
This is the peer reviewed version of the following article: López‐Araujo D. J., 
Zavala‐Río A., Santibáñez V. and Reyes F. (2015), A generalized global 
adaptive tracking control scheme for robot manipulators with bounded 
inputs, Int. J. Adapt. Control Signal Process., 29, pages 180–200, which has 
been published in final form at: https://doi.org/10.1002/acs.2466 This 
article may be used for non-commercial purposes in accordance with Wiley 
Terms and Conditions for Use of Self-Archived Versions 

https://doi.org/10.1002/acs.2466


For Peer Review

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING
Int. J. Adapt. Control Signal Process. 2013; 00:1–21
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/acs

A generalized global adaptive tracking control scheme for
robot manipulators with bounded inputs

Daniela J. López-Araujo1, Arturo Zavala-Rı́o1∗, Vı́ctor Santibáñez2, and Fernando
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SUMMARY

In this work, a generalized adaptive scheme for the global motion control of robot manipulators with
constrained inputs is proposed. It gives rise to various families of bounded adaptive controllers defined
through a general class of saturation functions. Compared with adaptive tracking control algorithms
previously developed in a bounded-input context, the proposed adaptive approach guarantees the motion
control objective for any initial condition, avoiding discontinuities throughout the scheme, preventing the
inputs to reach their natural saturation bounds, and permitting innovation on the saturating structure through
its generalized form, giving a wide range of possibilities for performance improvement. Experimental results
corroborate the efficiency of the proposed scheme. Copyright c© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tracking control of robot manipulators with bounded inputs has proven to be a challenging task.
In addition to the nonautonomous nature of the closed-loop dynamics, the designer has to deal
with the analytical complications and practical limitations entailed by the input constraints. For
instance, since the desired motion implies a specific form (time variation) of each of the reaction
and inherent (generalized) forces involved in the system dynamics, shaped through the external
driving devices, only trajectories guaranteeing that the combined effect of such forces remain within
the input physical ranges are tractable. Any attempt to track a trajectory that does not satisfy
such a characteristic would not only fail to achieve the control objective but would also force the
actuators to go beyond their natural capabilities giving rise to unexpected or undesirable closed-
loop behaviors. Other risks due to the input saturation phenomenon are pointed out for instance in
[1, 2, 3, 4].

In order to avoid such input-saturation-induced inconveniences, several bounded tracking control
approaches have been proposed in the literature under various analytical frameworks [5, 6, 7, 8,
9, 10, 11]. For instance, assuming that the exact value of the system parameters and accurate
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position measurements are available, an output-feedback scheme has been proposed in [5]. This
approach involves a reproduction of the various (reaction and inherent) forces that are present in
the system dynamics, calculated involving the current values of the actual position variables but
the desired velocity and acceleration time-variations. An adequate desired trajectory qd(t) keeps
such shaping/compensation terms suitably bounded and these in turn render qd(t) a solution of
the closed-loop dynamics. In order to achieve the asymptotic tracking objective, correction terms
on the position error and on an auxiliary vector state variable that approximates the velocity
error —calculated through an auxiliary dynamics— are included in the control expression. Their
associated control gains are applied to sigmoidal functions —specifically, the hyperbolic tangent—
of the referred (position and approximated velocity) error variables, giving rise to saturating
nonlinear P and D type terms. In a frictionless setting, such a control scheme was proven to
semi-globally stabilize the closed-loop system. An extended version of the algorithm of [5] was
further presented in [6] by additionally including desired viscous friction forces. Through such an
additional consideration, global tracking is achieved for suitable desired trajectories. An alternative
output-feedback tracking approach that keeps a Computed-Torque-like structure was developed
in [7]. It considers the same form of the gravity, viscous friction, and Coriolis and centrifugal
calculated force vectors used of [6], but a special form of inertial (complemented) force vector where
saturating nonlinear P and D terms analog to those of [5] (but involving an approximated velocity
error vector variable calculated through a different auxiliary dynamics) are included. Semi-global
tracking is achieved through such an output-feedback controller of [7]. Further, revisited versions
of the controller in [6] have been developed in [8] and [9]. In [8], gains scaling the argument of
the hyperbolic tangents are incorporated, while in [9] the hyperbolic tangents are replaced by a
more general class of saturating functions. In both works, exponential stability was proven through
singular perturbation theory. After the previously mentioned output-feedback schemes, two state-
feedback approaches were recently proposed in [10]. While the first of these keeps an SP-SD+
structure, with separated saturating proportional (SP) and saturating derivative (SD) error correction
terms, the second one has an SPD+ form where both the P and D error correction terms are included
within a single saturation function (at every link). Shaping/compensation terms analog to those of
[6] are included, and a generalized type of saturation functions is involved. Both algorithms are
proven to achieve global tracking for suitable desired trajectories. Furthermore, an output-feedback
extension of the SP-SD+ approach of [10], that may be seen as an improved generalization of the
controller of [6], was recently developed in [11]. Keeping analog analytical features of the SP-SD+
approach of [10], but avoiding velocity measurements, such an output-feedback scheme of [11] is
proven to achieve global tracking.

Because of the considered shaping/compensation terms, which involve the expressions of the
system dynamics, the implementation of the above mentioned saturating schemes becomes difficult
when the system parameters are uncertain. In view of such an additional constraint, state-feedback
bounded adaptive tracking controllers were alternatively presented in [7] and [12].

The adaptive approach in [7] considers SP and SD type correction terms similarly structured
than those defined in [5] and [6] but involving online measurements of both the positions and
the velocities. In addition, adaptive desired compensation terms of the system dynamics involving
parameter estimators are included. The adaptation algorithm is defined in terms of a discontinuous
auxiliary dynamics by means of which the parameter estimators are prevented to take values beyond
some pre-specified limits, which consequently keeps the adaptive compensation terms bounded.
The tracking objective was proven to be achieved for suitable desired trajectories, with a region of
attraction that can be enlarged through the control gain values.

In [12], an algorithm similar to that of [7] was presented involving identical SP and SD correction
terms but only adaptive on-line gravity compensation (no other term of the system dynamics is
compensated). A discontinuous adaptation algorithm analog to that involved in [7] is considered.
Unfortunately, it is not clear through such an approach how the desired trajectory can be guaranteed
to be a solution of the closed-loop system.

It is worth pointing out that the algorithms in [7] and [12] are the only adaptive tracking controllers
with predefined bound that the authors are aware of. Other adaptive motion control schemes recently
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proposed in the literature have been developed in an unconstrained input framework [13, 14, 15, 16].
Let us further note that by the way the SP and SD terms are defined in the above mentioned
adaptive schemes, the bound of the control signal at every link turns out to be defined in terms
of the sum of the P and D control gains (and of an additional term involving the bounds of the
parameter estimators). This limits the choice of such gains if the natural actuator bounds (or arbitrary
input bounds) are aimed to be avoided. This, in turn, restricts the closed-loop region of attraction.
Moreover, as far as the authors are aware, a bounded adaptive motion control scheme guaranteeing
the tracking objective globally, preventing input saturation, and avoiding discontinuities throughout
the scheme, is still missing in the literature. Even though such achievements have been recently
succeeded in a regulation context [17, 18], the development of a tracking controller with analog
characteristics remains an open problem requiring a more general and complex formulation within
a more elaborated analytical framework. These arguments have motivated the present work which
aims at filling in the mentioned gaps.

In this work, we propose a generalized scheme for the global adaptive tracking control of
robot manipulators with saturating inputs. It gives rise to various families of bounded adaptive
controllers, including adaptive versions of the SP-SD+ and SPD+ algorithms in [10] as well as
an adaptive tracking extension of the SPDgc-like algorithm in [19] as particular cases. With respect
to the bounded adaptive tracking control algorithms previously developed, the proposed adaptive
approach guarantees the motion control objective for any initial condition (globally), avoiding
discontinuities throughout the scheme, preventing the inputs to attain their natural saturation bounds,
and permitting innovation on the saturating structure through its generalized form, giving a wide
range of possibilities for performance improvement. In addition, the approach proposed in this work
is not restricted to the use of a specific saturation function to achieve the required boundedness, but
can rather involve any one within a set of bounded passive functions that include the hyperbolic
tangent as a particular case. The efficiency of the proposed adaptive scheme is corroborated through
experimental results.

Let us further add that previous works with adaptive control schemes where the parameter
estimates are aimed to remain bounded within pre-specified values generally involve discontinuous
adaptation dynamics of the kind of those used in [7] and [12]. This is seen even in recent studies
[13, 14, 20, 21]. The discontinuous character of such type of adaptation auxiliary dynamics is not
necessarily a disadvantage, but a bounded adaptive scheme that avoids discontinuities constitutes
a convenient alternative developed within a simpler analytical context and through simpler and/or
more natural ways to cope with the need to bound the parameter estimates. This is achieved through
the approach proposed in this work by considering the parameter estimators to be the output
variables —and not the auxiliary states— of the adaptation subsystem. The auxiliary (adaptation
subsystem) states are in turn released from having to be initiated and evolve within a constrained
subset rendering the proposed approach global in an authentic sense. Indeed, all the closed-loop
system states, including those involved in the auxiliary adaptation dynamics, can be initiated
anywhere. Thus, through its authentic global and continuous characters, the proposed approach
overcomes limitations of previous bounded adaptive approaches. Furthermore, as far as the authors
are aware, the approach developed in this paper is the first bounded adaptive motion control scheme
that achieves the tracking task for any initial condition, avoiding input saturation, and free of
discontinuities.

The work is organized as follows: Section 2 presents the general n-degree-of-freedom (n-DOF)
serial rigid robot manipulator open-loop dynamics and some of its main properties, as well as
considerations, assumptions, notations, and definitions that are involved throughout the study. In
Section 3, a generalized approach for the design of global tracking controllers involving exact
system parameter values is shown. This proves to furnish a useful structure for the design of the
proposed adaptive scheme, which is presented in Section 4. The closed-loop analysis is developed
in Section 5, where global adaptive tracking is proved to be achieved avoiding input saturation.
Experimental results are presented in Section 6. Finally, conclusions are given in Section 7.
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2. PRELIMINARIES

Let X ∈ Rm×n and y ∈ Rn. Throughout this work, Xij denotes the element of X at its ith row and
jth column, Xi represents the ith row of X , and yi stands for the ith element of y. 0n represents
the origin of Rn, In the n× n identity matrix, and R+ the set of nonnegative real numbers,
i.e. R+ = [0,∞). ‖ · ‖ denotes the standard Euclidean norm for vectors, i.e. ‖y‖ =

√∑n
i=0 y

2
i ,

and induced norm for matrices, i.e. ‖X‖ =
√
λmax(XTX), where λmax(XTX) represents the

maximum eigenvalue of XTX . We denote Br ⊂ Rn an origin-centered ball of radius r > 0, i.e.
Br = {x ∈ Rn : ‖x‖ ≤ r}. Let D and E be subsets (with non-empty interior) of some vector spaces
D and E respectively. We denote Cm(D; E) the set of m-times continuously differentiable functions
from D to E (with differentiability at any point on the boundary of D, when included in the set,
meant as the limit from the interior of D). For a dynamic/time variable υ, υ̇ and ϋ respectively
denote its first- and second-order evolution/change rate. For a continuous scalar function φ : R→ R,
φ′ denotes its derivative, when differentiable; D+φ its upper right-hand (Dini) derivative, i.e.
D+φ(ς) = lim suph→0+

φ(ς+h)−φ(ς)
h , with D+φ = φ′ at points of differentiability [22, App. C.2];

and φ−1 its inverse, when invertible.
Let us consider the general n-DOF serial rigid robot manipulator dynamics with viscous friction

[23, §2.1], [24, §6.2], [25, §7.2]:

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are, respectively, the position (generalized coordinates), velocity, and
acceleration vectors, H(q) ∈ Rn×n is the inertia matrix, and C(q, q̇)q̇, F q̇, g(q), τ ∈ Rn are,
respectively, the vectors of Coriolis and centrifugal, viscous friction, gravity, and external input
generalized forces, with F ∈ Rn×n being a positive definite constant diagonal matrix whose
entries fi > 0, i = 1, . . . , n, are the viscous friction coefficients. Some well-known properties
characterizing the terms of such a dynamical model are recalled here [23, §2.1], [25, §3.3], [26,
Chaps. 4 & 14]. Subsequently, we denote Ḣ the change rate of H , i.e. Ḣ : Rn ×Rn → Rn×n :

(q, q̇) 7→
(
∂Hij

∂q (q)q̇
)

.

Property 1
The inertia matrix H(q) is a positive definite symmetric bounded matrix, i.e. µmIn ≤ H(q) ≤
µMIn, ∀q ∈ Rn, for some positive constants µm ≤ µM .

Property 2
The Coriolis matrix C(q, q̇) satisfies:

2.1. q̇T
[

1
2Ḣ(q, q̇)− C(q, q̇)

]
q̇ = 0, ∀(q, q̇) ∈ Rn ×Rn;

2.2. Ḣ(q, q̇) = C(q, q̇) + CT (q, q̇), ∀(q, q̇) ∈ Rn ×Rn;
2.3. C(w, x+ y)z = C(w, x)z + C(w, y)z, ∀w, x, y, z ∈ Rn;
2.4. C(x, y)z = C(x, z)y, ∀x, y, z ∈ Rn;
2.5. ‖C(x, y)z‖ ≤ kC‖y‖‖z‖, ∀(x, y, z) ∈ Rn ×Rn ×Rn, for some constant kC ≥ 0.

Property 3
The viscous friction coefficient matrix satisfies fm‖x‖2 ≤ xTFx ≤ fM‖x‖2, ∀x ∈ Rn, where 0 <
fm , mini{fi} ≤ maxi{fi} , fM .

Property 4
The gravity vector g(q) is bounded, or equivalently, every element of the gravity vector, gi(q),
i = 1, . . . , n, satisfies |gi(q)| ≤ Bgi, ∀q ∈ Rn, for some positive constants Bgi, i = 1, . . . , n.†

†Property 4 is not satisfied by all types of robot manipulators but it is for instance by those having only revolute joints
[26, §4.3]. This work is addressed to manipulators satisfying Property 4.
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Property 5
The left-hand side of the robot dynamic model in Eq. (1) can be rewritten as

H(q, θ)q̈ + C(q, q̇, θ)q̇ + F (θ)q̇ + g(q, θ) = Y (q, q̇, q̈)θ

where θ ∈ Rp is a constant vector whose elements depend exclusively on the system parameters,
and Y (q, q̇, q̈) ∈ Rn×p —the regression matrix— is a continuous matrix function whose elements
depend exclusively on the configuration, velocity, and acceleration variables and do not involve
any of the system parameters. As a matter of fact, every term of the left-hand side of (1) can
be analogously rewritten as H(q, θ)q̈ = YH(q, q̈)θ, C(q, q̇, θ)q̇ = YC(q, q̇)θ, F (θ)q̇ = YF (q̇)θ, and
g(q, θ) = Yg(q)θ, and actually Y (q, q̇, q̈) = YH(q, q̈) + YC(q, q̇) + YF (q̇) + Yg(q).

Property 6
Consider the manipulator dynamics Y (q, q̇, q̈)θ = H(q, θ)q̈ + C(q, q̇, θ)q̇ + F (θ)q̇ + g(q, θ) = τ .
Let θMj > 0 represent an upper bound of |θj |, such that |θj | ≤ θMj , ∀j ∈ {1, . . . , p}, and let
θM ,

(
θM1, . . . , θMp

)T
and Θ , [−θM1, θM1]× · · · × [−θMp, θMp].

a. By Properties 4 and 5, there exist positive constants BΘ
gi, i = 1, . . . , n, such that |gi(w, z)| =

|Ygi(w)z| ≤ BΘ
gi, i = 1, . . . , n, ∀(w, z) ∈ Rn ×Θ. Furthermore, there exist positive constants

BGij , BGi , and BG such that |Ygij(w)| ≤ BGij , ‖Ygi(w)‖ ≤ BGi , and ‖Yg(w)‖ ≤ BG, ∀w ∈
Rn, i = 1, . . . , n, j = 1, . . . , p.

b. Let X and Y be any compact subsets of Rn. By Properties 1, 2.5, 5, and 6a, there exist positive
constants BΘ

Di, i = 1, . . . , n, such that |Yi(w, x, y)z| ≤ BΘ
Di, i = 1, . . . , n, ∀(w, x, y, z) ∈

Rn ×X × Y ×Θ. Furthermore, there exist positive constants BYij
, BYi

, and BY such that
|Yij(w, x, y)| ≤ BYij , ‖Yi(w, x, y)‖ ≤ BYi , and ‖Y (w, x, y)‖ ≤ BY , ∀(w, x, y) ∈ Rn ×X ×
Y , i = 1, . . . , n, j = 1, . . . , p.

Remark 1
Let us note that under the considerations of Property 6, by Properties 1, 2.5, 3, 5, and 6a, there exist
positive constants µΘ

M , kΘ
C , and fΘ

M , such that |Yi(w, x, y)z| ≤ µΘ
M‖y‖+ kΘ

C‖x‖2 + fΘ
M‖x‖+BΘ

gi,
i = 1, . . . , n, ∀(w, x, y, z) ∈ Rn ×Rn ×Rn ×Θ. Observe from this expression that for any Ti >
BΘ
gi, there always exist sufficiently small positive values a and b (for instance, such that µΘ

Mb+

kΘ
Ca

2 + fΘ
Ma < Ti −BΘ

gi) that guarantee |Yi(w, x, y)z| < Ti, i = 1, . . . , n, on Rn × Ba × Bb ×Θ. /

Let us suppose that the absolute value of each input τi (ith element of the input vector τ ) is
constrained to be smaller than a given saturation bound Ti > 0, i.e. |τi| ≤ Ti, i = 1, . . . , n. In
other words, letting ui represent the control variable (controller output) relative to the ith degree
of freedom, we have that

τi = Tisat

(
ui
Ti

)
(2)

i = 1, . . . , n, where sat(·) is the standard saturation function, i.e. sat(ς) = sign(ς) min{|ς|, 1}.
The control scheme proposed in this work involves special (saturation) functions fitting the

following definition.

Definition 1
Given a positive constant M , a nondecreasing Lipschitz-continuous function σ : R→ R is said to
be a generalized saturation with bound M if

(a) ςσ(ς) > 0 for all ς 6= 0;
(b) |σ(ς)| ≤M for all ς ∈ R.

If in addition

(c) σ(ς) = ς when |ς| ≤ L,

for some positive constant L ≤M , σ is said to be a linear saturation for (L,M) [27].

Any function satisfying Definition 1 has the following properties.

Copyright c© 2013 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2013)
Prepared using acsauth.cls DOI: 10.1002/acs

Page 9 of 29

http://mc.manuscriptcentral.com/acsp-wiley

International Journal of Adaptive Control and Signal Processing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
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Lemma 1
Let σ : R→ R be a generalized saturation function with bound M , and let k be a positive constant.
Thus,

1. lim
|ς|→∞

D+σ(ς) = 0;

2. D+σ(ς) is nonnegative and bounded by a (strictly) positive bound, i.e. ∃σ′M ∈ (0,∞) such
that 0 ≤ D+σ(ς) ≤ σ′M , ∀ς ∈ R;

3. |σ(kς + η)− σ(η)| ≤ σ′Mk|ς|, ∀ς, η ∈ R;

4. |σ(kς)| ≤ σ′Mk|ς|, ∀ς ∈ R;

5.
σ2(kς)

2kσ′M
≤
∫ ς

0

σ(kr)dr ≤ kσ′M ς
2

2
, ∀ς ∈ R;

6.
∫ ς

0

σ(kr)dr > 0, ∀ς 6= 0;

7.
∫ ς

0

σ(kr)dr →∞ as |ς| → ∞;

8. if σ is strictly increasing, then

(a) ς[σ(ς + η)− σ(η)] > 0, ∀ς 6= 0, ∀η ∈ R;

(b) for any constant a ∈ R, σ̄(ς) = σ(ς + a)− σ(a) is a strictly increasing generalized
saturation function with bound M̄ = M + |σ(a)|;

9. if σ is a linear saturation for (L,M) then, for any continuous function ν : R→ R such that
|ν(η)| < L, ∀η ∈ R, we have that ς

[
σ
(
ς + ν(η)

)
− σ
(
ν(η)

)]
> 0, ∀ς 6= 0, ∀η ∈ R.

Proof
Points 3 and 4 are a direct consequence of the Lipschitz-continuity of σ and item 2 of the statement
(as analogously stated for instance in [22, Lemma 3.3] under continuous differentiability). The rest
of the points are proved in [17].

The following assumptions are crucial within the analytical setting considered in this work.

Assumption 1
Ti > Bgi, ∀i ∈ {1, . . . , n}.

Assumption 2
The desired trajectory qd(t) (to be tracked) belongs to Qd ,

{
qd ∈ C2(R+;Rn) : ‖q̇d(t)‖ ≤

Bdv , ‖q̈d(t)‖ ≤ Bda , ∀t ≥ 0
}

for some positive constants Bda and Bdv < fm/kC (see Properties
2.5 and 3).

Remark 2
Assumption 1 implies that the actuators and mechanical (power) transmission systems of the robot
are capable to hold its physical structure at any point in the configuration space which is reasonably
expectable in practice. On the other hand, observe that Assumption 2 does not restrict the location of
the target trajectory qd but rather its first- and second-order change rates. Hence, under Assumption
2, desired trajectories defined anywhere in the configuration space may be tracked as long as they
give rise to sufficiently slow motions. Let us further point out that the need to restrict the target
trajectories is a direct consequence of the bounded nature of the inputs. Indeed observe, from
Eqs. (1) and (2) under the consideration of accurate tracking, i.e. q(t) ≡ qd(t), that only desired
trajectories giving rise to left-hand sides of (1) with elements having absolute values lower than
the input bounds Ti can be tracked through a control vector u subject to (2). This leads to the need
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of additional adjustments on the desired trajectory first- and second-order rate bounds, Bdv and
Bda. Specifications are given in Section 4 in the context of the approach formulated in this work.
Furthermore, the closed-loop stability analysis gives rise to the additional restriction on Bdv stated
through Assumption 2, namely Bdv < fm/kC .‡ This additional condition adopts coherence through
the consideration of the viscous friction terms in the manipulator open-loop dynamics. Certainly,
an approach independent of the consideration of friction may be seen as a theoretically stronger
result. Nevertheless, it is important to keep in mind that even in such a scenario the desired motion
ought to be restricted in order to cope with the input constraints (as previously described). On the
other hand, the consideration of viscous friction is meaningful in practice since it is an ever-present
phenomenon in mechanical systems [28]. Notwithstanding the dependence on the friction terms,
the result developed in this work overcomes limitations of previous bounded adaptive approaches
as pointed out in Section 1. /

3. GLOBAL TRACKING INVOLVING EXACT SYSTEM PARAMETERS: A GENERALIZED
APPROACH

Under the satisfaction of Assumptions 1 and 2, let us consider the following generalized expression
defining saturating global-tracking controllers for system (1)-(2):

u(t, q, q̇, θ) = −sd(t, q̄, ˙̄q, θ)− sP (KP q̄) + Y
(
q, q̇d(t), q̈d(t)

)
θ (3)

where q̄ = q − qd(t) is the position error vector variable. The third term in the right-hand side of (3)
is a hybrid compensation term (since it involves online position measurements but desired velocities
and accelerations), with θ being the system parameter vector and Y (·, ·, ·) the regression matrix
characterizing the system open-loop structure, according to Property 5, i.e. such that

Y
(
q, q̇d(t), q̈d(t)

)
θ = H(q, θ)q̈d(t) + C

(
q, q̇d(t), θ

)
q̇d(t) + F (θ)q̇d(t) + g(q, θ) (4)

The second term in the right-hand side of (3) is a (bounded non-linear) position error correction
term where KP ∈ Rn×n is a positive definite diagonal matrix, i.e. KP = diag[kP1, . . . , kPn] with
kPi > 0 for all i = 1, . . . , n, and, for any x ∈ Rn, sP (x) =

(
σP1(x1), . . . , σPn(xn)

)T
, with σPi(·),

i = 1, . . . , n, being (suitable) continuously differentiable generalized saturation functions with
bounds MPi. The first term in the right-hand side of (3) is a damping term —whose role is to
furnish a velocity-error opposing force through which the corresponding kinetic energy (in the
error variable space) be dissipated— where sd : R+ ×Rn ×Rn ×Rp → Rn is a continuous vector
function satisfying

sd(t, x, 0n, z) = 0n (5)

∀x ∈ Rn, ∀z ∈ Rp, ∀t ≥ 0,
‖sd(t, x, y, z)‖ ≤ κ‖y‖ (6)

∀(t, x, y, z) ∈ R+ ×Rn ×Rn ×Rp, for some positive constant κ, and given qd ∈ Qd (see
Assumption 2) and z ∈ Rp such that

∣∣Yi(q, q̇d(t), q̈d(t))z∣∣ < Ti, i = 1, . . . , n, ∀q ∈ Rn, ∀t ≥ 0:

yT sd(t, x, y, z) > 0 (7)

∀y 6= 0n, ∀x ∈ Rn, ∀t ≥ 0, and ∣∣ui(t, x, y, z)∣∣ < Ti (8)

i = 1, . . . , n, ∀x ∈ Rn, ∀y ∈ Rn, ∀t ≥ 0, for suitable bounds MPi of σPi(·).

‡Notice that fm could be small but the quotient fm/kC may be several times greater, as is actually the experimental case
under consideration in Section 6.
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Proposition 1
Consider system (1)-(2) taking u = u(t, q, q̇, θ) as defined in Eq. (3), under the satisfaction of
Assumptions 1 and 2 and the conditions on the vector function sd stated through the expressions
in (5)–(8). Thus, for any positive definite diagonal matrix KP , global uniform asymptotic stability
of the closed loop trivial solution q̄(t) ≡ 0n is guaranteed with |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n,
∀t ≥ 0.

Proof
Observe that the satisfaction of (8), under the consideration of (2), shows that Ti >

∣∣ui(t, q, q̇, θ)∣∣ =
|ui| = |τi|, i = 1, . . . , n, ∀q ∈ Rn, ∀q̇ ∈ Rn, ∀t ≥ 0. From this expression, one sees that, along the
system trajectories, |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ 0. This proves that under the proposed
scheme, the input saturation values, Ti, are never reached. Thus, the closed-loop dynamics takes the
form

H(q)¨̄q +
[
C(q, q̇) + C

(
q, qd(t)

)]
˙̄q + F ˙̄q = −sd(t, q̄, ˙̄q, θ)− sP (KP q̄) (9)

where§ Property 2.4 has been used. Let us define the scalar function

V0(t, q̄, ˙̄q) =
1

2
˙̄qTH(q) ˙̄q + εsTP (KP q̄)H(q) ˙̄q +

∫ q̄

0n

sTP (KP r)dr (10)

with
∫ q̄

0n
sTP (KP r)dr =

∑n
i=1

∫ q̄i
0
σPi(kPiri)dri and ε being a positive constant satisfying

ε < εM , min{ε1, ε2} (11)

where
ε1 ,

√
µm

µ2
MβP

and ε2 ,
fm − kCBdv

βM +
(
fM+κ

2 + kCBdv
)2

(note that the satisfaction of Assumption 2 ensures positivity of ε2) with

βP , max
i
{σ′PiMkPi} , βM , kCBP + µMβP , BP ,

√√√√ n∑
i=0

M2
Pi

σ′PiM being the positive bound of σ′Pi(·) in accordance to item 2 of Lemma 1, κ as defined through
(6), and µm, µM , kC , fm, and fM as defined through Properties 1–3. Observe that from Property 1
and items 4 and 5 of Lemma 1 we have that

W01(q̄, ˙̄q) ≤ V0(t, q̄, ˙̄q) ≤W02(q̄, q̇)

where

W01(q̄, ˙̄q) = W00(q̄, ˙̄q) + (1− α)

∫ q̄

0n

sTP (KP r)dr (12)

with
W00(q̄, ˙̄q) =

µm
2
‖ ˙̄q‖2 − εµM‖sP (KP q̄)‖‖ ˙̄q‖+

α

2βP
‖sP (KP q̄)‖2

and α being a positive constant satisfying

ε2

ε2
1

< α < 1 (13)

§Observe that, in the error variable space, q = q̄ + qd(t) and q̇ = ˙̄q + q̇d(t), and consequently H(q) = H
(
q̄ +

qd(t)
)
, C(q, ·) = C

(
q̄ + qd(t), ·

)
, C(·, q̇) = C

(
·, ˙̄q + q̇d(t)

)
, Ḣ(q, q̇) = Ḣ

(
q̄ + qd(t), ˙̄q + q̇d(t)

)
and Y (q, ·, ·) =

Y (q̄ + qd(t), ·, ·). However, for the sake of simplicity, H(q), C(q, ·), C(·, q̇), Ḣ(q, q̇) and Y (q, ·, ·) will be used instead
of H

(
q̄ + qd(t)

)
, C
(
q̄ + qd(t), ·

)
, C
(
·, ˙̄q + q̇d(t)

)
, Ḣ
(
q̄ + qd(t), ˙̄q + q̇d(t)

)
and Y (q̄ + qd(t), ·, ·).
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(see (11)), and

W02(q̄, ˙̄q) =
µM
2
‖ ˙̄q‖2 + εµMβP ‖q̄‖‖ ˙̄q‖+

βP
2
‖q̄‖2

Moreover, W00(q̄, ˙̄q) and W02(q̄, ˙̄q) may be rewritten as

W00(q̄, ˙̄q) =
1

2

(
‖sP (KP q̄)‖
‖ ˙̄q‖

)T
P01

(
‖sP (KP q̄)‖
‖ ˙̄q‖

)

W02(q̄, ˙̄q) =
1

2

(
‖q̄‖
‖ ˙̄q‖

)T
P02

(
‖q̄‖
‖ ˙̄q‖

)
with

P01 =

(
α
βP

−εµM
−εµM µm

)
and P02 =

(
βP εµMβP

εµMβP µM

)
Note that, by (11), W00(q̄, ˙̄q) and W02(q̄, ˙̄q) are positive definite (since, with ε < εM ≤ ε1, any α
satisfying (13) renders P01 positive definite, while the referred condition on ε renders P02 positive
definite as well), and observe thatW00(0n, ˙̄q)→∞ as ‖ ˙̄q‖ → ∞. From this, inequality (13) (whence
1− α > 0), and points 6 and 7 of Lemma 1 (through which one sees that the integral term in
the right-hand side of (12) is a radially unbounded positive definite function of q̄), V0(t, q̄, ˙̄q) is
concluded to be positive definite, radially unbounded, and decrescent. Its derivative along the system
trajectories is given by

V̇0(t, q̄, ˙̄q) = ˙̄qTH(q)¨̄q +
1

2
˙̄qT Ḣ(q, q̇) ˙̄q + εsTP (KP q̄)H(q)¨̄q + εsTP (KP q̄)Ḣ(q, q̇) ˙̄q

+ ε ˙̄qTKP s
′
P (KP q̄)H(q) ˙̄q + sTP (KP q̄) ˙̄q

= ˙̄qT
[
− C(q, q̇) ˙̄q − C

(
q, q̇d(t)

)
˙̄q − F ˙̄q − sd(t, q̄, ˙̄q, θ)− sP (KP q̄)

]
+

1

2
˙̄qT Ḣ(q, q̇) ˙̄q

+ εsTP (KP q̄)
[
− C(q, q̇) ˙̄q − C

(
q, q̇d(t)

)
˙̄q − F ˙̄q − sd(t, q̄, ˙̄q, θ)− sP (KP q̄)

]
+ εsTP (KP q̄)Ḣ(q, q̇) ˙̄q + ε ˙̄qTKP s

′
P (KP q̄)H(q) ˙̄q + sTP (KP q̄) ˙̄q

= − ˙̄qTC
(
q, q̇d(t)

)
˙̄q − ˙̄qTF ˙̄q − ˙̄qT sd(t, q̄, ˙̄q, θ)− εsTP (KP q̄)C

(
q, q̇d(t)

)
˙̄q

− εsTP (KP q̄)F ˙̄q − εsTP (KP q̄)sd(t, q̄, ˙̄q, θ)− εsTP (KP q̄)sP (KP q̄)

+ ε ˙̄qT
[
C(q, ˙̄q) + C

(
q, q̇d(t)

)]
sP (KP q̄) + ε ˙̄qTKP s

′
P (KP q̄)H(q) ˙̄q

where H(q)¨̄q has been replaced by its equivalent expression from the closed-loop dynamics in (9),
Properties 2.1–2.3 have been used, and

s′P (KP q̄) , diag[σ′P1(kP1q̄1), . . . , σ′Pn(kPnq̄n)] (14)

Observe that from Assumption 2, Properties 1–3, the satisfaction of (6) and (7), items (b) of
Definition 1 and 2 of Lemma 1 (recall that for continuously differentiable functions σPi, D+σPi =
σ′Pi), and the properties of KP , we have that

V̇0(t, q̄, ˙̄q) ≤ −W1(q̄, ˙̄q)

with

W1(q̄, ˙̄q) = −kCBdv‖ ˙̄q‖2 + fm‖ ˙̄q‖2 − εkCBdv‖sP (KP q̄)‖‖ ˙̄q‖ − εfM‖sP (KP q̄)‖‖ ˙̄q‖
− εκ‖sP (KP q̄)‖‖ ˙̄q‖+ ε‖sP (KP q̄)‖2 − εkCBP ‖ ˙̄q‖2 − εkCBdv‖sP (KP q̄)‖‖ ˙̄q‖
− εµMβP ‖ ˙̄q‖2

=

(
‖sP (KP q̄)‖
‖ ˙̄q‖

)T (
ε −ε

(
fM+κ

2 + kCBdv
)

−ε
(
fM+κ

2 + kCBdv
)

fm − kCBdv − εβM

)(
‖sP (KP q̄)‖
‖ ˙̄q‖

)
(15)
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Note further that, from the satisfaction of (11), W1(q̄, q̇) is positive definite (since any ε < εM ≤ ε2

renders the matrix at the right-hand side of (15) positive definite). Thus, by Lyapunov’s stability
theory (applied to non-autonomous systems, see for instance [22, Theorem 4.9]), the trivial
solution q̄(t) ≡ 0 is concluded to be globally uniformly asymptotically stable, which completes
the proof.

The generalized formulation presented here gives rise to particular control structures from
previous references. Details in this direction are given in Appendix A.

4. THE PROPOSED ADAPTIVE SCHEME

The result of the precedent section cannot be guaranteed as stated in Proposition 1 if the exact
knowledge of the system parameters is not available. However, in such a situation, global tracking
avoiding input saturation can still be accomplished through auxiliary dynamics in an adaptive
control context. This is achieved by means of suitable strict bounds on the elements of θ, as described
next.

Let Ma ,
(
Ma1, . . . ,Map

)T
, and Θa , [−Ma1,Ma1]× · · · × [−Map,Map], with Maj , j =

1, . . . , p, being positive constants such that

|θj | < Maj (16a)

∀j ∈ {1, . . . , p}, and
BΘa

gi < Ti (16b)

∀i ∈ {1, . . . , n}, where, in accordance to Property 6a,BΘa

gi , i = 1, . . . , n, are positive constants such
that |gi(w, z)| = |Ygi(w)z| ≤ BΘa

gi , i = 1, . . . , n, ∀(w, z) ∈ Rn ×Θa, and consider (small enough)
desired-trajectory-related bound values Bdv and Bda (in accordance to Assumption 2) such that∣∣Yi(q, q̇d(t), q̈d(t))ϑ∣∣ ≤ BΘa

Di < Ti (16c)

i = 1, . . . , n, ∀q ∈ Rn, ∀ϑ ∈ Θa, ∀t ≥ 0, where, in accordance to Property 6b, BΘa

Di , i = 1, . . . , n,
are positive constants such that |Yi(w, x, y)z| ≤ BΘa

Di , i = 1, . . . , n, ∀(w, x, y, z) ∈ Rn × BBdv
×

BBda
×Θa. Let us note that Assumption 1 ensures the existence of such positive values Maj ,

j = 1, . . . , p, satisfying inequalities (16a) and (16b) while, under Assumption 2, through the
fulfillment of (16b), inequalities (16c) can always be satisfied through sufficiently small values of
Bdv andBda (see Remark 1). Notice further that inequalities (16b) are satisfied if

∑p
j=1BGij

Maj <

Ti, BGi‖Ma‖ < Ti, or BG‖Ma‖ < Ti, i = 1, . . . , n (see Property 6a); actually,
∑p

j=1BGijMaj ,
BGi‖Ma‖, or BG‖Ma‖, may be taken as the value of BΘa

gi as long as inequality (16b) is fulfilled.
Similarly, inequalities (16c) are satisfied if

∑p
j=1BYij

Maj < Ti,BYi
‖Ma‖ < Ti, orBY ‖Ma‖ < Ti,

i = 1, . . . , n, where, in accordance to Property 6b and Assumption 2, BYij
, BYi

, and BY are
positive constants such that |Yij(w, x, y)| ≤ BYij

, ‖Yi(w, x, y)‖ ≤ BYi
, and ‖Y (w, x, y)‖ ≤ BY ,

respectively, ∀(w, x, y) ∈ Rn × BBdv
× BBda

; in fact,
∑p

j=1BYij
Maj ,BYi

‖Ma‖, orBY ‖Ma‖, may
be taken as the value of BΘa

Di as long as inequality (16c) is fulfilled.
Based on the generalized algorithm in Eq. (3), the proposed adaptive control scheme is defined as

u(t, q, q̇, θ̂) = −sd(t, q̄, ˙̄q, θ̂)− sP (KP q̄) + Y
(
q, q̇d(t), q̈d(t)

)
θ̂ (17)

with sP (·), KP , and sd(·, ·, ·, ·) as previously defined, Y
(
q, q̇d(t), q̈d(t)

)
as described in the

precedent section (see Eq. (4)), and θ̂ (the parameter estimator) being the output variable of an
auxiliary (adaptation) dynamic subsystem defined as

φ̇ = −ΓY T
(
q, q̇d(t), q̈d(t))

[
˙̄q + εsP (KP q̄)

]
(18a)

θ̂ = sa(φ) (18b)
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Figure 1. Block diagram of the proposed adaptive control scheme

where φ is the (internal) state of the auxiliary dynamics in Eq. (18a); for any x ∈ Rp, sa(x) =(
σa1(x1) , . . . , σap(xp)

)T
, σaj(·), j = 1, . . . , p, being strictly increasing generalized saturation

functions with bounds Maj as defined above, i.e. such that inequalities (16) are satisfied; Γ ∈ Rp×p
is a positive definite diagonal constant matrix, i.e. Γ = diag[γ1 . . . , γp] with γj > 0 for all j =
1, . . . , p; and ε is a positive constant satisfying inequality (11). A block diagram of the proposed
adaptive scheme is shown in Fig. 1.

Remark 3
Observe that the control scheme in (17)-(18) does not involve the exact values of the elements of θ.
It only requires the satisfaction of inequalities (16). In other words, only strict bounds Maj of |θj |,
j = 1, . . . , p, (satisfying inequalities (16b)-(16c)) are involved. Notice further that a suitable choice
of ε does not require the exact knowledge of the system parameters either. Indeed observe, on the
one hand, that an estimation of the right-hand side of inequality (11) may be obtained by means of
upper and lower bounds of the system parameters and viscous friction coefficients (more precisely,
nonzero lower bounds of µm and fm, and upper bounds of µM , kC , and fM ; see Properties 1, 2.5,
and 3). On the other hand, the satisfaction of inequality (11) is not necessary but only sufficient for
the closed-loop analysis to hold, as shown in the following section, which permits the consideration
of values of ε higher than εM (up to certain limit) without destabilizing the closed loop. Note further
that, by previous arguments, the satisfaction of the restriction on Bdv stated through Assumption 2
does not require the exact knowledge of the system parameters either. /

Remark 4
Observe that inequalities (16b) concern exclusively the parameters related to the gravity force vector.
For these parameters, it is important to count on suitable bound values (satisfying inequality (16b))
for a proper implementation of the proposed algorithm with analytical certainty of the expected
result (under the stated assumptions). For the rest of the system parameters, the restriction on
their bounds, stated through inequality (16c), is not as stringent since the fulfillment of such a
condition may be accomplished through suitable desired-trajectory-related bound values Bdv and
Bda (recall Remark 1). Thus (under the fulfillment of (16b)), given any qd ∈ Qd, it suffices to adjust
its first- and second-order change rates (wherever qd goes through in the configuration space) to
satisfy inequality (16c). For system parameter bounds that do not satisfy (16b), local tracking is still
possible for desired trajectories restricted to vary on some configuration space subset Ω ⊂ Rn where
|gi(x, y)| ≤ BΩ

gi < Ti, i = 1, . . . , n, ∀(x, y) ∈ Ω×Θa. Given qd ∈ Qd such that qd(t) ∈ Ω, ∀t ≥ 0,
(under the satisfaction of (16c)) initial conditions sufficiently close to the target values give rise to a
closed-loop position trajectory that is kept evolving in Ω —in view of its proximity to qd(t) implied
by the uniform stability property proven in Section 5— thus retrieving the conditions required to
ensure a correct functioning of the proposed scheme. /
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5. CLOSED-LOOP ANALYSIS

Consider system (1)-(2) taking u = u(t, q̄, ˙̄q, θ̂) as defined through Eqs. (17)-(18). Observe that
(under Assumptions 1 and 2, the satisfaction of inequalities (16), and the consideration of (2)) the
fulfilment of (8) shows that

Ti >
∣∣ui(t, q, q̇, sa(φ)

)∣∣ = |ui| = |τi| i = 1, . . . , n ∀(t, q, q̇, φ) ∈ R+ ×Rn ×Rn ×Rp (19)

Thus, under the consideration of Property 5, the closed-loop system takes the form

H(q)¨̄q +
[
C(q, q̇) + C

(
q, qd(t)

)]
˙̄q + F ˙̄q

= −sd
(
t, q̄, ˙̄q, sa(φ)

)
− sP (KP q̄) + Y

(
q, q̇d(t), q̈d(t)

)
s̄a(φ̄) (20a)

˙̄φ = −ΓY T
(
q, q̇d(t), q̈d(t)

)[
˙̄q + εsP (KP q̄)

]
(20b)

where φ̄ = φ− φ∗ and
s̄a(φ̄) = sa(φ̄+ φ∗)− sa(φ∗) (21)

with φ∗ =
(
φ∗1, . . . , φ

∗
p

)T
such that sa(φ∗) = θ, or equivalently, φ∗j = σ−1

aj (θj), j = 1, . . . , p.¶

Observe that, by item 8b of Lemma 1, the elements of s̄a(φ̄) in (21), i.e.

σ̄aj(φ̄j) = σaj(φ̄j + φ∗j )− σaj(φ∗j )

j = 1, . . . , p, turn out to be strictly increasing generalized saturation functions.

Proposition 2
Consider the closed-loop system in Eqs. (20), under the satisfaction of Assumptions 1 and 2
and the conditions on the vector function sd stated through the expressions in (5)–(8). Thus, for
any positive definite diagonal matrices KP and Γ, and any ε satisfying (11), the trivial solution
(q̄, φ̄)(t) ≡ (0n, 0p) is uniformly stable and, for any initial condition

(
t0, q̄(t0), ˙̄q(t0), φ̄(t0)

)
∈

R+ ×Rn ×Rn ×Rp, the closed-loop system solution (q̄, φ̄)(t) is bounded and such that q̄(t)→ 0n
as t→∞ with |τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ t0.

Proof
By (19), we see that, along the system trajectories, |τi(t)| = |ui(t)| < Ti, ∀t ≥ 0. This proves that,
under the proposed adaptive scheme, input saturation is avoided. Now, in order to develop the
stability/convergence analysis, let us define the scalar function

V1(t, q̄, ˙̄q, φ̄) = V0(t, q̄, ˙̄q) +

∫ φ̄

0p

s̄Ta (r)Γ−1dr (22)

where
∫ φ̄

0p
s̄Ta (r)Γ−1dr =

∑p
j=1

∫ φ̄j

0
σ̄aj(rj)γ

−1
j drj , and V0(t, q̄, ˙̄q) is as defined in Eq. (10).‖ Note

that, from the analytical properties of V0(t, q̄, ˙̄q), shown in the proof of Proposition 1, and items 8b, 6,
and 7 of Lemma 1 (through which the integral term in the right-hand side of Eq. (22) is concluded
to be a radially unbounded positive definite decrescent function of φ̄), V1(t, q̄, ˙̄q, φ̄) proves to be
positive definite, radially unbounded, and decrescent. Its derivative along the system trajectories is

¶Notice that their strictly increasing character renders the generalized saturation functions σaj , j = 1, . . . , p, (involved
in the definition of sa) invertible.
‖The complete expression is given as

V1(t, q̄, ˙̄q, φ̄) =
1

2
˙̄qTH(q) ˙̄q + εsTP (KP q̄)H(q) ˙̄q +

∫ q̄

0n

sTP (KP r)dr +

∫ φ̄

0p

s̄Ta (r)Γ−1dr
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given by

V̇1(t, q̄, ˙̄q, φ̄) = ˙̄qTH(q)¨̄q +
1

2
˙̄qT Ḣ(q, q̇) ˙̄q + εsTP (KP q̄)H(q)¨̄q + ε ˙̄qT Ḣ(q, q̇)sP (KP q̄)

+ ε ˙̄qTH(q)s′P (KP q̄)KP ˙̄q + sTP (KP q̄) ˙̄q + s̄Ta (φ̄)Γ−1 ˙̄φ

= ˙̄qT
[
− C(q, q̇) ˙̄q − C

(
q, q̇d(t)

)
˙̄q − F ˙̄q − sd

(
t, q̄, ˙̄q, sa(φ)

)
− sP (KP q̄)

+ Y
(
q, q̇d(t), q̈d(t)

)
s̄a(φ̄)

]
+

1

2
˙̄qT Ḣ(q, q̇) ˙̄q + εsTP (KP q̄)

[
− C(q, q̇) ˙̄q

− C
(
q, q̇d(t)

)
˙̄q − F ˙̄q − sd

(
t, q̄, ˙̄q, sa(φ)

)
− sP (KP q̄) + Y

(
q, q̇d(t), q̈d(t)

)
s̄a(φ̄)

]
+ ε ˙̄qT Ḣ(q, q̇)sP (KP q̄) + ε ˙̄qTH(q)s′P (KP q̄)KP ˙̄q + sTP (KP q̄) ˙̄q

− s̄Ta (φ̄)Y T
(
q, q̇d(t), q̈d(t)

)[
˙̄q + εsP (KP q̄)

]
= − ˙̄qTC

(
q, q̇d(t)

)
˙̄q − ˙̄qTF ˙̄q − ˙̄qT sd

(
t, q̄, ˙̄q, sa(φ)

)
− εsTP (KP q̄)C

(
q, q̇d(t)

)
˙̄q

− εsTP (KP q̄)F ˙̄q − εsTP (KP q̄)sd
(
t, q̄, ˙̄q, sa(φ)

)
− εsTP (KP q̄)sP (KP q̄)

+ ε ˙̄qT
[
C(q, ˙̄q) + C

(
q, q̇d(t)

)]
sP (KP q̄) + ε ˙̄qTH(q)s′P (KP q̄)KP ˙̄q

where H(q)¨̄q and ˙̄φ have been replaced by their equivalent expression from the closed-loop
manipulator dynamics in Eqs. (20), Properties 2.1–2.3 have been used, and s′P (KP q̄) was defined
in (14). Observe that from Assumption 2, Properties 1–3, the satisfaction of (6) and (7), items (b) of
Definition 1 and 2 of Lemma 1, and the properties of KP , we have that

V̇1(t, q̄, ˙̄q, φ̄) ≤ − ˙̄qT sd
(
t, q̄, ˙̄q, sa(φ)

)
−W1(q̄, ˙̄q) ≤ −W1(q̄, ˙̄q)

where W1(q̄, ˙̄q) was defined in (15) and shown to be a positive definite function in the proof
of Proposition 1. Hence, we have that V̇1(t, q̄, ˙̄q, φ̄) ≤ 0, ∀(t, q̄, ˙̄q, φ̄) ∈ R+ ×Rn ×Rn ×Rp,
with V̇1(t, q̄, ˙̄q, φ̄) = 0 ⇐⇒ (q̄, ˙̄q) = (0n, 0n). Therefore, by Lyapunov stability theory (applied to
nonautonomous systems, see for instance [22, Theorem 4.8]), the trivial solution (q̄, φ̄)(t) ≡ (0n, 0p)
is concluded to be uniformly stable. Finally, by Theorem 8.4 of [22],∗∗ we conclude that for any
initial condition

(
t0, q̄(t0), ˙̄q(t0), φ̄(t0)

)
∈ R+ ×Rn ×Rn ×Rp, the closed-loop system solution

(q̄, φ̄)(t) is bounded and such that q̄(t)→ 0n as t→∞.

Remark 5
Let Yd(t) , Y

(
qd(t), q̇d(t), q̈d(t)

)
. Under the considerations of Proposition 2, if there exist positive

constants ν and δ such that ∫ t+δ

t

Y Td (ς)Yd(ς)dς ≥ νIn ∀t ≥ 0 (23)

then the trivial solution (q̄, φ̄)(t) ≡ (0n, 0p) is globally uniformly asymptotically stable. This follows
from the application to the closed-loop system in Eqs. (20) of an analysis analog to that developed
in [15] in the unconstrained input context, in turn supported by the more general result presented
in [29]. When (23) is fulfilled, it is said that Y Td (t) is persistently exciting. This is a necessary and
sufficient condition for uniform δ-persistent excitation of Yd(t)s̄a(φ̄) with respect to s̄a(φ̄) [29], in
turn a necessary and sufficient condition for the referred global uniform asymptotic stability property

∗∗Theorem 8.4 of [22] states that for state equations with vector field being uniformly bounded at the origin, the existence
of a continuously differentiable positive definite decrescent radially unbounded scalar function whose derivative along
the system trajectories is upper-bounded by a negative semidefinite continuous function W , guarantees boundedness of
all the system trajectories (i.e. for any initial condition) as well as their convergence to the state-space subset where
W vanishes (the statement in [22, Theorem 8.4] includes also a local version of the result). In the analytical context of
the present work, the closed loop internal variables (q̄, ˙̄q, φ̄) are the (natural) system states and the vector field of the
consequent state-space representation vanishes at the origin.
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in the context of the closed-loop system in Eqs. (20) [15]. Note however that exact parameter
convergence (i.e. to the real values) is not necessary to achieve the global tracking objective. Further,
the former task implies the need to look for a suitable qd(t) through which (23) be fulfilled while
the latter assumes that a target trajectory is given. Hence, the fulfillment of (23) is in general left
only for parameter estimation purposes [15]. /

Remark 6
One of the main features of the proposed scheme, compared to previous approaches, is the particular
design of the adaptation subsystem. This gives rise to parameter estimations that remain bounded
within pre-specified limits without involving discontinuities. This is achieved by detaching the
parameter estimator role from the adaptation variable φ which is there to counteract tracking
errors due to the inherent inaccuracies of the hybrid compensation term (i.e. due to the fact that
Y
(
q(t), q̇d(t), q̈d(t)

)
θ̂(t) 6≡ Y

(
q(t), q̇d(t), q̈d(t)

)
θ; by so acting, the hybrid compensation term in

turn approaches the accurate one). The parameter estimator role is transferred to a variable coming
out from the adaptation subsystem, namely θ̂, defined in terms of φ through a suitable (one-to-one)
continuous function sa stating a (strictly) passive relation among them (such that φ̄T s̄a(φ̄) > 0,
∀φ̄ 6= 0n). This permits the inclusion of a suitable storage term in the Lyapunov function, that
accounts for the controller-induced-potential energy due to the parameter estimation error s̄a(φ̄)
(see (21)), namely the last term in the right-hand side of V1 in Eq. (22). V1 is thus guaranteed to be
a correct Lyapunov function candidate for the closed-loop system. In turn, through the derivative of
the compound Lyapunov function along the system trajectories, V̇1, the dynamics of φ is determined
so as to have the required stability/convergence properties (by eliminating though φ̇ the cross terms
in V̇1 where s̄a(φ̄) appears since, in the absence of the exact knowledge of θ, there is no way to get
a negative definite φ̄-term) as corroborated through the proof of Proposition 2. Such a continuous
dynamics carries out the described corrective role of φ. The adequate continuous bounded form of
θ̂ is given through sa by means of suitable generalized saturation functions. The designed algorithm
is thus free of discontinuities, permitting the auxiliary adaptive variable φ to take initial values and
evolve anywhere in Rp while keeping θ̂ suitably bounded. /

Remark 7
Adaptive versions of the SP-SD+, SPD+ and SPDhc+-like controllers described in Appendix A
are obtained by considering in the proposed design method the expressions in (31), (33), and (35),
respectively, with suitable adjustments on the saturation function parameter conditions. Thus, the
adaptive SP-SD+ controller is obtained from (17) by taking

sd(t, q̄, ˙̄q, θ̂) = sD(KD ˙̄q) (24)

with sD(·) and KD as defined in Appendix A and the involved bound values, MPi and MDi,
satisfying

MPi +MDi < Ti −BΘa

Di (25)

(recall inequality (16c)) i = 1, . . . , n, the adaptive SPD+ scheme is gotten by taking

sd(t, q̄, ˙̄q, θ̂) = sP (KP q̄ +KD ˙̄q)− sP (KP q̄) (26)

with sP (·) as defined for this case in Appendix A and bound values fulfilling

MPi ≤ Ti −BΘa

Di (27)

i = 1, . . . , n, and the adaptive SPDhc+-like algorithm is obtained by taking

sd(t, q̄, ˙̄q, θ̂) = s0

(
Y
(
q, q̇d(t), q̈d(t)

)
θ̂ − sP (KP q̄)

)
− s0

(
Y
(
q, q̇d(t), q̈d(t)

)
θ̂ − sP (KP q̄)−KD ˙̄q

)
(28)

with s0(·) as defined in Appendix A and the involved saturation function parameters satisfying

BΘa

Di +MPi < L0i ≤M0i < Ti (29)

i = 1, . . . , n. For these cases, κ in (11) remains as specified in Eqs. (37). /
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Figure 2. Experimental setup

6. EXPERIMENTAL RESULTS

In order to experimentally corroborate the efficiency of the developed adaptive approach, real-time
control implementations were carried out on a 2-DOF direct-drive manipulator. The experimental
setup, shown in Fig. 2, is a prototype of the 2-revolute-joint robot arm used in [30, 31], located at
the Instituto Tecnológico de la Laguna. The actuators are direct-drive brushless motors operated in
torque mode, so they act as torque source and accept an analog voltage as a reference of torque
signal. The control algorithm is executed at a 2.5 ms sampling period in a control board (based on a
DSP 32-bit floating point microprocessor from Texas Instrument) mounted on a PC-host computer.
The robot software is in open architecture, whose platform is based in C language to run the control
algorithm in real time.

For the considered experimental manipulator, Properties 1–5 are satisfied with††

Y T (q, q̇, q̈) =



q̈1 0

(2q̈1 + q̈2) cos q2 − q̇2(2q̇1 + q̇2) sin q2 q̈1 cos q2 + q̇2
1 sin q2

q̈2 q̈1 + q̈2

q̇1 0

0 q̇2

sin q1 0

sin(q1 + q2) sin(q1 + q2)


θT =

(
2.351 0.084 0.102 2.288 0.175 38.465 1.825

)
µm = 0.088 kg m2, µM = 2.533 kg m2, kC = 0.1455 kg m2, fm = 0.175 kg m2/s, fM = 2.288
kg m2/s, Bg1 = 40.29 Nm, and Bg2 = 1.825 Nm. The maximum allowed torques (input saturation
bounds) are T1 = 150 Nm and T2 = 15 Nm for the first and second links respectively. From these
data, one easily corroborates that Assumption 1 is fulfilled.

The proposed adaptive scheme in Eqs. (17)-(18) was tested in its SP-SD+, SPD+, and SPDhc+-
like forms, under the respective consideration of expressions (24)-(25), (26)-(27), and (28)-(29).
The involved saturation functions were defined as

σPi(ς) =

{
ς ∀|ς| ≤ LPi
sign(ς)LPi + (MPi − LPi) tanh

(
ς−sign(ς)LPi

MPi−LPi

)
∀|ς| > LPi

††For the sake of simplicity, the units of the elements of θ, their estimation variables and related bounds and saturation
function parameters, the auxiliary states, and the control and adaptation gains are omitted. The angles are expressed and
measured in radians.
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with 0 < LPi < MPi, i = 1, 2, in all the three cases;

σDi(ς) = MDi sat(ς/MDi
)

i = 1, 2, in the SP-SD+ case;
σ0i(ς) = M0i sat(ς/M0i)

i = 1, 2, in the SPDhc+-like case; and

σaj(ς) =

{
ς ∀|ς| ≤ Laj
sign(ς)Laj + (Maj − Laj) tanh

(
ς−sign(ς)Laj

Maj−Laj

)
∀|ς| > Laj

with 0 < Laj < Maj , j = 1, . . . , 7, in all the three cases. Let us note that with these saturation
functions we have σ′PiM = σ′DiM = σ′0iM = 1, ∀i ∈ {1, 2}, and that in consequence, for the three
controllers, inequality (6) is satisfied with κ = maxi{kDi} (see Eqs. (37)).

For comparison purposes, additional tests were implemented considering the adaptive controller
proposed by [7] —referred to as De99— (choice made in terms of the analog nature of the compared
algorithms: bounded adaptive), i.e.

u = Yd(t)θ̂ −KPTh(ΛP q̄)−KDTh(ΛDr)

˙̂
θ = P

(
Q(t, r), θ̂

)
where Yd(t) = Y

(
qd(t), q̇d(t), q̈d(t)

)
; Th(x) =

(
tanh(x1), . . . , tanh(xn)

)T
; ΛP =

diag[λP1, . . . , λPn] and ΛD = diag[λD1, . . . , λDn] with λPi = 1 [rad]−1 and λDi = 1 s/rad,
∀i ∈ {1, . . . , n};

r = ˙̄q + εTh(q̄)

with ε being a positive constant;
Q(t, r) = −ΓY Td (t)r

KP , KD ∈ Rn×n and Γ ∈ Rp×p are positive definite diagonal matrices; the elements of P are
defined as

Pj(Q, θ̂) =

{
Qj if θjm < θ̂j < θjM or

(
θ̂j ≤ θjm and Qj ≥ 0

)
or
(
θ̂j ≥ θjM and Qj ≤ 0

)
0 if

(
θ̂j ≤ θjm and Qj < 0

)
or
(
θ̂j ≥ θjM and Qj > 0

)
j = 1, . . . , p, with θjm and θjM being known lower and upper bounds of θj respec-
tively; and the initial auxiliary state values are taken such that θ̂j(0) ∈ [θjm, θjM ], j =
1, . . . , p. The parameter bounds were fixed at

(
θ1m θ2m θ3m θ4m θ5m θ6m θ7m

)
=(

0.588 0.021 0.025 0.572 0.044 9.616 0.456
)

(see footnote ††), and θjM = Maj , j =
1, . . . , 7, (these values are specified below).

At every experimental test, the initial link positions and velocities were taken
as qi(0) = q̇i(0) = 0, i = 1, 2. The auxiliary states were initiated at φT (0) =(
2.88 0.103 0.125 2.803 0.214 47.119 2.235

)
(see footnote ††) in the SP-SD+, SPD+,

and SPDhc+-like cases and θ̂T (0) =
(
2.88 0.103 0.125 2.803 0.214 47.119 2.235

)
in the

case of the De99 algorithm. The desired trajectory for all the implemented controllers was defined
as

qd(t) =

(
qd1(t)

qd2(t)

)
=

(
π
2 + sin(ωt)

cos(ωt)

)
[rad] (30)

Let us note that with this desired trajectory, Assumption 2 is satisfied with Bdv = ω < 1.2027 rad/s
(≈ fm/kC) and Bda = ω2.

For the adaptive SP-SD+, SPD+, and SPDhc+-like algorithms, a sufficiently small value of ε
(satisfying inequality (11)) was taken and the saturation-function parameters as well as ω in (30)
were fixed such that inequalities (25), (27), (29), and (16) were satisfied. Within the consequent
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Table I. Control parameter and RMS values

prmtr. SP-SD+ SPDhc+-like SPD+ De99
ε 1.0167×10−7 1.0165×10−7 4.15×10−8 3
KD diag[20, 5] diag[150, 20] diag[10, 3.8]
KP diag[1500, 300] diag[70, 7.9]
Γ diag[20, 0.5, 0.1, 1.5, 0.1, 10, 0.25]

ΛP diag[20, 10]
ΛD diag[3, 3]

RMS 0.0138 0.0106 0.0172 0.0314
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�
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Figure 3. Position errors

limits, the saturation function bounds related to the SP and SD actions and the control and adaptation
gains in KP , KD and Γ were fixed after several trial-and-error simulation tests so as to have the best
possible closed-loop performance —in terms mainly of stabilization time (as short as possible) and
transient response (avoiding or lowering down overshoot and oscillations as much as possible)—
and then refined experimentally. This was basically done following the guidelines given in Appendix
B. As for the De99 controller, a similar procedure was followed taking small enough control gains
to avoid input saturation (recall that in this approach, the control gains in KP and KD respectively
bound the P and D terms) but, with the aim to speed up the closed-loop responses, gains λPi and
λDi, i = 1, 2, (inside the hyperbolic tangent functions involved in the SP and SD actions) greater
than unity were fixed. The resulting control parameter values for all the implemented schemes are
presented in Table I. As for the saturation function parameters involved in the SP-SD+, SPD+,
and SPDhc+-like algorithms, the selected values were (see footnote ††): MP1 = 40, MD1 = 40,
MP2 = 4, and MD2 = 4 in the SP-SD+ case; MP1 = 85 and MP2 = 8.5 in the SPD+ case;
M01 = 130, MP1 = 45, M02 = 13, and MP2 = 4.5 in the SPDhc+-like case; and LPi = 0.9MPi,
i = 1, 2, MT

a =
(
2.939 0.105 0.127 2.86 0.219 48.081 2.281

)
, and Laj = 0.9Maj , j =

1, . . . , 7, in all the three cases. With these values, inequalities (25), (27), (29), (16) and Assumption
2 were corroborated to be satisfied with ω = 1.2 rad/s, taking BΘa

gi =
∑7

j=1BGijMaj , i = 1, 2, i.e.
BΘa
g1 = Ma6 +Ma7 = 50.362 Nm and BΘa

g2 = Ma7 = 2.281 Nm, and BΘa

Di =
∑7

j=1BYij
Maj , i =

1, 2, i.e. BΘa

D1 = (Ma1 +
√

10Ma2 +Ma3)ω2 +Ma4ω +Ma6 +Ma7 = 58.6872 Nm and BΘa

D2 =

(Ma2 +
√

2Ma3)ω2 +Ma5ω +Ma7 = 2.9536 Nm.
Figures 3 and 4 show the position error evolution and control signals obtained at every

experimental test. Note that all the implemented controllers achieved the trajectory tracking
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Figure 4. Control signals

objective —avoiding input saturation— in less than 2 seconds, with the SPD+ scheme being the
one that gave rise to the fastest responses. This could be achieved preventing overshoot on the
position error responses through the SPD+ and SPDhc+-like algorithms, while the SP-SD+ and
De99 controllers could not avoid it. Let us further note that post-transient effects due to unmodelled
phenomena, such as Coulomb friction, were present at all the closed-loop responses. They are
observed in the position error graphs as small oscillations. In order to evaluate and compare the
performance of the implemented controllers in relation to such a post-transient effect, the root

mean square (RMS) of the position errors, i.e.
√

1
t2−t1

∫ t2
t1
‖q̄(t)‖2dt, was calculated from t1 = 2

s to t2 = 10 s. The values obtained from such a calculation are shown in Table I. Note that
under such a criterion, the best performance was obtained through the SPDhc+-like algorithm,
while the highest post-transient error was generated by the De99 controller. As for the parameter
estimators, a considerably slow evolution was observed. This is due to the considerably small
value of ε. Moreover, parameter estimations with considerable bias were observed since qd(t) was
not defined so as to fulfill the excitation persistence condition (23). However, accuracy on the
parameter estimation is not part of the motion control goal (recall Remark 5). Moreover, neither
the slow evolution nor the biased post-transient values of the parameter estimators prevented the
trajectory tracking objective to be accomplished —avoiding input saturation— or to be achieved in
a considerably short time.

7. CONCLUSIONS

In this work, a generalized adaptive scheme for the global tracking control of robot manipulators
with bounded inputs was proposed. Its generalized structure was proven to give rise to adaptive
versions/extensions of several PD-type tracking saturating controllers previously developed under
the consideration of the exact knowledge of the system parameters. Compared to previous bounded
adaptive tracking control algorithms, the proposed adaptive approach guarantees the motion control
objective for any initial condition (globally), avoiding discontinuities throughout the scheme,
preventing the inputs to reach their natural saturation bounds, permitting the use of any saturation
function within a well-specified set to achieve the required boundedness, and permitting innovation
on the saturating structure through its generalized form, giving a wide range of possibilities for
performance improvement. The efficiency of the proposed adaptive scheme was corroborated
through real-time implementations on an actual 2-DOF manipulator. The experimental results
showed the coherence of the problem and solution formulations. From a theoretical viewpoint it
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would still be convenient to relax the result from its dependence on the explicit consideration of the
viscous friction forces.

A. SOME PARTICULAR CONTROL STRUCTURES

Let KD ∈ Rn×n be a positive definite diagonal matrix. The control schemes of [10] are retrieved
from (3) by respectively defining

sd(t, q̄, ˙̄q, θ) = sD(KD ˙̄q) (31)

which gives rise to the SP-SD+ controller

u = −sP (KP q̄)− sD(KD ˙̄q) + Y
(
q, q̇d(t), q̈d(t)

)
θ

where, for any x ∈ Rn, sD(x) =
(
σD1(x1), . . . , σDn(xn)

)T
, with σDi(·), i = 1, . . . , n, being

generalized saturation functions with bounds MDi, and the involved bound values, MPi and MDi,
satisfying

MPi +MDi < Ti −BDi (32)

i = 1, . . . , n, with BDi = µMBda + kCB
2
dv + fMBdv +Bgi, and

sd(t, q̄, ˙̄q, θ) = sP (KP q̄ +KD ˙̄q)− sP (KP q̄) (33)

which results in the SPD+ control law

u = −sP (KP q̄ +KD ˙̄q) + Y
(
q, q̇d(t), q̈d(t)

)
θ

with the generalized saturations σPi(·), i = 1, . . . , n, being strictly increasing, and bound values
fulfilling

MPi < Ti −BDi (34)

i = 1, . . . , n, both (SP-SD+ and SPD+) cases under the consideration of sufficiently small desired-
trajectory-related bound values Bdv and Bda (see Assumption 2) as stated in [10]. Furthermore,
a tracking version of the SPDgc-like controller proposed in [19], that (in addition to SP and D
actions) includes the hybrid compensation terms within a single saturation function (at every link),
is obtained from (3) by defining

sd(t, q̄, ˙̄q, θ) = s0

(
Y
(
q, q̇d(t), q̈d(t)

)
θ − sP (KP q̄)

)
− s0

(
Y
(
q, q̇d(t), q̈d(t)

)
θ − sP (KP q̄)−KD ˙̄q

)
(35)

where, for any x ∈ Rn, s0(x) =
(
σ01(x1), . . . , σ0n(xn)

)T
, with σ0i(·), i = 1, . . . , n, being linear

saturation functions for (L0i,M0i), and the involved linear/generalized saturation function
parameters satisfying

BDi +MPi < L0i ≤M0i < Ti (36)

i = 1, . . . , n, with sufficiently small desired-trajectory-related bound values Bdv and Bda as
stated in [10]. Observe from (36) that, by virtue of item (c) of Definition 1, we have that
s0

(
Y
(
q, q̇d(t), q̈d(t)

)
θ − sP (KP q̄)

)
≡ Y

(
q, q̇d(t), q̈d(t)

)
θ − sP (KP q̄), giving rise to an SPDhc+-

like controller of the form

u = s0

(
Y
(
q, q̇d(t), q̈d(t)

)
θ − sP (KP q̄)−KD ˙̄q

)
One can verify that, in the three cases, the expressions in (5)–(8) are satisfied. In particular, from
points 3 and 4 of Lemma 1, one sees that sd(t, q̄, ˙̄q, θ) in every one of the above cases in (31), (33),
and (35) satisfies inequality (6) with

κ = max
i
{σ′iMkDi} (37a)
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where

σ′iM =


σ′DiM in the SP-SD+ case
σ′PiM in the SPD+ case
σ′0iM in the SPDhc+-like case

(37b)

σ′DiM , σ′PiM , and σ′0iM respectively being the positive bounds of D+σDi(·), σ′Pi(·), and D+σ0i(·),
in accordance to item 2 of Lemma 1.

B. A SKETCH OF THE TUNING PROCEDURE

The tuning procedure followed to get the implementation results shown in this work can be sketched
as follows:

1. Set the saturation function bounds in accordance to inequalities (25) / (27) / (29) and (16).
2. Run simulations/experiments with low proportional, derivative and adaptation gains.
3. According to the post-transient variation, increase the proportional gains in order to reduce

the tracking errors.
4. Increase the derivative gains in order to get a transient response with the shortest possible rise

time simultaneously keeping the overshoot as low as possible.
5. Increase ε trying to adhere to (11) if possible or as far as the closed-loop stability permits it.
6. Increase the update gains in Γ in order to improve the parameter estimator responses.
7. Repeat the procedure until the best possible response is obtained.
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17. López-Araujo DJ, Zavala-Rı́o A, Santibáñez V, Reyes F. A generalized scheme for the global adaptive regulation
of robot manipulators with bounded inputs. Robotica 2013; 31(7):1103–1117.
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