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Abstract
In this paper, a gain scheduling control is designed to achieve the stabilization of a riderless bicycle. The main
contribution is the design of a stabilizing control system including integral actions based on an observer and its
corroboration through experimental results, with the objective of the stabilization of a riderless bicycle towards its upright
position through a torque applied to the handlebar. The bicycle stabilization is achieved even when the translational
velocity is varying over time, parameter considered as scheduling variable. The stabilizing system is based on an LQR
gain scheduling control, concluding with the effective application of this scheme on a instrumented prototype.
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List of notation

g gravity acceleration
h step width
j indexing variable
r reference signal
v translational velocity

E0, E1 stiffness matrices
H mass matrix

K(v) velocity dependent control gain
Ki(v) velocity dependent integral control gain
L(v) observer gain
Q,R LQR weighting matrix
Tδ torque applied to handlebar
Tφ torque applied to general frame
W Damping matrix
α LMI region parameter definition
δ handlebar angle
θ LMI region parameter definition
φ roll angle
Φ translational velocity interval set

Introduction
Nowadays, the interest of automatic control researchers in
the bicycle dynamics is increasing. This is mainly due to
the physical phenomena involved in the definition of the
system, resulting in a control design problem motivating
and challenging. This is referred to the fact that the
open-loop (unforced) model is unstable, together with
the under-actuated nature of the system, which generally
induces unstable (zero) dynamics with respect to the usually
measurable (output) variables. Another problem comes from
the dependence of the vehicle dynamics on the time-varying
translational velocity. Such characteristics render the control

design a non-trivial task. In particular, we focus on a riderless
bicycle model, whose state-space representation involves the
translational velocity explicitly. Thus, the dependence of the
system on the time-varying parameter can be formulated in
terms of a scheduling variable and, consequently, this paper
presents the design and implementation of a gain scheduled
control to ensure the upright position of a riderless bicycle
while moving forward, by explicitly considering the time-
varying translational velocity within the model. The main
contribution of this paper is the design of a stabilizing control
scheme including integral actions based on an observer and
its corroboration through experimental results. Basically,
the gain scheduling methodology involves designs to face
problems related with non- linear systems, through linear
control laws applicable over the entire operation region of
the original system. This is done by means of a scheduling
parameter directly involved in the definition of the operating
point, which changes its value over time and, consequently,
that of the operating point of the non-linear system. Thus,
the scheduling parameter is assumed to be measurable,
allowing the definition of the current operating point through
a linear (local) model. As a result, a set of linear descriptions
of the non linear system is computed by considering
a time-varying scheduled parameter.1 In addressing the
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gain scheduling methodology, several works have been
reported. For instance, the design of a gain-scheduled output-
feedback control for LPV systems is addressed taking
into account uncertainties on the scheduling parameters,
computed considering H∞ restrictions.2 The problem of
gain scheduling schemes has been reported for discrete-
time LPV systems with a state feedback controllers.3 Gain-
scheduling and LPV controllers have been designed and
applied to an active magnetic bearing system (AMB). In this
work, taking the mass-imbalances as scheduling parameter, a
set ofH∞ controllers are implemented to show experimental
results by considering the Youla parametrization switching
method.4 It is important to note, on the other hand, that the
features on gain scheduling allow its mixed implementation
with other known control methodologies. For instance, a
gain scheduled sliding mode control has been proposed
and corroborated through simulations using a ship heading
control system.5 Another example is the design of an
adaptive fuzzy gain scheduling PI controller, applied to a
wind energy conversion system. This design considers fuzzy
rules to adjust the parameters of the PI controller.6 The
problem of maximum power point tracking for a photovoltaic
system has been solved by an adaptive fuzzy gain scheduling
PID controller, based on a two-level architecture. The
results of this scheme are corroborated through simulations
showing that a maximum power operation can be reached
under different conditions of solar radiation (considered as
scheduled parameter).7 The waste-waters reduction problem
produced by oil industries has been solved through an
adaptive gain scheduling control.8 A tutorial on airship
modelling and gain-scheduling control addressing the
relevant aspects in airship modelling and its dynamics under
different flight conditions has been reported. This tutorial
provides a step-by-step control design for path-tracking,
showing its effectiveness under realistic wind disturbances.9

A control based on gain scheduling for a phase-shifted
PWM full-bridge converter shows the application of this
methodology to power electronics systems.10 A set of gain-
scheduled controllers have been designed for a helicopter
system11 and, finally, a fuzzy gain scheduling control
scheme for a permanent magnet synchronous motor has been
reported.12 From the works previously mentioned and from
the point of view of the combination with different control
schemes, the flexibility of the gain scheduling methodology
can be concluded. Such a particular formulation is used in the
present paper to design a riderless bicycle control system to
maintain its upright position with an LPV model depending
on the translational velocity of the vehicle (considered as
scheduling parameter). In this direction, previous research
related to the bicycle go from works which analyse its
dynamical behaviour, to studies reflecting the impact of the
vehicle on our daily life.13−15 With respect to previous
works on the control of the bicycle, a work dealing with
the error tracking minimization for specific velocities has
been developed by considering a method to ensure, for
the rider, a desired velocity.16 The bicycle, in the context
of the mathematical modelling of its dynamical behaviour,
has been broadly addressed. For instance, the mathematical
model of a bicycle (controlled by a pedalling torque, a
directional torque and a rotor mounted on the bicycle) rolling
on a moving plane has been computed.17−19 The motion

of a bicycle, on the other hand, has been studied with the
objective of knowing the effects of the rider when the vehicle
is moving along a defined path, in order to generate results
to be analysed through statistical tools.20 The design of
an adaptive neuro-fuzzy controller for a bicycle has been
computed presenting, through simulation and experimental
results, its effectiveness.21 A control system with the
objective of guaranteeing a defined path tracking, as well, has
been reported.22 The bicycle stabilization using a gyroscope
controlled by a non-linear control scheme was studied too.23

A controller based on a second-order sliding-mode has been
presented for the stabilization of an intelligent bicycle.24 The
control algorithm for trajectory tracking and balancing of
an autonomous motorcycle has been addressed with a non-
linear controller designed to handle the vehicle balancing25

and, finally, studies related to the riderless bicycle system
from the point of view of fault diagnosis and isolation and
fault tolerant control can be found.26−28 As shown through
the papers and research works previously mentioned, it is
possible to conclude that the bicycle dynamics and gain
scheduling techniques are considered as an important and
interesting research topic in many different areas. Thus, the
results presented in this paper are related to the stabilization
of a riderless bicycle by a gain scheduling LQR (Linear
Quadratic Regulator) control with integral action based on
a Luenberger observer, aiming at its implementation on
an instrumented prototype. The contribution of the results
presented throughout this paper with respect to previous
works are mainly referred to combination of LQR and gain
scheduling methodologies, in order to design a stabilization
control system to maintain upright position of the vehicle
without a rider, when the vehicle is moving as a result of a
decreasing time-varying translational velocity. The objective
is reached by means of a set of linear controllers and a
Luenberger observer depending on the local translational
velocity value, corroborated through experimental results.
The paper structure is as follows. Section 2 presents the
definition of a polynomial LPV system, including the
required tools to analyse its dynamical properties. Section
3 shows the riderless bicycle system definition, along with
the controllability and observability conditions. Section 4
addresses the related to the proposed stabilization control
system. Section 5 shows the riderless bicycle prototype
instrumentation and the corresponding experimental results.
Section 6 presents a discussion and a brief conclusion is
presented in Section 7.

Polynomial LPV systems

This Section presents the definition of polynomial LPV
systems along with their structural properties. Consider the
following dynamical system:

ẋ = A(Θ(t))x+B(Θ(t))u
y = C(Θ(t))x

(1)

where x ∈ Rn, u ∈ Rp and y ∈ Rs correspond the state,
input and output, respectively. A(Θ(t)), B(Θ(t)) and
C(Θ(t)) are parameter-dependent matrices of compatible
dimensions with Θ(t) ∈ Rm considered as the time-varying
parameter vector. In general, it is assumed that Θ(t)
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is measurable and bounded. If A(Θ(t)), B(Θ(t)) and/or
C(Θ(t)) acquire the form:

χ(Θ(t)) = χ0 +

k∑
i=1

m∑
j=1

χ{[(i−1)m]+j}Θ(t)ij (2)

for some k ≥ 1, where χl, l = 0, . . . , km, are matrices of
compatible dimensions (depending on the referred matrix
A(Θ(t)), B(Θ(t)) or C(Θ(t))), then the model (1) is a
polynomial LPV system. From now on, the argument t
will be dropped for sake of simplicity. In relation to the
structural properties for LPV systems, the controllability and
observability conditions can be seen as the extension of
these criteria applied to LTI systems.29 The polynomial LPV
system (1), considering the representation (2), is controllable
if:

rank[B(Θ) A(Θ)B(Θ) . . . A(Θ)n−1B(Θ)] = n ∀ ‖Θ‖
(3)

In analogous way, a polynomial LPV system will be
observable if:

rank


C(Θ)

C(Θ)A(Θ)
...

C(Θ)A(Θ)n−1

 = n ∀ ‖Θ‖ (4)

Riderless bicycle dynamical system
The riderless bicycle model can be computed from the
decomposition of the physical system in three bodies:
i) a general frame, ii) a front frame composed by the
handlebar and its corresponding oriented wheel and iii) the
tires.30−31 The dynamics of the system is approximated by
the following general equation.

Hq̈ + vWq̇ + (gE0 + v2E1)q = f (5)

In equation (5), q is an angular position vector containing the
roll angle φ and the handlebar angle δ, i.e. q = [φ δ]T . The
roll angle φ represents the position of the general frame with
respect to the vertical position of the bicycle. The handlebar
angle δ, on the other hand, corresponds to the angle formed
by the handlebar and its perpendicular position with respect
to the general frame. The general input forces acting into the
system correspond to a torque applied to the handlebar Tδ
and a torque applied to the general frame Tφ. The variables
Tδ and Tφ are considered within the vector f = [Tδ Tφ]T , as
shown in Figure 1.

Figure 1. Riderless bicycle: front view (left) and top view (right)

In equation (5), W and H are the damping and mass
matrices, respectively. Finally, E0 and E1 represent stiffness

coefficients, the parameter g captures the gravity acceleration
and v is the translational velocity of the vehicle. In order
to compute the state-space representation for the riderless
bicycle system, notice that equation (5) can be rewritten as:

q̈ = H−1f −H−1(vWq̇)−H−1(gE0 + v2E1)q (6)

where:30−31

W =

[
W11 W12

W21 W22

]
E0 =

[
E011 E012

E021 E022

]
(7)

H =

[
H11 H12

H21 H22

]
E1 =

[
0 E112

0 E122

]
(8)

By defining the state vector as x = [q q̇]T = [φ δ φ̇ δ̇]T ,
the following is obtained:

ẋ =


0 0 1 0
0 0 0 1

Ē011 Ē012 − Ē112v
2 W̄11v W̄12v

Ē021 Ē022 − Ē122v
2 W̄21v W̄22v

x (9)

where W̄mn corresponds to the product of H−1W , Ē0mn

m = n = 1, 2 is the product of H−1gE0 and Ē1mn define
the matrix operation H−1E1. Going on with the system
definition, by taking u = Tδ as unique input force f =
[Tδ 0]T : 

0
0
f̄11
f̄21

Tδ (10)

where f̄o1 o = 1, 2 is the product of H−1f and, finally,
including equations (9)-(10) within a single expression as
well as the output vector y = [δ φ̇]T with Θ = v in equation
(1), the state-space representation for the system can be
represented as:

ẋ = A(v)x+Bu
y = Cx

(11)

with the following matrices defined as:32−33

A(v) =


0 0
0 0

13.67 0.225− 1.319v2

4.857 10.81− 1.125v2

1 0
0 1

−0.164v −0.552v
3.621v −2.388v

 B =


0
0

−0.339
7.457


(12)

The matrices E0, E1, H and W , giving rise to equations (9)-
(10), depend on the physical and geometric properties of the
instrumented prototype. Let us point out that the matrixA(v)
can be represented as A(v) = A0 +A1v +A2v

2, which
is congruent with a polynomial LPV system (equation 2
with Θ = v). Figure 2 shows the open-loop eigenvalues
considering a translational velocity variation from 0 to 3
m/s. The gray asterisks represent those eigenvalues with
positive real part, while the rest correspond to eigenvalues
with negative real part.
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Figure 2. Open-loop eigenvalues as a function of the
translational velocity v

Controllability and observability conditions
In order to compute the control system, it is important
to analyse, before its design, the structural properties of
the model. For the controllability condition (see equation
(3) with Θ = v), we follow the next procedure (where | · |
represents the determinant of a matrix):

Λc(v) = |B A(v)B A(v)2B A(v)3B|
Λc(v) = −5806.5321v4 + 19463.1274v2 − 22.3115

(13)
By getting the positive real roots of Λc(v), we get
the following set for the translational velocity where
controllability is lost:

λc = {0.03386, 1.8305} (14)

As for the observability condition, it can be computed from
the transpose of equation (4) with Θ = v since rank[σ] =
rank[σT ] (where σ is a given matrix). Let us point out
that equation (4) will result in a translational velocity
dependent rectangular matrix. As a result, the transpose of
(4), represented as Λo(v), is:

Λo(v) =


0 0 0 13.67 4.857
1 0 0 0.225− 1.319v2 10.81− 1.125v2

0 1 0 −0.164v 3.621v
0 0 1 −0.552v −2.388v
−4.922v 37.9v

0.837v3 − 6v −2.089v3 − 24.996
13.67− 1.971v2 4.857− 9.240v2

0.089v2 + 0.225 2.578v2 + 10.81
187.961− 26.520v2

2.5v4 − 17.758v2 + 5.51
0.648v3 − 6.350v
1.711v3 − 14.087v


(15)

In order to compute rank[Λo(v)] = rank[Λo(v)T ], the
procedure begins with a non-zero determinant operation
considering a square matrix of n− 1 dimension. Once this
has been solved, the remaining rows and columns, to obtain
matrices of n× n dimension, are incorporated. For each
square matrix, the determinant operation is computed. Let

us point out that the determinant operation will result in
an equation depending on the time-varying parameter v.
Thus, ∀v such that rank[Λo(v)] 6= n, the LPV model is
not observable. By computing the previous procedure, the
observability of the riderless bicycle model is concluded ∀v,
since a coincident value for v does not exists in all solutions.
As a result, the analysis of controllability and observability
conditions allow to define the following translational velocity
interval for the bicycle for practical purposes:

Φ := [1.85, 3] (16)

where the translational velocity is expressed in m/s. Φ is
the range for v where the controllability and observability
conditions are not lost.

Stabilization control system
Once the time-varying parameter range has been defined to
ensure the controllability and observability conditions, the
stabilization control system for the riderless bicycle can be
designed. The control objective consists in guaranteeing the
upright position of the vehicle in spite of the variation of the
translational velocity v along a defined path. For this to be
achieved, the following control law is proposed:

u = Tδ = −Ki(v)xi −K(v)x̂ (17)

where Ki(v) is the integral control gain depending on
the time-varying parameter and xi =

∫
(r − φ̂)dt represents

the integer action applied to the error tracking r − φ̂. The
reference signal to be followed is defined as r and φ̂ is
the estimation of the controlled variable provided by a
Luenberger observer. K(v) is the stabilizing time-varying
control gain. Figure 3, as a reference for the control system
explanation, shows the closed-loop system. Let us point out
that the control law (17) is composed by two terms: an
integral action applied to the controlled variable φ̂ and a
stabilizing action for the estimated system state x̂.

Figure 3. General block diagram of the closed-loop system

Thus, as shown in equation (17), an observer in charge of the
system state estimation is needed: a Luenberger observer has
been selected:

˙̂x = A(v)x̂+Bu+ L(v)(y − ŷ) (18)

where x̂ is the estimation of x and L(v) is the time-varying
observer gain. y and ŷ correspond to the system output
and estimated system output, respectively. By defining the
estimation error variable as ee = x− x̂, the estimation error
dynamics adopts the form:
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ėe = ẋ− ˙̂x
= A(v)(x− x̂)− L(v)C(x− x̂)
= (A(v)− L(v)C)ee

(19)

where L(v) will be in charge of the estimation error
convergence ensuring that x̂→ x ∀v ∈ Φ as t→∞. Let us
define an additional state:

ẋi = r − φ̂ (20)

which corresponds to xi =
∫

(r − φ̂)dt: the integral action
applied to the tracking error. Thus, considering equations
(11) and (17), the closed-loop system will be:

ẋ = A(v)x+B(−Ki(v)xi −K(v)x̂) (21)

from x̂ = x− ee:

ẋ = A(v)x−BKi(v)xi −BK(v)x̂
= A(v)x−BK(v)(x− ee)−BKi(v)xi
= (A(v)−BK(v))x+BK(v)ee −BKi(v)xi

(22)
Going on with the stabilization control system design, φ̂ =
C̃x̂ with C̃ = [1 0 0 0]:

ẋi = r − φ̂
= r − C̃x̂
= r − C̃x+ C̃ee

(23)

and finally, by taking the estimation error ėe (equation (19)),
the closed-loop system ẋ (equation (22)) and ẋi (equation
(23)), the following is obtained.

 ẋ
ẋi
ėe

 =

 A(v)−BK(v) −BKi(v)

−C̃ 0
0 0

BK(v)

C̃
A(v)− L(v)C

 x
xi
ee

+

 0
1
0

 r (24)

In equation (24), the dynamics in the proposed control
scheme have been incorporated within a single expression,
giving rise to the closed-loop system depicted in Figure 4.

Figure 4. Block diagram of the closed-loop system

Let us point out that the reference signal r will be 0 in the
presented context, since the model (11) is valid for small
variations around the upright position of the bicycle. In other
words, the reference r must be zero in order to guarantee the
vertical position of the bicycle, under the consideration that

the augmented state xi will be continuously integrating the
controlled variable φ̂. Going on with the controller design,
equation (24) can be represented as:

[
Ẋ
ėe

]
=

[
Ã(v) ∆(v)

0 A(v)− L(v)C

] [
X
ee

]
(25)

with:

X =

[
x
xi

]
Ã(v) =

[
A(v)−BK(v) −BKi(v)

−C̃ 0

]
∆(v) =

[
BK(v)

C̃

]
(26)

From equation (25), the linearity separation principle is
accomplished. This can be interpreted in the sense that, by
designing a proper observer gain L(v), the term ee → 0 as
t→∞ and, consequently, ∆(v) will not have influence in
the design of the control gains K(v) and Ki(v). In other
words, a proper L(v) will result in the elimination of the
term ee, resulting in the possibility of the controller design
and observer design in independent way.

Control law design
For the control gain let us point out that Ã(v) in equation
(26) can be represented as:

Ã(v) =

[
A(v)−BK(v) BKi(v)

−C̃ 0

]
=

[
A(v) 0

−C̃ 0

]
−
[
B
0

]
[K(v) Ki(v)]

(27)

Thus, as explained in previous Sections, an LQR control
considering equation (27) can be designed directly using
standard tools. The control gain computation will be
addressed in later Sections.

Observer design
In addressing the linear separation principle from equation
(25), the observer design begins by considering the dynamics
of the estimation error ee:

ėe = (A(v)− L(v)C)ee (28)

It is necessary to find L(v) that guarantees the estimation
error convergence for any v i.e., an observer gain L(v) such
that ee → 0 as t→∞ ∀v ∈ Φ. For this to be achieved, a
Lyapunov stability analysis has been developed. Consider the
Lyapunov function candidate V = eTe Pee with P = PT >
0:

V̇ = eTe P ėe + ėTe Pee

=
eTe [P (A(v)− L(v)C)ee]+
{[(A(v)− L(v)C)ee]

TP}ee
= eTe [PA(v)− PL(v)C +A(v)TP − CTL(v)TP ]ee

(29)
As a result, equation (29) presents a bilinear condition due
to the product PL(v) and [PL(v)]T . This is because both
terms, P and L(v), are decision variables involved in the
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LMI. In order to eliminate this condition, by defining L̃(v) =
PL(v) and consequently L̃(v)T = L(v)TP , the following
is obtained:

V̇ = eTe [PA(v)− L̃(v)C +A(v)TP − CT L̃(v)T ]ee
(30)

Finally, if ∃ P = PT > 0 such that:

PA(v)− L̃(v)C +A(v)TP − CT L̃(v)T < 0 (31)

the observer gain L(v) = P−1L̃(v) guarantees the estima-
tion error convergence and, as a result, x̂→ x as t→∞.
Finally, with L(v), the estimation of x̂ allows the control
law computation. As an additional restriction, an LMI region
has been considered,34 in order to ensure a fast and non-
oscillating response for the estimated system state. The LMI
region is formulated as:

PA(v)− L̃(v)C +A(v)TP − CT L̃(v)T + 2Pα < 0
(32)

and:

[
sin θ(Ao(v) +Ao(v)T ) cos θ(Ao(v)−Ao(v)T )
cos θ(Ao(v)T −Ao(v)) sin θ(Ao(v) +Ao(v)T )

]
< 0

(33)
whereAo(v) = PA(v)− L̃(v)C. The LMI region presented
in equation (32) will allocate the eigenvalues of A(v)−
L(v)C in the left side of the value α within the complex
plane. The parameter θ, on the other hand, defines a conic
region in terms of the angle θ with respect to the real axis on
the left side of the complex plane. As a result, the observer
gain L(v) will be computed by solving equations (31)-(33)
simultaneously.

Control and observer gains computation
In order to compute the control and observer gains, it
is important to notice that equations (31)-(33) correspond
to a LMI set depending on the time-varying parameter.
These LMI restrictions are considered as an infinite
problem (PLMI), due to the continuous translational velocity
variation. To solve the problem and, because of the fact that
the presented control methodology takes the operating point
for the system as the adopted value for the time-varying
parameter, by considering v = jh where j = 1, 2, . . . , N
and h represents the velocity range contained within two
consecutive points, the control and observer gains can be
computed. The previous procedure ensures the control and
observer gains computation at each jh and, by applying
an interpolation method, the continuous solution can be
obtained.1 Consequently, for the control gains computation,
we define v = jh and:

Ã(jh) =

[
A(jh) 0

−C̃ 0

]
−
[
B
0

]
[K(jh) Ki(jh)]

= Ā(jh)− B̄K̄(jh)
(34)

As a result, from equation (34), the control gains can be
computed by means of the LQR command provided by

MATLAB. This is done by selecting the weighting matrices
Q and R. From equation (34), the LQR command computes
the optimal control gain K(jh) in such a way that u =
−K(jh)x minimizes the cost function:

J(u) =

∫ ∞
0

(xTQx+ uTRu)dt (35)

The control gain K(jh), as a consequence, is computed
from:

K(jh) = R−1(B̄TD(jh)) (36)

where D(jh) corresponds to the solution of the associated
Riccati equation:

Ā(jh)TD(jh) +D(jh)Ā(jh)
−(D(jh)B̄)R−1(B̄TD(jh)) +Q = 0

(37)

In this paper, the control gain will be addressed at each
performed test along with the matrices Q and R. The
observer gain, on the other hand, has been computed by
considering the following LMI set:

PA(jh)− L̃(jh)C +A(jh)TP − CT L̃(jh)T < 0 (38)

PA(jh)− L̃(jh)C +A(jh)TP − CT L̃(jh)T + 2Pα < 0
(39)

and: [
sin θ(Ao(jh) +Ao(jh)T )
cos θ(Ao(jh)T −Ao(jh))

cos θ(Ao(jh)−Ao(jh)T )
sin θ(Ao(jh) +Ao(jh)T )

]
< 0

(40)

where L(jh) = P−1L̃(jh) and Ao(jh) = PA(jh)−
L̃(jh)C. Equations (38)-(40) include the LMI region
defined previously. Let us point out that, due to the measured
outputs y, the observer gain can be represented as:

L(jh) =

[
l11(jh) l12(jh) l13(jh) l14(jh)
l21(jh) l22(jh) l23(jh) l24(jh)

]T
(41)

Selecting N = 230, h = 0.005 and the parameters α = 6.5
and θ = 0.025 rad for the LMI region, Figures 5 and 6
present the computed observer gains. The observer gain,
for this part, generates the eigenvalues for A(jh)− L(jh)C
depicted in Figure 7. In order to show the correct application
of the considered LMI region, on the other hand, the asterisks
in Figure 8 show the eigenvalues ∀ jh. The observer gains
where computed with MATLAB, YALMIP36 and the solver
SEDUMI. Finally, from Figures 7 and 8, the convergence for
the state estimation error ee is concluded.

Riderless bicycle prototype and
experimental results

Riderless bicycle prototype
The riderless bicycle requires the measurements of the
outputs δ and φ̇ as well as the translational velocity v.
Moreover, a device capable to apply the control law Tδ is
equally needed. This highlights the need of three sensors
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Figure 5. Observer gains l1i, i = 1, . . . , 4
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Figure 6. Observer gains l2i, i = 1, . . . , 4
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Figure 7. Eigenvalues of A(jh)− L(jh)C

and one actuator. Additionally, the measured outputs should
be introduced into a processing and signal acquisition unit,
through an electronic board in charge of the electrical signal
conditioning. Figure 9 presents the general components of
the riderless bicycle instrumentation, in addition to their
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Figure 8. Real part of A(jh)− L(jh)C eigenvalues

connections and interaction. The device in charge of the
sensor signal acquisition (measurements) and the command
signal generation for the system actuator is the PEC80
processing system, by ABB.

Figure 9. General schematic of the riderless bicycle
instrumentation

The PEC80 controller (see Figure 10 label A) is a system
specially designed for applications where the requirement
of control tasks with high velocities is needed, mostly,
within the power electronics field. The electronic board
(Figure 10 label B) performs the signal conditioning to
allow the correct communication between the sensors and
the data acquisition unit, as well as the corresponding signal
conditioning for the system actuator. The device in charge of
the torque application to the handlebar (the control input in
the mathematical model) is a servo-motor (Figure 10 label
C). This servo-motor allows the change of the handlebar
angular position, by using a metal piece coupled to the
handlebar. For the measurement of the velocity of the roll
angle φ̇, a gyroscope mounted in the general frame of the
bicycle has been used (see Figure 10 label D). This signal
is ready to be received into the acquisition unit. On the
other hand, for the angular position of the handlebar, a
potentiometer coupled to the servo-motor rotor has been
incorporated. The potentiometer changes its resistance value
depending on the servo-motor motion, which, in turn, is
proportional to the handlebar position. Finally, for the
translational velocity computation, a Hall effect built encoder
with 36 ferrous metal plates placed on the periphery of the
rear wheel has been considered (Figure 10 label E). This
sensor generates a frequency when these plates passes on it.
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Figure 10. Instrumented riderless bicycle

As a result, considering the number of plates, 36, the rear
wheel radius (Rw) and the generated frequency (F ), a
routine programmed into the PEC computes the translational
velocity for the bicycle. The complete instrumentation of the
prototype is energized by means of a set of batteries placed
on the rear part of the bicycle (Figure 10 label F).

Experimental results
Once the riderless bicycle prototype and the stabilization
control system have been defined, it is possible to address the
experimental implementation. For this, an internal function
within the software allows to disable the control law when
the translational velocity acquires values not included in Φ,
or those values where the controllability and observability
of the system are lost. Within the tests, the integral action
considered in the control system is applied to φ̂ and δ̂. The
first test involves the consideration of an integral action on
φ̂ by taking C̃ = [1 0 0 0] in equation (34). The weighting
matrix Q was selected to be:

Q =

 I2×2 02×1 02×2

01×2 500 01×2

02×2 02×1 I2×2

 (42)

where Iη×η stands for the identity matrix of η × η
dimension, 0η×γ is a 0η×γ matrix whose elements are all
zero, and R = 1. The weighting matrix Q contains a value
500 applied to the state φ̇, imposing more importance to one
of the measured variables. Its value was empirically set from
the fact that the measured variable φ̇ is directly involved in
the controlled variable φ. For the control gains, the same
parameters h and N have been considered as in the observer
gains, computed with MATLAB and its LQR command.
The computed control gains are depicted in Figure 11
by considering K(jh) = [kφ(jh) kδ(jh) kφ̇(jh) kδ̇(jh))].
Let us point out that the selection of the weighting matrix Q
at the fifth row and fifth column corresponds to the weighting
value imposed for the integral action ki(jh). Now, it is
important to stand that the last row of equation (34) related
to the integral action does not depend on the time-varying
parameter, thus, the computed integral gain corresponds to a
constant value. By considering the control gains depicted in
Figure 11, the resulting closed-loop eigenvalues are shown
in Figure 12.
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Figure 11. Control gains in experimental test considering
Qφ̇ = 500
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Figure 12. Closed-loop eigenvalues in experimental test
considering Qφ̇ = 500

From Figure 12, two pairs of complex conjugate eigenvalues
and a real eigenvalue can be seen. The first pair of complex
conjugate eigenvalues goes from −0.1893± 0.0905i to
−0.1543± 0.1443i, the second pair has a variation from
−11.1986± 7.2434i to −12.825± 10.5193i and, finally,
the real eigenvalue takes values from −3.78940 to −7.0506.
Indeed, the change of the closed-loop eigenvalues is because
of the translational velocity variation. As a result, the
stability of the closed-loop system is concluded from Figure
12. A video containing the experimental results (shown
in Figure 13) for the selected parameters Q and R, can
be watched in https://drive.google.com/open?
id=0B3_lWyaVb2r1LVp5V1hWcUI3eU0. From Figure
13, an increasing translational velocity is seen (subplot
e) from 2.1 m/s to 2.7 m/s in 6 s approximately. The
controlled variable φ̂ is depicted in Figure 13a where its
behaviour is close to the equilibrium point represented as 0 in
the plots. Recall that the equilibrium point in the real context
corresponds to the upright position of the bicycle. The
subplot c in Figure 13 shows the steer angle δ manipulated
through the control law Tδ , depicted in Figure 13f. The rest
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of the plots (b and d) show the motion velocities for the roll
angle and steer angle, respectively.
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Figure 13. Result of experimental test considering Qφ̇ = 500

For the second test, an increase on the weighting matrix Q
has been considered, by maintaining the same value for R
as in the previous case. This is done in order to perceive a
change on the control gains and, consequently, a different
control law and a different dynamical evolution of the closed-
loop system. The weighting matrix Q has been changed to:

Q =

 I2×2 02×1 02×2

01×2 800 01×2

02×2 02×1 I2×2

 (43)

The corresponding control gains are depicted in Figure 14.
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Figure 14. Control gains in experimental test considering
Qφ̇ = 800

Let us point out a change in the magnitude of the control
gain kφ̇ which is consistent with the weighting matrix Q
considered. The control gain kφ has suffered a change as
a consequence of the system structure, because of the fact
that φ̇ will change the dynamical behaviour for its position
φ. In order to force the system, the control gain for δ

should be changed too, in view of the consideration that the
steer angle is the manipulated variable. Figure 15 presents
the closed-loop eigenvalues considering the control gains
depicted in Figure 14. As in the previous test, a pair of
complex conjugated eigenvalues presents a variation from
−0.16± 0.09i to −0.13± 0.12i, a real eigenvalue goes
from −3.78 to −7.02 and an additional pair of complex
conjugated eigenvalues from −12.52± 8.16 to −14.49±
11.78i.
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Figure 15. Closed-loop eigenvalues in experimental test
considering Qφ̇ = 800

The experimental results for this test are presented in
Figure 16 (https://drive.google.com/open?id=
0B3_lWyaVb2r1NnRxT3ZPVFZ4V28). From Figure 16,
the riderless bicycle control objective is reached while the
translational velocity varies from an initial value of 2 m/s
towards 2.4 m/s. Let us point out that the increase on
the translational velocity (time-varying parameter) takes
place due to the testing ground conditions, with a negative
slope. The controlled variable φ̂ is depicted in Figure
16a, maintaining its value around 0 with a less oscillating
dynamical behaviour with respect to the previous test. As
for the control law Tδ , shown in Figure 16f, an internal
saturation for this variable is included as part of the software
in the PEC controller, in order to prevent damages in the
actuator (at t ≈ 2.1 s). The rest of the plots have the same
interpretation as in the previous test. Finally, the last test is
presented considering the application of the integral control
to the manipulated variable δ, in order to evaluate the
effectiveness of the proposed stabilization control system.
This is done by taking C̃ = [0 1 0 0] in equation (34). The
weighting matrix Q was selected to be:

Q =


250 0 0 0 0
0 1 0 0 0
0 0 250 0 0
0 0 0 1 0
0 0 0 0 1

 (44)

Figure 17 shows the computed control gains for the final test.
From equation (44), a strong influence in the control gain
computation for the variable φ and its velocity φ̇ have been
specified. Figure 18, on the other hand, presents the closed-
loop eigenvalues by using the resulting control gains.
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Figure 16. Result of experimental test considering Qφ̇ = 800
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Figure 17. Control gains in experimental test considering
integral action on the manipulated variable
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Figure 18. Closed-loop eigenvalues in experimental test
considering integral action on the manipulated variable

From Figure 18 a pair of complex conjugated eigenvalues
go from −9.62± 5.86i to −10.74± 8.78i and a set of
three real eigenvalues can be seen. A constant one allocated

at −1, a second one varying from −7.12 to −3.75 and
the final one varying from −0.2 to −0.1. The closed-loop
response for the controlled system considering the integral
action applied to the manipulated variable is presented in
Figure 19. A small change of the translational velocity
can be seen in Figure 19, varying slowly from 2.1 m/s
to 2.4 m/s. Let us point out that the controlled variable
remains closer to the equilibrium point than the results
seen in the previous tests. This is due to the integral
action, since it is applied to the steer angle δ; or the
manipulated variable https://drive.google.com/
open?id=0B3_lWyaVb2r1OUlGU19wYmpfa3c.
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Figure 19. Result of experimental test considering integral
action on the manipulated variable

Discussion
In this Section, a few comments about the presented results
are provided. This is done from the theoretical point of
view, in terms of the difference between the addressed
methodology and the one considered for the well-know
Linear Parameter Varying (LPV) systems. Let us point
out that the gain scheduling methodology introduces a
time-varying parameter in charge of the operating point
definition, for the system. A drawback of this comes from
the fact that the variation between a specific operating
point and the coming one is not taken into account
within the stability analysis. Further, the variation of this
parameter can be such that the closed-loop stability for
the controlled system is compromised. In order to retrieve
the previously condition, the Linear Parameter Varying
methodology is worth to be commented. This methodology,
unlike gain scheduling, takes into account the variation of
the time varying parameter within the Lyapunov stability
analysis. In general terms, this is done by the consideration
of a Lyapunov function depending on the time-varying
parameter(s). As a result, a term representing the velocity
variation of the time-varying parameter(s) appears into the
derivative of the Lyapunov function, along the closed-loop
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system trajectories. Consequently, the control scheme will
be able to deal with a closed-loop system varying in terms of
the parameter(s) considering a maximum value for its(their)
velocity(ies). This is the main difference between the LPV
stability analysis and the gain scheduling analysis. As a
conclusion if the time varying parameter varies slowly, then
a gain scheduled control system can be considered, as in the
case in the presented results.

Conclusion
The present paper addresses the design of a gain scheduling
control with the objective of the stabilization of a LPV
system, with a riderless bicycle study case. The riderless
bicycle LPV model acquires a high order time-varying
dependency, parameter considered as the translational
velocity of the vehicle. Throughout this work, the proposed
control scheme was evaluated through experimental results,
corroborating the effectiveness of the proposed control
scheme. The main contribution of this paper corresponds
to the riderless bicycle stabilization towards its upright
position considering a time-varying translational velocity
by a two-level controller, and the combination of the LQR
and gain scheduling control methodologies. The regulation
is performed by integral action applied to the controlled
variable and the manipulated variable, the stabilization
level, on the other hand, aims at reaching the convergence
of the system state to the desired equilibrium. From the
experimental results shown, the effectiveness of the proposed
scheme has been corroborated, leading future works in terms
of a desired velocity tracking.
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