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SUMMARY

In this work, a generalized design scheme for the output feedback regulation of a special type of systems
with bounded inputs is proposed. It gives rise to a simple dynamic controller that guarantees the regulation
objective avoiding input saturation, for any initial condition within a specific set that may comprehend the
whole state space, and that does not require any additional system data (apart from the output variable).
Several processes, like double-pipe heat exchangers, bioreactors, and binary distillation columns, are shown
to be part of the type of systems that may be regulated through the developed methodology. The efficiency of
the proposed scheme is corroborated through experimental and simulation results. Copyright c© 2011 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

When one is charged to design a control algorithm for an actual application, one is inexorably
faced to deal with the inherent complexity and limitations of the plant/process (to be controlled).
For instance, if every system internal variable (state) may take any value within a wide range, a
linearized model is not necessarily —and will not in general constitute— a suitable approximation.
Intrinsic nonlinear phenomena may be stimulated, giving rise to unexpected behaviors —such as
sustained oscillatory or vibratory responses, trajectory undesired convergence, or chaotic regimes
[1, §1.1]— that may result in unacceptable or even dramatic consequences. Another relevant aspect
to take care about is the saturation nonlinearity that usually characterizes the signal transfer from
the controller output to the process input. This is a consequence of the natural limitations of real-life
actuators. Forcing these to go beyond their natural capabilities, undergoing saturation, may produce
undesirable phenomena [2, §5.2], [3, §15.4], [4] that give rise to a deteriorated or even disastrous
closed-loop performance, as pointed out for instance in [5] and [6].

Another aspect that is worth considering in the synthesis procedure concerns the process data
included in the designed scheme. For instance, the stated control objective may not necessarily
involve all the system states but just one or some of them. A controller that achieves the desired
goal exclusively through such variables turns out to be convenient. In a natural way, this reduces
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sensor/signal-availability concerns; this is particularly important when the involved variables are the
only ones that are measurable. Besides, by avoiding the extraction of unnecessary information from
the system, the inherent instrument inaccuracies and measurement noise have a diminished influence
on the feedback loop. Less corrupted control signals consequently take place decreasing the related
effects and risks. As a matter of fact, the more dependent is the designed scheme on the process data,
the more deteriorated closed-loop performance may be expected since it is practically impossible to
avoid errors in the model structure, estimated parameters, and/or variable measurements. From this
perspective, the lowest possible or null dependence on the exact knowledge of the system parameters
turns out to be convenient too.

On the other hand, the control scheme may be designed on the basis of the process intrinsic
dynamical properties. A synthesis procedure that exploits the open-loop system inherent analytical
features (such as BIBO stability, passivity, or input-to-state stability) generally gives rise to a
successful simple algorithm. The antithesis of such a design guideline seems to be established by
the so-called exact linearization via feedback [7]. Assuming the availability of the exact process
information —precise model, unbiased parameters, and accurate state measurements— such a
methodology aims at compensating the system dynamics to impose a linear closed loop with suitable
stability properties. This is done whether or not the open loop already possessed dynamical features
that were compatible or appropriate to the control objective. As a result, such a methodology
generally gives rise to complex controllers that involve all (or an important amount of) the process
data, whose success is highly dependent on the accuracy of the involved system information, and
that do not essentially deal with the inherent limitations such as the input saturation phenomenon.

An additional important aspect concerns the region of attraction (of the desired equilibrium) that
is achieved in closed loop. In this direction, an algorithm that guarantees the control objective for
any initial condition within the system state space, or in a subset of interest (where the closed loop
trajectories would evolve globally in time), constitutes the best option.

In this paper, we aim at contributing a generalized control scheme for the output feedback
regulation of a special type of bounded-input systems, taking into account the previously mentioned
important aspects and guidelines. In particular, we focus on a type of SISO† plants for which any
constant input value, within its permissible bounded range, ensures the convergence of the system
(internal) variables towards a specific point within their domain; examples of such kind of processes
comprehend double-pipe heat exchangers [8], bioreactors [9], and binary distillation columns [10],
among others. Such an open-loop property is exploited by the proposed scheme, which aims at
reproducing a similar closed-loop behavior, inducing the input to converge to the natural value
that ensures the desired stabilization, through an auxiliary state-space dynamics whose vector field
prevents the control signal to go beyond the corresponding (plant) input natural bounds. This idea
was followed in [11] to design an output feedback regulator for double-pipe heat exchangers. In this
particular case —which constituted the main motivation to develop the generalized scheme proposed
in the present work—, the auxiliary dynamics forces the relocation of the system steady state in
such a way that the output variable takes the desired equilibrium value —which is achieved by
directly involving the output error (with respect to its desired value) and no additional system data—;
simultaneously, equilibrium values are imposed to the auxiliary state at the physical bounds such
that the control signal is prevented to go beyond such limits; moreover, the corresponding closed-
loop equilibrium points are proved to be unstable in view of which convergence to any of them is
avoided; in addition, the auxiliary dynamics include a control gain through which suitable closed-
loop properties are ensured. The present work aims at the generalization of this design procedure
for its application to other types of systems that keep analogous open-loop characteristics.

A controller similar to that in [11], but that does not involve a control gain (or equivalently, with
a fixed unitary control gain), was previously proposed in [9] for the output feedback regulation of
bioreactors. A remarkable closed-loop stability proof was developed in this work through Lyapunov

†It is considered here that the dynamic model of a SISO system may involve several external variables, but only one of
them plays the role of control input —for the stabilization of a particular output variable— while the rest of them remain
constant (including those which may be considered perturbation inputs).
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analysis. Later on, the same control technique, this time involving a control gain, was applied for
the stabilization of continuous stirred tank reactors in [12]. In this work, the existence of such
a stabilizer was proved in a generalized context for a type of SISO systems whose open-loop
stability properties (under the consideration of constant input values) were characterized through the
existence of a Lyapunov function. The controller auxiliary dynamics obtained through the proof of
this result (presented in [12, §4] as Lemma 1), keeps a structure analogous to that in [11], imposing
equilibrium values that prevent the auxiliary state to go beyond the input bounds, and involving
a specific function of the states that forces the desired stabilization for any (positive) value of the
control gain. But if the output error is involved instead to induce the desired stabilization, the control
gain is not necessarily free to take any positive value. Indeed, a careful reading of the proof of the
main result in [11] shows that with a sufficiently large control gain, the unique equilibrium point in
the closed-loop state-space domain becomes unstable, which generates an unexpected asymptotical
behavior (such as a sustained oscillation). This particular aspect is reflected in the generalized
context considered in this work, which finishes up by restricting the control gain tuning (such a
restriction is further relaxed under additional requirements).

Thus, the control scheme proposed in this work is not only a generalization of that developed
in [11], but may also be seen as an extension or complement of those presented in [9] and [12].
Firstly, the study focuses on the characterization of the analytical properties of the type of systems
that may be regulated through the proposed method. Further, the closed-loop system is proved to
keep analytical properties similar to those characterizing the open-loop system, with the unique
equilibrium point suitably relocated in terms of the desired output value. Moreover, applicability of
the control algorithm is shown on several processes. The proposed scheme proves to achieve the
output feedback regulation objective avoiding input saturation, without the need of any additional
system data (apart from the output variable), and for any state initial condition within a specific set
where the system is known to satisfy the requested characterization (and which could comprehend
the whole natural state space of the considered plant).

The paper is organized as follows. Section 2 states the considerations, assumptions, and notations
used throughout the paper. The main result is presented in Section 3. Section 4 treats the application
of the proposed scheme to double-pipe heat exchangers, bioreactors, and binary distillation columns;
results obtained through experimental implementations on a UASB bioreactor and other simulation
tests are included. Finally, conclusions are given in Section 5.

2. CONSIDERATIONS, ASSUMPTIONS, AND NOTATION

Let Rn+ represent the set of vectors in Rn whose elements are all nonnegative, 0n denote the origin of
Rn, and In stand for the n× n identity matrix. The ith element of a vector ξ ∈ Rn is denoted ξi. The
interior and boundary of a set, say Γ, are respectively denoted int(Γ) and ∂Γ. LetA and E be subsets
(with nonempty interior) of some vector spaces A and E respectively. The image of B ⊂ A under
ν : A → E is denoted ν(B). Differentiability of ν : A → E at any point of the boundary of A (when
included in the set) is meant as the limit from the interior of A. For a continuously differentiable
scalar function ν : A → R, where A ⊂ R, we denote ν′ : A → R : ς 7→ dν

dς , i.e ν′(ς) = dν
dς (ς). As

conventionally, the inverse of an invertible function ν is denoted ν−1. For a symmetric matrix
B ∈ Rn×n, λmin(B) and λmax(B) respectively denote its minimum and maximum eigenvalues. For
a matrix B ∈ Rm×n, ‖B‖ represents the standard Euclidean induced matrix norm (or 2-norm), i.e.
‖B‖ =

[
λmax(BTB)

]1/2; with m = n, i.e. B ∈ Rn×n, det(B) denotes the determinant of B, and
B > 0 expresses that B is positive definite.

Let us consider a dynamical system with state model of the form

ẋ = f(x) + g(x)u , F (x, u) (1a)
y = h(x) (1b)

where x ∈ Rn; u ∈ [u
¯
, ū] , Υ, for some constants u

¯
< ū; y ∈ R; f, g : Rn → Rn; and h : Rn → R.

The following assumptions characterize the type of systems considered in this study.
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A1. f , g, and h are continuously differentiable.
A2. There exists a continuously differentiable function ψ : R→ Rn satisfying: F (ψ(u), u) = 0n,

∀u ∈ Υ.
A3. There is a compact set Ω ⊂ Rn containing the image of Υ under ψ, i.e. Ψ , ψ(Υ) ⊂ Ω, that

is positively invariant with respect to (1a) uniformly in u on Υ.
A4. The Jacobian matrix ∂F

∂x (ψ(u), u) is Hurwitz for all u ∈ Υ.
A5. With u = α, for any constant α ∈ Υ:

(a) invariant sets on ∂Ω, if any, are unattractive;
(b) {ψ(α)} is the unique invariant set in int(Ω).

A6. The scalar function φ(u) , h(ψ(u)), is monotonic on Υ.

Remark 1
Let u = α for any constant α ∈ Υ. Under this consideration, let x(t;x0) represent the solution of
system (1a) with initial condition x(0;x0) = x0.

R1. Assumptions A1 and A3 ensure existence and uniqueness of solutions of system (1a) for
any x0 ∈ Ω [1, Theorem 3.3 & Lemma 3.2]. In particular, by the additional consideration of
Assumption A5a, we have that, for any x0 ∈ int(Ω), x(t;x0) ∈ int(Ω), ∀t ≥ 0.

R2. Assumptions A2–A5 state that there exists a unique equilibrium point ψ ∈ int(Ω), whose
location in int(Ω) is determined by the value of α ∈ Υ, that such unique equilibrium in int(Ω)
is asymptotically stable —actually, exponentially stable [1, Theorem 4.15]— whatever is the
value that α takes in Υ, and that it constitutes the unique invariant in int(Ω).

R3. From points R1 and R2 above, and the compact character of Ω (which implies boundedness
of every trajectory remaining in Ω), we have that, for any x0 ∈ int(Ω), x(t;x0)→ ψ(α) as
t→∞—see for instance [1, Lemma 4.1]—, and consequently: y(t)→ h(ψ(α)) as t→∞.

R4. Observe from Assumption A6 that:

(a) the image of Υ under φ, R , φ(Υ), is given by R = [φ(u
¯
), φ(ū)] if φ(u) is

increasing, or by R = [φ(ū), φ(u
¯
)] if φ(u) is decreasing; more generally R =[

min{φ(u
¯
), φ(ū)},max{φ(u

¯
), φ(ū)}

]
; this shows that the output cannot be regulated

to any real value but only to those in R;
(b) any output steady-state value φ ∈ R is uniquely defined by a specific input fixed value

u ∈ Υ; moreover, this in turn implies, since φ = h ◦ ψ, that every output steady-state
value φ ∈ R is uniquely related to a specific equilibrium vector ψ ∈ Ψ, which is in turn
uniquely defined by a specific input fixed value u ∈ Υ;

(c) φ, as a function mapping Υ onto R, is invertible; as a function mapping int(Υ)
onto int(R), it is actually diffeomorphic (the differentiability is a consequence of
Assumptions A1 and A4; in particular, φ′ is obtained in Appendix A).

Remark 2
Under Assumptions A1–A3, observe that Assumption A5b is satisfied if there exists a continuously
differentiable scalar function V (x;α) such that V̇ (x;α) = ∂V

∂x F (x, α) ≤ 0, ∀(x;α) ∈ Ω×Υ, with
V̇ (ψ(α);α) = 0, ∀α ∈ Υ, and V̇ (x;α) < 0, ∀(x;α) ∈ int(Ω)×Υ \ {(ψ(α), α)} (according to La
Salle’s invariance principle [1, Theorem 4.4] and the satisfaction of Assumption A5a). Assumption
A5b holds as well under the satisfaction of the conditions stated by Rosenbrock’s Theorem [10,
Appendix A], which was developed and thoroughly proven in [13] (specifically stated as Theorem
6 in the appendix of this reference). Actually, the systems that satisfy Rosenbrock’s Theorem are a
special case of those considered in this work. Other ways to prove the satisfaction of Assumption
A5b can be developed for systems with simple models, as seen for instance in [8] for a heat
exchanger bi-compartmental model, and later on in this work (§4.1 and, more specifically, Appendix
C) for a simple model of a bioreactor.

Basically, Assumptions A1–A6 state that the system under consideration is such that (with
constant input) every trajectory with initial condition within the interior of a positively invariant
compact set, denoted Ω, —which could comprehend the whole system state space— converges
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to a unique equilibrium point whose location is determined by the value of u; moreover, that the
structural stability of the system is not lost whatever value take u in Υ. Such a characterization
comprehends —but is not restricted to— processes whose dynamics keeps the system trajectories
evolving within a bounded set beyond which the system states have no physical meaning; the
systems considered later on in Section 4 are actually of this kind. Simultaneously, systems whose
states may take any real value are also included; this is the case for instance when the asymptotic
stability of the unique open-loop equilibrium point ψ is global. Indeed, from [1, Theorem 4.17]
one sees that for such systems, there exists a Lyapunov function Vψ(x) that proves the asymptotic
stability of ψ, defined in the whole region of asymptotic stability RAψ , and such that the compact
set {Vψ(x) ≤ c} is contained in RAψ for any c > 0. Thus, Assumptions A1–A6 are satisfied with
Ω = {Vψ(x) ≤ c} for any c > c

¯
, for a suitable value of c

¯
(such that Ψ ⊂ {Vψ(x) ≤ c

¯
}). This holds

whether RAψ is equal to Rn or not. But the developed characterization is stated in such a way
that either a specific Ω with the required properties is known —without any restriction on how
such a subset should be found or defined (as long as it possesses the required properties)—, or
whose existence is qualitatively known (even without a precise definition), like in the globally
asymptotically stable equilibrium case. In this latter case, the proposed scheme achieves the
regulation objective for any initial condition on the system internal variables (since c may take
any value arbitrarily higher than c

¯
).

3. MAIN RESULT

Observe that with u = α for any constant α ∈ Υ, the considered type of system, with any x0 ∈
int(Ω), performs a natural stabilization to the unique equilibrium ψ(α) ∈ int(Ω), which corresponds
to a natural output regulation to h(ψ(α)) = φ(α) ∈ R (according to point R4b of Remark 1). This
gives rise to the idea of designing a dynamic controller through which the closed-loop dynamics
keeps the same analytical features in Ω×Υ, with u forced to evolve within int(Υ), and forcing
the existence of a unique equilibrium point (x∗d, u

∗
d) = (ψ(u∗d), u

∗
d) (and no other invariant set in the

interior of Ω×Υ), strategically located such that the corresponding steady-state output value be
equal to the (pre-specified) desired value yd ∈ int(R), i.e. such that h(x∗d) = h(ψ(u∗d)) = φ(u∗d) =
yd. This is achieved through the following control scheme.

Proposition 1
Consider the dynamical system in Eqs. (1) under Assumptions A1–A6, with continuity of the mth

order partial derivatives of f and g holding up to m = 2. Let the input be defined as

u = θ (2)

with θ being an auxiliary state whose dynamics is defined as

θ̇ = skη(θ)(yd − y) (3)

for any (constant) yd ∈ int(R), where s = sign
(
φ(ū)− φ

(
u
¯
)
)
, k is a positive constant, and η

is a continuously differentiable scalar function satisfying η(u
¯
) = η(ū) = 0, η′(u

¯
) > 0 < η′(ū),

and η(θ) > 0, ∀θ ∈ (u
¯
, ū). Then, provided that k is sufficiently small, for any initial condition

(x, θ)(0) = (x0, θ0) ∈ int(Ω)× int(Υ): (x, θ)(t)→ ϕ(yd) , (ψ(φ−1(yd)), φ−1(yd)) as t→∞, and
consequently y(t)→ yd as t→∞, with u(t) ∈ int(Υ), ∀t ≥ 0, and x(t) ∈ int(Ω), ∀t ≥ 0.

Proof
Let z = (zT(n), zn+1)T ∈ Rn+1, with z(n) = (z1, . . . , zn) ∈ Rn, denote the extended state vector, i.e.
z = (zT(n), zn+1)T , (xT , θ)T . The closed-loop state model adopts the form

ż = f̄(z) + ḡ(z)yd , F̄ (z; yd) (4a)
y = h̄(z) (4b)
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with

f̄(z) =

(
f(z(n)) + g(z(n))zn+1

−skη(zn+1)h(z(n))

)
(4c)

ḡ(z) =
(

0n
skη(zn+1)

)
(4d)

and
h̄(z) = h(z(n)) (4e)

In analogy to Assmptions A1–A6, the following points of the proof are enumerated.

P1. From Assumption A1 and the auxiliary subsystem dynamics in Eq. (3), f̄ , ḡ, and h̄ happen to
be continuously differentiable.

P2. From the auxiliary subsystem dynamics in Eq. (3) and point R4 of Remark 1, one sees that
ϕ(yd) ,

(
ψT (φ−1(yd)), φ−1(yd)

)T satisfies F̄ (ϕ(yd); yd) = 0n+1, ∀yd ∈ R. Observe that,
from the continuous differentiability of ψ and point R4c of Remark 1, ϕ turns out to be
continuously differentiable on int(R).

P3. Let us begin by noting, from Assumption A3 and point R4 of Remark 1, that ϕ(R) ⊂ Ω×Υ.
Now, since η(u

¯
) = η(ū) = 0, θ = u

¯
and θ = ū happen to be equilibrium values of the auxiliary

subsystem (3). From this and the positively invariant character that Ω keeps with respect to
(1a) uniformly in u on Υ (according to Assumption A3), one sees that, for any (x0, θ0) ∈
Ω×Υ, the closed-loop system solutions cannot leave Ω×Υ. Hence, Ω×Υ is a compact set,
containing the image of R under ϕ, that is positively invariant with respect to (4a).

P4. From Eqs. (1)–(4), we have that

∂F̄

∂z
(z; yd) =

(
∂F
∂x (z(n), zn+1) g(z(n))

−skη(zn+1)∂h∂x (z(n)) skη′(zn+1)
(
yd − h(z(n))

)) (5)

The rest of this point of the proof relies on Facts F1–F4 stated in Appendix A. For any
yd ∈ R, let Ād , ∂F̄

∂z (ϕ(yd); yd), Ad , ∂F
∂x (ϕ(yd)), gd , g(ψ(φ−1(yd))), ηd , η(φ−1(yd)),

φ′d , φ′(φ−1(yd)), Hd ,
[
∂h
∂x

]T (ψ(φ−1(yd))), and observe (from the definition of φ in
Assumption A6) that h(ψ(φ−1(yd))) = yd. Thus, from Eq. (5), we have that

Ād =

(
Ad gd

−skηdHT
d 0

)
(6)

Since (according to Assumption A4 and point R4 of Remark 1), for any yd ∈ R, Ad is
Hurwitz, then for any positive definite symmetric matrix S̄ there exists R̄ = R̄T > 0 such
that R̄Ad +ATd R̄ = −S̄ (see for instance [1, Theorem 4.6]). Let

P̄ =

(
P p

pT pn+1

)
(7)

and

Q̄ =

(
Q 0n
0Tn qn+1

)
(8)

where P ∈ Rn×n is the positive definite symmetric solution of

PAd +ATd P = −In (9a)

qn+1 ∈ R is a constant satisfying

qn+1 > max
{

0 , gTd
[
PA−1

d +
[
A−1
d

]T
P
]
gd

}
(9b)
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pn+1 ∈ R, p ∈ Rn, and Q ∈ Rn×n are defined as

pn+1 =
νd

2kηd|φ′d|
(9c)

p =
[
A−1
d

]T [ νd
2φ′d

Hd − Pgd
]

(9d)

Q = In + skηdRd (9e)

νd ∈ R and Rd ∈ Rn×n stand for

νd = qn+1 − gTd
[
PA−1

d +
[
A−1
d

]T
P
]
gd (9f)

Rd = pHT
d +Hdp

T (9g)

and the positive constant k is considered to satisfy

k < min
{

1
ηd‖Rd‖

,
νd

2ηd|φ′d|pTP−1p

}
(9h)

Notice, from Eqs. (9e) and (9g), that QT = Q. Note on the other hand that, from the
satisfaction of inequality (9h), we have that 0 < 1− kηd‖Rd‖ = λmin(In)− ‖skηdRd‖, and
consequently Q is a positive definite symmetric matrix. From this, (8), (9b), and Fact F3,
we have that Q̄T = Q̄ > 0. Observe further that, from the satisfaction of inequality (9h),
and Eq. (9c), (under the consideration of Fact F1) we have that 0 < νd

2kηd|φ′
d|
− pTP−1p =

pn+1 − pTP−1p. From this, the positive definite symmetric character of P , Eq. (7), and
Fact F3, we see that P̄T = P̄ > 0 too. Furthermore, from Eqs. (6)–(8) and the expressions
developed in Appendix B, one verifies that

−Q̄ =

(
−Q 0n
0Tn −qn+1

)

=

(
PAd +ATd P − skηd

[
pHT

d +Hdp
T
]

Pgd +ATd p− skηdpn+1Hd

gTd P + pTAd − skηdpn+1H
T
d gTd p+ pT gd

)

=

(
PAd − skηdpHT

d Pgd

pTAd − skηdpn+1H
T
d pT gd

)
+

(
ATd P − skηdHdp

T ATd p− skηdpn+1Hd

gTd P gTd p

)

=

(
P p

pT pn+1

)(
Ad gd

−skηdHT
d 0

)
+

(
ATd −skηdHd

gTd 0

)(
P p

pT pn+1

)

= P̄ Ād + ĀTd P̄

Hence, given the positive definite symmetric matrix Q̄ in (8), P̄ in (7) turns out to be the
positive definite symmetric solution of the (Lyapunov) equation P̄ Ād + ĀTd P̄ = −Q̄, and
consequently (according to [1, Theorem 4.6]) Ād in (6) is a Hurwitz matrix. Note that this
holds for any yd ∈ R.

P5. For any (constant) yd ∈ R, the next points follow.

(a) Since Assumption A5a is uniform in u on Υ, and θ remains in Υ (according to point P3
above), the eventual invariant sets on ∂Ω×Υ ⊂ ∂(Ω×Υ), if any, cannot be attractive.
On the other hand, through the consideration of η in (3), the auxiliary dynamics defines
two additional equilibrium points on int(Ω)× ∂Υ ⊂ ∂(Ω×Υ): ϕ̄ , (ψT (ū), ū)T and
ϕ
¯

, (ψT (u
¯
), u

¯
)T . Let gū , g(ψ(ū)), gu

¯
, g(ψ(u

¯
)), η′ū , η′(ū), and η′u

¯
, η′(u

¯
); let us
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further define Āū , ∂F̄
∂z

∣∣∣
z=ϕ̄

, Āu
¯

, ∂F̄
∂z

∣∣∣
z=ϕ

¯

, Aū , ∂F
∂x

∣∣
x=ψ(ū)

, Au
¯

, ∂F
∂x

∣∣
x=ψ(u

¯
)
, and

let P̄ū, P̄u
¯
, Pū, Pu

¯
respectively denote the characteristic polynomials of these matrices.

From Eq. (5) (and the definition of η in the statement of Proposition 1), we have that

Āū =

(
Aū gū

0Tn skη′ū(yd − φ(ū))

)

and

Āu
¯

=

(
Au

¯
gu

¯
0Tn skη′u

¯
(yd − φ(u

¯
))

)
whence we see that

P̄ū(λ) = (λ− skη′ū(yd − φ(ū)))Pū(λ)

and
P̄u

¯
(λ) = (λ− skη′u

¯
(yd − φ(u

¯
)))Pu

¯
(λ)

Let us note, from the monotonic character of φ(u) (stated in Assumption A6), that s =
sign(φ(ū)− φ(u

¯
)) = −sign(yd − φ(ū)) = sign(yd − φ(u

¯
)). On the other hand, from the

definition of η in the statement of Proposition 1, we have that η′ū < 0 while η′u
¯
> 0.

Therefore, P̄ū(λ) and P̄u
¯
(λ) prove to have a root λū = −kη′ū|yd − φ(ū))| > 0 and

λu
¯

= kη′u
¯
|yd − φ(u

¯
)| > 0 respectively. Hence, both Āū and Āu

¯
have positive eigenvalues

and consequently ϕ̄ and ϕ
¯

are both unstable equilibrium points.
(b) Observe that the closed loop is composed of two subsystems evolving at different

time scales. Indeed, the control parameter k in (3) has a direct effect on the auxiliary
subsystem solution speed. Let us define the time variable τ = kt. Expressing the closed-
loop dynamics in this time scale, we have

k
dx

dτ
= F (x, θ)

dθ

dτ
= sη(θ)[yd − h(x)] , G(x, θ)

(10)

In view of the adopted form, system (10) is analyzed as a standard singular perturbation
model. Let us begin by noting that, in accordance to the standing assumptions, F (x, θ) =
0n has a unique isolated root on Ω, namely x = ψ(θ). On the other hand, as highlighted
in point R2 of Remark 1, for every frozen θ ∈ int(Υ), x = ψ(θ) is an exponentially stable
equilibrium of the boundary-layer system dx

dt = F (x, θ) and, from point R3 of Remark
1, it is clear that int(Ω) is a subset of the region of asymptotic stability of x = ψ(θ).
Consider now the reduced system

dθ

dτ
= sη(θ)[yd − φ(θ)] = G(ψ(θ), θ) (11)

and let θd , φ−1(yd). Noting that

G′
(
ψ(θ), θ

)∣∣∣
θ=θd

= −η(θd)
∣∣φ′(θd)∣∣ < 0

(where Fact F4, stated in Appendix A, has been considered), we conclude that θ = θd
is an exponentially stable equilibrium of (11) [1, Theorem 4.15]. Moreover, from the
monotonic character of φ and the definition of s, we have that (θ − θd)G

(
ψ(θ), θ

)
< 0,

∀θ ∈ int(Υ), and consequently int(Υ) constitutes the region of asymptotic stability of
θ = θd, denoted RAθd

, i.e. RAθd
= int(Υ). Then, for any θ̄(0) = θ0 ∈ int(Υ), θ̄(t)→ θd

as t→∞, where θ̄(t) denotes the solution of the reduced system (11). Moreover,
according to [1, Theorem 4.17], there exists a Lyapunov function Vθd

(θ) defined on
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RAθd
, that proves the asymptotic stability of θ = θd and, given any c > 0, {Vθd

(x) ≤ c}
is a compact subset of RAθd

. Since this holds for any positive value of c, and in view
of the smoothness properties of f , g, φ, and η, we conclude from [1, Theorem 11.2]
that there is a positive constant k̄ such that for all x0 ∈ int(Ω), all θ0 ∈ int(Υ), and any
k ∈ (0, k̄): θ(t)− θ̄(t) = O(k), ∀t ≥ 0, and given any tb > 0, there is k̄∗ ≤ k̄ such that,
for any k ∈ (0, k̄∗): x(t)− ψ(θ̄(t)) = O(k), ∀t ≥ tb. In other words, for a sufficiently
small value of k, there exist a finite time tb > 0 and a positive value k1 such that, for any
z(0) = (x0, θ0) ∈ int(Ω×Υ), ‖z(t)− (ψ(θ̄(t)), θ̄(t))‖ ≤ k1k, ∀t ≥ tb, while θ̄(t)→ θd
as t→∞. Hence, z(t) turns out to approach ϕ(yd), or more precisely, z(t) gets into
a small region around ϕ(yd) where it will remain afterwards. Moreover, the smaller
is the value of k, the closer z(t) gets to ϕ(yd) (or the smaller is the neighborhood of
ϕ(yd) where z(t) enters to remain therein). Furthermore, from point P4 above, ϕ(yd)
happens to be exponentially stable [1, Theorem 4.15]. Therefore, by choosing k small
enough, z(t) finishes up by getting into the region of exponential stability of ϕ(yd),
and consequently z(t)→ ϕ(yd) as t→∞. Thus, a small enough value of k ensures the
absence of invariant sets in int(Ω×Υ) other than {ϕ(yd)}.

P6. Observe that the function φ̄(yd) , h̄(ϕ(yd)) = h(ψ(φ−1(yd))) = φ(φ−1(yd)) = yd is
(linearly) increasing on R.

Points P1–P6, above, show that the closed-loop state model in Eqs. (4) has properties analogous
to those of the open-loop system stated through Assumptions A1–A6, and consequently, points
R1–R4 of Remark 1 analogously apply to the closed loop. Thus, from points P1, P3, and P5a, we
have (in addition to existence and uniqueness of solutions) that, for any z0 ∈ int(Ω×Υ), z(t; z0) ∈
int(Ω×Υ), ∀t ≥ 0. Furthermore, from points P2–P5, {ϕ(yd)} is concluded to be the unique
invariant set in int(Ω×Υ), and from the compact character of Ω×Υ (which implies boundedness
of every trajectory remaining in Ω×Υ), we have —according to [1, Lemma 4.1]— that, for any
z0 ∈ int(Ω×Υ), z(t; z0)→ ϕ(yd) as t→∞ (which was actually concluded in point P5b above).
Thus (according to Eq. (2); see also point P6), we conclude that y(t)→ yd [= h(ψ(φ−1(yd)))] as
t→∞, with u(t) ∈ int(Υ), ∀t ≥ 0, and x(t) ∈ int(Ω), ∀t ≥ 0.

It is worth pointing out that in the general context considered in this work, where any output
(error) variable may be involved in (3), the closed-loop structural stability does not necessarily
hold for any (positive) control gain k. Stability of the relocated equilibrium point may be lost for
high values of k giving rise to unexpected asymptotical behaviors (such as a sustained oscillation).
Nevertheless, the small-enough condition on k (stated in Proposition 1) may be relaxed under
additional requirements or for specific output variables as stated through the following corollaries
that do not additionally require twice continuous differentiability of f and g in (1a).

Corollary 1
Under Assumptions A1–A6, consider the closed-loop system in Eqs. (4), where the control
scheme (2)-(3) has been applied. If there is a continuously differentiable scalar function V (z; yd)
such that V̇ (z; yd) = ∂V

∂z F̄ (z; yd) ≤ 0, ∀(z; yd) ∈ Ω×Υ×R, with V̇ (ϕ(yd); yd) = 0, ∀yd ∈ R, and
V̇ (z; yd) < 0, ∀(z; yd) ∈ int(Ω×Υ)×R \ {(ϕ(yd), yd)}, uniformly in k (i.e. ∀k > 0), then the
regulation objective is achieved, avoiding input saturation, for any control gain value k > 0.

The proof of Corollary 1 follows directly from La Salle’s invariance principle, the unattractive
nature of the invariant sets on ∂(Ω×Υ), and the uniformity in k of the stated conditions.

Corollary 2
Consider the system in Eqs. (1) under the satisfaction of Assumptions A1–A6. Assume there
is a continuously differentiable scalar function V (x), independent of u, such that V̇ (x, u) =
∂V
∂x F (x, u) ≤ 0, ∀(x, u) ∈ Ω×Υ, with V̇ (ψ(u), u) = 0, ∀u ∈ Υ, and V̇ (x, u) < 0, ∀(x, u) ∈
int(Ω)×Υ \ {(ψ(u), u)}, and suppose that h(x) = s∂V∂x g(x) + yd (with s as defined in the
statement of Proposition 1, i.e. s = sign

(
φ(ū)− φ

(
u
¯
)
)
). Then, by applying the control design

methodology of Proposition 1, the regulation objective is achieved, avoiding input saturation, for
any control gain value k > 0.
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Proof
Consider the closed-loop system (1)–(3), where the control design methodology of Proposition 1 has
been applied. Recall from the proof of Proposition 1 that Ω×Υ is a positively invariant compact
set in the state space of the closed loop. Let us define

Vc(x, θ) = V (x) +W (θ)

with

W (θ) =
∫ θ

ud

$(ϑ)dϑ

where ud , φ−1(yd) and

$(θ) ,
θ − ud
kη(θ)

Observe that (θ − ud)$(θ) > 0, ∀θ ∈ Υ \ {ud}. Hence, W (θ) is positive definite on Υ with respect
to ud, i.e. W (θ) ≥ 0, ∀θ ∈ Υ, with W (θ) = 0 ⇐⇒ θ = ud (see for instance [1, Example 4.2]).
Observe further that, in view of the properties of η, W (θ)→∞ as θ → ∂Υ (i.e. as θ → u

¯
+ or

θ → ū−). Let us consider the derivative of Vc along the closed loop trajectories, which is given by

V̇c(x, θ) =
∂V

∂x
F (x, θ) +$(θ)θ̇

=
∂V

∂x
[f(x) + g(x)θ] + s(yd − h(x))(θ − ud)

=
∂V

∂x
[f(x) + g(x)ud] +

[
∂V

∂x
g(x) + s(yd − h(x))

]
(θ − ud)

Since h(x) = s∂V∂x g(x) + yd, we get

V̇c(x, θ) =
∂V

∂x
[f(x) + g(x)ud] = V̇ (x, ud)

From the considered assumptions, we see that V̇c(x, θ) ≤ 0, ∀(x, θ) ∈ Ω×Υ, with V̇c(x, θ) = 0
on E = {(x, θ) ∈ Ω×Υ : x = ψ(ud)}. Then, according to La Salle’s invariance principle, every
trajectory with initial condition in Ω×Υ approaches the largest invariant in E asymptotically in
time. Since E is a 1-dimensional manifold, no limit cycles may exist in E. Hence, since ϕ(yd)
is the unique equilibrium in int(Ω×Υ), actually located in int(E), and considering the unstable
character of the equilibrium points on ∂E, we conclude that, for any (x, θ)(0) ∈ int(Ω×Υ),
(x, θ)(t)→ ϕ(yd) as t→∞, with (x, θ)(t) ∈ int(Ω×Υ), ∀t ≥ 0. Since the proof does not depend
on the value of k, the output regulation objective, avoiding input saturation, is guaranteed whatever
positive value is assigned to k.

4. APPLICATIONS

The results in [8] and [11] show that double-pipe heat exchangers belong to the type of systems that
may be regulated through the approach developed in this work. In particular, such references prove
that the control design methodology in Proposition 1 may be applied —with s = −1 in (3)— to the
heat exchanger model considered therein for the regulation of the hot fluid outlet temperature —by
means of the cold fluid flow rate— avoiding input saturation. Its implementation on a bench-scale
pilot heat exchanger, was developed —taking η(θ) = (θ − Fcl)(Fcu − θ)— through experimental
and simulation tests. Successful results were obtained, which are shown in [11]. It is worth pointing
out that, in this case, the asymptotic stability of the unique closed-loop equilibrium does not hold
for any value of the control gain k (see Eq. (3)), as may be corroborated through the proof of the
main result in [11]. Simulation results (not presented in [11]) obtained from implementations of
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the model considered in [11] in closed loop with the proposed scheme have shown that by fixing a
sufficiently high value of k in (3), a sustained oscillatory behavior of the output and input variables
takes place. This corroborates that the sufficiently-small restriction on the control gain is not just
a consequence of the developed closed-loop analysis but is actually a genuine condition to keep
the required stability properties for some systems whose closed-loop structural stability is lost at
sufficiently high values of the control gain.

In the rest of this section, two additional cases, where the proposed approach may be applied, are
presented; namely: bioreactors and binary distillation columns.

4.1. Bioreactors

Under basic assumptions —mainly, equal feed and effluent flow rates (constant volume reactor)—,
a simple but suitable state-space representation of bioreactors that globally describes the dynamic
behavior of a large class of such processes [9] is given by

Ẋ = [µ(S)−D]X (12a)

Ṡ = −µ(S)X
Y

+D(Sin − S) (12b)

where X and S are the biomass and substrate concentrations respectively —both nonnegative
variables—; Y is the yield coefficient of the substrate consumption by the biomass, Sin is the
substrate concentration in the feed stream —both (Y and Sin) considered (positive) constant
values—; D is the dilution rate, and µ(S) is the specific microbial growth rate, defined for our
purposes —as in [9]— by the Haldane law:

µ(S) =
µmS

KS + S + S2/KI
(13)

where µm is the maximum specific biomass growth rate, KS andKI are the saturation and substrate
inhibition parameters, respectively, all three being positive constants. The dilution rate D can be
made vary between a lower limit value D

¯
> 0 and an upper bound D̄ < µ(Sin), i.e. such that

D ∈ Υ = [D
¯
, D̄] ⊂ (0, µ(Sin)) (14)

In fact, D is considered the input variable by means of which regulation of the substrate
concentration S is to be achieved. Note that by defining x = (X,S)T , u = D, and y = S, the
bioreactor dynamics in Eqs. (12) adopts the form of the state model in Eqs. (1), i.e. ẋ = f(x) +
g(x)u , F (x, u), with

f(x) =

(
µ(x2)x1

−µ(x2)x1
Y

)
, g(x) =

(
−x1

Sin − x2

)
(15a)

and
h(x) = x2 (15b)

Further, letting‡ Ω0 = {(x1, x2) ∈ R2
+ : x2 ≤ Sin} and defining Ω = Ω1 ∩ Ω2 with, for i = 1, 2:

Ωi , {(x1, x2) ∈ Ω0 : ωi(x1, x2) ≤ 0}

where
ωi(x1, x2) = (−1)i

(x1

Y
+ x2 − ci

)
‡Ω0 may be considered a physically coherent state-space domain for system (12). This is due to the nonnegative
character of the state variables and the substrate consumption by the biomass. Such consumption reduces the substrate
concentration in the reactor, rendering it lower than that in the feed stream.
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Figure 1. The UASB bioreactor experimental setup and its schematic diagram

c1 and c2 being (any) constants satisfying

0 ≤ c1 < Sin < c2 (16)

the considered bioreactor model satisfies Assumptions A1–A6 —with φ′(u) > 0, ∀u ∈ Υ— as
thoroughly proven in Appendix C. Therefore, the control design methodology in Proposition 1 may
be applied —with s = 1 in (3)— to the bioreactor model for the regulation of substrate concentration
S —by means of the dilution rate D— avoiding input saturation. As a matter of fact, it is further
proven in Appendix C that the proposed methodology can be applied in this case with any k > 0.

Experimental results

The proposed methodology was applied for substrate concentration regulation on a laboratory-
scale Up-flow Anaerobic Sludge Blanket (UASB) reactor of 2.1 litters; see Fig. 1. The reactor was
fed with industrial wastewater from a brewery, which was diluted and conditioned to ensure an
experimental influent concentration Sin = 3 g/l (the reactor temperature and pH were respectively
fixed at 35 ◦C and 7). A detailed description of this reactor, including its biochemical properties and
technical aspects of the setup, can be found in [14].

With dilution rate lower- and upper-bound values of D
¯

= 0.0476 d−1 and D̄ = 1 d−1 in the
setup (time units are expressed in days), closed-loop experimental tests were carried out taking
η(θ) = sin

(
π(θ −D

¯
)/(D̄ −D

¯
)
)

in the auxiliary dynamics of the control law (i.e in (3)). The
control gain and desired output (substrate concentration) values were fixed at k = 0.9 l/(g·d2) and
yd = 0.5 g/l. At t = 0, when the loop was closed, the reactor substrate concentration had a steady-
state initial value of S(0) = 1.5 g/l, while the controller auxiliary state was assigned an initial
value of θ(0) = 0.4762 d−1. The closed-loop performance was further tested against a (parameter)
perturbation carried out by suddenly changing the influent concentration from Sin = 3 g/l to
Sin = 2 g/l at t = 20 d.

For comparison purposes, closed-loop tests with a (conventional) PI controller, i.e. u(t) =
kp[yd − y(t)] + ki

∫ t
0
(yd − y(τ))dτ , were also carried out. The previous experimental conditions

were reproduced for this controller. The control gains were fixed at kp = 2 l/(g·d) and ki =
0.75 l/(g·d2) (tuned essentially following the Ziegler-Nichols method).

The closed-loop output responses and input signals that resulted from the experiments with the
tested algorithms are shown in Fig. 2. Observe that the controller resulting from the application
of the proposed methodology achieved the regulation objective, and successfully recovered from
the parameter sudden perturbation, avoiding input saturation throughout the whole experimental
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Figure 2. UASB bioreactor closed-loop tests: experimental results

test. The desired convergence and recovery took place with the PI controller too (although no real
improvement on the closed-loop performance can be appreciated). In this case, however, input
saturation is observed during an initial time interval. This is not necessarily disadvantageous for
the process, but it could be inconvenient for the actuators. Besides, in a general context, such
a phenomenon may give rise to undesirable effects as experimentally corroborated in [11] in the
case of heat exchangers. Let us further note that the sudden reactions of the PI controller are not
necessarily beneficial to the closed-loop performance; for instance, shorter stabilization times were
not observed from the experimental tests. On the contrary, appealing results in this direction were
appreciated through the proposed controller whose smoother reactions seem to better suit to the
bioreactor dynamics.

4.2. Binary distillation columns

Under standard assumptions, an n-tray binary distillation column (with a saturated liquid being fed
through the feedstream) may be suitably modeled as [10]

H1ẋ1 = V κ(x2)− V x1 (17a)

Hj ẋj = Lxj−1 + V κ(xj+1)− Lxj − V κ(xj) , j = 2, . . . , jf − 1 (17b)

Hjf ẋjf = Lxjf−1 + V κ(xjf +1)− (L+ Ff )xjf − V κ(xjf ) + Ffzf (17c)

Hj ẋj = (L+ Ff )xj−1 + V κ(xj+1)− (L+ Ff )xj − V κ(xj) , j = jf + 1, . . . , n− 1 (17d)

Hnẋn = (L+ Ff )xn−1 − (L+ Ff − V )xn − V κ(xn) (17e)

where j ∈ {1, . . . , n} denotes the tray index, with j = 1 corresponding to the reflux drum, j = jf ∈
{2, . . . , n− 1} to the feed tray, and j = n ≥ 3 to the bottom;§ L and V are respectively the reflux
(liquid) and reboiler (vapor) molar flowrates; Ff is the feed molar flowrate and zf ∈ (0, 1) is the feed
composition (molar fraction); for every j = 1, . . . , n: Hj > 0 represents the (molar) liquid holdup,
considered constant, xj the liquid molar fraction, and κ(xj) is the vapor molar fraction, commonly
modeled as [15, §M10.1]

κ(ς) =
ας

1 + (α− 1)ς
(18)

§Let us note that Eqs. (17b) take place if jf > 2 and Eqs. (17d) arise if jf < n− 1, while none of these sets of equations
takes place if n = 3.
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where α > 1, considered constant, is the relative volatility.

Remark 3
From (18), we have that

κ′(ς) =
α

[1 + (α− 1)ς]2
(19)

wherefrom one corroborates that κ(ς) is a continuously differentiable function on R+ such that
κ′(ς) ∈ (0, α], ∀ς ≥ [0,∞), and in particular κ′(ς) ∈

[
1
α , α

]
, ∀ς ∈ [0, 1]. Moreover, from (19), we

get κ′′(ς) = −2α(α− 1)/[1 + (α− 1)ς]3, which is a well-defined expression for all ς ≥ 0.

In our analytical setting, Ff , zf , and V are considered constant (and are by nature positive), while
Lmay be varied between a lower bound L

¯
> max{0, V − Ff} and an upper limit L̄ < V , such that¶

L ∈ Υ = [L
¯
, L̄] ⊂ (max{0, V − Ff} , V ) (20)

Actually, we consider L as the input variable through which regulation of x1 is to be achieved.
Continuous-differentiability with respect to the system states at any combination of nonnegative

values of these variables, and linearity in L, of the right-hand side expressions in Eqs. (17) are
easily verifiable. Hence, by defining x = (x1, . . . , xn)T , u = L, and y = x1, one straightforwardly
corroborates that the system dynamics may be written in the state-model form of Eqs. (1), with
vector functions f , g, and h satisfying Assumption A1 on Rn+. Moreover, from Remark 3, one
can easily see that f and g are twice continuously differentiable. Furthermore, letting Ω ∈ In,
with I , [0, 1], Assumptions A2–A5 are proven to be satisfied in [10].‖ In particular, the unique
equilibrium point ψ is shown to satisfy

ψ(u) ∈ {x ∈ int(Ω) : xj > xj+1, ∀j = 1, . . . , n− 1} ∀u ∈ Υ (21)

Further, by considering the function φ(u) = h(ψ(u)), it turns out that φ′(u) > 0, ∀u ∈ Υ, as
corroborated in Appendix D. Consequently, Assumption A6 is satisfied too with a strictly increasing
φ(u) on Υ. Thus, the control design methodology in Proposition 1 may be applied —with s = 1 in
(3)— to the distillation column model for the regulation of the distillate product molar fraction x1

—by means of the reflux molar flowrate L— avoiding input saturation.

Simulation results

Considering the dynamical model of a 13-tray binary distillation column, with jf = 7, closed-
loop tests were carried out through numerical simulations. The considered parameter values
were V = 3.206 mol/min, Ff = 1 mol/min, zf = 0.5 mole fraction of light component, α = 1.5,
H1 = H13 = 5 mol, Hi = 0.5 mol, i = 2, . . . , 12 (these parameter values were taken from [15,
§M10.4 & §M10.5]). The minimum and maximum reflux molar flowrate values were taken
as L

¯
= 2.4 mol/min and L̄ = 3.2 mol/min. The auxiliary dynamics in (3) was implemented

using η(θ) = sech
(
s− (L̄+ L

¯
)/2
)
− sech

(
(L̄− L

¯
)/2
)
, and a control gain k = 0.52 mol/min2. The

desired output value was defined as yd = 0.9. The controller auxiliary state was assigned an initial
value of θ(0) = 2.5 mol/min. In the distillation column model, initial state conditions corresponding
to a constant input value of L = θ(0) = 2.5 mol/min (i.e. L(t) = 2.5, ∀t ≤ 0) were considered (in
particular x1(0) = 0.6814). The closed-loop performance was further tested against a (parameter)
perturbation carried out by suddenly changing the feed molar flowrate from Ff = 1 mol/min to
Ff = 0.812 mol/min at t = 150 min.

For comparison purposes, an output feedback linearization (OFL) [7] control scheme was
numerically implemented too. A 2nd order linear dynamics was aimed to be imposed to the output

¶Let us note that, through the consideration of (20), Assumption 1 in [10] is satisfied. Actually the consideration of
(20) proves to be coherent since V − L = D > 0 and L+ Ff − V = B > 0 are respectively the distillate and bottom
product molar flowrates (respectively related to the light and heavy component outflows; see for instance [15, §M10.3]).
‖The dependence on —and continuous-differentiability with respect to— u of the unique equilibrium point, ψ ∈ int(Ω),
is a direct consequence of the continuous-differentiability of the right-hand side expressions of Eqs. (17) with respect to
L; see for instance [1, §3.3].
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Figure 3. Distillation column closed-loop tests: simulation results

variable (the system state model has a relative degree equal to 2), i.e. ÿ = −k1ẏ − k2(y − yd), with
k1 > 0 and k2 > 0. The resulting controller thus designed is

u =
1

x1 − x2

V [κ(x2)− κ(x3)] +
V
H1

(
V
H1
− k1

)
[κ(x2)− x1]− k2(x1 − yd)
V

H1H2
κ′(x2)


Compare the complexity of this expression with the simplicity of the regulator in Eqs. (2)–(3).
Observe further that this expression does not only involve the output variable but also other state
variables and several system parameters. The control gains were tuned as k1 = 30 min−1 and
k2 = 1.4 min−2. The previous simulation conditions were reproduced for this controller. First,
closed-loop tests were performed using the exact values of all the system parameters in the control
law. Then, tests were run taking in the control expression an estimated relative volatility value of
α̂ = 1.55 (while keeping the rest of the parameters at the exact values).

The closed-loop output responses and input signals that resulted from the simulations with the
tested algorithms are shown in Fig. 3. Note that the algorithm resulting through the proposed
methodology achieved the regulation objective, and successfully recovered from the parameter
sudden perturbation, avoiding input saturation throughout the whole experimental test. Notice
further that this was achieved through smooth control signals. On the contrary, sudden reactions
were appreciated through the OFL schemes undergoing saturation during an initial (brief) time
interval. Observe further that although the desired convergence and recovery are achieved (even
improving the closed-loop performance) through the OFL algorithm in the ideal case where the real
values of all the system parameters are involved, a steady-state error arises in the more realistic case
where an inexact estimated value of the relative volatility was taken, in view of which the regulation
objective could not even be achieved.

5. CONCLUSIONS

In this work, a generalized control scheme for the output feedback regulation of a special type of
SISO systems with bounded input has been proposed. It gives rise to a simple dynamic controller
that guarantees the regulation objective, avoiding input saturation, without requiring any additional
system information (apart from the output variable), and for any state initial condition within a
specific set where the system is known to satisfy the requested characterization (and which could
comprehend the whole natural state space of the considered plant). The type of systems that
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may be regulated through the proposed scheme has been thoroughly characterized. Double-pipe
heat exchangers, bioreactors, and binary distillation columns have been shown to be part of such
set of processes. Furthermore, it has been possible to corroborate the efficiency of the proposed
methodology through experimental implementations on laboratory-scale processes such as a UASB
bioreactor and a double-pipe heat exchanger, as well as through other simulations tests, which have
shown successful results. Extensions of the proposed scheme for its application to some type of
MIMO systems is considered by the authors a potential subject of future research. In this direction,
some interesting results have already been presented for continuous stirred tank reactors in [12].

A. FACTS

F1. Let B ∈ Rn×n. If BT = B > 0, then B is non-singular and its inverse B−1 is a positive
definite symmetric matrix (see for instance [16, p. 180]).

F2. Let G =
(
B C
D E

)
, where B ∈ Rn×n, C ∈ Rn×m, D ∈ Rm×n, and E ∈ Rm×m, with B

being non-singular. Then det(G) = det(B) · det(E −DB−1C) (see for instance [16, p. 46]).

F3. Let G =
(
B C
D E

)
, where B ∈ Rn×n, C ∈ Rn×1, D ∈ R1×n, and E ∈ R, with BT = B > 0.

Then G is a positive definite symmetric matrix if and only if E −DB−1C > 0.∗∗

F4. For any u ∈ Υ:

φ′(u) = −∂h
∂x

(ψ(u))
[
∂F

∂x
(ψ(u), u)

]−1

g(ψ(u)) (22)

and |φ′(u)| = sφ′(u).

Proof of Fact F4
From Eqs. (1) and Assumptions A1, A2, A4, and A6, we have that, for any u ∈ Υ:

φ′(u) =
∂h

∂x
(ψ(u))

dψ

du
(u) (23)

and d
duF (ψ(u), u) = 0n i.e.

d

du
F (ψ(u), u) =

∂F

∂x
(ψ(u), u)

dψ

du
(u) +

∂F

∂u
(ψ(u), u)

=
∂F

∂x
(ψ(u), u)

dψ

du
(u) + g(ψ(u)) = 0n

From this, we get (recall that ∂F∂x (ψ(u), u) is non-singular in view of its Hurwitz character on Υ):

dψ

du
(u) = −

[
∂F

∂x
(ψ(u), u)

]−1

g(ψ(u)) (24)

By substituting (24) into (23), Eq. (22) is obtained. Furthermore, notice that, in view of the
monotonic character of φ(u) (stated in Assumption A6), s = sign

(
φ(ū)− φ(u

¯
)
)

= sign(φ′(u)),
∀u ∈ Υ, whence it is clear that |φ′(u)| = sφ′(u). 2

∗∗This is a consequence of Fact F2 and the leading principal minor criterion for positive definite symmetric matrices (see
for instance [1, p. 117] or [16, §8.5, Theorem 2]).
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B. DEVELOPMENTS OF THE PROOF OF PROPOSITION 1

From expressions (6)–(9) and Fact F4, the following developments are verified:

−qn+1 = −νd − gTd
[
PA−1

d +
[
A−1
d

]T
P
]
gd

=
νd

2φ′d

[
gTd
[
A−1
d

]T
Hd +HT

d A
−1
d gd

]
− gTd

[
PA−1

d +
[
A−1
d

]T
P
]
gd

= gTd
[
A−1
d

]T[ νd
2φ′d

Hd − Pgd
]

+
[
νd

2φ′d
HT
d − gTd P

]
A−1
d gd

= gTd p+ pT gd

0n = Pgd −ATd
[
A−1
d

]T
Pgd +ATd

[
A−1
d

]T νd
2φ′d

Hd −
νd

2φ′d
Hd

= Pgd +ATd
[
A−1
d

]T[ νd
2φ′d

Hd − Pgd
]
− skηd

νd
2kηd|φ′d|

Hd

= Pgd +ATd p− skηdpn+1Hd

and
−Q = −In − skηdRd = PAd +ATd P − skηd

[
pHT

d +Hdp
T
]

C. OPEN-LOOP ANALYSIS OF THE BIOREACTOR MODEL

Remark 4
Observe from (13) that limS→∞ µ(S) = µ(0) = 0. On the other hand, from (13), one gets

µ′(S) =
µm(KS − S2/KI)

(KS + S + S2/KI)2
(25)

whence one sees that µ(S) is differentiable at all S ≥ 0, increasing on [0,
√
KSKI), decreasing on

(
√
KSKI ,∞), and has a maximum point at S =

√
KSKI , SM , with µ(SM ) = µm

1+2
√
KS/KI

,

µM —such that µ(S) ≤ µM , ∀S ≥ 0, with µ(S) = µM ⇐⇒ S = SM— and thus µ(S) > 0,
∀S ∈ (0,∞). Furthermore, denoting D(S) the denominator of µ(S) in (13), one sees that,
since D(S) ≥ KS > 0, ∀S ≥ 0, higher order derivatives of µ(S) are well defined for all
nonnegative values of S; in particular, denoting N (s) the numerator of µ′(S) in (25), µ′′(S) =
[D(S)N ′(S)− 2N (S)D′(S)] /D3(S), whence it is clear that µ′′(S) is well defined for all S ≥ 0.

Observe, from expressions (15) and Remark 4, that f , g, and h are continuously differentiable on
R2

+, and consequently Assumption A1 is satisfied. Moreover, from the differentiability properties of
µ(S) discussed in Remark 4, f and g are concluded to be twice continuously differentiable.

Remark 5
By analyzing the equation F (x, u) = 02, three solutions are obtained; i.e. there exist x∗∂ , x∗−, and x∗+
such that F (x∗∂ , u) = F (x∗−, u) = F (x∗+, u) = 02, ∀u ∈ Υ. More precisely

x∗∂ =
(

0
Sin

)
, x∗− =

(
Y (Sin − S∗−)

S∗−

)
, and x∗+ =

(
Y (Sin − S∗+)

S∗+

)
with

S∗± =
KI

2

(µm
u
− 1
)
±

√[
KI

2

(µm
u
− 1
)]2

−KIKS

while further analysis shows that

S∗− <
√
KSKI = SM < S∗+ (26)
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S∗+ > Sin > S∗− (27)

and
x∗∂ ∈ ∂Ω0 , x∗− ∈ int(Ω0) , x∗+ 6= R2

+ (28)

∀u ∈ Υ (observe that x∗+ does not have any physical sense). Let us note that if D̄ had a value within
(µ(Sin), µM ) and Sin > SM (recall Remark 4), then x∗+ ∈ int(Ω0). Nevertheless, as pointed out
in [9], it is not this case —but it is rather that expressed in (28)— that is often encountered in
applications.

From Remark 5, one sees that Assumption A2 is satisfied with ψ(u) = x∗−, i.e.

ψ(u) =
(
Y (Sin − φ(u))

φ(u)

)
(29)

where φ(u) = S∗−, i.e.

φ(u) =
KI

2

(µm
u
− 1
)
−

√[
KI

2

(µm
u
− 1
)]2

−KIKS (30)

Remark 6
From (30), one gets

φ′(u) =
KIµm

2u2

 KI

2

(
µm

u − 1
)√[

KI

2

(
µm

u − 1
)]2 −KIKS

− 1


whence one corroborates the differentiability of φ(u) —and consequently that of ψ(u)— on Υ. One
also sees from this expression that φ′(u) > 0, ∀u ∈ Υ, showing that φ(u) is strictly increasing on Υ.

Observe that:

• F1(0, x2, u) = 0, ∀(x2, u) ∈ [0, Sin]×Υ, while F2(0, x2, u) = u(Sin − x2) > 0, ∀(x2, u) ∈
[0, Sin)×Υ;

• F2(x1, 0, u) = uSin > 0, ∀(x1, u) ∈ [0,∞)×Υ;
• F2(x1, Sin, u) = −µ(Sin)x1

Y < 0, ∀(x1, u) ∈ (0,∞)×Υ;
• for each i = 1, 2:

[(
∂ωi

∂x F
)

(x, u)
]
ωi(x)=0

= (−1)iu(Sin − ci) < 0, ∀(x, u) ∈ {Ωi ×Υ :
ωi(x) = 0}.

This shows that, whatever value u takes in Υ, there is no point on ∂Ω where F (x, u) points
outwards; see Fig. 4. Then, for any x0 ∈ Ω, the resulting solution of the system state-space
equation, x(t;x0), cannot leave Ω, i.e. x(t;x0) ∈ Ω, ∀t ≥ 0. Therefore, Ω is a compact set that
proves to be positively invariant with respect to the system dynamics uniformly in u on Υ. Further,
simple developments show that max{0, Y (c1 − φ(u))} < ψ1(u) = Y (Sin − φ(u)) < Y (c2 − φ(u))
and max{0, c1 − Sin + φ(u)} < ψ2(u) = φ(u) < min{Sin, c2 − Sin + φ(u)}, ∀u ∈ Υ, i.e. ψ(Υ) ⊂
Ω; see Fig. 4. Thus, Assumption A3 is satisfied. Let us note that c1 and c2 may adopt suitable values
(satisfying inequality (16)) such that any initial condition in Ω0 be within Ω.

Let us consider the Jacobian matrix of F (x, u), ∂F∂x (x, u), i.e.

∂F

∂x
(x, u) =

(
µ(x2)− u x1µ

′(x2)

−µ(x2)
Y −x1µ

′(x2)
Y − u

)
(31)

and define Aψ(u) , ∂F
∂x (ψ(u), u). A direct substitution into (31) yields

Aψ(u) =

(
0 Y [Sin − φ(u)]µ′(φ(u))

− u
Y −[Sin − φ(u)]µ′(φ(u))− u

)
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Figure 4. A graphical representation of Ω

whose characteristic polynomial is given by Pψ(λ;u) = λ2 + β1(u)λ+ β0(u), with

βj(u) = u1−j [Sin − φ(u)]µ′(φ(u)) + ju

j = 0, 1. Let us note that Sin − φ(u) > 0 —according to (27) (recall that φ(u) = S∗−)— and u > 0,

∀u ∈ Υ. On the other hand, after several basic developments we get µ′(φ(u)) = u2

µmKI

(
KSKI

φ2(u) − 1
)

,
and from (26) (recalling that φ(u) = S∗−) one sees that µ′(φ(u)) > 0, ∀u ∈ Υ. Therefore, βj(u) > 0,
j = 0, 1, ∀u ∈ Υ, and consequently both roots of Pψ have negative real part uniformly in u on Υ,
i.e. Aψ(u) is Hurwitz for all u ∈ Υ. Thus, Assumption A4 is satisfied.

Let u = α ∈ Υ, α being a constant value. Observe from Remark 5 that F (x, α) 6= 02, ∀x ∈
int(Ω) \ {ψ(α)}, and consequently ψ(α) is the unique equilibrium point in int(Ω). Let us, on the
other hand, define A∂(α) = ∂F

∂x (x∗∂ , α). A direct substitution into (31) yields

A∂(α) =

(
µ(Sin)− α 0

µ(Sin)
Y −α

)
From this expression, one sees that µ(Sin)− α is an eigenvalue of A∂(α). Since µ(Sin)− α > 0
(recall (14)), x∗∂ is unstable and consequently Assumption A5a is satisfied. Let us further define

V (x1, x2) =
1
2
ω2

0(x1, x2) (32a)

with
ω0(x1, x2) = Sin −

x1

Y
− x2 (32b)

The derivative of V along the system trajectories is given by V̇ (x1, x2) = −αω2
0(x1, x2). This shows

that the manifold E0 = {(x1, x2) ∈ Ω : ω0(x1, x2) = 0} is attractive, i.e. x(t;x0)→ E0 as t→∞,
∀x0 ∈ Ω. Then, invariant sets in Ω ought to be in E0 —actually ψ(Υ) ⊂ E0— and since E0 is 1-
dimensional, limit cycles in Ω may not exist. Thus, Assumption A5b is satisfied. Let us further note
that, according to La Salle’s invariance principle, for any x0 ∈ Ω, the system trajectories converge
to the largest invariant set in E0. The consideration of the system dynamics on this manifold yields:
ẋ2 = −(Sin − x2)[µ(x2)− α]. Since (x2 − φ(α))(Sin − x2)[µ(x2)− α] > 0, ∀[0, Sin) \ {φ(α)},
we have that for all x0 ∈ E0 \ {x∗∂}: x2(t;x0)→ φ(α) as t→∞ (see for instance [1, Example
4.2]), or equivalently x(t;x0)→ ψ(α) as t→∞, ∀x0 ∈ E0 \ {x∗∂}. This does not only corroborate
the absence of limit cycles in Ω but also shows (under the consideration of La Salle’s invariance
principle and the unattractive nature of x∗∂) that x(t;x0)→ ψ(α) as t→∞, ∀x0 ∈ int(Ω).

From (15b), (29), and Remark 5, one sees that φ(u) , h(ψ(u)) is indeed given by the expression
in (30). Furthermore, from Remark 6, one corroborates that φ(u) is a monotonic —actually, strictly
increasing— function on Υ. Thus, Assumption A6 is satisfied.
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Since Assumptions A1–A6 are satisfied, the control design methodology of Proposition 1 may be
suitably applied to the bioreactor model for the regulation of the substrate concentration (by means
of the dilution rate D). Observe that since φ′(u) > 0, ∀u ∈ Υ, we have that s = 1 in the auxiliary
dynamics, i.e. in (3).

Remark 7
Consider the closed-loop system (1)–(3) that takes place from the application of the proposed
methodology to the bioreactor model, i.e. with f , g, and h as defined in Eqs. (15). Let us reconsider
the scalar function in Eq. (32a). Its derivative along the closed-loop system trajectories is given by
V̇ (x1, x2, θ) = −θω2

0(x1, x2) ≤ −D
¯
ω2

0(x1, x2), ∀(x1, x2, θ) ∈ Ω×Υ, with ω0(x1, x2) as defined in
Eq. (32b). This shows that the manifold Ec = {(x1, x2, θ) ∈ Ω×Υ : ω0(x1, x2) = 0} is attractive,
i.e. (x, θ)(t)→ Ec as t→∞, ∀(x, θ)(0) ∈ Ω×Υ. Then, invariant sets in Ω×Υ ought to be in Ec;
actually ϕ(R) ⊂ Ec. The consideration of the closed-loop system dynamics on this manifold yields

ẋ2 = −(Sin − x2)[µ(x2)− θ]
θ̇ = kη(θ)(yd − x2)

Let us define the scalar function

Vc(x2, θ) =
∫ x2

yd

$0(ζ)dζ +
∫ θ

Dd

$1(ϑ)dϑ

where
$0(x2) ,

x2 − yd
Sin − x2

, $1(θ) ,
θ −Dd

kη(θ)

and Dd , µ(yd). Observing that (x2 − yd)$0(x2) > 0, ∀x2 ∈ [0, Sin) \ {yd}, and
(θ −Dd)$1(θ) > 0, ∀θ ∈ Υ \ {Dd}, we conclude by previous arguments that Vc(x2, θ)
is positive definite on Ec with respect to (yd, Dd), i.e. Vc(x2, θ) ≥ 0, ∀(x2, θ) ∈ Ec, with
Vc(x2, θ) = 0 ⇐⇒ (x2, θ) = (yd, Dd). Its derivative along the closed-loop system dynamics on Ec
is given by V̇c(x2, θ) = −(x2 − yd)[µ(x2)−Dd] whence we see that V̇c(x2, θ) ≤ 0, ∀(x2, θ) ∈ Ec,
with V̇c(x2, θ) = 0 on E1 = {(x1, x2, θ) ∈ Ec : x2 = yd} ⊃ ϕ(R). Hence, by La Salle’s invariance
principle, for any (x1, x2, θ) ∈ Ec, the closed-loop system trajectories approach the largest invariant
in E1 asymptotically in time. Since E1 is 1-dimensional, we conclude that there cannot be limit
cycles in Ec, and there are consequently not in Ω ∈ Υ. Furthermore, from La Salle’s invariance
principle and the unstable nature of the invariant sets on ∂(Ω×Υ), we conclude that for any
(x, θ)(0) ∈ int(Ω×Υ), we have that (x, θ)(t)→ ϕ(yd) as t→∞, with (x, θ)(t) ∈ int(Ω×Υ),
∀t ≥ 0. Since this does not depend on the value of k, the output feedback regulation is achieved,
avoiding input saturation, for any k > 0.

D. DEVELOPMENTS OF SUBSECTION 4.2

Since the results in [10] are uniform in the system order n —i.e. they do not depend on the number
of trays— let us consider the simplest case of Eqs. (17), which arises with n = 3, i.e.

H1ẋ1 = V κ(x2)− V x1

H2ẋ2 = Lx1 + V κ(x3)− (L+ Ff )x2 − V κ(x2) + Ffzf

H3ẋ3 = (L+ Ff )x2 − (L+ Ff − V )x3 − V κ(x3)

Under the state, input, and output variable definition previously stated (i.e. x = (x1, . . . , xn),
u = L, and y = x1), the system dynamics adopts the form of the state model in Eqs. (1), i.e.
ẋ = f(x) + g(x)u , F (x, u), with

f(x) =

 [V κ(x2)− V x1] /H1

[V κ(x3)− Ffx2 − V κ(x2) + Ffzf ] /H2

[Ffx2 − (Ff − V )x3 − V κ(x3)] /H3
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g(x) =

 0
(x1 − x2)/H2

(x2 − x3)/H3

 and h(x) = x1

Further, from Fact F4 (see Appendix A), we have that

φ′(u) =
T1(u) + T2(u)

DJ(u)

with

T1(u) =
(
u+ Ff − V + V κ′(ψ3(u))

)
κ′(ψ2(u))

(
ψ1(u)− ψ2(u)

)
T2(u) = V κ′(ψ2(u))κ′(ψ3(u))

(
ψ2(u)− ψ3(u)

)
and

DJ(u) =
(
u+ Ff + (V − u)κ′(ψ2(u))

)
(u+ Ff − V ) + (V − u)V κ′(ψ2(u))κ′(ψ3(u))

Finally, from these expressions, Remark 3, (20) (wherefrom we have that V − u > 0 and u+ Ff −
V > 0, ∀u ∈ Υ), and (21), one sees that φ′(u) > 0, ∀u ∈ Υ.
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