note that the above-cited watkisnot completely characterize the classdefsired
trajectoriesthat may be globally tracked (through their proposed athors) avoiding input saturation.

When velocity measurements are unavailable or highly nthgyalgorithms in [8], [13], [9], [10], and the second
one in [4] may be considered to give an appropriate solutiothé tracking problem. On the contrary, the first
algorithm in [4] may be suitably applied when the system peaters are uncertain. Nevertheless, none of the above-
cited works solve the global tracking problem through aistedntroller involving all the system states (positions
and velocities) and parameters. The design of such a scheeserebt only represent an analytical challenge, but
its implementation would give rise to faster closed-loogpanses. Indeed, involving dynamic estimations of some
states or parameters in the control system generally ag@dsaheffects that commonly slow down the stabilization
time and give rise to oscillating transient responses. Fttmpoint of view, static controllers expressed in terms
of the whole system data (states and parameters) remaingortant choice when acceptable estimations of such
information are available.

In this work, two globally stabilizing bounded control sahes for the trajectory tracking of robot manipulators
with saturating inputs are proposed. They may be seen assiowtes of the PD+ algorithm to the bounded input
case. With respect to the above-mentioned previous wohley, (both) give a global solution to the formulated
problem through static feedback. Moreover, they are nohddfising a specific sigmoidal function, but any one on
a set ofsaturationfunctions. Consequently, each of the proposed schemeallgatonstitutes a family of globally
stabilizing bounded controllers. Furthermore, the bouhslugh saturation functions is explicitly considered inithe
definition. These are consequently applied to the wholealifeand D expressions, giving the P and D gains the
liberty to adopt any positive value. Such a freedom to sedagt combination of control gains together with the
generalizedsaturation function formulation give rise to an infinite iedy of possibilities to adjust or improve the
closed-loop performance. The first of the proposed algmstidenoted SP-SD+, considers (at every link) each of the
P and D correction terms, separately, within a saturatioctfan; this may be considered a basic structure since all
the above-mentioned previous works keep separated sagimbportional and saturating-derivative actions. The
second proposed scheme, denoted SPD+, involves both P aedn® within a single saturation function; such a
structure turns out to be more beneficial (with respect toSReSD+ one) for performance purposes, according
to the arguments given in [16] in this connection. Furtheglass of desired trajectories that may be globally
tracked (by both proposed schemes) avoiding input satur&icompletely characterized. For both proposed control
laws, global uniform asymptotic stabilization of the clddeop system solutions towards the pre-specified desired
trajectory is proved through a strict Lyapunov function.eTéfficiency of both proposed schemes is corroborated
through experimental tests on a 2-DOF robot manipulator.

The work is organized as follows. Section Il states the ganeiDOF serial rigid robot manipulator open-loop



dynamics and some of its main properties, as well as coraidas and definitions that are involved throughout
the study. In Section Ill, the proposed controllers are gmésd. Section |V states the main results, where the
stability analyses are developed and the control objedsiyroved to be achieved (for both proposed controllers).

Experimental results are presented in Section V. Finatpctusions are given in Section VI.

Il. PRELIMINARIES

The following notation is used throughout the pager. denotes the set of nonnegative real numbers, ifd
represents the set efdimensional vectors whose elements are nonnegative uealbers. We denote,, the origin
of R”, and I, the n x n identity matrix. Letz € R” and A € R"*"™, z, represents thé" element ofz, anda;;
stands for the element in rowand column; of matrix A. || - || denotes the standard Euclidean vector norm and
induced matrix normij.e. ||z|| = [>7, xf]l/z and ||A| = [/\Inax(ATA)]l/2

maximum eigenvalue ofi” A. Let A and £ be subsets (with non-empty interior) of some vector spacemd

, Where \,,.. (AT A) represents the

E respectively. We denoté™(A; £) the set ofm-times continuously differentiable functions from to £ (with
differentiability at any point on the boundary gf, when included in the set, meant as the limit from the interio
of A). Consider a continuous-time functigne C?(R;€). The time-derivative and second-time-derivativehof
are respectively represented iagnd i, i.e. i : t — %k andh : t — 2o p,
Let us consider the generalDOF serial rigid robot manipulator dynamics with viscougtion [14, §6.2], [2,
§2.1]:
D(q)i+C(¢,@)i+Fq+g(q) =7 1)

whereq, ¢, § € R™ are, respectively, the position (generalized coordinateslocity and acceleration vectors,
D(q) € R™*™ is the inertia matrix, and’(q, ¢)q, F'4, g(q), 7 € R™ are, respectively, the vectors of Coriolis and
centrifugal, viscous friction, gravity, and external ingeneralized forces, with' being a constant, positive definite,
diagonal (viscous friction coefficient) matrike. F' = diag[fi, ..., fa], with f; > 0, Vi € {1,...,n}. The terms
of such a dynamical model satisfy some well-known propsrtsee for instance [5, Chapter 4]). Some of them are
recalled here (in particular, Property 5 below may be carated in [4]).

Property 1: The inertia matrixD(q) is a positive definite symmetric matrix satisfyiny,/ < D(q) < dy1,
Vq € R™, for some positive constantg,, < dj;.

Property 2: The Coriolis matrixC(q, ¢) satisfies:
2.1, 4T [%D(q, q) — C(q, q)} x=0,Vz,q,q € R
2.2. D(q,4) = C(q,4) + C"(q,4), Vg, 4 € R™;
23. Clw,z+y)z =C(w,z)z + C(w,y)z, Yw, x,y, z € R™;
24. C(z,y)z = C(z,2)y, V,y,z € R™;
25.|C(z,y)z|| < kellyllll#]l, Y, y, z € R™, for some constank, > 0.

Property 3: The gravity vector satisfiepg(q)|| < v, V¢ € R™, for some positive constant, or equivalently,
every element of the gravity vectay;(q),i = 1,...,n, satisfiesg;(¢)| < i, Vg € R™, for some positive constants

Yi,t=1,...,n.



Property 4: The viscous friction coefficient matrix satisfigs, ||z||? < 2T Fz < fu||z|?, V2 € R", where

0 < frn = min{fi} < max;{f;} = fu.
Property 5: The left-hand side of the robot dynamic model in (1) may beritesn as

D(q)i+ C(q,4)q+ Fq+g(q) =Y (q,4,4)0

wheref € RP, for some integep > 1, is a constant vector whose elements are defined exclusivégrms of the
robot parameters, and : R" x R™ x R™ — R"*? is ann x p matrix whose elements depend exclusivelym,
and g and do not involve any of the robot parameters.

Let us suppose that the absolute value of each inpig constrained to be smaller than a given saturation bound

T, > 0,i.e.|r| <T;i=1,...,n. In other words, ifu; represents the control signal (controller output) retatiy
the i" DOF, then
Uy
i — T'? ol — 2
T, :sa <Ti) (2)
i=1,...,n, wheresat(-) is the standard saturation functidre. sat(s) = sign(s) min{|s|, 1}.

The control scheme proposed in this work involves a spegied bf (saturation) functions satisfying the following
definition.

Definition 1: Given a positive constant/, a functiono : R — R : ¢ — o(s) is said to be ageneralized
saturation with bound M, if it is locally Lipschitz, nondecreasing, and satisfies:

1) so(s) >0, Vs #0;

2) |lo(s)| < M, Vs eR.
A strictly increasing continuously differentiable furanti fulfilling Definition 1 has the following properties.

Lemma l:Leto : R — R : ¢ — o(s) be a strictly increasing continuously differentiable gatieed saturation
function with bound)M, k& andk be positive constants, and : ¢ — ‘é—‘;. Then

1) ylo(xz+y) —o(x)] >0, Vy #0, Vz € R;

2) lim) 0 0’'(s) = 0;

3) o’( ) is positive and bounded.e. there exists a constant,, € (0,c0) such thatd < o/(s) < o/, Vs € R;

4) 2 2k ) < Jo o(kr)dr < Iw“g , V¢ €R;

5) fo k:r dr > 0, Vs # 0;

6) [, o(kr)dr — oo as|s| — oo;

7) |o(kx + ky) — o(ky)| < o, k|z], Y2,y € R.

8) |o(kz)| < o)y klx|, Vz € R.

Proof: See [1]. |

We state thecontrol objective as the global uniform asymptotic stabilization of the robonfiguration vector

variable, ¢, towards a desired trajectory vectaqp(t), through bounded control signals avoiding input saturetio
(i.e. such thatfir;(t)| = |u;(t)| < T3, i = 1,...,n, ¥Vt > 0; see (2)).



IIl. PROPOSEDCONTROLLERS

The following assumption turns out to be crucial within thealgtical setting considered in this work:
Assumption 1.7; > ~;, Vi € {1,...,n}.
Further, in order to guarantee the achievement of the staiettol objective, the proposed scheme is restricted to
desired trajectory vectors meeting the following:
Assumption 2:The desired trajectory vectay;(¢) is a twice continuously differentiable function i-e: ¢4 €
C%(R; R™)— satisfying
sup [|ga(t)[| < Bav (3a)
t>0

and
sup ||Ga(t)|| < Baa (3b)
>0

for some (velocity and acceleration vector) bounds such tha

(dea Bda) € Bl U 82 (4)
where
Bié{(§7C)ERi|§<Bvi7 <<Bai} (5)
i =1,2,
min{J;’",Bu} if ke>0
Bul é ‘ (Ga)
Big if k.=0
_ 2 _
-Ba1 é Am kCBdU fMBdU (Gb)
dar
2
s Jum S Ay
Bu = =5 T (2k) e (60)
JAV
Bjp & =2 (6d)
fu
and
Ay,
Ba2 £ -7 (73)
dy

min{J;’: , B21} if k. >0

By & (7b)
By if k.=0
fu N> Ap —dyBaa
By & — —_m “ATrde 7
2 ok, \ a2k ) T k. (7c)
A, — B
BQO é m dM da (7d)

fu



with
A, £ min{T; — v} 8

Under Assumptions 1 and 2, we propose3SD+ control scheme of the form
u = —52(K2q) — 51(K1q) + 7(¢, 4a, Ga) 9
and anSPD+ control law of the form
u = —5o(K2q + K1q) + 7e(q, 4, Ga) (10)
where
7(q, 4a, Ga) = D(q)da + C(q, 4a)4a + Fga + g(q) (11)
g = q— qu(t); K; and K, are positive definite diagonal matriceise. K, = diag[k11,...,k1,] and Ky =
diag [ka1, . .., kan] With k1; > 0 andky; >0 foralli=1,...,n; and

s; + R* — R©

T (12)
xr Sj({[): (Ujl(l’l) an<xn)) s j:O,].,Q
with oj,(-), ¢ = 1,...,n, beingstrictly increasing continuously differentiable generalized saturation functions
with bounds)M; satisfying
My; + My <T; — dyBag — keBj, — frBaw — i (13)
(see Properties 1, 2.5, 3, and ¥),=1,...,n, in the SP-SD+ case (controller (9)), and
Mo; < T; — dyBaa — kB, — frBaw — i (14)

Yi=1,...,n, in the SPD+ case (controller (10)).

Remark 1:Observe that (-) andss(-) in (9), as well asso(-) in (10), aredecoupledvector functions (see (12))
whose elements are strictly increasing continuously difféable scalar functions;;(-) (j =1,2,3,i=1,...,n)
satisfying Definition 1. As a matter of fact, any strictly ieasing continuously differentiable function from the
whole set of scalar functions satisfying Definition 1 may besen for everys;;(-) involved in each of the
proposed schemes. The elementa:dh (9) are thus given by, = —o9;(k2:3;) — 01i(k1:Gi) + Tei (¢, Ga, Ga), and
in (10) by u; = —o0;(k2i@i + k1:¢:) + 7ei(q, 4a, Ga), © = 1,...,n. Suchgeneralized saturatiorfiunctionso;(-)
have the required properties for the achievement of the dtatad control objectivepassivity(they keep the sign
of their argument), boundedness, and monotonicity (oles#mat apart from boundedness, these are actually the
properties possessed by the identity function which wolilé gse to the linear P and D correction terms that are
conventionally used in the PD+ controller for the solutidnttee global tracking problem in the unbounded input
context). Thus, for instance in (9), the SP and SD terms playsamegualitativerole as the P and D actions in the
linear unbounded case:ss(K>7) opposes to displacement away from the desired trajeatgty, and —s;(K1q)
opposes to motion relative to that generated by the mangutaver ¢4(t); but they do in a nonlinear bounded

fashion. In other words, at every link, the SP terra;(k2;q;) acts like a virtual spring that tries to restore the



concerned link to the desired trajectory, and the SD action;(k1;q;) acts like a virtual damper that dissipates
the motion generated away from that characterized by thieedieselocity; moreover, they both act by generating
suitable forms of nonlinear bounded (generalized) forteghe case of (10), the same scenario is observed but
with different forms of nonlinear bounded forces. Indeedtenthat, at every link, the control expression can be
rewritten asu; = —[00;(k2i@; + k1:Gi) — 00i(k2:@i)] — 00i(k2:@;) + Tei(q, da, Ga). Observe, on the one hand, that
this equivalent expression has an SP term identical to tieeiroigontroller (9), and on the other that, from item 1
of Lemma 1, the first term in its right hand side[oo; (k2:3 + k1:¢:) — 00i(k2:3;)], has the opposite sign af,

and consequently opposes to motion away from that charaeteby the desired velocity.

Remark 2:Under inequalities (13) and (14), input saturation is agdidjlobally in time, as will be shown in
Section IV below. In this direction, let us note that the Satition of Assumption 2 guarantees the existence
of positive valuesM;; and My; fulfilling (13) and M,; meeting (14). In turn, Assumption 1 renders possible
the tractable desired trajectory characterization stated by Assump®ioindeed, observe on the one hand that,
under the satisfaction of Assumption 1, we hakg, > 0 (see (8)), which impliesB;; > 0 (see (6¢)) and
Byg > 0 (see (6d)), which in turn entaiB,; > 0 (see (6a)), which renders possible to state some positive va

2 2
Bg, < B,1. With such a value of3,,, we have, ifk, > 0: By, < —g% +4/ (%) + A/TL" — (Bd,,, + %) <

o1 2 k e e > 0, i.e. By1 > 0 (see (6b)), or similarly,
Ay —

- - — 2 —
if ke = 0: By, < & — Aa—fubBa 5 ( or equivalently, for anyk, > 0: 2m=FeBan=fuBa,

fm M da

B,1 > 0, which makes possible to state some positive vdlig < B,1, by virtue of which3; is non-empty. On

. 2 .
(fM) +An o g2 o4 IuBae o Am Am—keBj, —fuBay
v .

> 0, i.e.

the other hand, observe that, under the satisfaction of Agsan 1, we haved,, > 0 (see (8)), which implies

B.s > 0 (see (7a)), which renders possible to state some positive 3y, < B,». With such a value ofB,,,

we haveBy, < ﬁ;’; — A,, —dyBga > 0, which impliesByy > 0 (see (7d)) andBy; > 0 (see (7c¢)), which
in turn entail B,» > 0 (see (7b)), which makes possible to state some positiveev@lly < B2, by virtue of

which B, is non-empty. Thus, the satisfaction of Assumption 1 rengerssible to choose a desired trajectgyy

Ay —keB3, — far Baw
dn

fulfiling Assumption 2. Further, observe that with a valuel8y, < B,1, we haveBy, < —

mini{Ti—’yi}—dMBda—k’cBgv—f]y[BdU >0 = Ti_dMBda—kcBgv_fMBdu—’Yi >0,Vi=1,...,n, ensuring

positivity of the right-hand-side expression of inequesit(13) and (14), while with a value &f;, < B,2 we have, if
2 2 2

k. > 0:Bgy < —{fﬂ/(g,f) et (de + ;%) < ({%) +8m=duBie — p2 4 JaBan o

Am—’i{Win“ — mlnz{Tl - ’7%} —dyrBga — kCB(%’I) - f]Wde >0 = T, —dyBaa — kCB(%v - fMde =% >0,

Vi =1,...,n, or similarly if k. = 0: By, < %

= min{7T; — v} — dyBaa — fuBaw > 0 =
T;—dpy Baa— fraBaw—y: > 0,Vi = 1,...,n, or equivalently, for any;. > 0: Ti—dMBda—kcBgv—fMde—% > 0,
Vi = 1,...,n, ensuring positivity of the right-hand-side expressionrafqualities (13) and (14) in this case too.
Thus, the satisfaction of Assumption 2 indeed guaranteesxistence of positive value/;; and M; fulfilling
(13) andMy; meeting (14).

Remark 3:Observe that th&actabletrajectory characterization stated through Assumptioes®ricts the desired

velocity and acceleration vectors but not the location @& tkesired task. That is, the desired trajectory may be



defined anywhere on the configuration space as long as it gsego sufficiently slow motions. Tasks that may
be characterized by sufficiently slow desired trajectofsxscording to the criterion stated in Assumption 2) are

achievable through the control schemes in (9) and (10).

IV. MAIN RESULTS

Proposition 1: Consider the system (1)—(2) with the control law (9) undesuksptions 1 and 2 and the satis-
faction of inequalities (13). For any positive definite diagl control gain matriced’; and K, global uniform
asymptotic stabilization of the closed-loop system sohgiq(¢) towards the desired trajectory vectgg(t) is
guaranteed withr;(t)| = |u;(t)| < T3, i =1,...,n, V¢ > 0.

Proof: From (9), (13), Properties 1, 2.5, 3 and 4, and the stricttydasing character of the involved generalized
functions, one sees that;(t)| < Mi; + Ma; + dyBaa + keB2, + frBaw +7vi < Ty, i =1,...,n, Vt > 0. From
this and (2), it follows thatr;(¢)| = |u:(t)| < T3, i = 1,...,n, ¥t > 0. We now focus on the stability analysis.

The closed-loop dynamics takes the form
D(q)g + [C(a.4) + C(q,4a(t))] G + FG + s1(K1G) + s2(K2q) = 0y, (15)

where Property 2.4 has been used (observe from the defirfign stated in Section Ill, thag = ¢ + ¢4(¢t) and
4 = q+ qa(t)). Let us define the scalar functibn

. 1. . 4 .
Vi(t,4,4) = 54" D(@ + qa(t)d + / sy (Kor)dr + &1 (Ko@) D(q + a(t))d (16)
On
where )
q n qi
/ S;(Kfl‘)d’f‘ = Z/ O’Qi(kgim)d’ri (17)
n i=1 70

ande; is a positive constant satisfyifig

fm — kchv dm
; 2 2 7
keBanr + darkaniogy, + (kchv + 701]“}612]‘“”]) 2dyrk2noan

€1 < min (18)

with 0%, = max;{c};,,} (see item 3 of Lemma 1) anld;s; = max;{k;:}, j = 1,2, and Baps = [3271, M3 1/2

Let us note, from Property 1 and items 4 and 8 of Lemma 1, that
Wll(@v Q) <V (tv q, 67) < Wig (qv q_) (19)

10bserve that the first term in the right-hand side of (16) isuadgatic form,%éTD(q)é = %Z?:l i1 di (9)@:q;; the second
term is the (definite) integral of a differential form gertedh from the internal product among the position-erroraklg-dependent vector
function s2(K2q) = (agl(kglql) Uzn(kgnqn)>T and the position-error-variable differential vectd§ = (dq1 dqn>T, ie.
sT(K2q)dq = > 02i(k2:;)dg;, whose integral frond,, to g gives rise to the scalar expression in (17); and the thinh tisra bilinear
form (in s2(K2q) andq), e1s3 (K24)D(9)d = e1 27—y Y5y dij(9)02i(k2idi) ;-

20Observe that the satisfaction of Assumption 2 guaranteeiivitysof the first term within the braces in (18), conseqtigrensuring the
existence of a positive; fulfilling inequality (18). Indeed, note that for a desiredjéctory with velocity vector bound such thBl, < By
or By, < By2, We have, ifk. > 0: By, < % = fm — kcBay, > 0. From this and the consideration of Property 4, we have, fgr a
ke > 0! fr — kcBay > 0, wherefrom positivity of the first term within the braces i8] is guaranteed.



with

aoa - 19 s2(K2q)||? . _
Winla.d) 2 L1+ [ T+ B0 gy g1 (o)

/
On Akanoh

and

_ = dM - kQJ\/IOJ q 2
Was(q,d) & 202 + P2 a1

5 + erdarkani oy llalllla]|

Moreover, notice that¥1; (g, q) andWi2(g, ) may be rewritten as

T
1T, 1 ([ lls2(K20)|| [[s2(K2q) ||
Wii(q,9) = 5/ sy (Kar)dr + 3 . Py _ (20)
" 4]l 4l
and .
.1l ]l
Wi2(q,q9) = . P |
]l ]l
where
1 _
Py = Zkariog “id
—e1dp dm
and
kQMOJQM €1de2MUéJW
Py =
e1darkan oy, dyr
Further, since; < ,/s=—2=—— (see (18)), one can verify (after several basic developshénatP;; and Py, are

2
2dy kool

positive definite symmetric matrices. From this and item$18 @& of Lemma 1, one sees thdt(t, g, §) is positive

definite? radially unbounded,and decrescent. Its derivative along the system trajestasi given by

Vi(t,q,d) = — " C(@+ qa(t), da(t))d — §" Fq— G" s1(K19) — 185 (K2q)C(q + qa(t), da(t))d
— e155 (K2q)Fq — €153 (K2)s1(K1Q) — €153 (K2)s2(K2@) + 13" C(3 + qa(t), §)s2(K2q)
+e14"C(q+ qa(t), da(t))s2(K2q) + e1¢" D(q + qa(t))sh(K2q) K2q

with s5(K2q) = diagob; (k21q1),- -, 0h, (k2nGn)], Where D(q + q4(t))¢ has been replaced by its equivalent

expression from the closed-loop dynamics (15), and Prigset.1-2.3 have been used. From Properties 1, 2.5

314(t, G, §) is said to be positive definite i/11(g,§) in (19) is positive definite. Since, under the satisfactiér(18), P11 is a positive
definite matrix, and from item 1 of Definition 1 —according to ialh generalized saturations are zero if and only if theiuergnt is zero,
wherefrom we have thatz(K23) = 0, <= @ = 0,—, the second term in the right-hand side of (20) is positieéinite (in (g, 7)).
Furthermore, observe from (17) and item 5 of Lemma 1 that thegyiatéerm in the right-hand side of (20) is zerogit= 0,, and positive for
any (g, q) such thatg # 0,,. Therefore,W11(g, §) is positive definite.

“Va(t,d, ) is said to be radially unbounded W11 (g, §) in (19) is radially unbounded. From the positive definite dragic form in the
right-hand side of (20), one easily sees tht1 (g, g) grows to infinity as any component gf does. Furthermore, from (17) and item 6 of
Lemma 1, one sees that the integral term in the right-hand did2) diverges as any component g@fdoes. ThusW11(q, ) is radially
unbounded.



and 4, item 8 of Lemma 1, and the satisfaction of inequalitigs we have that
Vi(t,4,4) < Wis(q,9) (21)
with
Wis(q: @) = keBaolldll® = fnlldl® — " 51 (K1) + exkeBao|dll[|s2(EKaq)[| + e1.far 1] [[s2(K2) |
+ etk gl s2(K2q) || — e1lls2(Ka)l|* + e1keBan 1G]|° + e1keBaol|g] || s2(K2q) |
+ erdarkanr ot ||

where the facts thats (K»q)|| < [0, M2]"? 2 By and ||sh(Kaq)|| < maxi{ch,,} 2 obyr, Vg € R?, have

been considered. Notice thHt;3(g, ) may be rewritten as

T
. o . [[s2(K2q)| [[s2(K2q)
Wi3(2,q) = —q" s1(K1q) — . Q1 . (22)
4l ]l
where
€1 —E&1 (k(-de + 701A{k1§1+fM>
Qi = -
—&1 (kchv + %MHCM) fm — keBay — €1(keBan + darkaniob )

Further, sinces; < fin—=keBdo > (see (18)), one can verify (after several basic

ke Bantdarkans o+ ( ke Byt MM
developments) thaf); is a positive definite symmetric matrix. From this and item flDefinition 1, one sees
that Vi (¢, ¢, §) is negative definité. Thus, from Lyapunov’s stability theory (applied to non@amous systems;
see for instance [6, Theorem 4.9]), the proposition follows |
Proposition 2: Consider the system (1)—(2) with the control law (10) undess#mptions 1 and 2 and the
satisfaction of inequalities (14). For any positive deéirdiagonal control gain matricds; and K5, global uniform
asymptotic stabilization of the closed-loop system sohgig(¢) towards the desired trajectory vectgg(t) is
guaranteed withr;(t)| = |u;(¢)| < T3, i =1,...,n, V£ > 0.
Proof: From (10), (14), Properties 1, 2.5, 3 and 4, and the striagtlyréasing character of the involved
generalized functions, one sees that(t)| < Mo; + dyBaa + ke B2, + fmBaw +7v < Tiy i =1,...,n, ¥t > 0.
From this and (2), it follows thatr;(t)] = |ui(t)| < T3, ¢ = 1,...,n, Vt > 0. The stability analysis is now

developed. The closed-loop dynamics takes the form

D(q)q+ [C(q:4) + C(q,4a(t)) |7+ Fg+ so(K1q + K2q) = 0y, (23)

51, (t,q,q) is said to be negative definite W13(q,q) in (21) is negative definite. Since, under the satisfactibi(18), Q; is a positive
definite matrix, and from item 1 of Definition 1 —according toiathss(K23) = 0, < ¢ = 0,—, the second term in the right-hand side
of (22) is negative definite (iig, ¢)). Furthermore, observe thatg”'s1 (K1§) = — >°7 ; ¢;01:(k1:G;)- From this and item 1 of Definition 1,
one sees that the first term in the right-hand side of (22)1is #ej = 0,, and negative for anyg, ) such thatj # 0,,. Therefore,W15(q, §)
is negative definite.



where Property 2.4 has been used (recall thatg + ¢4(t) andg = ¢ + ¢a(t)). Let us define the scalar function

Va(t, q,q) = %éTD(Q + qa(t))q + /Oq s (Kar)dr + e25§ (K2q)D(q + qa(t))q (24)

where

q n qi
/ Sg(KQT)dT = E / O'Oi(k‘QiTi)d’l“i
0

n i=1

ande; is a positive constant satisfying

fm - kchv dm

’ 2 2 /
keBoym + darkoniogy, + (kchv + 700”’k12]‘4+f”1) 2 k2r o0y

€2 < min (25)
wherea),, £ max;{c};,,} andk;y = max;{k;;}, j = 1,2, and Bops £ [>1, M@i]l/z. Notice thatVs(t, g, q)

in (24) adopts the same form &f (¢, 7, ¢) in (16) (by simply replacing in V; by so; hence, analog observations
to those pointed out in Footnotes 1, 3, and 4 in relatiori’foin (16) apply toV; in (24)). Thus, following a

procedure analog to the one developed ¥fo(t, g, ¢) in the proof of Proposition 1, we get

Wa1(q,q) < Va(t,q,q) < Waa(q,q)

with T
1T, 1 ([ llso(K2q)]| [[so(K2q) ||
Wa1(q,q) = 5/ sp (Kar)dr + 3 . Py .
" ]l 4]l
and T
.1 llal ]l
Waa(q,q) = 2| . 22 |
]l 4]l
where
Py = 2k2n Tons eadu
*52dJV[ dm
and
korroh eadnrkarn oy,
Py =
eodprkamohy, dy
Further, since, < /52— (see (25)), one can verify (after several basic developshénatP,, and P,, are

2 /
2dy kan ol

positive definite symmetric matrices. From this and item$18 @& of Lemma 1, one sees thdf(t, g, §) is positive

definite, radially unbounded, and decrescent. Its devieadiong the system trajectories is given by

Va(t,4,4) = — 7" C(q+ qa(t), 4a(t))Gd — " Fq— §" [s0(K1q + K2q) — s0(K27)]
— e954 (K2q)C(q + qa(t), 4a(t))§ — €25 (K2q) F§ — e250 (K27) [s0(K1G + K2q) — s0(K2q)]
— 250 (K2q)50(K2q) + 224" C(q + qa(t), ) s0(K2q) + £2q" C(q + qa(t), a(t))so(K2q)

+e2q" D(q+ qa(t))sh(K2q) K2q



with s((K2q) = diago(; (k21q1),- - -, 04, (k2nGn)], Where D(q + q4(t))¢ has been replaced by its equivalent
expression from the closed-loop dynamics (23), and Prigset.1-2.3 have been used. From Properties 1, 2.5

and 4, item 7 of Lemma 1, and the satisfaction of inequali{®swe have that
Va(t, 4, ) < Wa3(4,q) (26)
with
Wos(q,q) 2 keBaol|dll® — falldll* — " [s0(K1G + K2q) — so(K2)] + e2keBay ||| ||50(52q) |
+ ez furlldll|so(E2q) | + eakinrogu 14150 (K2l — e2lls0(K2)|1* + e2ke Boas 11

+ eakeBao|dll || 50 (K2q) || + e2darkanroga |l dll?

1/2 A

where the facts thatso(K2q)|| <[>, M] Bow and||sy(K2q)|| < max;{c};,;} = obpr ¥ € R™, have

been considered. Notice thHty3(7,7) may be rewritten as
T

. o . ) ) [[s0(£K2q)]| [[s0(K29)]]
Wa3(q.q) = —q" [s0(K1q + K2q) — so(K2q)] — . Q2 . (27)
4] lal
where
=) —&9 (kchu + L(/JMkIQMJrfM)
Qs = P
—€9 (kchv + W) fm — keBay — €2(keBon + darkaniogyy)
Further, sincesy < fin—keBdo > (see (25)), one can verify (after several basic

ke Bon +dntkang o+ ( ke Bay+ 20 1M I0

developments) thaf), is a positive definite symmetric matrix. From this and itemflLemma 1, one sees that
Va(t,q,q) is negative definité. Thus, from Lyapunov’s stability theory (applied to non@nimous systems; see
for instance [6, Theorem 4.9]), the proposition follows. |

Remark 4:Observe that, according to Property75,in (11) may be rewritten as.(q, 4a, 4a; 0) = Y (q, 4a, Ga)0,
and note that, in view of Properties 1, 2.5, and 3, and Assiom®, we have thalY (q, 44, Ga)|| < By, for some
positive constanBy dependent o3, and B,,,. Furthermore, note that, through the consideration.¢f, 44, Ga; 0)
in (9) and (10), we have implicitly assumed the exact knogéedf the system parameters. Let us consider the
more realistic case in Whiclﬂc(q,qd,qd;é) is rather considered in (9) and (10), whetaepresents a vector of
estimatedparameters which is not necessarily equabtdMoreover, let us also take into account other type of
model imprecisions whose consideration gives rise to amhdit bounded nonlinear terms in the robot dynamics,

such as the omission of Coulomb or static friction forcesctsadditional terms will be subsequently (all together)

6By analog arguments to those given in Footnote 5, the secomditethe right-hand side of (27) turns out to be negative defifin (g, §)).
Furthermore, observe thatg? [so (K14 + K2q) — so(K2q)] = — 3.1 1 di[o0i(k1:Gi + k2:8;) — 00i(k2:q;)]. From this and item 1 of

Lemma 1, one sees that the first term in the right-hand side 9fi¢2zero if § = 0,, and negative for anyg, §) such thatg # 0,,. Therefore,
Was(q, q) is negative definite, wherefrom, according to (26), negatigtniteness OVQ(t, d,q) is concluded.



represented a&(q, ¢), and (in view of their assumed boundedness) will be consiién satisfy||¢(q, §)|| < Bg,

Y(q,q) € R™ x R", for some positive constarit,.” Thus, theperturbedclosed loop dynamics takes the form

D(q)q + [Clg, ) + C(q,da(t)]d + Fd + us(7,4) = Y(q, da a) (0 — 0) — ¢(q,q) (28)

whereu,(q, ¢) = s1(K1q) + s2(K2q) in the case of (9), and(q, q) = so(K1q + K2q) in the case of (10). Let us
definez £ (g7, ¢7)T, and letz = f(t, z)+h(t, z) denote the consequent closed loop state-space représentath

Z = f(t, z) representing th@ominal closed-loop systemi,e. under the consideration o = 6 and ?(q,4) = Op,

and h(t, z) accounting for the model imprecisionisg. accounting for the right-hand-side terms of (28). Observe
that, by the assumptions madgi(t, z)|| < By, for some positive constariB;, whose value is directly influenced
by ||6 — 6] and B4. Hence, according to Lemma 9.3 in [6], for anft,) € R2", with t, representing the solution
initial time, there exists a nonnegative constarguch that|z(¢)|| < p(Bs), ¥t > to+ T, for some clas¥ function

p. Thus, the closed-loop system responr$g gets into a positively invariant ball around the origin aftefinite
time, whose radius is directly related {6 — 6| and B,,. Therefore, certain degree of robustness agaiufficiently

small model imprecisions (like biased parameter estimationsnonadelled friction forces) is concluded.

V. EXPERIMENTAL RESULTS

Aiming at verifying the effectiveness of the proposed coliers, real-time experiments were carried out on a
well-identified two-axis planar robot arm. This manipulateas built keeping the same mechanical structure of the
one described and used in [12]. The actuators are direg-8rushless motors operated in torque mode, so they act
as torque sources and accept an analog voltage as a refafetorgue signal. The control algorithm is executed
at a 2.5 msec sampling period in a control board (based on a32g#t floating point microprocessor) mounted
on a PC host computer.

For the considered experimental robot, the various termasacterizing the system dynamics in (1) are given by

2.351 +0.168cos gz 0.102 + 0.084 cos g2
D(q) =
0.102 4 0.084 cos g2 0.102
—0.084¢ysingz  —0.084(d1 + ¢2) sin ¢o
C(g.9) =
0.084¢; sin g2 0
38.465sin g1 + 1.825sin(q1 + ¢2)
9(q) =

1.825sin(q1 + g2)

"Except for viscous friction, which is explicitly consideren the general-DOF robot manipulator dynamic model (1), the rest of the
friction force components are bounded, as may be corrobofatedstance in [3]. Other (typical) imprecisions, like tleodue to measurement
inaccuracies and noise, are generally bounded too. Theimergal results presented in Section V corroborate theiderstions made as well

as the observations claimed and proved in Remark 4.



and

2.288 0
F =
0 0175

Thus, Properties 1-4 are satisfied with = 0.07 kg m?, dy; = 2.5 kg m?, k. = 0.1422 kg m?, ; = 40.29 Nm,
v2 = 1.83 Nm, f,, = 0.175 kg m?/sec, and fy; = 2.288 kg m?/sec. The maximum torques allowed aflg =
150 Nm and 7> = 15 Nm for the first and second links respectively. Observe thauhggion 1 is fulfilled.

For every proposed algorithm, the control parameter valere selected from numerous combinations of them
that were experimentally tested with the aim at searchimghfe best closed-loop performance. More precisely, the
shortest possible response times that could be obtainedimymvershoots, or giving rise to negligible ones, were
aimed for every tested controller.

In addition to the implementation of the SP-SD+ and SPD+ gsed algorithms, experiments were carried out

considering the PD+ algorithm of [11ie.

u=—K>q— K1q+ D(q)ja + C(q,4)da + 9(q)

with control gains chosen such that the best possible cllusgr performance could be obtained avoiding input

saturation. The desired trajectory vector, for all the oatdrs, was defined as

qa1(t) . [ 5 tsint
qa(t) = = (29)

qa2(t) cost
For such a desired trajectory, inequalities (3) are satisfigh B,, = 1 rad/sec and3,, = 1 rad/seé. The initial

conditions at every test wekg(0) = ¢;(0) = 0, i = 1, 2. The generalized saturation functions were defined as
—Lj; + (Mj; — Lj;) tanh (ﬁ) Vo < —Lj;

aji(s) = ¢ Vis| < Lj;

Lji + (Mj; — Lj;) tanh (Mg;f}m) V¢ > Lj;

with L;; < Mj;, ¥(i,7) € {1,2} x {0,1,2}. The control gains and saturation function parameters \adjested
as indicated in Table I. One can easily verify that Assumpflioas well as inequalities (13) and (14) are satisfied.

Figures 1-3 show the evolution of the shoulder and elbovt fmisition errorsi.e. ¢; (t) andga(t), respectively for
the SP-SD+, SPD+, and PD+ controllers. Observe that, amtengroposed schemes, the SPD+ algorithm proves to
be the one that gives rise to the smallest rising and stabitiz times. On the other hand, note that while acceptable
post-transient responses take place through the propasdrbllers, disappointing ones are obtained through the
PD+ algorithm. Observe further that tiny variations arowedo can be appreciated after the transient times in the
position error responses obtained with the SP-SD+ and SR@prithms. They take place as a consequence of
modelling imprecisions, namely: system parameter inateuestimations and unmodelled friction phenomena (see
Remark 4). Note further that among the post-transient tiaria observed in Figs. 1 and 2, those related to the

SP-SD+ algorithm are the smallest ones. This was actuatlplsorated through a Root-Mean-Square (RMS) index



TABLE |

CONTROL PARAMETER VALUES

prmtr. | SP-sD+| SPD+| PD+ | units |

ka1 1500 | 1000 | 110
k2o 500 200 | 145| W
k11 60 100 | 30
k12 8.9 15 | go | lmsee
Moy 50
My 40
Mao 4
M2
Moy 100 Nm
Mo 8
Lj; 0.9M;;
i=1,2
j=1,2 ji=0

calculated for all the position error responses from the t8rthe 10th second of the tests, and is a consequence
of the higher control gains (specially concerning the P ptieat the performed tuning method gave rise for the
SP-SD+ algorithm with respect to those chosen for the SPBherse. Note that in view of the considerably smaller
gains tuned for the PD+ algorithm, the prominently largestgoansient variations observed in Fig. 3 find an
explanation. Unfortunately, for the desired trajectory(2®), the control gains were not able to be chosen larger
without saturating the actuators.

Figs. 4-6 show the applied inputs, andr,, for all the tested schemes. Observe that the control sigjealerated
through the SP-SD+ and SPD+ controllers are clearly within input bounds considered at every link. Further,
saturation was avoided in the case of the PD+ algorithm toeiéw of the small gains that were selected with
this intention. But, as previously noted, the consequerterl-loop performance is disappointing compared to those
obtained with the proposed SP-SD+ and SPD+ schemes.

VI. CONCLUSIONS

In this work, two globally stabilizing bounded control sales for the trajectory tracking of robot manipulators
with saturating inputs were proposed. They may be seen a&h®ghs of the so-called PD+ algorithm to the
bounded input case. With respect to previous works on thie,ttipe proposed approaches gave a global solution
to the problem through static feedback. Moreover, they wertedefined using a specific sigmoidal function, but
any one on a set dfaturationfunctions. Consequently, each of the proposed schemeallgotonstitutes a family
of globally stabilizing bounded controllers. Suchyeneralizedformulation permitted the developed algorithms to
adopt a suitable structure where the control gains were tablake any positive value, which may be considered

beneficial for performance-adjustment/improvement psego Furthermore, a class adsired trajectoriegshat may
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Fig. 1. Position error responses to the SP-SD+ control @ctio

0.1745
0.000

-0.3491

Position error responses to the SPD+ control action

Fig. 3. Position error responses to the PD+ control action

be globally tracked avoiding input saturation was competbaracterized. For both proposed control laws, global
uniform asymptotic stabilization of the closed-loop systeolutions towards the pre-specified desired trajectory
was proved through a strict Lyapunov function.

The efficiency of the proposed schemes was corroboratedghrexperimental tests carried out on a 2-DOF
robot. Both proposed algorithms proved their ability tasfattorily achieve the tracking control objective avoigli

input saturation. On the contrary, additional implemeaotet of the PD+ algorithm showed disappointing results.
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