This is a pre-print of an article published in *Environmental Science and Pollution Research.* The final authenticated version is available online at: <u>https://doi.org/10.1007/s11356-018-2084-1</u>

1 2		
3 4	1	TEMPORAL AND SPAT
5 6	2	DURING OZONATION
7 8 9	3	Itzel Covarrubias-García ¹ , A
10 11 12	4	¹ Instituto Potosino de Inves
13 14	5	Camino a la Presa San Jo
15 16	6	sonia@ipicyt.edu.mx. Phone
17 18	7	² Universidad del Mar, Camp
19 20 21	8 9	ABSTRACT
22 23	10	The present paper focuses
24 25	11	acetate working under cont
26 27	12	under continuous addition
28 29	13	exopolysaccharides (EPS)
30 31	14	Transform Infrared Spectro
32 33	15	analyzing its main constitue
34 35 36	16	attempted mainly with biofi
37 38	17	main constituents in the bio
39 40	18	EPS structure when O ₃ was
41 42	19	greater effect was observed
43 44	20	ratio measured was twice lo
45 46	21	biofilter subjected to O ₃ add
47 48	22	under this condition. All al
49 50	23	concentration of applied O ₃ ,
51 52	24	
53 54	25	Keywords: exopolysacchas
55 56	26	behavior.
57 58	27	
59 60		
61 62	I	
63 64		
65		

IAL EPS ANALYSIS OF A BIOFILTER TREATING ETHYL ACETATE

aitor Aizpuru², Sonia Arriaga¹

stigación Científica y Tecnológica (IPICyT), División de Ciencias Ambientales,

- sé 2055, Lomas 4a Sección, CP 78216, San Luis Potosí, México. e-mail to:
- e: +52 4448342000; Fax: +52 4448342010.
 - ous Puerto Ángel, Oaxaca, MÉXICO.

on the biofilm composition and pattern of biomass in gas biofiltration of ethyl inuous addition of ozone (O_3) . Two biofilters were operated for 230 days, one of O_3 (90 ppb_v) and another one without. Throughout the operation time, the extracted from the biofilm were characterized, qualitatively using Fourier oscopy with attenuated total reflectance (FTIR-ATR), and quantitatively by ents: carbohydrates, proteins and glucuronic acid. EPS characterization has been Ilm aggregates related to water treatment, not air biofiltration. Since EPS are the film, the results of this study may be helpful and provide more information about added. O₃ addition only affected the amount of EPS, and not its composition. The on carbohydrate content, since it is the main component in EPS. The EPS/biomass wer with O₃ addition. Higher RE and mineralization rates were obtained with the lition, and a smaller volume of reactor would be necessary to treat all contaminant bout suggest that EPS are only being reduced by O_3 addition and that the low did not affect the composition of the EPS.

rides; ozone; biomass composition; ethyl acetate, biofiltration, longitudinal

1 1. Introduction

Biofilms are the place where microorganisms live, multiply, grow, and interact in aggregated forms. In most biofilms, the microorganism account for less than 10% of the dry mass, whereas the matrix can account for over 90%. The matrix is the extracellular material, mostly produced by the organism themselves, in which the biofilm cells are embedded. It consists of a conglomeration of different types of biopolymers (extracellular polymeric substances "EPS"). The EPS determine the immediate conditions of life of biofilm cells living in this microenvironment by affecting porosity, density, water content, charge sorption properties, hydrophobicity, and mechanical stability (Flemming and Wingender 2010). The production of EPS is a general property of microorganism in natural environments and has been shown to occur both in prokaryotic (bacteria, archaea) and in eukaryotic (algae, fungi) cells (Wingender et al. 2001). Furthermore biofilms can exist in technical systems such as heat exchangers, plumbing systems and reactors. Particularly, biofilms in packed bed bioreactors named as biofilters offer a cost-effective and eco-friendly alternative to control air pollution, since biofiltration is based on the ability of microorganism to convert, under aerobic conditions, organic pollutants to water, carbon dioxide and biomass. Further, the biofilm is where the microorganisms are harbored. Biofiltration offers a promising solution to remove volatile organic compounds (VOCs) from airstreams. However, this technology must address some challenges such as "clogging", which appears when an excess of biomass is produced. Numerous methods have been developed to reduce the excess of biomass, chemical, physical and biological (Cox and Deshusses 1999; Mendoza et al. 2004; Soria et al. 1997; Wang et al. 2009; Xi et al. 2014; Zhou et al. 2016; Dorado et al. 2012; Cox and Deshusses 2012; Woertz et al. 2002). Recently, O_3 has been added to biofilters at low concentrations in order to study its effects on biofilter clogging and for VOC removal; O_3 addition has been reported as an effective biocide that can remove exopolysaccharides in the biofilm matrices (Tachikawa et al. 2009; García-Pérez et al. 2013; Maldonado and Arriaga 2015; Zhou et al. 2016). Ozone has been used to disintegrate excess sludge, pathogen inactivation, as a pretreatment or hybrid process for the removal of pollutants in wastewater treatment plants and for prevention of biofilms formation during wastewater treatment at concentrations ranged from 3.2 mg L^{-1}_{water} to 540 mg L^{-1} water (Tachikawa et al. 2009; Cheng et al. 2012; Lotito et al. 2014). However, in the case of gas phase bioreactors for emission treatment, the O_3 concentrations that have been used are very low, in the range of 0.18 mg m⁻³_{air} to 120 mg m⁻³_{air} (García-Pérez et al. 2013; Xi et al. 2014; Zhou et al. 2016). García-Pérez et

1	al. (2013) indicated that O_3 concentrations of $90ppb_v$ (0.18 mg m ⁻³ _{air}) only affected extracellular components
2	of the biofilm and not the cells directly; however the effect of O_3 on the EPS detachment from the biofilm
3	could not be confirmed due to the too low biomass content obtained by these authors for formaldehyde
4	biofiltration. At the same time, the EPS composition was evaluated, analyzing proteins, carbohydrates and
5	glucuronic acids in the same study. A major effect was found for proteins. Wang et al. (2009) reported that O_3
6	(40-120 mg m ⁻³ _{air}) could lower the EPS content in a biofilter treating gaseous chlorobenzene. Recently, Zhou
7	et al. (2016) reported the effect of O ₃ addition on biomass and EPS contents of a biofilter treating toluene;
8	they found a high effect of O_3 at concentrations above 10 mg m ⁻³ _{air} . Also, they reported that the
9	hydrophobicity of the biofilm decreased when the O ₃ injections increased. The doses of O ₃ used in biofilters
10	are very wide. Zhou et al. (2016) indicate that O_3 doses under 10 mg m ⁻³ _{air} can induce higher removal
11	efficiencies and good biomass detachment but higher O3 concentrations affect the microbial activity of
12	microorganisms. Even if Zhou et al. (2016) also reported the profile of EPS content under O3 additions, the
13	number of samples was limited, with 10 samples for 360 days of operation, giving some uncertainty in the
14	real evolution of EPS content. In addition, several studies have focused on the characteristics of EPS and the
15	influence of thermochemical and oxidation mechanisms on degradation and flocculation of EPS in wastewater
16	treatment systems but not in gas phase biofiltration systems with O3 addition. Therefore, very studies have
17	been carried out to provide a better understanding of the effects of O3 addition on EPS, its production and
18	composition. Thus, it is necessary to disclose more tangible evidence of the effects of O ₃ on the EPS matrix,
19	since such production is a limitation in the previous biofiltration experiments. In a earlier study of biofiltration
20	of ethyl acetate (EA), a readily degradable molecule, the effectiveness of ozone in clogging prevention was
21	proved due to the high biomass content that the system produced (Covarrubias-García et al. 2017). In that
22	study, neither the quantity of EPS produced nor the longitudinal effect of O3 on biofilter performance were
23	evaluated. Thus, the main purpose of the present study was to evaluate in detail the effect of O_3 addition at
24	very low concentration (90ppb _v) in a biofilter treating EA on the EPS content, its composition and the spatial
25	and temporal performance.
26	

|

2. Materials and methods

2 2.1 Biofilter System

EA (J.T. Baker, 99%) biodegradation was carried out in two identical laboratory biofilters of 3.3 L divided into three identical modules (1.1 L) (M1: upper, M2: middle and M3: lower). Fig 1 show the scheme of the biofilter used. The biofilter has two sampling points between each module, one for biomass in the middle of each module filter bed and another after the end of the module for gas sampling. Each biofilter module was made of glass, with a total length of 0.45 m and an internal diameter of 0.097 m. The packing material was perlite with an average diameter of 3.3 mm inoculated with activated sludge obtained from a wastewater treatment plant (Tangamanga Park, San Luis Potosi, Mexico). Biofilters were fed in downward mode with an empty bed retention time of 60 s. One biofilter operated without O_3 addition and the other operated under the same conditions but with a fixed addition of O_3 of 90 ppb_v. For the biofilter with O_3 addition, a controlled airstream with a mass flow controller (GFC17; Aalborg, Orangeburg NY) passed through an EA solution contained in a stripping reactor and was mixed with an airstream coming from an humidifier and with O_3 airstream to have a total inlet flow of 3.3 L min⁻¹. Generation of O_3 was produced with a technology called "Corona Discharge Technology", which consists in the use of a high frequency generator that causes the breaking of oxygen molecule due to the electrical field (OZONE GENERATOR, A2ZS-3GLAB), for instance air from the compressor at a flow of 100 mL min⁻¹ was fed into the equipment. O₃ concentration was estimated with the vodimetric method of Rakness et al. (1996) at the inlet and the outlet of the biofilter. The operational stages for both biofilters were divided according to Table 1. The stages of operation were applied according to Covarrubias-García et al. (2017).

2.2 Gas phase analyses

EA concentration in gas phase was measured with a gas chromatograph Thermo Scientific Trace 1300 equipped with a flame ionization detector and a DB-624 capillary column. The operation temperatures were 230, 100, and 230 °C for the injector, column and detector, respectively. CO₂ concentration was measured with a gas chromatograph GC-6850 (Agilent Technologies, CA USA) equipped with a thermal conductivity detector and an HP-PLOT Q capillary column. Helium was used as a carrier gas at a flow rate of 10.1 mL

min⁻¹. The temperatures of the injector, column, and detector were 200, 50 and 250 °C, respectively. Inlet, outlet and middle concentrations of EA and CO₂ were measured.

2.3 Biomass analyses

The biomass content was measured in terms of the volatile solids content by standard methods (APHA 2005),

then, biomass concentration was determined by dry weight (mg biomass per g of perlite).

2.4 EPS extraction and its characterization

EPS content was extracted by the NaOH-formaldehyde method reported by Liu and Fang (2002) from a representative sample from each module of the biofilter consisting in perlite and biomass. EPS were characterized in terms of proteins (Lowry et al. 1951), carbohydrates (DuBois et al. 1956) and glucuronic acid (Blumenkrantz and Asboe-Hansen 1973), standard substances used were bovine serum albumin, glucose and glucuronic acid, respectively.

2.5 EPS analysis by FTIR (Fourier Transformation Infrared Spectroscopy)

EPS lyophilized samples from different days of operation, loads and modules were analyzed. About 5-10 mg of powder was obtained in a mortar. Scans were performed by ATR-FTIR (Attenuated Total Reflection-Fourier Transform Infrared) in the Thermo-Nicolet brand equipment (Nexus 470 FT-IR E.S.P.) with a resolution of 4 cm⁻¹ for 120 cycles. In every case, the spectra of lyophilized sample were recorded and divided by the background single beam spectrum before converting to absorbance spectra.

3. Results and discussion

3.1 Longitudinal removal of ethyl acetate by modules

The performance of the biofilter was evaluated in terms of EC (elimination capacity) and RE (removal efficiency), from the top of the biofilter to each sampling point (M1, M2 and M3), the values were related to the volume of each section. The performance of the biofilter without O_3 and with O_3 is shown in Fig. 2.

M2 of the biofilter with O_3 addition presented the higher RE and EC along the operation time, whereas removal was more uniform in all modules in the biofilter without O_3 addition. M3 in the biofilter with O_3

addition was useless, since in M2 the pollutant was removed almost completely from stage D. At the final stages (F and G), M3 presented a small contribution in the RE and EC. O₃ addition allows a better RE and it EA treatment over a shorter stretch of the biofilter (two modules), which could represent an advantage over the biofilter without O_3 , in which the three modules were functional to remove EA with a lower performance along time. Thus, the addition of O_3 to a biofilter not only helps to increase the RE and life time of the filter bed, but also impacts the costs allowing the use of a smaller reactor volume. Only Maldonado-Diaz and Arriaga (2015), Xi et al. (2014), Zhou et al. (2016) have studied biofiltration systems with modules and O₃ additions, considering three, two and four modules, respectively. However no information of EC or RE by modules has been reported. Overall, biofilter performance with O_3 addition achieved higher EC and RE by modules comparing with the biofilter without, except for M3 in the stages D and E of the biofilter with O_3 . This O_3 concentration (90pp_y) was enough to degrade EA in two modules, although, it could be interesting to try a lower concentration of O_3 in order to minimize the operation cost of using O_3 and save space when this type of systems are installed. It can be thought that if O_3 concentrations were increased, degradation of the same inlet load of EA would be possible in only one module, which would maintain the microbial activity. Xu et al. (2016) operated six biofilters in parallel packed with perlite treating gaseous toluene with different inlet O₃ concentrations ranging from 0-300 mg m⁻³, they indicated that different O₃ concentration affected the microbial community and that the microorganism exposure to O_3 showed higher metabolic activities. Thus, it is possible that O_3 concentration of 90 pp_v could be enhancing the microbial activity of some microorganism present in the biofilter.

3.2 CO₂ production profileThe plots of CO₂ production throughout the modules and for the complete reactor are showed in Fig. 3. The highest CO_2 production in the biofilter without O_3 addition was presented in M1 $(400 \text{ g m}^{-3} \text{ h}^{-1})$ and the lowest in M3. The biofilter with O₃ addition presented similar CO₂ values in M1 at stages A, B and C, then the CO₂ increased as high as 350 g m⁻³ h⁻¹ in the next stages. CO₂ in M1 and M2 without O₃ addition were almost similar and presented the highest values at stages E and forward. The higher production of CO_2 in the biofilter with O_3 could be related to O_3 reacting with some organic matter, including EA, byproducts, extracellular polymeric substances (EPS), dead cells and cell debris, converting them to more readily biodegradable matter and finally CO_2 (Xi et al. 2006). Estimating the ratio by module along the

operation time, dividing the CO_2 produced by the EA fed (ignoring the biomass, all EA is converted to CO_2), the calculated values were: without O₃, M1= 0.51, M2= 0.35 and M3= 0.21 (g $_{CO2}$ g⁻¹ $_{EA}$ fed); with O₃, M1= 0.84, M2= 1.0 and M3= 0.35 (g $_{CO2}$ g⁻¹ $_{EA fed}$). According to this, the mineralization ratios were lower in M1, M2 and M3 in the biofilter without O_3 than with O_3 . These results agree with the CO_2 production along the operation time, where the CO_2 production in the biofilter without O_3 was quite similar, and in the biofilter with O_3 were higher than without. CO_2 production in M2 in the biofilter with O_3 was higher than in M1 and M3 along all the stages of operation, this was due to the fact that M2 in this biofilter removed the higher amount of EA as was discussed previously (see Fig. 2). CO_2 production can be an indicator of the intensity of the microbial activity in the biofilters, and data indicated that the biofilter with O_3 presented better removal efficiency, since more EA was mineralized. The profile of total CO_2 confirmed the above statement, as an increase on the production of CO_2 along time for the biofilter with O_3 addition was attained which contrast with the biofilter without O_3 addition, in which CO_2 production remained stable during almost all the stages of operation (A, B, C, F and G). Álvarez-Hornos et al. (2007a) reported similar values of CO₂ production in a biofilter treating EA than the obtained in the present study for the biofilter working without O₃ addition (550 g m⁻³ h⁻¹). However, the total CO₂ production in the biofilter with O₃ was more than the double of the CO₂ production reported for EA (Alvarez-Hornos et al. 2007a). Also, in another study, Álvarez-Hornos et al. (2007b) reported values as high as 150 g m⁻³ h⁻¹ for a mixture of EA and toluene in the first quarter, half and three quarter of the biofilter.

3.3 Biomass content

Table 2 summarizes the biomass content by modules (M1, M2 and M3) along time, in the biofilter with O_3 , M1 presented the lower biomass amount compared with the other modules, this could be due to the fact that it was the module more directly exposed to O_3 . Although O_3 concentration was only measured in the entrance and the outlet of the biofilter (not between the modules), it is probable that O_3 concentration was decreasing along the biofilter. For instance O_3 is a strong oxidant and disinfectant, the higher concentration in the first module was responsible for inactivating some of microorganisms present there, inducing a lower amount of biomass in M1. Some authors (Chang 1971; Khadre et al. 2001) concluded that molecular O_3 is the main inactivating agent of microorganisms, being powerfully active against bacteria, fungi, viruses, protozoa, and

|

1	bacterial and fungal spores. M2 in the same biofilter (with O_3) presented the higher values of amount of
2	biomass. Such biomass in M2 increased with time and then dropped in stage G. This could be due to the fact
3	that this module received more degradable substrate than EA, which allowed the faster microbial growth. This
4	happened with M1 in the biofilter without O ₃ , the entrance in this biofilter is the place where the gradient of
5	substrate concentration was higher, thus, being the rate of microbial growth proportional to the gradient of
6	substrate concentration, the biomass concentration there was high. On the other hand, biomass content in M3
7	for the biofilter without O ₃ addition increased with the time then dropped at stage D. In general, the biofilter
8	without O3 addition clearly increased its biomass content along the operation time. Previous studies have
9	reported lower biomass amount with O3 addition with more recalcitrant pollutants (García-Pérez et al. 2013;
10	Maldonado-Diaz and Arriaga 2014; Xi et al. 2014). García-Pérez et al. (2013) concluded that there was not
11	enough biomass quantity to prove the effect of O_3 on the biomass, the presented range of biomass
12	concentration was ~7.5-24 mg $_{biomass}$ g ⁻¹ _{perlite} for one biofilter with O ₃ pulses for formaldehyde degradation. In
13	the present study, the range of biomass concentration for both biofilters was between 19.9 and 302.3 mg biomass
14	g ⁻¹ _{perlite} , which are far higher than the previous reports. Recently, Zhou et al. (2016) reported the effect of
15	various concentrations of O_3 (5 mg m ⁻³ - 30 mg m ⁻³) on biomass content in a biofilter treating toluene,
16	biofilters subjected to O_3 had a biomass content between 25 $g_{VSS} g^{-1}_{pellet}$ and 10 $g_{VSS} g^{-1}_{pellet}$ against the biofilter
17	without O_3 which had 30 $g_{VSS} g^{-1}_{pellet}$. In that study, O_3 concentrations above 10 mg m ⁻³ had a strong effect on
18	biomass content and in the microbial activity. Also, the biomass concentration was higher in the bottom
19	section than in the upper section as toluene was fed upward. The biomass content reported in that study was at
20	least 30 times higher than the attained in the present study for the biofiltration of EA, also, the biomass
21	content along the biofilter had not the same profile than the study of Zhou et al. (2016), the highest biomass
22	concentration prevailed in M2 of the biofilter not in the upper zone which was subjected to a major
23	concentration of EA. The results by module in this study allowed to analyze better the effects of O_3 over the
24	biomass production. Comparing both biofilters, the greater difference is between modules 1. Also, as it can be
25	seen (Table 2), along time the biomass amount in the biofilter with O3 increased at some modules, which
26	could still lead to a clogging problem.
27	

3.4 EPS content and its characterization

Fig. 4 shows the EPS content and its characterization in composition by modules. According to the results, EPS production (gray area) decreased in M1 since stage E (day 159), the same happened in M2 but in M3 EPS decreased until stage D (day 79) in the biofilter with O_3 addition. In general, M1, M2 and M3 of the biofilter without O_3 addition did not present a decrease in the amount of EPS. Comparing both biofilters, O_3 addition affected the EPS production, presenting a lower amount of EPS in each module along the operation time. Maldonado-Diaz and Arriaga (2015) indicated that in a biofilter treating formaldehyde, the highest concentration of EPS was detected in periods without O_3 addition. These results suggest, as O_3 is a high reactive molecule, that it could oxidize the EPS, or the radicals of O₃ could react with EPS during O₃ addition (Boncz 2002). Fig. 4, also showed an increase in EPS contents along time. Similar to the present study, Zhou et al. (2016) showed that EPS increased with time in a biofilter treating toluene that operated for 300 days under O₃ addition. This indicated that EPS could continue increasing in biofilters subjected under O₃ addition and then the clogging of the biofilter could be attained but in longer periods of operation.

With respect to the characterization of EPS, a greater effect on carbohydrates, which is the main component of EPS matrix (Wingender et al. 1999), can be seen in the stacked column. This result contrasts with Zhou et al. (2016) in which the effect of O_3 addition on carbohydrates was insignificant. Secondly, glucuronic acid significantly increased in biofilter without O_3 on stages F (day 189) and G (day 230) in the three modules, and proteins increased on stage G (day 230) also in the three modules. M2 in the biofilter with O₃ presented the higher EPS, proteins, carbohydrates and glucuronic acid contents, whereas this behavior was presented in M1 of the biofilter working without O_3 addition. This behavior could be related to the fact that M2 of the biofilter with O_3 addition received more degradable substrate than EA, and in the biofilter without O_3 in M1 more substrate was fed, which allowed more microbial growth and thus more biomass and EPS content. The effect of O₃ addition in biomass composition for biofilters treating toluene was already reported, with an EPS protein content which increased with time (Zhou et al. 2016). Analyzing the results presented in this study the greater effect when O_3 was added was with carbohydrates content, it can be assumed that carbohydrates were in the outer layer of the biofilm, as EPS are distributed in layers though the biofilm depth and their yield varies along the biofilm depth (Zhang et al. 1998), thus O_3 addition reacted first with these, then with proteins. McSwain et al. (2005) reported that the cells and carbohydrates were present in the outer layer of

1 aerobic granular sludge and most proteins were found in the inner layer. Other studies have reported by 2 confocal scanning microscopy (CLSM) or fluorescent microscopy that the spatial distribution of EPS 3 components is heterogeneous in biological wastewater treatment systems (Sheng et al. 2010). Saingam et al. 4 (2016) used CLSM in a biofilter treating toluene with O₃ addition to observe cell viability and the thickness of 5 the biofilm but they did not study EPS and their components.

In order to better analyze the results of this study, the ratio between EPS amount and biomass production was calculated (Table 3). To our knowledge, no information has been reported with this relation in biofilters with O_3 addition. The biofilter without O_3 addition presented quite stable relations in all modules along the operational stages (0.1), whereas the biofilter with O₃ decreased in most points until the half or lower (0.05,0.005). The increments at some points could be due to the fact that more EPS are being secreted by microorganisms to protect themselves and it was function of the operational conditions. Thus, the addition of O₃ reduced the biomass amount and then prevented the biomass clogging but at the same time helped to oxidize more EA and to maintain higher RE.

3.5 EPS analysis by FTIR

Extracted FTIR spectra of EPS are showed in Fig. 5 a and b. In this study, the whole spectra are presented. The peaks in the range of 3800-3100 cm⁻¹ correspond to H-O stretching (Alvarez and Vazquez 2006), amides I to 1600-1700 cm⁻¹, amides II to 1500-1600 cm⁻¹, and polysaccharides to the region 1200-900 cm⁻¹. In both biofilters in the polysaccharides region only a peak at 1030 cm⁻¹ on day 10 and 1010 cm⁻¹ on day 108 was found, the signal corresponded to C-O bond (Borchani et al. 2015). This particular region presented a difference in absorbance intensity, which indicates that there was a variation in the quantity not in the composition as it was previously confirmed in Fig. 3, in which carbohydrates were more affected along time in the biofilter with O₃. For EPS samples taken on day 10, a difference can be seen in absorbance intensity, where it decreased in the biofilter without O_3 from M1 (upper module), then M2 and M3. In the biofilter with O₃ the lowest absorbance intensity was in M1 and then increased in M2; absorbance intensity in M3 was higher than M1 but lower than M2 which is accordance with the quantitative analysis presented in Fig. 3. On the other hand, on day 108 of operation, biofilter without O_3 presented a quite stable absorbance in the three modules, whereas M1 and M3 of the biofilter with O_3 addition were higher than in day 10.

Regarding the other wavelengths a signal at 1400 cm⁻¹ was found, which did not change and appeared in both operation days of both biofilters, this signal corresponded to the stretching C-O of carboxylic groups overlapped with amide III band. Also, the peak at 1600 cm⁻¹ did not change, which correspond to Amides II and it is associated with proteins, on the other hand the peaks on 1650 cm^{-1} correspond to the group of amides I also associated with proteins. Previous studies of EPS analysis with FTIR have been reported (Görner et al. 2003; Eboigbodin and Biggs 2008; Wang et al. 2012). The reported bands assignment were 1645 cm⁻¹ (amine I), 1450 cm⁻¹ (CH₃), 1400 cm⁻¹ (C-O), 1260 cm⁻¹ and 1080 cm⁻¹ (P=O) (Eboigbodin and Biggs 2008) of Escherichia coli. Görner et al. (2003) analyzed the EPS composition from activated sludge by the same technique; they reported 1647 cm⁻¹ (Amide I), 1550 and 1540 cm⁻¹ (Amide II), 1410 and 1388 cm⁻¹ (Amide III), 2970-2850 cm⁻¹ (CH2 vibrations) and 1733 cm⁻¹ (C=O). Comparing this study with the previous one, it is clear that not all the peaks appeared, since this system is different to the others. Moreover, no FTIR analysis has been attempted with EPS and O_3 addition. With these results, it can be concluded that there is no significant difference between the modules and the biofilters, so their compositions were unchanged.

4. Conclusion

This work provides further information into EPS identification when O₃ is added in a biofilter. The results of FTIR analysis suggested that O₃ addition did not significantly affect the type of functional groups identified in the EPS. The quantification of each component of EPS analyzed indicated that O_3 addition made greater effect on carbohydrate amount. Thus, O₃ is affecting only the amount of EPS, and not its composition. The longitudinal EPS/biomass ratio in the biofilter working under O₃ addition was the half than without, thus biomass clogging could be prevented when O_3 is added. Overall, biofilter with O_3 addition presented higher EC and CO_2 production by modules and globally. A small volume of reactor would be necessary when O_3 is added, then operational and investment costs of biofilters would be reduced. However, for practical applications O_3 cost also needs to be considered. Regarding the biofilters performances, the biofilter with O_3 in this study presented a more stable tendency, globally and by modules, but it would be interesting to find the limiting inlet load that the system with O₃ could withstand without affecting the system stability. Finally, it is highlighted that more research is still needed on EPS component distribution taking in consideration that the

variation in the composition of the extracted EPS depends on many factors, such as bioreactor type, process operational conditions and analytical tool used among others.

ACKNOWLEDGEMENTS

The authors express their sincere thanks to CONACYT for the financial support for this work [SEPCONACYT-CB-2014-01-239622 Grant], and to IPICYT for the use of facilities. Special gratitude is
expressed to M.Sc. Dulce Partida and M.Sc. Guillermo Vidriales for their technical assistance.

References

11 Álvarez-Hornos FJ, Gabaldón C, Martínez-Soria V, et al (2007) Biofiltration of Ethyl Acetate Under

12 Continuus and Intermittent Loading. Environ Prog 26:327–337. doi: 10.1002/ep.10226

- 13 Alvarez VA, Vazquez A (2006) Influence of fiber chemical modification procedure on the mechanical
 - 14 properties and water absorption of MaterBi-Y/sisal composites. Compos Part A. 37:1672–1680. doi:

15 https://doi.org/10.1016/j.compositesa.2005.10.005

16 Álvarez Hornos FJ, Gabaldón C, Martínez-Soria V, et al (2007) Long-Term Performance of Peat Biofilters

17 Treating Ethyl Acetate, Toluene and its Mixture in Air. Biotechnol Bioeng 96:651–660. doi:

18 10.1002/bit

- APHA/Americam Public Health Association (2005) Standard Methods for the Examination of Water and
 Wastewater
- Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal
 Biochem 54:484–489. doi: 10.1016/0003-2697(73)90377-1

23 Boncz M (2002) Selective oxidation of organic compounds in waste water by ozone-based oxidation

- 24 processes. Wageningen University Netherlands
- 25 Borchani KE, Carrot C, Jaziri M (2015) Untreated and alkali treated fibers from Alfa stem: effect of alkali
 - treatment on structural, morphological and thermal features. Cellulose 22:1577–1589. doi:
 - 27 10.1007/s10570-015-0583-5
 - 28 Chang SL (1971) Modern concept of disinfection. J Sanit Eng Div 97:689–707

1 2		
3 4	1	Covarrubias-García I, Aizpuru A, Arriaga S (2017) Effect of the continuous addition of ozone on biomass
5 6 7	2	clogging control in a biofilter treating ethyl acetate vapors. Sci Total Environ 584–585:. doi:
7 8 9	3	10.1016/j.scitotenv.2017.01.031
10 11	4	DuBois M, Gilles K a., Hamilton JK, et al (1956) Colorimetric method for determination of sugars and related
12 13	5	substances. Anal Chem 28:350-356. doi: 10.1021/ac60111a017
14 15	6	Eboigbodin K, Biggs C (2008) Characterization of the extracellular polymeric substances produced by
16 17	7	Escherichia coli using infrared spectroscopic, proteomic, and aggregation studies. Biomacromolecules
18 19	8	9:686–695. doi: 10.1021/bm701043c
20 21	9	Flemming, H. C., & Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623-633. doi:
22 23	10	10.1038/nrmicro2415
24 25	11	García-Pérez T, Aizpuru A, Arriaga S (2013) By-passing acidification limitations during the biofiltration of
26 27	12	high formaldehyde loads via the application of ozone pulses. J Hazard Mater 262:732-740. doi:
28 29	13	10.1016/j.jhazmat.2013.09.053
30 31	14	Görner T, de Donato P, Ameil MH, et al (2003) Activated sludge exopolymers: separation and identification
32 33	15	using size exclusion chromatography and infrared micro-spectroscopy. Water Res 37:2388-2393. doi:
34 35	16	10.1016/S0043-1354(02)00553-5
36 37	17	Jost Wingender, Thomas R. Neu H-CF (1999) Microbial Extracellular Polymeric Substances. Springer
38 39	18	Khadre M a, Yousef a E, Kim JG (2001) Microbiological aspects of ozone applications in food: A review. J
40 41	19	Food Sci 66:1242–1252. doi: DOI 10.1111/j.1365-2621.2001.tb15196.x
42 43	20	Liu H, Fang HHP (2002) Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol
44 45	21	95:249–256. doi: 10.1016/S0168-1656(02)00025-1
46 47	22	Lowry (1951) Protein Measurement with the folin phenol reagent. Readings 193:265–275. doi: 10.1016/0304-
48 49 50	23	3894(92)87011-4
50 51 52	24	Maldonado-Diaz G, Arriaga S (2014) Biofiltration of high formaldehyde loads with ozone additions in long-
52 53 54	25	term operation. Appl Microbiol Biotechnol 99:43-53. doi: 10.1007/s00253-014-5848-7
55 56	26	McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular
57 58	27	polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71:1051-1057. doi:
59 60	28	10.1128/AEM.71.2.1051-1057.2005
61 62	1	
63 64	I	13
65		

1 2		
3 4 5	1	Rakness (1996) Guideline for Measurement of Ozone Concentration in the Process Gas From an Ozone
5 6 7	2	Generator. Ozone Sci Eng 18:209-229. doi: 10.1080/01919519608547327
7 8 9	3	Saingam P, Xi J, Xu Y, Hu HY (2016) Investigation of the characteristics of biofilms grown in gas-phase
9 10 11	4	biofilters with and without ozone injection by CLSM technique. Appl Microbiol Biotechnol 100:2023-
12 13	5	2031. doi: 10.1007/s00253-015-7100-5
14 15	6	Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in
16 17	7	biological wastewater treatment systems: A review. Biotechnol Adv 28:882-894. doi:
18 19	8	10.1016/j.biotechadv.2010.08.001
20 21	9	Tachikawa M, Yamanaka K, Nakamuro K (2009) Studies on the Disinfection and Removal of Biofilms by
22 23	10	Ozone Water Using an Artificial Microbial Biofilm System. Ozone Sci Eng J Int Ozone Assoc 31:3–9.
24 25	11	doi: 10.1080/01919510802586566
26 27	12	Wang C, Xi JY, Hu HY, Yao Y (2009) Stimulative effects of ozone on a biofilter treating gaseous
28 29	13	chlorobenzene. Environ Sci Technol 43:9407-9412. doi: 10.1021/es9019035
30 31	14	Wang L-L, Wang L-F, Ren X-M, et al (2012) pH dependence of structure and surface properties of microbial
32 33	15	EPS. Env Sci Technol 46:737–744. doi: 10.1021/es203540w
34 35	16	Wingender J, Strathmann M, Rode A, et al (2001) Isolation and biochemical characterization of extracellular
36 37	17	polymeric substances from Pseudomonas aeruginosa. Methods Enzymol 302-314. doi: 10.1016/S0076-
38 39	18	6879(01)36597-7
40 41	19	Xi J, Hu HY, Qian Y (2006) Effect of operating conditions on long-term performance of a biofilter treating
42 43	20	gaseous toluene: Biomass accumulation and stable-run time estimation. Biochem Eng J 31:165–172.
44 45	21	doi: 10.1016/j.bej.2006.07.002
46 47	22	Xi J, Saingam P, Gu F, et al (2014) Effect of continuous ozone injection on performance and biomass
48 49	23	accumulation of biofilters treating gaseous toluene. Appl Microbiol Biotechnol 99:33-42. doi:
50 51	24	10.1007/s00253-014-5888-z
52 53	25	Xu Y, Saingam P, Gu F, et al (2016) The effect of injected ozone on the microbial metabolic characteristics in
54 55	26	biofilters treating gaseous toluene. Ecol Eng 94:174-181. doi: 10.1016/j.ecoleng.2016.05.038
56 57	27	Zhang X, Bishop PL, Kupferle M (1998) Measurement of polysaccharides and proteins in biofilm
58 59 60	28	extracellular polymers. Water Sci. Technol. 37:345-348
61 62 63 64 65		14

Figure Captions

Fig. 1 Experimental setup for the biofiltration process with and without ozone. Line ---- in the biofilter with ozone addition; M1: upper module, M2: middle module, M3: lower module; A: biomass sampling points, B: gas phase sampling points; U: union between ozone and EA gas flow.

Fig. 2 Longitudinal behavior of elimination capacity and removal efficiencies along stages of operation for the biofiltration of ethyl acetate without (a) and with O_3 (b). $\blacksquare EC M1$; $\blacksquare EC M2$; $\blacksquare EC M3$; $\frown \bullet$ RE M1; -O-RE M2; -O-RE M3. Lapse days; A=0-10, B=11-38, C=39-78, D=79-108, E=109-159, *F*=160-189, and *G*=190-230

- Fig. 3 Carbon dioxide production during the biofiltration of EA under several stages of operation. a) Without O₃; **b**) with O₃. Average CO₂ production g m⁻³ h⁻¹; \square CO₂ M1; \square CO₂ M2; \square CO₂ M3;

Fig. 4 EPS content and its characterization, by modules and stages of operation in biofilters treating EA. (EPS content; (■) Proteins; (□) Glucuronic acid; (□) Carbohydrates; Days; A=10, B=38, C=78, D=108, E=159, F=189, and G=230

Fig. 5 FTIR spectra of EPS samples at day 10 (inlet load 60 g m⁻³h⁻¹, a) and 108 (inlet load 180 g m⁻³h⁻¹, b) of operation

- 23

Mass Ozone flow generator controller = > ¥U Mass flow Desiccator controller M1□ A X **B** 1 Humidifier **M**2 $\Box \mathbf{A}$ ₽ B Air distributor $\mathbf{M3}$ □ A Air → Treated air compressor Rotameter Q Ô Needle valve EA stripping reactor

Fig. 1

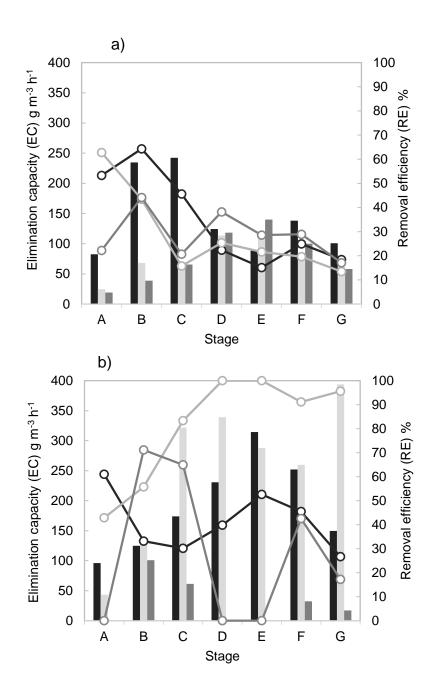


Fig. 2

a)

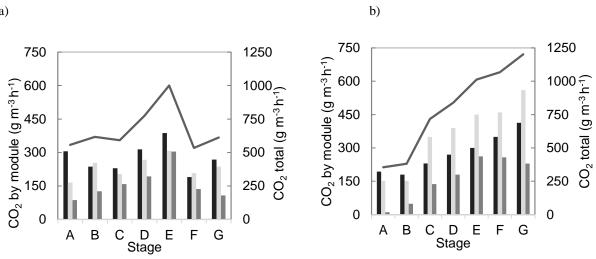


Fig. 4

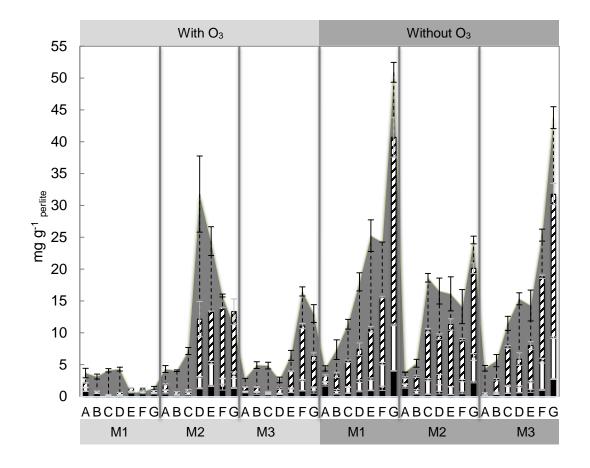


Fig. 5

a)

1600 1400 1010 1030 1645 1400 0.024 0.018 0.012 0.006 0.000 -M3 with O_3 (day 10) -M3 with O₃ (day 108) hypphall weley M 0.024 0.018 0.012 0.006 0.000 $\frac{1}{2}$ M2 with O₃ -M2 with O3 0.024 0.018 0.012 0.006 0.000 -M1 with O₃ -M1 with O Absorbance يانى ئەركىلىكى بىلى 0.024 0.018 0.012 0.006 0.000 $\frac{1}{3}$ M3 without O₃ H3 without O3 alfred half an filler ave by the 0.024 0.018 0.012 0.006 0.000 -]M2 without O₃ -A2 without O halle gall Alley وأبواله ويسامهم JM1 without O 0.024 0.018 0.012 0.006 1M1 without O3 1 1 hallogadhalam + 0.000 500 ⁴⁰⁰⁰ 2500 2000 1500 3500 3000 1000 500 4000 3500 3000 2500 2000 1500 1000 Wavenumber (cm⁻¹) Wavenumber (cm⁻¹)

b)

Table 1. Stages of operation for the biofiltration of ethyl acetate with and without O₃ addition

Stage of operation	A	В	С	D	E	F	G
Inlet Load IL (g m ⁻³ h ⁻¹)	60	120	180	180	180	180	180
Lapsed days	0-10	11-38	39-78	79-108	109-159	160-189	190-230

Table 2. Average biomass content by modules and stages of operation during the biofiltration of EA with and without O_3 additions.

With O₃	А	В	С	D	E	F	G
M1	19.9 ± 3.8	34.7 ± 5.0	42.3 ± 6.8	53.2 ± 6.8	110.8 ±25.0	125.9 ± 4.3	91.9± 19.0
M2	24.9 ± 1.7	68.1 ± 2.6	153.8 ± 10.0	228.7 ± 17.8	315.2 ± 15.2	290.7± 48.9	231.9± 16.1
M3	25.1 ± 1.4	47.2±1.9	100.3 ± 9.5	79.2 ± 16.3	139.7± 5.2	161.1 ± 15.0	218.3± 20.2
Without O ₃	A	В	С	D	E	F	G
M1	56.8 ± 2.9	66.4 ± 4.0	129.9 ± 10.6	267.6± 36.4	259.1± 10.6	354.7± 21.3	334.6 ± 44.9
M2	38.7 ± 4.1	51.2 ± 1.8	120.7 ± 23.4	247.1 ± 34.7	196.7± 6.7	149.9 ± 24.4	228.5± 7.6
M3	34.6 ± 1.3	58.5 ± 4.7	119.1 ± 1.6	136.6 ± 2.9	197.9± 7.9	219.9± 6.1	302.3±12.3

Average biomass content (mg biomass g⁻¹dry perlite) ± Standard deviation. Days; A=0-10, B=11-38, C=39-78, D=79-

108, E=109-159, F=160-189, and G=230.M1, M2 and M3: modules of the biofilter.

Table 3. Ratios of EPS and biomass amount produced by modules and stages of operation. Lapsed days; A=0-10, B=11-38, C=39-78, D=79-108, E=109-159, F=160-189, and G=190-230.

Module with O ₃	А	В	С	D	E	F	G
M1	0.18 ± 0.001	0.09 ± 0.002	0.10 ± 0.008	0.08 ± 0.004	0.005 ± 0.001	0.006 ± 0.0005	0.01 ± 0.0001
M2	0.17 ± 0.009	0.06 ± 0.0003	0.05 ± 0.001	0.14 ± 0.014	0.08 ± 0.003	0.05 ± 0.007	0.05 ± 0.003
M2	0.11 ± 0.006	0.10 ± 0.007	0.05 ± 0.001	0.03 ± 0.001	0.05 ± 0.004	0.10 ± 0.005	0.06 ± 0.001
Module without O ₃	А	В	С	D	E	F	G
M1	0.08 ± 0.003	0.11 ± 0.016	0.09 ± 0.001	0.07 ± 0.003	0.10 ± 0.005	0.07 ± 0.004	0.15 ± 0.014
M2	0.10 ± 0.009	0.10 ± 0.008	0.15 ± 0.020	0.07 ± 0.001	0.08 ± 0.010	0.09 ± 0.002	0.11 ± 0.001
M3	0.13 ± 0.008	0.10 ±0.008	0.10 ± 0.008	0.11 ± 0.004	0.07 ± 0.009	0.12 ± 0.001	0.14 ± 0.0002

Average ratio EPS/Biomass (mg $_{EPS}$ mg⁻¹ $_{biomass}$) ± Standard deviation.