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A global continuous control scheme for the finite-time or (local) exponential stabilization of mechanical
systems with constrained inputs is proposed. The approach is formally developed within the theoretical
framework of local homogeneity. This has permitted to solve the formulated problem not only guar-
anteeing input saturation avoidance but also giving a wide range of design flexibility. The proposed
scheme is characterized by a Saturating-Proportional-Derivative type term with generalized saturating
and locally-homogeneous structure that permits multiple design choices on both aspects. The work in-
cludes a simulation implementation section where the veracity of the so-cited argument claiming that
finite-time stabilizers are faster than asymptotical ones is studied. In particular, a way to carry out
the design so as to indeed guarantee faster stabilization through finite-time controllers (beyond their
finite-time convergence) is shown.

Keywords: finite-time stabilization; local homogeneity; mechanical systems; constrained inputs;
saturation

1. Introduction

Continuous control aiming at the finite-time convergence of an equilibrium being (simultaneously)
rendered stable has been a topic of increasing interest in the last decades. Inspired by the seminal
work of Haimo (1986), several researchers have devoted efforts to settle down a suitable underlying
analytical framework for the subject. Important contributions in this direction are those due to
Bhat & Bernstein (1995, 1997, 1998, 2000, 2005), by formally stating a precise definition of finite-
time stability that gathers both the (Lyapunov) stability and finite-time convergence, thoroughly
developing Lyapunov-based criteria for its determination, and clearly characterizing its relationship
with homogeneous vector fields. This latter characterization has been particularly attractive in
view of its simplicity: for a homogeneous vector field with asymptotically stable equilibrium at
the origin, verifying negativity of the homogeneity degree suffices to conclude finite-time stability
(of the origin). This naturally leads to the idea of involving homogeneity in control design to
readily achieve finite-time stabilization. Nevertheless, such a strategy is tied to the requirements
imposed by homogeneity, which is (conventionally) a global property. For instance, in a coordinate-
dependent framework, a vector field with bounded components cannot be homogeneous (Bhat &
Bernstein, 2005). Consequently, within such a framework, the referred strategy cannot be applied
under bounded input constraints. Nevertheless, such a design restriction has been proven to be
relaxed through alternative notions of homogeneity (Zavala-Ŕıo & Fantoni, 2014).
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Based on the theoretical framework of local-homogeneity (details are given in Section 2), this work
proposes a bounded continuous control design method for constrained-input mechanical systems,
guaranteeing global stabilization with either finite-time or (local) exponential convergence. The
choice upon the type of convergence is simply stated through a design parameter involved in the
control scheme. Such a choice is made possible through a suitable extension (stated in this paper)
of the theoretical framework of local homogeneity; interesting enough, within the design context
developed in this work, such an extension permits exponential stabilization through unconventional
control structures. The finite-time stabilization choice of the proposed approach —achieved through
bounded inputs— remains however the main motivation and original goal of the present work. This
is motivated by the advantages of finite-time controllers that are generally claimed in relation to
asymptotic ones —such as faster convergence and improved robustness to uncertainties (Hong,
Wang & Cheng, 2006; Huang, Lin & Yang, 2005; Qian & Li, 2005)— as well as their conceptual
suitability for certain tasks such as consensus (Wang & Xiao, 2010) and formation (Xiao, Wang,
Chen & Gao, 2009) of multi-agent systems.

An initial work on finite-time continuous control for mechanical manipulators was presented in
(Hong, Xu & Huang, 2002) assuming unconstrained inputs. The controller design adopted Pro-
portional (P) and Derivative (D) type actions with two options on the structure: one of them
compensating for the whole system dynamics and the other one only for the gravity terms. The
closed-loop analysis was developed based on the conventional analytical framework of homogeneity.
Although a variation of the latter structure with the P and D type actions included (each of them
separately) within conventional saturation functions was further contemplated, no formal closed-
loop analysis was presented for this case, which does not fit within the analytical framework where
the unconstrained versions were developed (as previously explained).

Another work oriented to the finite-time control of robotic manipulators, disregarding input con-
straints, appeared later in (Zhao, Li, Zhu & Gao, 2010). The scheme proposed therein is structured
aiming at the compensation for the whole system nominal dynamics. The rest of the synthesis is
developed applying the backstepping design technique, by viewing the velocity vector variable as a
virtual (artificial) input to achieve finite-time control of the positions, and the (generalized) force
input vector to impose a closed-loop continuous dynamics that guarantees finite-time stabilization
of the consequent error variables. The design is then complemented through a Lyapunov-redesign
type procedure that results in the addition of a control term in charge to reject system-uncertainty
perturbations, which a priori renders discontinuous the resulting control law. Alternative approx-
imations of certain control terms are suggested in order to avoid discontinuities and singularities
implied by the developed approach, expecting close-enough (to the desired position) stabilization
through their replacement. Although a bounded version of the developed controller is also contem-
plated by involving conventional saturation functions, no further analysis is included for this case,
which is claimed to be left for future research.

A more recent finite-time continuous stabilization scheme for mechanical systems was proposed
in (Sanyal & Bohn, 2015) similarly assuming unconstrained inputs. The approach is based on the
definition of a manifold where the system is proven to converge to the zero (desired) state in a
finite time T1. A suitable closed loop form ensuring convergence of the system variables to such a
manifold in a finite time T2 is then found. The control law is then designed through exact dynamic
compensation so as to impose the closed-loop form found in the precedent step. Nevertheless, the
extension of such an approach to the constrained input case was not developed.

The continuous approach proposed in this work is designed so as to continually exert bounded
non-linear corrective actions on the position and velocity errors through a Saturating-Proportional-
Derivative (SPD) structure adopting a generalized form. Such a PD type structure has the advan-
tage to keep the main (beneficial) features of PD type controllers, such as the intuitive sense on the
role of the P and D control gains. The proposed algorithm further includes gravity compensation
but no additional term of the system dynamics needs to be compensated. Furthermore, the gener-
alized form of the SPD term does not only include the SP-SD type algorithm found in (Zavala-Ŕıo
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& Fantoni, 2014) as a very particular case, but actually permits to adopt multiple particular sat-
urating structures, which gives an additional degree of design flexibility. This is made possible
under the consideration of special continuous functions that suitably shape the P and D terms,
each of them separately and both resulting actions together, which in turn extends the choices
on the required locally-homogeneous structure. The study includes simulation results through a
2 degree-of-freedom (DOF) manipulator model. These show finite-time control implementations
avoiding input saturation, which are compared with analog exponential stabilization simulations,
particularly focusing in corroborating the so-cited argument claiming that finite-time controllers
achieve faster stabilization than asymptotic ones. The design flexibility provided by the local homo-
geneity framework will prove to be very useful to achieve finite-time control structures that indeed
guarantee (in addition to input saturation avoidance) faster stabilization, beyond the finite-time
nature of the convergence. The proposed SPD control scheme does not only adopt the well-known
advantages of finite-time stabilizers (over asymptotic ones) but also finds potential applications at
all tasks where finite-time stabilization adopts conceptual suitability.

2. Preliminaries

Let X ∈ Rm×n and y ∈ Rn. Throughout this work, Xij denotes the element of X at its ith

row and jth column, Xi represents the ith row of X and yi stands for the ith element of y. 0n

represents the origin of Rn and In the n × n identity matrix. We denote R>0 = {x ∈ R : x > 0}
and R≥0 = {x ∈ R : x ≥ 0} for scalars, and Rn

>0 = {x ∈ Rn : xi > 0, i = 1, . . . , n} and
Rn
≥0 = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n} for vectors. ‖ ∙ ‖ stands for the standard Euclidean norm

for vectors and induced norm for matrices. An (n − 1)-dimensional sphere of radius c > 0 on Rn

is denoted Sn−1
c , i.e. Sn−1

c = {x ∈ Rn : ‖x‖ = c}. We will consider the sign function to be zero at
zero, i.e.

sign(ς) =

{
ς
|ς| if ς 6= 0

0 if ς = 0

and denote sat(∙) the standard (unitary) saturation function, i.e. sat(ς) = sign(ς)min{|ς|, 1}.

2.1 Mechanical systems

Consider the n-DOF fully-actuated frictionless mechanical system dynamics (Brogliato, Lozano,
Maschke & Egeland, 2007, §6.1)

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are the position (generalized coordinates), velocity, and acceleration vectors,
H(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal effect matrix,
g(q) = ∇U(q) with U : Rn → R being the potential energy function of the system, and τ ∈ Rn

is the external input (generalized) force vector. Some well-known properties characterizing the
terms of such a dynamical model are recalled here (Brogliato et al., 2007, §6.1.2) (Ortega, Loŕıa,
Nicklasson & Sira-Ramı́rez, 1998, §2.3). Subsequently, we denote Ḣ the rate of change of H, i.e.
Ḣ : Rn × Rn → Rn×n with Ḣij(q, q̇) = ∂Hij

∂q (q)q̇, i, j = 1, . . . , n.

Property 1: H(q) is a continuously differentiable positive definite symmetric matrix function.

Property 2: The Coriolis and centrifugal effect matrix satisfies:
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2.1. q̇T
[

1
2Ḣ(q, q̇) − C(q, q̇)

]
q̇ = 0, ∀(q, q̇) ∈ Rn × Rn;

2.2. C(x, y)z = C(x, z)y, ∀x, y, z ∈ Rn.

Remark 1: Observe from Property 2.2 that C(q, aq̇)bq̇ = C(q, bq̇)aq̇ = C(q, abq̇)q̇ = C(q, q̇)abq̇,
∀q, q̇ ∈ Rn, ∀a, b ∈ R.

In this work, we consider the (realistic) bounded input case, where the absolute value of each
input τi is constrained to be smaller than a given saturation bound Ti > 0, i.e. |τi| ≤ Ti, i = 1, . . . , n.
More precisely, letting ui represent the control variable (controller output) relative to the ith degree
of freedom, we have that

τi = Tisat(ui/Ti) (2)

Further assumptions are stated next.

Assumption 1: The conservative (generalized) force vector g(q) is bounded, or equivalently, every
one of its elements, gi(q), i = 1, . . . , n, satisfies |gi(q)| ≤ Bgi, ∀q ∈ Rn, for some positive constant
Bgi.

Assumption 2: Ti > Bgi, ∀i ∈ {1, . . . , n}.

Assumption 1 applies e.g. for robot manipulators having only revolute joints (Kelly, Santibáñez
& Loŕıa, 2005, §4.3). Assumption 2 renders it possible to hold the system at any desired equilibrium
configuration qd ∈ Rn.

2.2 Local homogeneity, finite-time stability and δ-exponential stability

Definitions and results stated in this subsection are strongly related to family of dilations δr
ε ,

defined as δr
ε(x) =

(
εr1x1, . . . , ε

rnxn

)T , ∀x ∈ Rn, ∀ε > 0, with r = (r1, . . . , rn)T , where the dilation
coefficients r1, . . . , rn are positive scalars.

Definition 1: (Zavala-Ŕıo & Fantoni, 2014) A function V : Rn → R, resp. vector field f : Rn →
Rn, is locally homogeneous of degree α with respect to the family of dilations δr

ε —or equivalently,
it is said to be locally r-homogeneous of degree α— if there exists an open neighborhood of the
origin D ⊂ Rn —referred to as the domain of homogeneity— such that, for every x ∈ D and all
ε ∈ (0, 1]: δr

ε(x) ∈ D and

V (δr
ε(x)) = εαV (x) (3)

resp.

fi(δ
r
ε(x)) = εα+rifi(x) (4)

i = 1, . . . , n.1

Definition 2: (Kawski, 1990; M’Closkey & Murray, 1997) Given r ∈ Rn
>0, a continuous map

Rn → R : x 7→ ‖x‖r is called a homogeneous norm with respect to the family of dilations δr
ε

—or equivalently, it is said to be an r-homogeneous norm— if, for every x ∈ Rn, ‖x‖r ≥ 0 with
‖x‖r = 0 ⇐⇒ x = 0n and ‖δr

ε(x)‖r = ε‖x‖r for all ε > 0. In particular, an r-homogeneous p-norm

(p ≥ 1) is defined as ‖x‖r,p =
[∑n

i=1 |xi|p/ri
]1/p.

1The authors recently got aware that the notion of local homogeneity and related results appeared in the literature before

(Zavala-Ŕıo & Fantoni, 2014), proposed by Orlov (2005). More details about this are given in Appendix A.
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Remark 2: Subsequently, in this work, an r-homogeneous norm ‖ ∙ ‖r will conventionally be
considered to refer to an r-homogeneous p-norm with p > maxi{ri}.

Definition 3: An r-homogeneous (n − 1)-sphere of radius c > 0 is the set Sn−1
r,c = {x ∈ Rn :

‖x‖r = c}.

Consider an n-th order autonomous system

ẋ = f(x) (5)

where f : D → Rn is continuous on an open neighborhood of the origin D ⊂ Rn and f(0n) = 0n,
and let x(t; x0) represent the system solution with initial condition x(0; x0) = x0.

Definition 4: (Bhat & Bernstein, 2005) The origin is said to be a finite-time stable equilibrium
of system (5) if it is Lyapunov stable and there exist an open neighborhood of the origin, N ⊂ D,
being positively invariant with respect to (5), and a positive definite function T : N → R≥0,
called the settling-time function, such that x(t; x0) 6= 0n, ∀t ∈

[
0, T (x0)

)
, ∀x0 ∈ N \ {0n}, and

x(t; x0) = 0n, ∀t ≥ T (x0), ∀x0 ∈ N . The origin is said to be a globally finite-time stable equilibrium
if it is finite-time stable with N = D = Rn.2

Remark 3: Note, from Definition 4, that the origin is a globally finite-time stable equilibrium of
system (5) if and only if it is globally asymptotically stable and finite-time stable.

Theorem 1: (Zavala-Rı́o & Fantoni, 2014) Consider system (5) with D = Rn. Suppose that f is a
locally r-homogeneous vector field of degree α with domain of homogeneity D ⊂ Rn. Then, the origin
is a globally finite-time stable equilibrium of system (5) if and only if it is globally asymptotically
stable and α < 0.

The next definition is stated under the additional consideration that, for some r ∈ Rn
>0, f in (5)

is locally r-homogeneous with domain of homogeneity D ⊂ D.

Definition 5: (Kawski, 1990; M’Closkey & Murray, 1997) The equilibrium point x = 0n of (5) is
δ-exponentially stable3 with respect to the homogeneous norm ‖ ∙ ‖r if there exist a neighborhood
of the origin, V ⊂ D, and constants a ≥ 1 and b > 0 such that ‖x(t; x0)‖r ≤ a‖x0‖re

−bt, ∀t ≥ 0,
∀x0 ∈ V .

Remark 4: Observe that Definition 5 becomes equivalent to the usual definition of exponential
stability when the standard dilation is concerned, i.e. when ri = 1, i = 1, . . . , n.4

The next lemma is a trivial extension to the local homogeneity context of (Kawski, 1990, Lemma
2.4). Analogously to (Kawski, 1990, Lemma 2.4), it is stated under the additional consideration
that solutions of (5) with x0 ∈ D remain unique (while belonging to D).5

2Definition 4 states an equilibrium-related finite-time stability concept that gathers Lyapunov stability with finite-time con-

vergence, which is at the basis of the analytical setting underlying this work. It should be noted that alternative unrelated

notions of finite-time stability, characterizing different aspects on the system performance, have also appeared in the literature,

e.g. (Amato, Ariola & Cosentino, 2005; Dorato, 2006). In these latter references, for instance, such designation has been used

to describe systems whose trajectories remain in a prescribed region during a finite-time interval.
3We adopt the dilation-related designation stated in (Kawski, 1990) for Definition 5, i.e. δ-exponential stability. In (M’Closkey

& Murray, 1997), the same definition is alternatively designated as ρ-exponential stability, with ρ referring to the involved

r-homogeneous norm, in accordance to the notation stated therein.
4Non-equivalence among the usual definition of exponential stability and Definition 5 with a non-standard dilation is illustrated

in (M’Closkey & Murray, 1997, §III.C). An analog illustration is developed in (Kawski, 1990, §2) as an example to show non-

equivalence of δ-exponential stability cases with different dilation coefficient vectors r.
5Another version of (Kawski, 1990, Lemma 2.4) is stated in (M’Closkey & Murray, 1997, Lemma 1) where no restriction on

the uniqueness of solutions is considered. It is further concluded from (M’Closkey & Murray, 1997, §III.E) that the solutions

of autonomous systems ẋ = f(x) with r-homogeneous vector field being locally Lipschitz on Rn \ {0n} are unique.
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Lemma 1: Suppose that f in (5) is a locally r-homogeneous vector field of degree α = 0 with
domain of homogeneity D ⊂ D. Then, the origin is a δ-exponentially stable equilibrium if and only
if it is asymptotically stable.

Observe that the assumptions of Lemma 1 imply the existence of a neighborhood of the origin
V ⊂ D such that x0 ∈ V =⇒ x(t; x0) ∈ D, ∀t ≥ 0. The proof of Lemma 1 is thus analogous
to the one developed in (Hahn, 1967, §57) for the special case of r = (r1, . . . , rn)T with ri = 1,
i = 1, . . . , n.6

Remark 5: Let us note that if a vector field f is locally r-homogeneous of degree α = 0 with
dilation coefficients ri = r0, ∀i ∈ {1, . . . , n}, for some r0 > 0, then f is locally r∗-homogeneous of
degree α = 0 with dilation coefficients r∗i = r∗0, ∀i ∈ {1, . . . , n}, for any r∗0 > 0. Indeed, observe
that if, for every x ∈ D, f(εr0x) = εr0f(x), ∀ε ∈ (0, 1], then, by taking ε = εr0/r∗

0 , we have that
f(εr∗

0 x) = εr∗
0 f(x), ∀ε ∈ (0, 1]. Consequently, if f in (5) is locally r-homogeneous of degree α = 0

with dilation coefficients ri = r0, ∀i ∈ {1, . . . , n}, for some r0 > 0, then (under the consideration of
Remark 4) the origin turns out to be exponentially stable if and only if it is δ-exponentially stable.

Consider an n-th order autonomous system of the form

ẋ = f(x) + f̂(x) (6)

where f : Rn → Rn and f̂ : Rn → Rn are continuous vector fields such that f(0n) = f̂(0n) = 0n.
The next result is an extended version of (Zavala-Ŕıo & Fantoni, 2014, Lemma 3.2).

Lemma 2: Suppose that, for some r ∈ Rn
>0, f in (6) is a locally r-homogeneous vector field

of degree α < 0, resp. α = 0, with domain of homogeneity D ⊂ Rn, and that 0n is a globally
asymptotically, resp. δ-exponentially, stable equilibrium of ẋ = f(x). Then, the origin is a finite-
time, resp. δ-exponentially, stable equilibrium of system (6) if

lim
ε→0+

f̂i(δr
ε(x))

εα+ri
= 0 (7)

i = 1, . . . , n, ∀x ∈ Sn−1
c , resp. ∀x ∈ Sn−1

r,c , for some c > 0 such that Sn−1
c ⊂ D, resp. Sn−1

r,c ⊂ D.

Proof. See Appendix B.

Remark 6: Notice that the condition required by Lemma 2 may be equivalently verified through
the satisfaction of

lim
ε→0+

∥
∥ε−αdiag

[
ε−r1 , . . . , ε−rn

]
f̂(δr

ε(x))
∥
∥ = 0 (8)

∀x ∈ Sn−1
c (resp. Sn−1

r,c ). In other words, (7) is fulfilled for all i = 1, . . . , n and all x ∈ Sn−1
c (resp.

Sn−1
r,c ) if and only if (8) is satisfied for all x ∈ Sn−1

c (resp. Sn−1
r,c ).

2.3 Scalar functions with particular properties

Definition 6: A continuous scalar function σ : R→ R will be said to be:

(1) positively upper-bounded (by M+) if σ(ς) ≤ M+, ∀ς ∈ R, for some positive constant M+;
(2) negatively lower-bounded (by −M−) if σ(ς) ≥ −M−, ∀ς ∈ R, for some positive constant M−;

6One further concludes from (Hahn, 1967, §57) that asymptotic stability when α > 0 is not δ-exponential (i.e. δ-exponential

stability is a property that can only take place when α = 0).
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(3) bounded (by M) if |σ(ς)| ≤ M , ∀ς ∈ R, for some positive constant M ;
(4) strictly passive if ςσ(ς) > 0, ∀ς 6= 0;

(5) strongly passive if |σ(ς)| ≥ κ
∣
∣a sat(ς/a)

∣
∣b = κ

(
min{|ς|, a}

)b, ∀ς ∈ R, for some positive con-
stants κ, a and b.

Remark 7: Let us note that a non-decreasing strictly passive function σ is strongly passive. Indeed,
notice that the strictly passive character of σ implies the existence of a sufficiently small a > 0
such that |σ(ς)| ≥ κ|ς|b, ∀|ς| ≤ a, for some positive constants κ and b, while from its nondecreasing

character we have that |σ(ς)| ≥ |σ(sign(ς)a)| ≥ κab, ∀|ς| ≥ a, and thus |σ(ς)| ≥ κ
(
min{|ς|, a}

)b =

κ
∣
∣a sat(ς/a)

∣
∣b, ∀ς ∈ R.

The following statement is straightforward.

Lemma 3: Let σ : R → R, σ0 : R → R and σ1 : R → R be strongly passive functions and k be a
positive constant. Then:

(1)
∫ ς
0 σ(kν)dν > 0, ∀ς 6= 0;

(2)
∫ ς
0 σ(kν)dν → ∞ as |ς| → ∞;

(3) σ0 ◦ σ1 is strongly passive.

Lemma 4: Let σ0 : R→ R be a strictly increasing function, σ2 : R→ R be strictly passive, and k
be a positive constant. Then: ς2

[
σ0(ς1 + σ2(kς2)) − σ0(ς1)

]
> 0, ∀ς2 6= 0, ∀ς1 ∈ R.

Proof. See Appendix C.

3. A generalized SPD-type stabilizer

Consider the following SPD-type controller

u(q, q̇) = −s0

(
s1(K1q̄) + s2(K2q̇)

)
+ g(q) (9)

where q̄ = q − qd, for any constant (desired equilibrium position) qd ∈ Rn; K1 = diag[k11, . . . , k1n]
and K2 = diag[k21, . . . , k2n] with k1j > 0, k2j > 0, ∀j ∈ {1, . . . , n}; and for any x ∈ Rn, si(x) =
(
σi1(x1), . . . , σin(xn)

)T , i = 0, 1, 2, with, for each j ∈ {1, . . . , n}, σ0j being a strictly increasing
strictly passive function, while σ1j and σ2j are non-decreasing strictly passive, all three being
locally Lipschitz-continuous on R \ {0} and such that

Bj , max

{

lim
ς→∞

σ0j

(
σ1j(ς) + σ2j(ς)

)
, lim

ς→−∞
−σ0j

(
σ1j(ς) + σ2j(ς)

)
}

< Tj − Bgj (10)

Remark 8:

(1) Note that by (10) (under the consideration of the monotonic characteristics of σij , i = 0, 1, 2),
we have that —for each j ∈ {1, . . . , n}— either:
(a) σ0j is bounded (whether σ1j and/or σ2j are/is bounded or not), or
(b) σ1j and σ2j are both bounded (whether σ0j is bounded or not), or
(c) σ0j is positively upper-bounded, resp. negatively lower-bounded, and σij , i = 1, 2, are

both negatively lower-bounded, resp. positively upper-bounded (whether σij , i = 0, 1, 2,
—all together, any of them or any combination of them— are bounded or not).

(2) Let us notice that —for each j ∈ {1, . . . , n}— if σ1j and σ2j are both positively upper-
bounded, σ0j does not need to be defined on

(
limς→∞[σ1j(ς) + σ2j(ς)] , ∞

)
. Similarly, if

7
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σ1j and σ2j are both negatively lower-bounded, σ0j does not need to be defined on
(
−

∞ , limς→−∞[σ1j(ς) + σ2j(ς)]
)
.

Proposition 1: Consider system (1)-(2) in closed loop with the proposed control law (9). Thus,
for any positive definite diagonal matrices K1 and K2, global asymptotic stability of the closed-loop
trivial solution q̄(t) ≡ 0n is guaranteed with |τj(t)| = |uj(t)| < Tj, j = 1, . . . , n, ∀t ≥ 0.

Proof. Observe that —for every j ∈ {1, . . . , n}— by (10), we have that, for any (q, q̇) ∈ Rn×Rn:

|uj(q, q̇)| =
∣
∣− σ0j

(
σ1j(k1j q̄j) + σ2j(k2j q̇j)

)
+ gj(q)

∣
∣

≤
∣
∣σ0j

(
σ1j(k1j q̄j) + σ2j(k2j q̇j)

)∣∣+ |gj(q)|

≤ Bj + Bgj < Tj

From this and (2), one sees that Tj > |uj(q, q̇)| = |uj | = |τj |, ∀(q, q̇) ∈ Rn × Rn, which shows that,
along the system trajectories, |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0. This proves that, under
the proposed scheme, the input saturation values, Tj , are never reached. Hence, the closed-loop
dynamics takes the form

H(q)q̈ + C(q, q̇)q̇ = −s0

(
s1(K1q̄) + s2(K2q̇)

)

By defining x1 = q̄ and x2 = q̇, the closed-loop dynamics adopts the 2n-order state-space repre-
sentation

ẋ1 = x2

ẋ2 = H−1(x1 + qd)
[
− C(x1 + qd, x2)x2 − s0

(
s1(K1x1) + s2(K2x2)

)]

By further defining x = (xT
1 , xT

2 )T , these state equations may be rewritten in the form of system
(6) with

f(x) =

(
x2

−H−1(qd)s0

(
s1(K1x1) + s2(K2x2)

)

)

(11a)

f̂(x) =

(
0n

−H−1(x1 + qd)C(x1 + qd, x2)x2 −H(x1)s0

(
s1(K1x1) + s2(K2x2)

)

)

(11b)

where

H(x1) = H−1(x1 + qd) − H−1(qd) (12)

Thus, the closed-loop stability property stated through Proposition 1 is corroborated by showing
that x = 02n is a globally asymptotically stable equilibrium of the state equation ẋ = f(x) + f̂(x),
which is proven through the following theorem (whose formulation proves to be convenient for
subsequent developments and proofs).

Theorem 2: Under the stated specifications, the origin is a globally asymptotically stable equilib-
rium of both the state equation ẋ = f(x) and the (closed-loop) system ẋ = f(x) + f̂(x), with f(x)
and f̂(x) defined through Eqs. (11).
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Proof. For every ` ∈ {0, 1}, let us define the continuously differentiable scalar function

V`(x1, x2) =
1
2
xT

2 H(`x1 + qd)x2 +
∫ x1

0n

sT
0

(
s1(K1r)

)
dr

where
∫ x1

0n
sT
0

(
s1(K1r)

)
dr =

∑n
j=1

∫ x1j

0 σ0j

(
σ1j(k1jrj)

)
drj . From Property 1, Lemma 3 and Remark

7 (whence one corroborates the strongly passive character of σij , i = 0, 1, j = 1, . . . , n), V`(x1, x2),
` = 0, 1, are concluded to be positive definite and radially unbounded. Further, for every ` ∈ {0, 1},
the derivative of V` along the trajectories of ẋ = f(x) + `f̂(x), is obtained as

V̇`(x1, x2) = xT
2 H(`x1 + qd)ẋ2 +

`

2
xT

2 Ḣ(x1 + qd)x2 + sT
0

(
s1(K1x1)

)
x2

= xT
2

[
− `C(x1 + qd, x2)x2 − s0

(
s1(K1x1) + s2(K2x2)

)]

+
`

2
xT

2 Ḣ(x1 + qd)x2 + xT
2 s0

(
s1(K1x1)

)

= −xT
2

[
s0

(
s1(K1x1) + s2(K2x2)

)
− s0

(
s1(K1x1)

)]

= −
n∑

j=1

x2j

[
σ0j

(
σ1j(k1jx1j) + σ2j(k2jx2j)

)
− σ0j

(
σ1j(k1jx1j)

)]

where, in the case of ` = 1, Property 2.1 has been applied. Note, from Lemma 4, that V̇`(x1, x2) ≤ 0,
∀(x1, x2) ∈ Rn ×Rn, with Z` , {(x1, x2) ∈ Rn ×Rn : V̇`(x1, x2) = 0} = {(x1, x2) ∈ Rn ×Rn : x2 =
0n}. Further, from the system dynamics ẋ = f(x)+ `f̂(x) —under the consideration of the strictly
passive character of σ1j , j = 1, . . . , n, Property 1 and the positive definiteness of K1— one sees that
x2(t) ≡ 0n =⇒ ẋ2(t) ≡ 0n =⇒ s0

(
s1(K1x1(t))

)
≡ 0n ⇐⇒ s1(K1x1(t)) ≡ 0n ⇐⇒ x1(t) ≡ 0n

(which shows that (x1, x2)(t) ≡ (0n, 0n) is the only system solution completely remaining in Z`),
and corroborates that at any (x1, x2) ∈ {(q̄, q̇) ∈ Z` : q̄ 6= 0n}, the resulting unbalanced force term
−s0

(
s1(K1x1)

)
acts on the closed-loop dynamics, forcing the system trajectories to leave Z`, whence

{(0n, 0n)} is concluded to be the only invariant set in Z`, ` = 0, 1. Therefore, by the invariance
theory (Michel, Hou & Liu, 2008, §7.2) —more precisely by (Michel et al., 2008, Corollary 7.2.1)—
x = 02n is concluded to be a globally asymptotically stable equilibrium of both the state equation
ẋ = f(x) and the (closed-loop) system ẋ = f(x) + f̂(x).

4. Finite-time and exponential stabilization

Proposition 2: Consider the proposed control scheme under the additional consideration that, for
every j ∈ {1, . . . , n}, σij, i = 1, 2, are locally ri-homogeneous of degree αj > 0 —i.e. r1j = r1,
r2j = r2 and α1j = α2j = αj > 0 for all j ∈ {1, . . . , n}— with domain of homogeneity Dij =
{ς ∈ R : |ς| < Lij ∈ (0,∞]} and σ0j is locally αj-homogeneous of degree α0 = 2r2 − r1 —i.e.
α0j = α0 = 2r2 − r1 for all j ∈ {0, . . . , n}— with domain of homogeneity D0j = {ς ∈ R : |ς| <
L0j ∈ (0,∞]}, for some dilation coefficients ri > 0, i = 1, 2, such that α0 = 2r2 − r1 > 0. Thus,
for any positive definite diagonal matrices K1 and K2, |τj(t)| = |uj(t)| < Tj, j = 1, . . . , n, ∀t ≥ 0,
and the closed-loop trivial solution q̄(t) ≡ 0n is:

(1) globally finite-time stable if r2 < r1;
(2) globally asymptotically stable with (local) exponential stability if r2 = r1.

Proof. Since the proposed control scheme is applied —with all its previously stated specifica-
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tions— Proposition 1 holds and consequently |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0. Then, all
that remains to be proven is that the additional considerations give rise to the specific stability
properties claimed in items 1 and 2 of the statement. In this direction, let r̂i = (ri1, . . . , rin)T ,
i = 1, 2, r = (r̂T

1 , r̂T
2 )T , r̂0 = (α1, . . . , αn)T , α̂0 = (α01, . . . , α0n)T , D , {(x1, x2) ∈ Rn × Rn :

Kixi ∈ Di1 × ∙ ∙ ∙ × Din , i = 1, 2 , s1(K1x1) + s1(K2x2) ∈ D01 × ∙ ∙ ∙ × D0n} = {(x1, x2) ∈
Rn × Rn : |x1j | < L1j/k1j , |x2j | < L2j/k2j , |σ1j(k1jx1j) + σ2j(k2jx2j)| < L0j , j = 1, . . . , n}, and
consider the previously defined state (vector) variables and the consequent closed-loop state-space
representation ẋ = f(x)+ f̂(x), with f and f̂ as defined through Eqs. (11). Since D defines an open
neighborhood of the origin, there exists ρ > 0 such that Bρ , {x ∈ R2n : ‖x‖ < ρ} ⊂ D. Moreover,
for every x ∈ Bρ and all ε ∈ (0, 1], we have that δr

ε(x) ∈ Bρ (since ‖δr
ε(x)‖ < ‖x‖, ∀ε ∈ (0, 1)), and,

for every j ∈ {1, . . . , n},

fj(δ
r
ε(x)) = εr2jx2j = εr2x2j = ε(r2−r1)+r1x2j = ε(r2−r1)+r1jfj(x)

and7

fn+j(δ
r
ε(x)) = −H−1

j (qd)s0

(
s1(K1δ

r̂1
ε (x1)) + s2(K2δ

r̂2
ε (x2))

)

= −H−1
j (qd)s0

(
s1(ε

r1K1x1) + s2(ε
r2K2x2)

)

= −H−1
j (qd)s0

(
δr̂0
ε

(
s1(K1x1)

)
+ δr̂0

ε

(
s2(K2x2)

))

= −H−1
j (qd)s0

(
δr̂0
ε

(
s1(K1x1) + s2(K2x2)

))

= −H−1
j (qd)δ

α̂0
ε

(
s0

(
s1(K1x1) + s2(K2x2)

))

= −εα0H−1
j (qd)s0

(
s1(K1x1) + s2(K2x2)

)

= ε(r2−r1)+r2jfn+j(x) (13)

whence one concludes that f is a locally r-homogeneous vector field of degree α = r2 − r1, with
domain of homogeneity Bρ. Hence, by Theorems 1 and 2, Lemma 1 and Remark 5, the origin of the
state equation ẋ = f(x) is concluded to be a globally finite-time stable equilibrium if r2 < r1, and
a globally asymptotically stable equilibrium with (local) exponential stability if r2 = r1. Thus, by
Theorem 2, Lemma 2, and Remarks 3 and 6, the origin of the closed-loop system ẋ = f(x) + f̂(x)
is concluded to be a globally finite-time stable equilibrium provided that r2 < r1, and a globally
asymptotically stable equilibrium with (local) exponential stability provided that r2 = r1, if

L0 , lim
ε→0+

∥
∥
∥ε−αdiag[ε−r11 , . . . , ε−r1n , ε−r21 , . . . , ε−r2n ]f̂(δr

ε(x))
∥
∥
∥

= lim
ε→0+

∥
∥
∥ε−αdiag[ε−r21 , . . . , ε−r2n ]

[
f̂n+1(δ

r
ε(x)), . . . , f̂2n(δr

ε(x))
]T
∥
∥
∥

= lim
ε→0+

∥
∥
∥ε−α−r2

[
f̂n+1(δ

r
ε(x)), . . . , f̂2n(δr

ε(x))
]T
∥
∥
∥

= lim
ε→0+

εr1−2r2

∥
∥
∥
[
f̂n+1(δ

r
ε(x)), . . . , f̂2n(δr

ε(x))
]T
∥
∥
∥ (14)

for all x ∈ S2n−1
c = {x ∈ R2n : ‖x‖ = c} (resp. x ∈ S2n−1

r,c = {x ∈ R2n : ‖x‖r = c}), for some c > 0
such that S2n−1

c ⊂ D (resp. S2n−1
r,c ⊂ D). Hence, from (11b), under the consideration of Property

7Observe, for every x ∈ Bρ and all ε ∈ (0, 1], that σij(kijεrij xij) = σij(ε
rikijxij) = εαj σij(kijxij), i = 1, 2, j = 1, . . . , n

⇐⇒ si(Kiδ
r̂i
ε (xi)) = si(ε

riKixi) = δr̂0
ε

(
si(Kixi)

)
, i = 1, 2, and σ0(εαj ∙) = εα0j σ0(∙) = εα0σ0(∙), j = 1, . . . , n ⇐⇒

s0(δr̂0
ε (∙)) = δα̂0

ε

(
s0(∙)

)
= εα0s0(∙).
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2.2 and Remark 1, we have, for all such x ∈ S2n−1
c (resp. x ∈ S2n−1

r,c ):

∥
∥
∥
[
f̂n+1(δ

r
ε(x)), . . . , f̂2n(δr

ε(x))
]T
∥
∥
∥

=
∥
∥
∥− H−1(εr1x1 + qd)C(εr1x1 + qd, ε

r2x2)ε
r2x2 −H(εr1x1)s0

(
s1(ε

r1K1x1) + s2(ε
r2K2x2)

)∥∥
∥

≤
∥
∥
∥− H−1(εr1x1 + qd)C(εr1x1 + qd, x2)ε

2r2x2

∥
∥
∥+

∥
∥
∥H(εr1x1)s0

(
δr̂0
ε

(
s1(K1x1) + s2(K2x2)

))∥∥
∥

whence, through a procedure similar to the one developed to obtain (13), we get

∥
∥
∥
[
f̂n+1(δ

r
ε(x)), . . . , f̂2n(δr

ε(x))
]T
∥
∥
∥

≤ ε2r2

∥
∥
∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥
∥
∥+ ε2r2−r1

∥
∥
∥H(εr1x1)s0

(
s1(K1x1) + s2(K2x2)

)∥∥
∥

and consequently, from (14), we get

L0 ≤ lim
ε→0+

εr1

∥
∥
∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥
∥
∥+ lim

ε→0+

∥
∥H(εr1x1)s0

(
s1(K1x1) + s2(K2x2)

)∥∥

≤
∥
∥H−1(qd)C(qd, x2)x2

∥
∥ lim

ε→0+
εr1 +

∥
∥s0

(
s1(K1x1) + s2(K2x2)

)∥∥ lim
ε→0+

∥
∥H(εr1x1)

∥
∥

≤
∥
∥s0

(
s1(K1x1) + s2(K2x2)

)∥∥ ∙
∥
∥H(0n)

∥
∥ = 0

(note, from (12), that ‖H(0n)‖ = ‖H−1(qd) − H−1(qd)‖ = 0), which completes the proof.

Corollary 1: Consider the proposed control scheme taking σij, i = 0, 1, 2, j = 1, . . . , n, such that

σij(ς) = sign(ς)|ς|βij ∀|ς| ≤ Lij ∈ (0,∞) (15)

with constants βij such that

β1j > 0 , β2j = γβ1j , β0j =
2 − γ

γβ1j
(16)

for a constant γ ∈ (0, 2). Thus, for any positive definite diagonal matrices K1 and K2, |τj(t)| =
|uj(t)| < Tj, j = 1, . . . , n, ∀t ≥ 0, and the closed-loop trivial solution q̄(t) ≡ 0n is:

(1) globally finite-time stable if 1 < γ < 2;
(2) globally asymptotically stable with (local) exponential stability if γ = 1.

Proof. Note that for any continuous nondecreasing function σij fulfilling (15), we have σij(ς) ≥

min
{
ςβij , L

βij

ij

}
> 0, ∀ς > 0, and σij(ς) ≤ −min

{
|ς|βij , L

βij

ij

}
< 0, ∀ς < 0, and consequently

ςσij(ς) ≥ |ς|min
{
|ς|βij , L

βij

ij

}
> 0, ∀ς 6= 0. This shows that, for every j ∈ {1, . . . , n}, a strictly

increasing σ0j satisfying (15) is a strictly increasing strictly passive function, and nondecreasing
σij , i = 1, 2, fulfilling (15) are nondecreasing strictly passive functions. Note further that, given
any rij > 0, for every ς ∈ (−Lij , Lij): εrij ς ∈ (−Lij , Lij) and σij(εrij ς) = sign(εrij ς)|εrij ς|βij =
εrijβij sign(ς)|ς|βij = εrijβijσij(ς), ∀ε ∈ (0, 1]. Hence, under the consideration of expressions (16),
for every j ∈ {1, . . . , n}, we have, for any r1j = r1 > 0, that taking r2j = r2 = r1/γ and
r0j = r1β1j , σij , i = 1, 2, are locally ri-homogeneous of degree α2j = r2β2j = r1β1j = α1j = αj

with domain of homogeneity Dij = {ς ∈ R : |ς| < Lij}, and σ0j is locally αj-homogeneous of
degree α0j = α0 = (2− γ)r1/γ with domain of homogeneity D0j = {ς ∈ R : |ς| < L0j}, while under
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the additional condition on γ, we have that 0 < γ < 2 ⇐⇒ (0 < γ) ∧ (0 < 2 − γ) =⇒ 0 <
(2 − γ)r1/γ = α0 ⇐⇒ 0 < 2r2 − r1 = α0. The requirements of Proposition 2 are thus concluded
to be satisfied with r2 < r1 ⇐⇒ 1 < γ < 2 and r2 = r1 ⇐⇒ γ = 1.

Remark 9: Since the results of this section depart from the application of the proposed control
scheme, the cases of Proposition 2 with r2 > r1 and Corollary 1 with γ ∈ (0, 1) are particular cases
of Proposition 1 where the closed-loop trivial solution q̄(t) ≡ 0n is globally asymptotically stable
but not (locally) exponentially stable (in accordance to Footnote 6).

5. Simulation results

The proposed scheme was implemented through computer simulations considering the model of a
2-DOF mechanical manipulator corresponding to the experimental robotic arm used in (Zavala-Ŕıo
and Santibáñez, 2006). For such a robot, the various terms characterizing the system dynamics in
Eq. (1) are given by

H(q) =

(
2.351 + 0.168 cos q2 0.102 + 0.084 cos q2

0.102 + 0.084 cos q2 0.102

)

C(q, q̇) =

(
−0.084q̇2 sin q2 −0.084(q̇1 + q̇2) sin q2

0.084q̇1 sin q2 0

)

g(q) =

(
38.465 sin q1 + 1.825 sin(q1 + q2)

1.825 sin(q1 + q2)

)

Assumption 1 is thus satisfied with Bg1 = 40.29 Nm and Bg2 = 1.825 Nm. Furthermore, the input
saturation bounds are T1 = 150 Nm and T2 = 15 Nm for the first and second links respectively,
whence one can corroborate that Assumption 2 is fulfilled too.

For the application of the proposed design methodology, let us define the functions

σu(ς; β, a) = sign(ς)max{|ς|β , a|ς|} (17a)

σbh(ς; β, a,M ) = sign(ς)min{|σu(ς; β, a)|,M} (17b)

σbs(ς; β, a,M,L) =

{
σu(ς; β, a) if |ς| ≤ L

sign(ς)σ+
bs(|ς|; β, a,M,L) if |ς| > L

(17c)

where

σ+
bs(ς; β, a,M,L) = σu(L; β, a) + (M − σu(L; β, a)) tanh

(
σu(ς; β, a) − σu(L; β, a)

M − σu(L; β, a)

)

for constants β > 0, a ∈ {0, 1}, M > 0, and L > 0 such that σu(L; β, a) < M . Figure C1
shows examples.
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5.1 Finite-time vs exponential stabilization

The goal of this subsection is to show finite-time control implementations (through the proposed
scheme) on the considered 2-DOF manipulator model, and to compare them with analog expo-
nential stabilization tests. In particular, we are interested in corroborating the so-cited argument
claiming that finite-time controllers achieve faster stabilization than asymptotic ones. Let us note
that through the incorporation of exponential regulation implementations in the comparison, the
fastest and more desirable type of asymptotic stabilization is being considered.

Based on the functions in Eqs. (17), we define —for every j = 1, 2— those involved in the
implementations performed in this subsection as

σ0j(ς) = σbs(ς; β0, a0j ,M0j , L0j) (18a)

σij(ς) = σu(ς; βi, aij) i = 1, 2 (18b)

Following the design procedure in accordance to Corollary 1, we fixed γ = 3/2, β1 = 1/3, β2 = 1/2
and β0 = 1 for the finite-time control implementations, and γ = β1 = β2 = β0 = 1 for the
exponential stabilization tests. Let us note that through these definitions we have Bj = M0j ,
j = 1, 2 (see (10)). Thus, by fixing M01 = 100 and M02 = 13 [Nm], the inequalities from expression
(10) are satisfied. We further fixed L0j = 0.9M0j , j = 1, 2. All the implementations were run taking

the desired configuration at qd =
(
π/4 π/2

)T [rad] and initial conditions as q(0) = q̇(0) = 02. For
comparison purposes among the implementations, for every closed-loop response, we got (from the
simulation data) the %-stabilization time ts%, defined as ts% , inf{ts ≥ 0 : ‖x(t)‖ ≤ % ∀t ≥ ts}, where

x ,
(
q̄T q̇T

)T .
Figure C2
shows results obtained taking, for every j = 1, 2: aij = 0, ∀i ∈ {0, 1, 2}, k1j = 1 [Nm/rad] and

k2j = 1 [Nms/rad]. One sees that the finite-time controller did give rise to faster responses, which
is corroborated from %-stabilization times, obtained for % = 0.01 as ts0.01 = 8.31 s for the finite-
time control implementation and ts0.01 = 21.61 s for the exponential stabilization test. Keeping
aij = 0, ∀i ∈ {0, 1, 2}, ∀j ∈ {1, 2}, further simulations were run increasing the control gain values
to k1j = 10 [Nm/rad] and k2j = 10 [Nms/rad], j = 1, 2. The results are shown in Figure 1,

whence one sees that, this time, it is the exponential stabilizer that gives rise to faster closed
loop reactions (transient responses with shorter rise times). This seems to be confirmed through
preliminary %-stabilization time estimations, obtained for % = 0.01 as ts0.01 = 6.55 s for the finite-
time control implementation and ts0.01 = 5.35 s for the exponential stabilization test. A detailed
inspection gives a clue on the reaction-speed differences so far observed, which are explained as
follows. While the exponential stabilizers remain Lipschitz-continuous, the finite-time controllers
loose Lipschitz-continuity at the origin. For instance, the σij , i, j = 1, 2, functions of the imple-
mented algorithm keep a unitary slope around zero in the exponential stabilization case while they
adopt a vertical slope at zero for the finite-time controller. Consequently, in the finite-time control
case, there is a region around zero where each one of the corresponding control force components
is magnified by an additional (non-linear) gain induced by the involved functions (see for instance
Figure C1). In the case of the implemented finite-time stabilizer, by denoting ςij , i, j = 1, 2, the
corresponding arguments of σij , such a region is characterized as {|ςij | ≤ 1, i, j = 1, 2} , DM . Out-
side this region, the involved functions have a reductive effect on their arguments in the finite-time
control case, as may be corroborated for instance through Figure C1. Thus, when the closed-loop
trajectories are such that the arguments of the involved functions, ςij , remain most of the time
within the referred region, DM , the corresponding (P and D type) control force components act
with higher intensity in the finite-time case, forcing the resulting (error-variable) trajectories to
ultimately reach any neighborhood of the origin faster. On the contrary, when the closed-loop tra-
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jectories spend most of the transient time outside such a region, DM , slower (transient) reactions
take place through the finite-time controller. Figures 2

and 3
show the variation of the arguments of the functions σij , i, j = 1, 2, obtained from both imple-

mentations. One sees that with unitary gains (Figure 2), such arguments remained most of the time
within the referred region DM , explaining the quicker convergence of the trajectories obtained with
the finite-time controller. On the contrary, with the higher gains (Figure 3), the referred arguments
remained most of the transient time outside DM , which explains the faster (transient) reaction
of the trajectories obtained with the exponential controller. Nevertheless, further %-stabilization
times obtained in this latter case for % = 0.001 (resp. % = 0.0001) gave ts0.001 = 7.17 s (resp.
ts0.0001 = 7.37 s) for the finite-time controller and ts0.001 = 7.63 s (resp. ts0.0001 = 9.91 s) for the
exponential stabilizer, which seems to show that ‖x(t)‖ finishes up by converging quicker to zero
through finite-time control. This is expectable from the finite-time convergence, which forces the
trajectories to exactly reach the equilibrium at the settling (finite) time, versus the asymptotic
infinite-time attraction, which implies (divergently) longer time intervals to get to smaller neigh-
borhoods of the origin. However, from a practical viewpoint, %-stabilization times estimated for
% = 0.01 could be enough to determine that closed loop trajectories practically reached the equilib-
rium, giving rise to the possibility to have closed-loop implementations where exponential stabilizers
be considered to (practically) achieve stabilization faster than finite-time controllers. This may be
of particular interest under uncertain dynamics, perturbation terms or unmodelled phenomena
that entail steady-state errors, in view of which exact stabilization cannot be guaranteed.

The observed reaction-speed differences may be avoided through different selections on the P and
D type action related functions. For instance, further simulations were run with the same control
gain combinations, already tested, but this time taking aij = 1, ∀i ∈ {0, 1, 2}, ∀j ∈ {1, 2}. Such
a choice keeps the same nonlinear gains on DM but avoids differences on the involved functions
among the tested stabilizers outside DM (see Figure C1). Figures 4

and 5
show the new results. One sees that, with unitary gains (Figure 4), the resulting closed loop

responses seem to be close to those of the corresponding preceding test, i.e. to those shown in Figure
C2 (the results corresponding to the exponential stabilizer were identical). This was expectable
since, analogously to the corresponding precedent test, the arguments of the referred functions
remained within DM most of the time. The %-stabilization time for % = 0.01 gave ts0.01 = 8.27 s
for the finite-time controller (a little smaller than in the precedent case, where ts0.01 = 8.31 s was
obtained), keeping a ratio with respect to the estimation obtained for the exponential stabilizer,
ts0.01 = 21.61 s, close to that of the corresponding precedent test. Furthermore, with the higher gains
(Figure 5), the trajectories obtained with the finite-time controller are observed to be close to those
obtained with the exponential stabilizer (which remained identical). This is not surprising since,
as expected, most of the transient time, the arguments of the involved function remained outside
DM (where the P and D action related functions keep the same form for both stabilizers). The
%-stabilization time for % = 0.01 gave ts0.01 = 4.77 s for the finite-time controller —against ts0.01 =
5.35 s for the exponential stabilizer— showing that, contrarily to the corresponding precedent case,
this time, the finite-time controller may indeed be concluded to achieve faster convergence either
through practical criteria (and not just in view of its finite-time nature). It is worth emphasizing
that such a way to ensure faster stabilization —as well as input saturation avoidance— through
finite-time control was achieved thanks to the design flexibility permitted within the framework of
local homogeneity, which allows to involve functions that are not forced to keep the homogeneity
property globally but may rather adopt suitable changes.
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5.2 Multiple saturating structure

Another aspect from the proposed scheme that is worth exploring concerns the design flexibility
permitted on the choice of the saturating structure. We present an alternative test where two
finite-time controllers that keep the same control gains but adopt different saturating structures
are compared. It is worth pointing out that the proposed design methodology does not force to keep
the same saturating structure at every one of the controlled degree of freedom but rather permits
different choices among them. However, for our comparison purposes, the saturating structures
are chosen different among the controllers but are kept the same among the controlled degrees of
freedom for each one of the implemented stabilizer.

One of the implemented finite-time controllers adopts the same saturating structure of the prece-
dent subsection, i.e. it involves the functions defined through Eqs. (18). Since this stabilizer uses,
at every controlled degree of freedom, a single saturation function that includes both the P and
D actions, it will be referred to as the SPD controller. The alternative finite-time stabilizer is
structured taking, for every j = 1, 2:

σ0j(ς) = σu(ς; β0, a0j)

σij(ς) = σbh(ς; βi, aij ,Mij) i = 1, 2

Since this stabilizer uses a saturation function for each one of the P and D actions (separately), it
will be referred to as the SP-SD controller.

For both —the SPD and SP-SD— finite-time controllers, we keep the same values taken in the
precedent subsection for the parameters γ and βi, i = 0, 1, 2, i.e. γ = 3/2, β1 = 1/3, β2 = 1/2 and
β0 = 1. Let us note that with these values, for the SP-SD algorithm we have Bj = M1j + M2j ,
j = 1, 2 (see (10)). Thus, by fixing Mi1 = 50 and Mi2 = 6.5 [Nm], i = 1, 2, the inequalities in
expression (10) are satisfied. For the SPD algorithm we kept the same values of the parameters
M0j and L0j taken in the precedent subsection, i.e. M01 = 100, M02 = 13 [Nm] and L0j = 0.9M0j ,
j = 1, 2. Both controllers were implemented taking aij = 1, i = 0, 1, 2, j = 1, 2, k11 = 200, k12 = 20
[Nm/rad], k21 = 200 and k22 = 20 [Nms/rad]. The implementation was run taking the same desired
configuration and initial conditions taken in the precedent tests, i.e. qd =

(
π/4 π/2

)T [rad] and
q(0) = q̇(0) = 02.

Figure 6
shows the results obtained from the implementations. Observe that the SPD controller achieved

faster finite-time stabilization. Such a result corroborates the usefulness of the structural variety
offered by the proposed approach in searching for performance improvement.

5.3 The control signals

Observe that in all the previous simulation results (shown in both previous subsections) the control
signals are corroborated to remain within the pre-specified ranges avoiding input saturation. In
particular, the contrast on the convergence among the finite-time and exponential control signals
is visible from the simulation results shown in Subsection 5.1. As for those shown in Subsection
5.2, one observes how the SPD structure permits a quicker control reaction than the SP-SD one,
which explains the observed performance differences. Further exploration on the control signals
and closed-loop system robustness against perturbations is left for future work.
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6. Conclusions

Global regulation of mechanical systems with input constraints guaranteeing finite-time or expo-
nential stabilization has been made possible through local homogeneity. A control scheme based
on such a recent concept has been thoroughly developed and formally proposed, leaving the de-
signer the election on the mentioned types of convergence through a simple parameter. It keeps
a generalized SPD-type form permitting multiple saturating and locally-homogeneous structures.
The work has been complemented through a simulation implementation section where it has not
only been possible to illustrate the application of the proposed method and confirm the analytical
results but also to study the veracity of the so-cited argument claiming that finite-time controllers
achieve faster stabilization than asymptotic ones. This was actually shown to depend on the spe-
cific locally homogeneous functions involved in the SPD term of the controller and the precision
used to practically evaluate the stabilization time. Furthermore, a way to define such functions
has been shown through which finite-time controllers indeed prove to be faster than asymptotical
stabilizers. This was made possible thanks to the design flexibility permitted within the framework
of local homogeneity, which allows to involve functions that are not forced to keep the homogeneity
property globally but may rather adopt suitable changes. Future work will consider robustness
issues under uncertainties.
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Appendix A.

The work in (Orlov, 2005) already stated important extensions to the theory of homogeneity and
finite-time stability. In particular, related definitions and results were extended therein to the
framework of differential inclusions. Within such a context, two definitions stating a notion of local
homogeneity were presented, both reproduced next.

Definition 7: (Orlov, 2005, Definition 2.9) The differential inclusion Σdi : ẋ = Φ(x, t) (the differ-
ential equation Σde : ẋ = ϕ(x, t) or the uncertain system Σus : ẋ = ϕ(x, t)+ψ(x, t), |ψi(x, t)| ≤ Mi,
i = 1, . . . , n) is called locally homogeneous of degree q ∈ R with respect to dilation (r1, . . . , rn),
where ri > 0, i = 1, . . . , n, if there exist a constant c0 > 0, called a lower estimate of the homo-
geneity parameter, and a ball Bδ ⊂ Rn, called a homogeneity ball, such that any solution x(∙) of
Σdi (respectively, that of Σde or Σus), evolving within the ball Bδ, generates a parameterized set
of solutions xc(∙) with components

xc
i (t) = crixi(c

qt)

and parameter c ≥ c0.

Definition 8: (Orlov, 2005, Definition 2.10) A piecewise continuous function ϕ : Rn+1 → Rn is
called locally homogeneous of degree q ∈ R with respect to dilation (r1, . . . , rn), where ri > 0,
i = 1, . . . , n, if there exist a constant c0 > 0 and a ball Bδ ⊂ Rn such that

ϕi(c
r1x1, . . . , c

rnxn, c−qt) = cq+riϕi(x1, . . . , xn, t)

for all c ≥ c0 and almost all (x, t) ∈ Bδ × R.

Furthermore, a local-homogeneity-based criterion for global finite-time stability, analog to the
one presented in (Zavala-Ŕıo & Fantoni, 2014, Theorem 3.1) (reproduced in Section 2, above, as
Theorem 1), was also previously presented in (Orlov, 2005, Theorem 3.1). Since the latter was
stated within the context of differential inclusions, the respective proofs follow completely different
analytical procedures.

In view of the different formulations among the definitions of local homogeneity stated in (Orlov,
2005) and that (Zavala-Ŕıo & Fantoni, 2014), the verification of their fulfilment would imply
different analytical procedures. For this reason, and since this work does not deal with differential
inclusions, the results in this paper are developed within the analytical context of (Zavala-Ŕıo &
Fantoni, 2014).

Interesting enough, an approximation approach of homogeneity has also been alternatively re-
ferred to as local homogeneity in (Efimov & Perruquetti, 2010). More precisely, the referred ap-
proximation notion is defined therein as follows.

Definition 9: (Efimov & Perruquetti, 2010, Definition 2) The function g : Rn → R, g(0n) = 0, is
called (r, λ0, g0)-homogeneous (ri > 0, i = 1, n; g0 : Rn → R, g0(0n) = 0) if for any x ∈ Sn−1

1

lim
λ→λ0

λ−d0g(δr
λ(x)) − g0(x) = 0

for some d0 ≥ 0. The system ẋ = f(x) is called (r, λ0, f0)-homogeneous (ri > 0, i = 1, n; f0 : Rn →
Rn, f0(0n) = 0n) if for any x ∈ Sn−1

1

lim
λ→λ0

λ−d0diag[λ−r1 , . . . , λ−rn ]f(δr
λ(x)) − f0(x) = 0
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for some d0 ≥ −min1≤i≤n ri.

Such an approximation approach actually includes the one considered in Eq. (6), which would
be a special case of Definition 9 for λ0 = 0. This special case, expressed through Eq. (6), had been
previously considered to state the preservation of asymptotic stability (at the origin) in (Rosier,
1992) and of finite-time stability in (Hong, Huang & Xu, 2006), both within the conventional
context of homogeneity, and of finite-time stability within the framework of local homogeneity in
(Zavala-Ŕıo & Fantoni, 2014). An extension of the latter, that includes preservation of exponential
stability, is presented in Section 2, above, as Lemma 2, whose formulation will prove to be useful
within the analytical context developed in this paper.

Appendix B.

Reference (Zavala-Ŕıo & Fantoni, 2014) states and proves the finite-time stability version of Lemma
2. We thus prove here the part of the statement concerning δ-exponential stability.

Let Dc = {x ∈ D : ‖x‖r < c}. Consider the following variable transformation

(
y
ρ

)

: Dc \ {0n} → Sn−1
r,c × (0, c)

x 7→






[
cr1x1

‖x‖r1
r

cr2x2

‖x‖r2
r

∙ ∙ ∙
crnxn

‖x‖rn
r

]T

‖x‖r






(B1a)

whose inverse is

x : Sn−1
r,c × (0, c) → Dc \ {0n}

(y, ρ) 7→ δr
ρ/c(y)

(B1b)

The vector function defining y in (B1a) projects every point of Dc \ {0n} onto the r-homogeneous
(n − 1)-sphere Sn−1

r,c , and every point y on Sn−1
r,c is the projection of the whole dilation segment

(or ray segment through y (Zavala-Ŕıo & Fantoni, 2014)) δr
ε(y) ∀ε ∈ (0, 1), or equivalently, δr

ρ/c(y)

∀ρ ∈ (0, c).8 From Eqs. (B1), the system dynamics in the (y, ρ)-coordinates on Sn−1
r,c × (0, c), taking

α = 0, is obtained, after basic developments, as

ẏ =
[
In − diag[r1, . . . , rn]yψ(y)

][
f(y) + diag[(c/ρ)r1 , . . . , (c/ρ)rn ]f̂(δr

ρ/c(y))
]

(B2a)

ρ̇ =
[
ψ(y)f(y) + F̂ (y, ρ)

]
ρ (B2b)

where

F̂ (y, ρ) =
n∑

i=1

ψi(y)(c/ρ)ri f̂i

(
δr
ρ/c(y)

)

8In the conventional analytical context of homogeneity, where D = Rn, Dc and (0, c) in expressions (B1) are respectively

replaced by Rn and R>0, and c is conventionally taken as c = 1, the vector function defining y in (B1a) projects every point

of Rn \ {0n} onto the r-homogeneous (n − 1)-sphere Sn−1
r,c (Kawski, 1990; M’Closkey & Murray, 1997), and every point y on

Sn−1
r,c is the projection of the whole dilation (or ray through y (Aeyels & de Leenheer, 2002)) δr

ε(y) ∀ε > 0.
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and ψ(y) = [ψ1(y) ψ2(y) ∙ ∙ ∙ ψn(y)], with

ψi(y) =
sign(yi)

cp ri
|yi|

p

ri
−1

i = 1, . . . , n. Integration yields ρ(t) = ρ(0)eϕ(t)+ϕ̂(t), with ϕ(t) =
∫ t
0 ψ(y(ς))f(y(ς))dς and ϕ̂(t) =

∫ t
0 F̂ (y(ς), ρ(ς))dς (as long as ρ(t) < c). Since in case f̂(x) ≡ 0n the origin is a δ-exponentially

stable equilibrium, there are constants a ≥ 1, b > 0 and c0 ∈ (0, c/a) such that ρ(t) = ρ(0)eϕ(t) ≤
aρ(0)e−bt, ∀t ≥ 0, ∀ρ(0) ∈ (0, c0). Now, by continuity of ψ(y) (recall Remark 2) and the compactness
of Sn−1

r,c , ψ(y) happens to be bounded on Sn−1
r,c , or equivalently, there exists a positive constant Bψ

such that |ψi(y)| ≤ Bψ, i = 1, . . . , n, ∀y ∈ Sn−1
r,c . Further, by (7) (with α = 0), there exists c1 ∈

(0, c0) such that, for every y ∈ Sn−1
r,c :

∣
∣(c/ρ)ri f̂i

(
δr
ρ/c(y)

)∣∣ ≤ b
2nBψ

, i = 1, . . . , n, ∀ρ ∈ (0, c1). Thus,

for every y ∈ Sn−1
r,c and all ρ ∈ (0, c1), F̂ (y, ρ) ≤

∑n
i=1 |ψi(y)| |(c/ρ)ri f̂i(δr

ρ/c(y))| ≤
∑n

i=1 Bψ
b

2nBψ
=

b/2, and consequently ρ(t) = ρ(0)eϕ(t)+ϕ̂(t) ≤ aρ(0)e−bt+
∫ t

0 (b/2)dς = aρ(0)e−(b/2)t, ∀t ≥ 0, ∀ρ(0) ∈
(0, c1/a), or equivalently ‖x(t; x0)‖r ≤ a‖x0‖re

−(b/2)t, t ≥ 0, ∀‖x0‖r ∈ (0, c1/a), which concludes
the proof.

Appendix C.

Let ς0, ς1, ς2 ∈ R. Since σ0 is strictly increasing, we have that σ0(ς0) > σ0(ς1) ⇐⇒ ς0 > ς1 and
σ0(ς0) < σ0(ς1) ⇐⇒ ς0 < ς1. From this and the strictly passive character of σ2 we have, by
letting ς0 = ς1 + σ2(kς2), that σ0(ς1 + σ2(kς2)) − σ0(ς1) > 0 ⇐⇒ σ2(kς2) > 0 ⇐⇒ ς2 > 0 and
σ0(ς1 + σ2(kς2)) − σ0(ς1) < 0 ⇐⇒ σ2(kς2) < 0 ⇐⇒ ς2 < 0, ∀ς1 ∈ R, whence it follows that
ς2
[
σ0(ς1 + σ2(kς2)) − σ0(ς1)

]
> 0, ∀ς2 6= 0, ∀ς1 ∈ R.
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Figure 1. Examples of σu(ς; β, a), σbh(ς; β, a, M) and σbs(ς; β, a, M, L)

22

D
ow

nl
oa

de
d 

by
 [

In
st

itu
to

 P
ot

os
in

o 
de

 I
nv

es
tig

ac
ió

n 
C

ie
nt

íf
ic

a,
 A

.C
.]

, [
A

rt
ur

o 
Z

av
al

a-
R

io
] 

at
 0

7:
14

 1
5 

Ju
ne

 2
01

6 



June 11, 2016 International Journal of Control FTSPDIJC03b

0 10 20 30
−1

−0.5

0

0.5

t [s]

q̄ 1
[r

ad
]

 

 

finite−time exponential

0 10 20 30
−2

−1.5

−1

−0.5

0

0.5

t [s]

q̄ 2
[r

ad
]

0 10 20 30
0

10

20

30

40

t [s]

u
1

[N
m

]

0 10 20 30
0

0.5

1

1.5

2

t [s]

u
2

[N
m

]

Figure 2. Results with aij = 0, ∀i ∈ {0, 1, 2}, ∀j ∈ {1, 2}, k1j = 1 [Nm/rad] and k2j = 1 [Nms/rad], j = 1, 2: position errors

(left) and control signals (right)
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Figure 3. Results with aij = 0, ∀i ∈ {0, 1, 2}, ∀j ∈ {1, 2}, k1j = 10 [Nm/rad] and k2j = 10 [Nms/rad], j = 1, 2: position errors

(left) and control signals (right)
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Figure 4. Variation of the arguments of σij , i, j = 1, 2, obtained from the implementations with k1j = 1, [Nm/rad] and k2j = 1

[Nms/rad], j = 1, 2
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Figure 5. Variation of the arguments of σij , i, j = 1, 2, obtained from the implementations with k1j = 10, [Nm/rad] and

k2j = 10 [Nms/rad], j = 1, 2
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Figure 6. Results with aij = 1, ∀i ∈ {0, 1, 2}, ∀j ∈ {1, 2}, k1j = 1 [Nm/rad] and k2j = 1 [Nms/rad], j = 1, 2: position errors

(left) and control signals (right)
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Figure 7. Results with aij = 1, ∀i ∈ {0, 1, 2}, ∀j ∈ {1, 2}, k1j = 10 [Nm/rad] and k2j = 10 [Nms/rad], j = 1, 2: position errors

(left) and control signals (right)
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Figure 8. SPD vs SP-SD finite-time controllers: position errors (left) and control signals (right)
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