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1. INTRODUCTION

Recently in Melchor-Aguilar et al. (2010), direct and con-

verse Lyapunov-Krasovskii theorems for the exponential

stability of integral delay systems have been introduced.

It has been shown there that a new type of Lyapunov

functionals is required in order to properly address the

dynamics of such class of systems. General expressions of

quadratic Lyapunov-Krasovskii functionals with a given

time derivative were provided. These functionals are de-

fined by special matrix-valued functions which are the

counterpart of the Lyapunov matrices that appear in the

computation of Lyapunov-Krasovskii functionals of the

complete type for differential delay systems Kharitonov

and Zhabko (2003); therefore, it appears natural to call

such matrix-valued functions as Lyapunov matrices for

integral delay systems and the corresponding functionals

as Lyapunov-Krasovski functionals of complete type for

integral delay systems.

However, in contrast with the case of differential delay

systems for which several semi-analytical and/or numerical

methods of computing Lyapunov matrices exist, see the

recent book Kharitonov (2013) for a complete descrip-

tion of such methods, to the best of our knowledge, no

computational procedures for constructing the Lyapunov

matrices of integral delay systems has been proposed in

the literature.

The lack of numerical algorithms for computing Lyapunov

matrices of integral delay systems has limited the applica-

tion of the complete type functionals but, at the same time,

it has motivated the construction of reduced type func-

tionals to obtain stability and robust stability conditions

formulated directly in terms of the coefficients of integral

delay systems expressed as linear matrix inequalities, see

for instance Melchor-Aguilar (2010), Mondie and Melchor-

Aguilar (2012) and Melchor-Aguilar (2014).

In this paper, we address the problem of computing

Lyapunov matrices for integral delay systems. Firstly,

we show that the existing methods for differential delay

systems do not provide a solution to such a problem. Then,

we present a numerical scheme for computing piecewise

linear approximations of Lyapunov matrices of integral

delay systems with a constant matrix kernel and one delay.

We also provide a method to measure the quality of the

computed approximations.

The remaining part of the paper is organized as follows.

Section 2 presents some preliminaries. The Lyapunov func-

tionals and matrices for integral delay systems are intro-

duced. Section 3 is devoted to show that the numerical

methods for delay differential systems do not allow us to

compute Lyapunov matrices for integral delay systems.

The numerical algorithms for computing piecewise linear

approximations of Lyapunov matrices and the approxima-

tion error are respectively given in sections 4 and 5. An

example illustrating the algorithm is provided in section 6

and some concluding remarks end the paper.

2. PRELIMINARIES

Consider the integral delay system

x(t) = F

∫
0

−h

x(t+ θ)dθ, (1)

where F ∈ R
n
and h > 0. Given any initial function ϕ ∈

PC = PC ([−h, 0) ,R
n
) , the space of piecewise continuous

bounded functions mapping the interval [−h, 0) to R
n
,

there exists a unique solution x(t, ϕ) of (1) which is defined

for all t ∈ [−h,∞) , see Melchor-Aguilar et al. (2010).

Definition 1. Melchor-Aguilar et al. (2010) System (1) is

said to be exponentially stable if there exist α > 0 and

µ > 0 such that every solution of (1) satisfies the inequality

�x(t, ϕ)� ≤ µe
−αt

�ϕ�
h
, ∀t ≥ 0,

where �ϕ�
h
= sup

θ∈[−h,0)

�ϕ(θ)� .

As usual for delay systems, we define the natural state of

(1) by x
t
(θ, ϕ) � x(t + θ, ϕ), θ ∈ [−h, 0) . For simplicity

of the notation, one writes x
t
(ϕ) instead of x

t
(θ, ϕ), θ ∈

[−h, 0) . Also, when the initial function is irrelevant from

the context, we simply write x(t) and x
t
instead of x(t, ϕ)

and x
t
(ϕ).
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Theorem 1. Melchor-Aguilar et al. (2010) System (1) is

exponentially stable if there exists a continuous functional

v : PC → R such that t → v(xt(ϕ)) is differentiable and

the following conditions hold:

(1) α1

∫
0

−h
�ϕ(θ)�

2

dθ ≤ v(ϕ) ≤ α2

∫
0

−h
�ϕ(θ)�

2

dθ, for

some constants 0 < α1 ≤ α2,

(2)
d

dt
v(xt(ϕ)) ≤ −β

∫
0

−h
�x(t+ θ, ϕ)�

2

dθ, for a constant

β > 0.

Let K(t) be the solution of the matrix equation

K(t) =

(∫
0

−h

K(t+ θ)dθ

)

F,

with the initial condition K(t) = −K0, t ∈ [−h, 0) , where

K0 = (I − hF )
−1

. The matrix K(t) is known as the

fundamental matrix of the system (1), see Melchor-Aguilar

et al. (2010).

Let us assume that (1) is exponentially stable. Given

W = W
T
define the matrix

U(τ) �

∫
∞

0

K
T

(t)WK(t+ τ)dt, τ ∈ [−h, h] . (2)

Note that the exponential stability of (1) guarantees the

existence of the improper integral in (2).

By assuming the exponential stability of (1) and defining

on PC the functional

w(ϕ) = ϕ
T

(−h)W0ϕ(−h) +

∫
0

−h

ϕ
T

(θ)W1ϕ(θ)dθ,

where W0 and W1 are any positive definite matrices, the

functional

v(x
t
) =

(

F

∫
0

−h

x(t+ θ)dθ

)T

U(0)

(

F

∫
0

−h

x(t+ θ)dθ

)

−2

(

F

∫
0

−h

x(t+ θ)dθ

)T ∫
0

−h

U(−h− θ)Fx(t+ θ)dθ

+

∫
0

−h

x
T

(t+ θ1)F
T

(∫
0

−h

U(θ1 − θ2)Fx(t+ θ2)dθ2

)

dθ1

−

∫
0

−h

x
T

(t+ θ1)F
T

K
T

0
W×

×

[
∫

0

−h

(
∫

θ
1
−θ

2

−h−θ
2

K(ξ)dξ

)

Fx(t+ θ2)dθ2

]

dθ1

+

∫
0

−h

x
T

(t+ θ) [W0 + (θ + h)W1]x(t+ θ)dθ, (3)

where U(·) is given by (2) with W = W0 + hW1, satisfies

the equation

d

dt

v(xt) = −w(xt), t ≥ 0.

It is shown in Melchor-Aguilar et al. (2010) that if the

system (1) is exponentially stable then the functional (3)

satisfies the conditions of Theorem 1.

It follows from (3) that the matrix-valued function U(·) is

fundamental for constructing the functional v(xt). This

special characteristic of the functional (3) is analogous

to that of the so-called Lyapunov-Krasovskii functionals

of the complete type for linear differential delay systems

which construction depend on a matrix-valued function

called as Lyapunov matrix for differential delay systems,

see Kharitonov (2013). Thus, it appears natural to call

the functional v(xt) defined by (3) as Lyapunov-Krasovskii

functional of the complete type for the integral delay

system (1) and the matrix-valued function U(τ) defined

by (2) as Lyapunov matrix for the integral delay system

(1). We formally state the Lyapunov matrix concept in the

following definition.

Definition 2. The matrix (2) is a Lyapunov matrix of the

system (1) associated with a symmetric matrix W.

Remark 1. The fundamental matrix K(t) presents a jump

discontinuity at t = 0 given by

∆K(0) = K(0)−K(−0) = I −K0 − (−K0) = I.

On the other hand, the Lyapunov matrix U(τ) is continu-

ous for all τ ∈ [−h, h].

Lemma 2. Melchor-Aguilar et al. (2010) The Lyapunov

matrix U(τ) satisfies the following conditions:

U(τ) =

(∫
0

−h

U(τ + θ)dθ

)

F, τ ≥ 0. (4)

U(τ) = K
T

0
W

∫
τ

0

K(ξ)dξ + U
T

(−τ), τ ∈ [0, h]. (5)

−K
T

(0)WK(0) = [U(0)F − U(−h)F ]
T

+ [U(0)F − U(−h)F ] . (6)

We respectively call the conditions (4), (5) and (6) as the

dynamic property, the symmetry property and the algebraic

property of the Lyapunov matrix.

Clearly, these three properties provide an alternative more

practical way to compute the Lyapunov matrix than the

improper integral definition in (2). The dynamic property

defines U(τ) as a solution of the integral delay equation

(4). In order to compute such a solution one needs to know

the corresponding initial condition but, however, this is not

explicitly given. Thus, as occurs in the differential delay

case, one of the main problems on computing Lyapunov

matrices for integral delay systems consists in determining

the corresponding initial condition for the integral delay

equation (4).

There are some methods for determining the correspond-

ing initial condition for Lyapunov matrices of differen-

tial delay systems Kharitonov (2013). Unfortunately, such

methods cannot be directly applied to the computation of

Lyapunov matrices for integral delay systems. The main

problem is that in order to apply such methods one needs

to differentiate the integral delay equation (4) and this

leads to an unstable delay differential matrix equation, see

Melchor-Aguilar et al. (2010) for details.

On the other hand, it seems natural to analyze the

possibility of applying not the methods for differential

delay systems but the main ideas behind them to the

case of integral delay systems. Thus, in the next section,

we will apply the main ideas exposed in Garcia-Lozano

and Kharitonov (2006) to the numerical construction of

Lyapunov matrices for integral delay systems.
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T

(t)WK(t+ τ)dt, τ ∈ [−h, h] . (2)

Note that the exponential stability of (1) guarantees the

existence of the improper integral in (2).

By assuming the exponential stability of (1) and defining

on PC the functional

w(ϕ) = ϕ
T

(−h)W0ϕ(−h) +

∫
0

−h

ϕ
T

(θ)W1ϕ(θ)dθ,

where W0 and W1 are any positive definite matrices, the

functional

v(x
t
) =

(

F

∫
0

−h

x(t+ θ)dθ

)T

U(0)

(

F

∫
0

−h

x(t+ θ)dθ

)

−2

(

F

∫
0

−h

x(t+ θ)dθ

)T ∫
0

−h

U(−h− θ)Fx(t+ θ)dθ

+

∫
0

−h

x
T

(t+ θ1)F
T

(∫
0

−h

U(θ1 − θ2)Fx(t+ θ2)dθ2

)

dθ1

−

∫
0

−h

x
T

(t+ θ1)F
T

K
T

0
W×

×

[
∫

0

−h

(
∫

θ
1
−θ

2

−h−θ
2

K(ξ)dξ

)

Fx(t+ θ2)dθ2

]

dθ1

+

∫
0

−h

x
T

(t+ θ) [W0 + (θ + h)W1]x(t+ θ)dθ, (3)

where U(·) is given by (2) with W = W0 + hW1, satisfies

the equation

d

dt

v(xt) = −w(xt), t ≥ 0.

It is shown in Melchor-Aguilar et al. (2010) that if the

system (1) is exponentially stable then the functional (3)

satisfies the conditions of Theorem 1.

It follows from (3) that the matrix-valued function U(·) is

fundamental for constructing the functional v(xt). This

special characteristic of the functional (3) is analogous

to that of the so-called Lyapunov-Krasovskii functionals

of the complete type for linear differential delay systems

which construction depend on a matrix-valued function

called as Lyapunov matrix for differential delay systems,

see Kharitonov (2013). Thus, it appears natural to call

the functional v(xt) defined by (3) as Lyapunov-Krasovskii

functional of the complete type for the integral delay

system (1) and the matrix-valued function U(τ) defined

by (2) as Lyapunov matrix for the integral delay system

(1). We formally state the Lyapunov matrix concept in the

following definition.

Definition 2. The matrix (2) is a Lyapunov matrix of the

system (1) associated with a symmetric matrix W.

Remark 1. The fundamental matrix K(t) presents a jump

discontinuity at t = 0 given by

∆K(0) = K(0)−K(−0) = I −K0 − (−K0) = I.

On the other hand, the Lyapunov matrix U(τ) is continu-

ous for all τ ∈ [−h, h].

Lemma 2. Melchor-Aguilar et al. (2010) The Lyapunov

matrix U(τ) satisfies the following conditions:

U(τ) =

(∫
0

−h

U(τ + θ)dθ

)

F, τ ≥ 0. (4)

U(τ) = K
T

0
W

∫
τ

0

K(ξ)dξ + U
T

(−τ), τ ∈ [0, h]. (5)

−K
T

(0)WK(0) = [U(0)F − U(−h)F ]
T

+ [U(0)F − U(−h)F ] . (6)

We respectively call the conditions (4), (5) and (6) as the

dynamic property, the symmetry property and the algebraic

property of the Lyapunov matrix.

Clearly, these three properties provide an alternative more

practical way to compute the Lyapunov matrix than the

improper integral definition in (2). The dynamic property

defines U(τ) as a solution of the integral delay equation

(4). In order to compute such a solution one needs to know

the corresponding initial condition but, however, this is not

explicitly given. Thus, as occurs in the differential delay

case, one of the main problems on computing Lyapunov

matrices for integral delay systems consists in determining

the corresponding initial condition for the integral delay

equation (4).

There are some methods for determining the correspond-

ing initial condition for Lyapunov matrices of differen-

tial delay systems Kharitonov (2013). Unfortunately, such

methods cannot be directly applied to the computation of

Lyapunov matrices for integral delay systems. The main

problem is that in order to apply such methods one needs

to differentiate the integral delay equation (4) and this

leads to an unstable delay differential matrix equation, see

Melchor-Aguilar et al. (2010) for details.

On the other hand, it seems natural to analyze the

possibility of applying not the methods for differential

delay systems but the main ideas behind them to the

case of integral delay systems. Thus, in the next section,

we will apply the main ideas exposed in Garcia-Lozano

and Kharitonov (2006) to the numerical construction of

Lyapunov matrices for integral delay systems.
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3. APPLICATION OF THE NUMERICAL METHOD

FOR DIFFERENTIAL DELAY SYSTEMS

Following Garcia-Lozano and Kharitonov (2006) let us

define the matrix-valued function Φ(τ) , τ ∈ [−h, 0], as

the unknown initial function for the dynamic equation

(4) and divide the interval [−h, 0] into N equal segments

[−(j+1)r,−jr], j = 0, 1, 2, . . . , N−1, where r =

h

N

. Now,

we introduce N + 1 unknown matrices Φ
j
= Φ(−jr), j =

0, 1, 2, . . . , N, and define the continuous piecewise linear

approximation of the initial function Φ(τ) as follows:

ˆ
Φ(s) =

�

1 +

s+ jr

r

�

Φ
j
+

�

−

s+ jr

r

�

Φ
j+1, (7)

where s ∈ [−(j + 1)r,−jr], j = 0, 1, 2, . . . ,N − 1.

Let U(τ) = U(τ,Φ) be the solution of (4) corresponding to

the initial function Φ and define the continuous piecewise

linear approximation of U(τ) as follows:

ˆ
U(s) =

�

1−

s− jr

r

�

U
j
+

�
s− jr

r

�

U
j+1, (8)

where s ∈ [jr, (j + 1)r], U
j
= U(jr), j = 0, 1, 2, · · · , N − 1.

From (4), we have

Uj =

�
�

jr

(j−N)r

U(ξ)dξ

�

F. (9)

Then, according with the method in Garcia-Lozano and

Kharitonov (2006), we compare Uj and Uj+1 to obtain

Uj+1 − Uj =

��
r

0

(U(jr + θ)−Φ((j −N)r + θ))dθ

�

F.

Substituting the matrices U(jr + θ) and Φ((j −N)r + θ)

under the integral by their piecewise linear approximations

(8) and (7), and using the symmetry property (5) at the

partition points, i.e.,

Uj = Φ
T

j
+K

T

0
WVj , j = 0, 1, . . . , N, (10)

where

Vj =

�
jr

0

K(ξ)dξ, (11)

one arrives at the following set of N linear equations

expressed in terms of the unknown matrices Φ
j
, j =

0, 1, . . . , N − 1 :

�
r

2

F + I

�

Φ
T

j
+

�
r

2

F − I

�

Φ
T

j+1
−

r

2

(Φ
N−j

+Φ
N−j−1)F

= K
T

0
W

�

Vj+1 − Vj −

r

2

(Vj + Vj+1)

�

. (12)

By adding to this set the algebraic equation (6) in the

partition points

(Φ0 −ΦN )F + F
T

(Φ0 −ΦN )
T

= −K
T

(0)WK(0) (13)

one arrives at the system of N + 1 matrix equations for

the N + 1 unknown matrices Φ
j
, j = 0, 1, . . . , N .

In principle, the solution of the system of equations

(12)-(13) should provide the unknown matrices Φj , j =

0, 1, . . . , N, and the formula (7) gives the desired approxi-

mation of the initial function.

Let us consider the scalar case and two partitions of the

interval [−h, 0], i.e. F ∈ R and N = 2, that leads to r =
h

2
.

In this case, the linear system of equations (12)-(13) can

be written as AX = B, where

A=








�
r

2

F + 1

�

−1 −

r

2

F

−

r

2

F 1

�
r

2

F − 1

�

2F 0 −2F







, X =

�

Φ0 Φ1 Φ2

�
T

,

B =








K0W

�

V1 −

r

2

V1F

�

K0W

�

(V1 − V1)−

r

2

(V1 + V2)F

�

0







.

We have that det(A) = −2rF
2
− 2F + 2F + 2rF

2
= 0

which implies that the matrix A is singular for all values

of F ∈ R and h > 0. It then follows that the system of

equations (12)-(13) is not consistent and, therefore, it does

not provide a proper solution to the problem of computing

Lyapunov matrices for integral delay systems.

4. APPROXIMATE LYAPUNOV MATRICES

The analysis in section 3 shows that a new method for

calculating Lyapunov matrices of integral delay systems is

required. In this section, we propose such a method.

4.1 Approximate initial function

Let us consider the equation (9). Since (j − N)r ≤ 0,

j = 0, 1, . . . , N , we then can rewrite the equation (9) as

Uj =









�
0

(j−N)r

Φ(ξ)dξ

� �� �

mj

+

�
jr

0

U(ξ)dξ

� �� �

nj









F. (14)

Consider the term mj in (14). Rewriting the integral in a

sum of integrals over intervals of length r and substituting

Φ(ξ) by its approximation
ˆ
Φ(ξ) one gets

m̂
j
=

N−j−1
�

k=0

�
−(N−j−k−1)r

−(N−j−k)r

ˆ
Φ(ξ)dξ, j = 0, 1, . . . , N − 1,

m̂
N
=0,

where m̂j denotes the approximation of the term mj .

Substituting
ˆ
Φ(ξ) in the integrals at the right-hand side of

the expression for m̂j by its piecewise linear approximation

(7), one gets

m̂
j
=

r

2

N−j−1�

k=0

(Φ
N−j−k−1 +Φ

N−j−k
) , j = 0, . . . , N − 1,

m̂
N

= 0.

(15)

Now, consider the term nj in (14). Similarly, let us rewrite

the integral as a sum of integrals over intervals of length r

and substitute U(ξ) by its approximation
ˆ
U(ξ). We have

n̂
j
=

j−1
�

k=0

�
(j−k)r

(j−k−1)r

ˆ
U(ξ)dξ, j = 1, 2, . . . , N,

n̂0 =0

where n̂j denotes the approximation of nj . Substituting

ˆ
U(ξ) in the integrals at the right-hand side of the expres-
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sion for n̂
j
by its piecewise linear approximation (8), one

obtains

n̂
j
=

r

2

�
j−1

k=0
(U

j−k−1 + U
j−k

) , j = 1, . . . , N,

n̂0 = 0.

(16)

From (14), we can consider the equation

Uj = (m̂j + n̂j)F, j = 0, 1, . . . , N,

where m̂
j

and n̂
j

are respectively given by (15) and

(16), and accept the approximation error. By using the

symmetry property at the partitions points (10) in the

above equation one arrives at the following system of

matrix equations:

• For j = 0

Φ0 −

r

2

N−j−1
�

k=0

(Φ
N−j−k−1 +Φ

N−j−k
)F = 0. (17)

• For j = 1, 2, · · · , N − 1

Φ
T

j
−

r

2

�
N−j−1
�

k=0

(Φ
N−j−k−1 +Φ

N−j−k
)+

+

j−1
�

k=0

�
Φ

T

j−k−1
+Φ

T

j−k

�

�

F =

=K
T

0
W

�

r

2

j−1
�

k=0

(Vj−k−1 + Vj−k)F − Vj

�

. (18)

• For j = N

Φ
T

N
−

r

2

j−1
�

k=0

�
Φ

T

j−k−1
+Φ

T

j−k

�
F =

=K
T

0
W

�

r

2

j−1
�

k=0

(Vj−k−1 + Vj−k)F − VN

�

. (19)

The equations (17)-(19) determine a system of N + 1

matrix equations for the N + 1 unknown matrices Φj ,

j = 0, 1, · · · , N . The solution of this system provides

matrices Φ
j
, j = 0, 1, 2, . . . , N, and the formula (7) allows

us to compute the desired approximation of the initial

matrix function.

In order to show that the system of matrix equations (17)-

(19) does not present the same inconsistent problem as the

system of matrix equations (12)-(13), let us consider again

the scalar case when F ∈ R and N = 2. In this case, the

system of equations (17)-(19) can be written as
¯
AX =

¯
B,

where

¯
A=








�

1−

r

2

F

�

−rF −

r

2

F

−rF (1− rF ) 0

−

r

2

F −rF

�

1−

r

2

F

�







, X =

�

Φ0 Φ1 Φ2

�
T

,

¯
B =







0

K0W

�
r

2

V1F − V1

�

K0W

�
r

2

(2V1 + V2)F

�

− V2






.

We have that det(
¯
A) = −2Fr + 1. Then, it follows that

the only case when
¯
A is singular is F =

1

2r
=

1

h
, which

is precisely the boundary of the stability region for the

scalar integral delay system, see Kharitonov and Melchor-

Aguilar (2000). Thus, in this case, the system of equations

(17)-(19) provide us with a solution for all exponentially

stable scalar integral delay systems.

Remark 2. The system of matrix equations (17)-(19) is

well-defined without involving the algebraic property (6)

in contrast to the method proposed in Garcia-Lozano

and Kharitonov (2006) which requires the corresponding

algebraic property for Lyapunov matrices of differential

delay systems.

4.2 Vector form

In order to find a solution of the system of matrix equa-

tions (17)-(19) it is convenient to write it in a vector

form by means of the vector operation vec(Q) = q, where

q ∈ R
n
2

is obtained from Q ∈ R
n×n

by stacking up its

column. The vectorization of C = AXB is vec(C) =

(A⊗B) vec(X), where

A⊗B =









b11A b21A · · · bn1A

b12A b22A · · · bn2A

.

.

.

.

.

.

.
.
.

.

.

.

b1nA b2nA · · · bnnA









is the Kronecker product of matrix A and B, and the

vectorization of D = AX
T
B is vec(D) = (A ◦B) vec(X),

where A ◦B is defined by

A ◦B =









A1B
T

1
A2B

T

1
· · · A

n
B

T

1

A1B
T

2
A2B

T

2
· · · AnB

T

2

.

.

.

.

.

.

.
.
.

.

.

.

A1B
T

n
A2B

T

n
· · · AnB

T

n









,

with A
j
, B

j
, j = 1, 2, . . . , N, denoting the vector columns

of A and B, respectively.

Then, the system of matrix equations (17)-(19) can be

written in the vector form as follows:

• For j = 0

(I ◦ I)φ
0
−

r

2

N−j−1
�

k=0

(I × F )

�
φ
N−j−k−1

+

+φ
N−j−k

�
= 0.

• For j = 1, 2, · · · , N − 1

(I ◦ F )φ
j
−

r

2

�
N−j−1
�

k=0

(I × F )

�
φ
N−j−k−1

+

+φ
N−j−k

�
+

j−1
�

k=0

(I ◦ F )

�
φ
j−k−1

+ φ
j−k

�

�

=

= vec

�

K
T

0
W

�

r

2

j−1
�

k=0

(Vj−k−1 + Vj−k)F − Vj

��

.

• For j = N

(I ◦ I)φ
N
−

r

2

j−1
�

k=0

(I ◦ F )

�
φ
j−k−1

+ φ
j−k

�
=

= vec

�

K
T

0
W

�

r

2

j−1
�

k=0

(V
j−k−1 + V

j−k
)F − V

N

��

,
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sion for n̂
j
by its piecewise linear approximation (8), one

obtains

n̂
j
=

r

2

�
j−1

k=0
(U

j−k−1 + U
j−k

) , j = 1, . . . , N,

n̂0 = 0.

(16)

From (14), we can consider the equation

Uj = (m̂j + n̂j)F, j = 0, 1, . . . , N,

where m̂
j

and n̂
j

are respectively given by (15) and

(16), and accept the approximation error. By using the

symmetry property at the partitions points (10) in the

above equation one arrives at the following system of

matrix equations:

• For j = 0

Φ0 −

r

2

N−j−1
�

k=0

(Φ
N−j−k−1 +Φ

N−j−k
)F = 0. (17)

• For j = 1, 2, · · · , N − 1

Φ
T

j
−

r

2

�
N−j−1
�

k=0

(Φ
N−j−k−1 +Φ

N−j−k
)+

+

j−1
�

k=0

�
Φ

T

j−k−1
+Φ

T

j−k

�

�

F =

=K
T

0
W

�

r

2

j−1
�

k=0

(Vj−k−1 + Vj−k)F − Vj

�

. (18)

• For j = N

Φ
T

N
−

r

2

j−1
�

k=0

�
Φ

T

j−k−1
+Φ

T

j−k

�
F =

=K
T

0
W

�

r

2

j−1
�

k=0

(Vj−k−1 + Vj−k)F − VN

�

. (19)

The equations (17)-(19) determine a system of N + 1

matrix equations for the N + 1 unknown matrices Φj ,

j = 0, 1, · · · , N . The solution of this system provides

matrices Φ
j
, j = 0, 1, 2, . . . , N, and the formula (7) allows

us to compute the desired approximation of the initial

matrix function.

In order to show that the system of matrix equations (17)-

(19) does not present the same inconsistent problem as the

system of matrix equations (12)-(13), let us consider again

the scalar case when F ∈ R and N = 2. In this case, the

system of equations (17)-(19) can be written as
¯
AX =

¯
B,

where

¯
A=








�

1−

r

2

F

�

−rF −

r

2

F

−rF (1− rF ) 0

−

r

2

F −rF

�

1−

r

2

F

�







, X =

�

Φ0 Φ1 Φ2

�
T

,

¯
B =







0

K0W

�
r

2

V1F − V1

�

K0W

�
r

2

(2V1 + V2)F

�

− V2






.

We have that det(
¯
A) = −2Fr + 1. Then, it follows that

the only case when
¯
A is singular is F =

1

2r
=

1

h
, which

is precisely the boundary of the stability region for the

scalar integral delay system, see Kharitonov and Melchor-

Aguilar (2000). Thus, in this case, the system of equations

(17)-(19) provide us with a solution for all exponentially

stable scalar integral delay systems.

Remark 2. The system of matrix equations (17)-(19) is

well-defined without involving the algebraic property (6)

in contrast to the method proposed in Garcia-Lozano

and Kharitonov (2006) which requires the corresponding

algebraic property for Lyapunov matrices of differential

delay systems.

4.2 Vector form

In order to find a solution of the system of matrix equa-

tions (17)-(19) it is convenient to write it in a vector

form by means of the vector operation vec(Q) = q, where

q ∈ R
n
2

is obtained from Q ∈ R
n×n

by stacking up its

column. The vectorization of C = AXB is vec(C) =

(A⊗B) vec(X), where

A⊗B =









b11A b21A · · · bn1A

b12A b22A · · · bn2A

.

.

.

.

.

.

.
.
.

.

.

.

b1nA b2nA · · · bnnA









is the Kronecker product of matrix A and B, and the

vectorization of D = AX
T
B is vec(D) = (A ◦B) vec(X),

where A ◦B is defined by

A ◦B =









A1B
T

1
A2B

T

1
· · · A

n
B

T

1

A1B
T

2
A2B

T

2
· · · AnB

T

2

.

.

.

.

.

.

.
.
.

.

.

.

A1B
T

n
A2B

T

n
· · · AnB

T

n









,

with A
j
, B

j
, j = 1, 2, . . . , N, denoting the vector columns

of A and B, respectively.

Then, the system of matrix equations (17)-(19) can be

written in the vector form as follows:

• For j = 0

(I ◦ I)φ
0
−

r

2

N−j−1
�

k=0

(I × F )

�
φ
N−j−k−1

+

+φ
N−j−k

�
= 0.

• For j = 1, 2, · · · , N − 1

(I ◦ F )φ
j
−

r

2

�
N−j−1
�

k=0

(I × F )

�
φ
N−j−k−1

+

+φ
N−j−k

�
+

j−1
�

k=0

(I ◦ F )

�
φ
j−k−1

+ φ
j−k

�

�

=

= vec

�

K
T

0
W

�

r

2

j−1
�

k=0

(Vj−k−1 + Vj−k)F − Vj

��

.

• For j = N

(I ◦ I)φ
N
−

r

2

j−1
�

k=0

(I ◦ F )

�
φ
j−k−1

+ φ
j−k

�
=

= vec

�

K
T

0
W

�

r

2

j−1
�

k=0

(V
j−k−1 + V

j−k
)F − V

N

��

,
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where φ
j
= vec(Φ

j
), j = 1, 2, . . . , N.

4.3 Approximate Lyapunov matrix

With the piecewise linear approximation of the initial

function in our hands, we now address the problem of

searching the corresponding solution of the integral delay

equation (4). Indeed, the problem can be formulated as

the following initial value problem:

U(τ) =

(∫
0

−h

U(τ + θ)dθ

)

F, τ ≥ 0, (20)

U(τ) =
ˆ
Φ(τ), τ ∈ [−h, 0]. (21)

Note that such a problem cannot be solved by means

of the well-known step by step method for constructing

solutions of differential delay systems Bellman and Cooke

(1963). Here, we propose a method for solving the initial

value problem (20)-(21) and that indeed it can be used to

numerically construct solutions of integral delay systems

of the form (1).

From (20) we have for τ ∈ [0, h]

U(τ) = W (τ) +

(∫
τ

0

U(ξ)dξ

)

F, (22)

where

W (τ) =

(∫
0

τ−h

ˆ
Φ(ξ)dξ

)

F.

It follows that the initial value problem (20)-(21) is equiv-

alent to the problem of finding a solution of the inte-

gral equation (22). The equation (22) is a Volterra type

equation for which the existence and uniqueness of so-

lutions can be guaranteed by means of operator theory

or successive approximations. In particular, the method

of successive approximations provides us a procedure to

numerically compute solutions of (22). More precisely, let

U0(τ) = W (τ) and Uj(τ), j = 1, 2, 3, . . . , be the sequence

determined inductively as follows:

U
j
(τ) = W (τ) +

(∫
τ

0

U
j−1(ξ)dξ

)

F, τ ∈ [0, h].

It is possible to prove that Uj(τ) converges (uniformly on

τ) to a limit matrix U(τ) when j → ∞ and that this matrix

U(τ) satisfies the integral equation (22). The sequence

Uj(τ) provides a procedure to numerically construct an

approximation of U(τ) for each τ ∈ [0, h] . Note that by

continuing this process on intervals of length h one can

obtain the solution U(τ) for any τ ≥ 0.

Thus, by using this procedure, let
ˆ
U(τ) =

ˆ
U

(

τ,
ˆ
Φ

)

, τ ∈

[0, h], be the approximate solution of the dynamic equation

(4) corresponding to the initial condition
ˆ
Φ.

The matrix
ˆ
U(τ) for τ ∈ [−h, h] is then the desired

approximate Lyapunov matrix.

5. APPROXIMATION ERROR

In this section, we present an approach for evaluating the

quality of the computed approximate Lyapunov matrix.

Firstly, we note that by the construction procedure in

subsection 4.3 it follows that the matrix
ˆ
U(τ) satisfies

the dynamic equation (4) for τ ∈ [0, h] and
ˆ
U(0) =

ˆ
Φ(0).

On the other hand, the matrix
ˆ
U(τ) does not necessarily

satisfy the symmetry property (5) and, moreover, the

algebraic property (6) since this property has not been

involved in the construction procedure, see the Remark 2.

Let us introduce the matrices

∆S(τ) =
ˆ
U(τ)−

ˆ
Φ

T

(−τ)−K
T

0
WV (τ),

and

∆A=

[

ˆ
U(0)−

ˆ
U

T

(h) + V
T

(h)WK0

]

F +K
T

(0)WK(0)

+F
T

[

ˆ
U(0)−

ˆ
U

T

(h) + V
T

(h)WK0

]
T

.

The matrix ∆S(τ) measures the error of the symmetry

property while the matrix ∆A evaluates the violation of

the algebraic property.

Let us substitute matrix U(τ) in the functional (3) by the

approximate matrix
ˆ
U(τ) and denote the new functional

by v̂(xt). The time derivative of v̂(xt) along the trajectories

of the system (1) is

d

dt

v̂(xt) =−w(xt) + x
T

(t)∆Ax(t)

+x
T

(t− h)F
T

∫
0

−h

∆S
T

(θ + h)Fx(t+ θ)dθ

+x
T

(t)F
T

∫
0

−h

∆S(−θ)Fx(t+ θ)dθ. (23)

Similar to the approach for differential delay systems in

Garcia-Lozano and Kharitonov (2006) we propose to eval-

uate the approximation error of the computed Lyapunov

matrix
ˆ
U(τ) by comparing the time derivative of the func-

tional v̂(xt) with that of the functional v (xt) .

By direct calculations derived from (23) we arrive at

∣
∣
∣
∣

d

dt

v̂(xt)−

d

dt

v(xt)

∣
∣
∣
∣
≤ α �z(t− h)�

2

+γ

∫
0

−h

�z(t+ θ)�
2

dθ,

where

α =

σ

2

�F�
2

and γ = h �F�
2

(

δ + σ �F�+

σ

2

)

,

with

σ = max

τ∈[0,h]

�∆S(τ)� and δ = �∆A� .

Observe that if λmin (W0) > α and λmin (W1) > γ then

d

dt
v̂(xt) remains negative under the approximation errors.

Furthermore, if σ, δ → 0 then α, γ → 0 and, therefore,

d

dt
v̂(x

t
) →

d

dt
v(x

t
). Hence, the quantity

ε = max

{
α

λmin (W0)

,

γ

λmin (W1)

}

,

can be used as a measure to evaluate the quality of the

approximation of the Lyapunov matrix whereas a small ε

implies a better approximation.

6. NUMERICAL EXAMPLE

To illustrate the obtained results we consider the integral

delay system (1) with h = 1 and

F =

(

0.25 0.7

−0.7 −1

)

.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

13888

t

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

K
(t
)

-1.5

-1.2

-0.9

-0.6

-0.3

0

0.3

0.6

0.91

K11(t)

K12(t)

K21(t)

K22(t)

Fig. 1. Components of the fundamental matrix K(t).

τ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Û
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Û21(τ )
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Since the eigenvalues of F lie in the open domain Γ whose

boundary admits the parametrization

∂Γ =

{
ω sin(ω)

2 [1− cos(ω)]

+ i

ω

2

∣
∣
∣
∣
ω ∈ (−2π, 2π)

}

then the system (1) is exponentially stable, see Kharitonov

and Melchor-Aguilar (2000).

Note that in order to solve the system of matrix equa-

tions (17)-(19) one has to calculate the matrices V
j
, j =

1, 2, . . . , N, defined by (11) and, therefore, to compute

the fundamental matrix K(t) for t ∈ [0, 1] . Since the

initial condition for the fundamental matrix is known one

can apply the method presented in subsection 4.3 and

construct K(t) for t ∈ [0, 1] , see Fig. 1.

Now for W = I and N = 20 we use the proposed

algorithm to compute the approximate initial function

and the corresponding approximate solution of the matrix

integral delay equation (4). The approximated Lyapunov

matrix
ˆ
U (τ) , τ ∈ [−1, 1], is plotted in Fig. 2.

As it can be seen from the Figs. 1 and 2, the fundamental

matrix K(t) presents a jump discontinuity at t = 0 while

the Lyapunov matrix is continuous for all τ ∈ [−1, 1] as

expected from the Remark 1.

In order to evaluate the quality of the approximate Lya-

punov matrix let us select matrices W0 = 0.15I and

W1 = 0.85I then W = W0+hW1 = I. Simple calculations

show that σ = 3.6466×10
−4

and δ = 3.3425×10
−4

which

lead to α = 3.6719 × 10
−4

and γ = 0.0021. Then, the

measure of the quality of the approximation is ε = 0.0025.

7. CONCLUSIONS

In this paper, we addressed the problem of computing

Lyapunov matrices for integral delay systems. After show-

ing that the existing numerical procedures of calculating

Lyapunov matrices for differential delay systems cannot

be applied to integral delay systems, a numerical algo-

rithm for computing piecewise linear approximations of

Lyapunov matrices is introduced.

It is important to mention that the proposed algorithm

does not involve the algebraic property of the Lyapunov

matrix in contrast with the methods for differential delay

systems which require such a property. A measure of the

approximation error is also proposed. Extensions of this

work to more general classes of integral delay systems

deserve further study.
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Û22(τ )

Fig. 2. Components of the approximated Lyapunov matrix

ˆ
U (τ).
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boundary admits the parametrization

∂Γ =
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ω sin(ω)

2 [1− cos(ω)]
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ω
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ω ∈ (−2π, 2π)

}

then the system (1) is exponentially stable, see Kharitonov

and Melchor-Aguilar (2000).

Note that in order to solve the system of matrix equa-

tions (17)-(19) one has to calculate the matrices V
j
, j =

1, 2, . . . , N, defined by (11) and, therefore, to compute

the fundamental matrix K(t) for t ∈ [0, 1] . Since the

initial condition for the fundamental matrix is known one

can apply the method presented in subsection 4.3 and

construct K(t) for t ∈ [0, 1] , see Fig. 1.
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algorithm to compute the approximate initial function

and the corresponding approximate solution of the matrix

integral delay equation (4). The approximated Lyapunov
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ˆ
U (τ) , τ ∈ [−1, 1], is plotted in Fig. 2.

As it can be seen from the Figs. 1 and 2, the fundamental

matrix K(t) presents a jump discontinuity at t = 0 while

the Lyapunov matrix is continuous for all τ ∈ [−1, 1] as

expected from the Remark 1.
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show that σ = 3.6466×10
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which
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−4

and γ = 0.0021. Then, the

measure of the quality of the approximation is ε = 0.0025.
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In this paper, we addressed the problem of computing

Lyapunov matrices for integral delay systems. After show-

ing that the existing numerical procedures of calculating

Lyapunov matrices for differential delay systems cannot

be applied to integral delay systems, a numerical algo-

rithm for computing piecewise linear approximations of

Lyapunov matrices is introduced.

It is important to mention that the proposed algorithm

does not involve the algebraic property of the Lyapunov

matrix in contrast with the methods for differential delay

systems which require such a property. A measure of the

approximation error is also proposed. Extensions of this

work to more general classes of integral delay systems
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Kharitonov, V. and Zhabko, A. (2003). Lyapunov-

krasovskii approach to the robust stability analysis of

time-delay systems. Automatica, 39(1), 15 — 20.

Kharitonov, V.L. and Melchor-Aguilar, D. (2000). On

delay dependent stability conditions. Syst Control Lett,

40(1), 71 — 76.

Melchor-Aguilar, D. (2010). On stability of integral delay

systems. Appl. Math. Comput., 217(7), 3578 — 3584.

Melchor-Aguilar, D. (2014). New results on robust expo-

nential stability of integral delay systems. Int. J. Syst.

Sci., 47(8), 1905—1916.

Melchor-Aguilar, D., Kharitonov, V., and Lozano, R.

(2010). Stability conditions for integral delay systems.

Int. J. Robust. Nonlin., 20(1), 1—15.

Mondie, S. and Melchor-Aguilar, D. (2012). Exponential

stability of integral delay systems with a class of analytic

kernels. IEEE T. Automat. Contr., 57(2), 484—489.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

13889


