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Abstract 

Considering a semi-implicit approximation of the Coriolis terms, a numerical 

solution of the vertically integrated equations of motion is proposed. To test the 

two-dimensional numerical model, several experiments for the calculation of Euler, 

Stokes and Lagrange residual currents in the Gulf of California were carried out. To 

estimate the Lagrangian residual current, trajectories of particles were also 

simulated. The applied tidal constituents were M2, S2, K2, N2, K1, P1 and O1. At 

spring tides, strong tidal velocities occur in the northern half of the gulf. In this 

region of complex geometry, depths change from a few meter in the northern shelf 

zone to more than 3000 m in the southern part. In the archipelago region, the 

presence of islands alters amplitude and direction of tidal currents producing a 

rectification process which is reflected in a clockwise circulation around Tiburón 

Island in the Lagrangian residual current. The rectification process is explained by 

the superposition of the Euler and Stokes residual currents. Residual current 

patterns show several cyclonic and anticyclonic gyres in the Northern Gulf of 

California. Numerical experiments for individual and combinations of several tidal 

constituents revealed a large variability of Lagrangian trajectories.       
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Introduction 

Tides in the Gulf of California show a wide range of phenomena as result of the 

interaction of impressive tides and a complex geometry. The northern part of the 

gulf can be considered as a shelf with a maximum depth of about 200 m (Figure 1). 

Intense tidal currents characterize mainly this northern part. In the shallow area of 

the Colorado River Delta, amplitude ranges reach at spring tides values of about 

10 meters and the strong tidal currents achieve values of more than 2 ms-1. The 

sediments availability combined with the strong currents produce large sediments 

mobility and the formation of sand banks in the northernmost part of the gulf. In the 

southern part of the gulf, depths reach values of more than 3000 m. Tidal currents 

are small in these deep areas, but along the coastal regions, tidal currents are 

important. In the central part of the Gulf of California, in the transition zone from 

large depths to shelf conditions, there is an archipelago formed principally by the 

islands Tiburon and Angel de la Guarda among other smaller landmasses. 

One of the first evaluations of ti dal processes in the Gulf of California was carried 

out by Hendershott and Speranza (1971). They investigated the position of the sea 

surface elevation amphidromic system of the M2 tide. They predicted a large 

dissipation of tidal energy in the northern part through the displacement of the 

amphidromic point to the side of the reflected Kelvin wave. Filloux (1973) then 

estimated the dissipation of tidal energy in a tidal cycle of the M2 tide. He found a 

value of 4.35 x 109 joules s-1. Applying for the first time a numerical model (with a 

coarse resolution), Grijalva (1972) calculated some aspects of tides like currents, 

amplitudes and phases. A more sophisticated numerical modelling of tides was 

carried out by Stock (1976) who gave special importance to tidal dissipation of 

energy. Using tidal observation around the gulf, cotidal and corange maps of the 

principal tidal constituents (M2, S2, N2, K2, O1, K1, P1, Sa, SSa, Mf) were estimated 

by Morales-Pérez and Gutierrez de Velasco (1989). Quirós et al. (1992) calculated 

the Euler residual current of the M2 tide in the Gulf of California applying a vertically 

integrated numerical model with a grid resolution of 14 km. A similar calculation for 
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the estimation of the Euler residual currents was carried out by Argote et al. (1995). 

Carbajal (1993) applied for the first time a three dimensional numerical model to 

investigate the vertical variation of tidal currents, Euler residual currents, energy 

budget and baroclinic aspects of tides. These calculations revealed that residual 

currents are, in general, two orders of magnitude smaller than the instantaneous 

flow. Marinone and Lavín (2003) calculated residual currents and tidal mixing in the 

archipelago region. Energy budgets of the M2 and S2 tides, the distribution of 

kinetic energy, the dissipation of energy by bottom friction and turbulent viscosity 

and the resonance periods of the gulf were estimated by Carbajal and Backhaus 

(1998). Applying a three-dimensional numerical model, Salas de León et al. (2003) 

calculated the Euler residual current and the tidal stress generated by the M2 tidal 

constituent in the Gulf of California. Tidal stress values were especially high over 

the Salsipuedes sill, in the Ballenas Channel, in the archipelago region and in the 

Colorado River Delta. They also found that high tidal stress values coincide well 

with the anomalous cold-water patches observed in the archipelago area. Using a 

three-dimensional numerical model, the Lagrangian surface circulation was 

investigated by Gutiérrez et al. (2004). They calculated the advection of particles 

for monthly and annual periods by forcing the circulation with the tidal constituents 

M2, S2, N2, K2, K1, P1, O1, SSa, Sa. One of the most important finding was that in 

the northern part of the gulf the circulation is anticyclonic from October to May and 

cyclonic during the summer months. Salas de Leon et al. (2011) calculated the 

vorticity and mixing produced by the M2 tide. They found a connection between the 

horizontal component of the vorticity and zooplankton biomass distribution in the 

northern part of the gulf. Tides in the Gulf of California also generate internal 

waves. Fu and Holt (1984) found that the number of internal wave groups was 

correlated with the strength of tides in the archipelago region, i.e. the region where 

the internal waves are generated. The strength of tidal currents in the Gulf of 

California plays also an important role in the morphodynamics of shallow zones 

(Montaño and Carbajal, 2008). The observed wave lengths of sandbanks in the 

Colorado River Delta have been explained with a theoretical model where tidal 

forcing is considered (Carbajal and Montaño, 2001). The bedload transport of 
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sediments was estimated in the Colorado River Delta and in the Adair and San 

Jorge bays (Hernandez-Azcunaga et al., 2013). 

 

Many aspects of tides in the Gulf of California have been investigated like the 

displacement of amphydromic systems, dissipation of energy by bottom friction, 

energy budgets, residual currents, intensity of instantaneous flow, vorticity and 

mixing, connectivity among the different regions of the gulf, bedload transport of 

sediment, morphodynamics of the sea bottom in shallow areas, tidal stress, 

Lagrangian trajectories, among other tidal processes. In the present research work, 

Lagrangian trajectories are applied to estimate residual currents considering 

several tidal constituents. It is worth mentioning that in many studies, tidal residual 

currents have been estimated dominantly applying the Euler method. The 

Lagrange and Stokes residual currents are also suitable to explain important 

dynamical phenomena like transport of tracers and rectification processes. Since 

there is an archipelago in the central part of the Gulf of California, it is relevant to 

investigate the effect of the archipelago on the Lagrange, Euler and Stokes 

residual currents. In fact, the rectification of tidal currents by the presence of 

islands is examined using Euler, Stokes and Lagrange residual currents. For the 

estimation of the Langrange residual current, Lagrangian trajectories and the Euler 

and Stokes residual currents were applied. The complexity of the Lagrangian 

trajectories is likewise investigated.  

           

Stability analysis and model 

In the numerical approximation of the Coriolis term arises the problem of an 

increasing radius of the inertial wave. During the applied time step t∆ ,  the velocity 

vector remains in a tangential direction increasing artificially the orbital motion in a 

spiral form. To mitigate this numerical problem, several algorithms are used, 

among them the application of a rotational matrix or a semi-implicit approximation 

of the Coriolis term. Since a numerical solution of the vertically integrated 
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equations of motion is presented in this section, a simple stability analysis of these 

two approximations is carried out. From this analysis, the applied approximation for 

the Coriolis term and the proposed numerical solution is grounded. The horizontal 

equations of motion can be written in the simplified form 

qVifr
dt

dV =++ )(         (1) 

Where a linear friction term was considered and the horizontal components of the 

velocity, ),( vu , are projected on a complex plane, i.e. ivuvuVV +== ),( , and 

vu iqqq += , where q  represents other terms in the equation of motion.

φsin2Ω=f  is the Coriolis term, φ  is the latitude, Ω  is the angular velocity of 

Earth and r  is the linear friction coefficient. The solution for this differential 

equation with cteq =  is 

( )( ) pp
rt VftiftVVeV +−−= − )sincos0     (2) 

Where )0(0 == tVV  and 
iftr

q
Vp +

= . After some manipulations and considering 

that 
rt

e rt

+
≈−

1

1
, the solution in components of equation (1) takes the form 

( )utqftvftu
rt

u ++
+

= sincos
1

1
00      (3) 

( )vtqftvftu
rt

v ++−
+

= cossin
1

1
00                                              (4) 

Use was made of ( )
2

cos1
2ft

ft ≈− , 1<<ft  and ftft ≈sin . In the solution, described 

by equations (3) and (4), the rotation matrix  








− ftft

ftft

cossin

sincos
 appears, i.e. the 

rotation matrix is contained in the equations of motion. It explain its application on 
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the Coriolis term in numerical solutions. A stability analysis of the inertial equations 

for three approximations, i.e. for a simple approximation, for the application of a 

rotation matrix and for a semi-implicit treatment of the Coriolis term, is carry out as 

a next step. The inertial equations  

0=+
∂
∂

fv
t

u
              (5) 

0=−
∂
∂

fu
t

v
          (6) 

can be numerically approximated in an Arakawa C grid in the following way: 

( )
4

,,,,
,

1
,

n
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n
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n
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n
plskn

lk
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lk

vvvvtf
uu −+−−+++−+ +++∆

+=    (7) 
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The variables s  and p take the values, 






 − 0,
2

1
,

,2

1
, according to the positions of 

( )vu,  in an Arakawa C mesh. Using the Fourier method for the stability analysis, 

the variables, ( )vu, , are represented in the form  

ypxsinn
plsk euu ∆+∆

++ = βαγ (
,  

From (7) and (8), the relations 
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were obtained. Applying the equalities for the cosine function, the equations (9) 

and (10) can be written in the matrix form: 

( )
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 The calculation of the determinant leads to 

1
2

cos
2

cos1
2

1
2

>


















 ∆∆∆+= yx
tf βαγ      (11) 

This numerical approximation of the Coriolis terms is unstable. If a linear friction is 

included in the inertial equations (5) and (6), then the following stability condition  

)1()1( 2 trtf ∆+≤∆+         (12) 

Is obtained. Using a similar stability analysis for the inertial equations but this time 

applying a rotation matrix, then the stability criterion  

1
2 ≤≤ γo           (13) 

is deduced.  The application of a rotation matrix in numerical solutions of the 

inertial equations is always stable. Another interesting numerical approximation of 

the inertial equations is the application of a semi-implicit approach. The stability 

analysis leads in this case to the stability criterion 

 2≤∆tf           (14) 

If friction is included in the inertial equations then (14) changes to 
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( )2

1

12 rttf +≤∆          (15) 

This is also a strong stability criterion. This stability analysis for different 

approaches of the numerical solutions of the inertial equations yields two principal 

outcomes; there is numerical stability when a rotation matrix is applied and when 

the Coriolis terms are approximated in a semi-implicit form. The semi-implicit 

approximation of the Coriolis terms suggests a numerical approach for the solution 

of the vertically integrated equations of motion. This solution is described below. 

Consider the horizontal components of the vertically integrated equations of motion 
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Where ),( VU  are the transports (m2/s) in the directions x (west-east) and y  

(south-north). H  is the water depth, ζ  is the sea surface elevation, t  is the time, 

HA  is the horizontal eddy viscosity and r  is the friction coefficient. The continuity 

equation is given by 

0=
∂
∂+

∂
∂+

∂
∂

y

V

x

U

t

ζ           (18) 

The equations (16) and (17) can be written in the form 
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fV

t

U +
+

+−=
∂
∂

ζ
        (19) 
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With 
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The discretization of the equations (19) and (20) applying a semi-implicit approach 

for the Coriolis terms is then 

( )
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Where Uf  and Vf  are the Coriolis terms at the positions of ),( VU  in the 

Arakawa C mesh.  Equations (23) and (24) can be written in the form 

n
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Or in matrix form 
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Considering the matrix 

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Developing the matrix products and including the continuity equation, the following 

equations are obtained. 
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The numerical solution of the horizontal equations of motion (26), (27) and 

continuity equation (28) satisfies the Courant, Friedrich, Lewy (CFL) criterion and 

the criterion for the inertial terms represented by equation (15) for numerical 

stability. The numerical simulations were applied to the Gulf of California. A mesh 

embracing the studied region with a grid resolution of 3 minutes (approximately 

5560 m) generated a matrix of (179,177) and a total number of 7098 wet points.   

To model the Lagrangian trajectories, a simple bilinear method of interpolation was 

applied on an Arakawa C mesh. An additional term representing a turbulent 

contribution to the horizontal components of the velocity, ( )vu, , was added. This 

turbulent contribution was generated with a Gaussian distribution with a maximum 

amplitude of 0.01 ms-1.  The middle point of every Arakawa C cell of the Gulf of 

California represented the initial position of 10 particles. To determine the final 

position of the Lagrangian trajectories, the averages  x  and y  values were 

determined for every group of particles that initiated at every grid cell. The 

calculations were performed for a neap-spring tidal cycle considering seven tidal 

components (M2, S2, K2, N2, K1, O1, P1). Since semidiurnal tides are dominant, the 

applied period for the Neap-spring tidal cycle was half a synodic month, i.e. 14.765 

days. The synodic month is related to the phases of moon and is approximately 

29.53 days. To calculate the Lagrangian residual current, the net displacements x  

and y  were divided through the total time of simulation. In this way the 

components of the Lagrangian residual current were obtained for every grid point.   

 

Results 

The stability analysis of a semi-implicit approximation of the Coriolis terms led to 

the numerical solution described in the last section. To test the correctness and 

performance of the model, several numerical experiments were carried out. 

Several author have modeled diverse aspects of the principal lunar M2 tide 

applying different numerical models (Stock, 1976; Quiros et al., 1992; Carbajal, 

1993; Argote et al., 1995; Gutierrez et al., 2004). In Figure 2, the calculated 
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amphidromic system associated to the M2 tidal constituent is shown. The 

amphidrome is quite similar to those calculated with other numerical models or 

obtained from measurements around the Gulf of California. Similar results were 

obtained for other tidal constituents (Table 1). The numerical model reproduces 

acceptably the behavior of tides in the Gulf of California. 

 

Table 1. Observed (UNAM) and calculated amplitudes (m) and phases of several 

tidal constituents in the Gulf of California. Observed values above and calculated 

below.  

Place 
M2 S2 K1 

A P A P A P 
Puerto Peñasco 1.57 59.0 0.945 58.9 0.431 80.9 

1.5 60.4 0.827 61.6 0.364 77.8 

Bahía de los 
Ángeles 

0.66 62.8 0.339 71.0 0.461 99.8 

0.65 63.3 0.361 65.5 0.31 79.9 

La Paz 0.239 274.3 0.179 271.6 0.25 83.9 

0.222 257.4 0.178 253.8 0.224 78.5 

Guaymas 0.136 311.9 0.106 286.6 0.279 73.7 

0.116 327.3 0.084 293.3 0.252 75.5 

Yavaros 0.221 304.5 0.157 292.7 0.257 84.8 

0.18 279.3 0.148 267.3 0.237 74.9 

 

It is known that tides in the Gulf of California belong to the most remarkable of the 

world. With high amplitudes of the sea surface elevation in the northernmost part of 

the gulf and strong tidal currents in the northern half. Although there is information 

about more tidal constituents, the seven applied components, (M2, S2, K2, N2, K1, 

O1, P1), are the most important. Tidal current patterns (northwards and 

southwards) at different times of the calculation are shown in Figure 3. Taking into 

account that tidal waves can extend hundreds or thousands of kilometers from the 
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coast where the amplitude is a maximum and considering that the Gulf of California 

is a narrow sea, the presence of a dominant rectilinear motion, observed in Figures 

3a and 3b, is explained. Only the coastal configuration and the presence of several 

islands in the archipelago region introduce some departures of the rectilinear flow. 

This rectilinear motion is intensified in the Colorado River Delta by a convergence 

process. Here arises the question if this dominant rectilinear flow in combination 

with a complex bathymetry and with some geographical irregularities generates a 

more sophisticated residual flow. The knowledge of residual currents in seas where 

the tides are dominant is important for the calculation of the transport of dissolved 

substances (pollution and sediments) and biological matter such as larvae, 

zooplankton, phytoplankton and microalgae. The Gulf of California is rich in 

processes involving transport of suspended matter. It has been recognized that 

residual currents at a fixed point (Euler residual current) is not enough to explicate 

completely residual currents. It is necessary to consider other dynamical properties 

through the Stokes and Lagrange residual currents. Longuet-Higgins (1969) found 

that the Lagrange residual current can be expressed as the sum of the Euler and 

Stokes (or Stokes’ drift) residual currents.  

 

The most calculated residual currents in studies on tidal dynamics is the Euler 

residual current. Due to its simplicity, it is usually calculated in studies of tides in 

shelf regions. It is defined as 

∫=
T

Euler udt
T

u
1

         (29) 

Additionally, the Stokes’ residual current is calculated in the following way 

 

∫=
T

Stokes dtu
HT

u ζ1
         (30) 
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In a theoretical analysis on the mechanism of the Stokes drift, wei et al. (2004) 

found a similar expression to equation (30), but additionally a term that consider 

the interaction between topography, current and net displacement. This nonlinear 

interaction is not considered here. The question about the validity of the Lagrange 

residual current, calculated using Eulerian quantities, has been the subject of 

discussion in several research works. Euleru  and Stokesu  are Eulerian estimates 

because they are properties at a fixed point in space (Cheng and Casulli, 1982).  

Zimmerman (1972) showed that only under certain circumstance the relation 

StokesEulerLagrange uuu +≈  is valid, specifically if the amplitude of the displacement of 

the oscillatory flow is small in comparison with the variability of the velocity field. 

According to Meier-Reimer (1977), the Lagrange residual current, Lagrangeu , 

satisfies the relationship, StokesEulerLagrange uuu +≈ , in good approximation in seas. 

Quan et al. (2014) demonstrated that the Lagrange residual current is proven to be 

a more suitable description of residual currents than any other residual velocity. In 

this research work, different numerical experiments were carried out to calculate 

the Lagrange residual current; first as the sum of the Euler and Stokes residual 

currents and later using Lagrangian trajectories.  Another major aim of this 

research work was to examine the possible generation of a rectification process of 

tidal currents by the presence of islands in the central part of the Gulf of California.  

 

The applied trajectories to calculate the Lagrangian residual currents were 

simulated in the following way: the middle point of every Arakawa C cell of the Gulf 

of California represented the initial position of 10 particles. After the time of 

simulation, from the final position of the 10 particles, a middle position was 

calculated. Since the time of simulation is known, it enables the estimation of the 

horizontal components of the velocity vector. In Figure 4, the Lagrange residual 

current, obtained for the M2 tidal constituent, is displayed for the northern half of 

the Gulf of California. Residual currents in the southern part are very small. Several 

eddies, cyclonic and anticyclonic, can be distinguished in the northern part of the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

gulf. Several regions with relatively strong residual currents are found in the 

transition zone (archipelago region) from very deep zones to shallower areas. The 

structure of the Lagrangian residual currents of the M2 tide serves as a reference 

for the comparison with residual currents considering several tidal constituents.       

 

Considering seven tidal constituents (M2, S2, K2, N2, K1, O1, P1), the Lagrange, 

Euler and Stokes residual currents were also estimated for a neap-spring tidal 

cycle, i.e. 14.765 days or half a synodic month. For the calculation of the Lagrange 

residual current, Lagrangeu , trajectories of particles were considered as it has been 

commented above. Euleru   and Stokesu  were calculated applying the equations (29) 

and (30). These two residual currents are shown in Figure 5. Comparison of the 

Lagrange residual current caused by the M2 tide (Figure 4) with the Euler residual 

current for the neap-spring cycle considering the tidal constituents (M2, S2, K2, N2, 

K1, O1, P1) (Figure 5a) reveals that the residual patterns are quite similar. It is an 

indication that residual currents are highly dependent on the geometry of the basin 

(bathymetry and coastal configuration). Although the residual current patterns are 

quite similar, the intensity of residual currents is significantly larger with seven tidal 

constituents. It is worth mentioning the strong cyclonic gyre over the Salsipuedes 

sill, on the west side of the archipelago region. In the Colorado River Delta, a 

relatively strong cyclonic gyre and an anticyclonic circulation appear in the Euler 

residual current. In Figure 5b, the Stokes residual current, calculated according to 

equation (30), is shown. The Stokes residual current is important in the shallow 

areas of the Colorado River Delta, in the Adair Bay and San Carlos Bay   and in 

the Infiernillo Channel. In these regions, the residual current reaches values 

varying between 0.01 and 0.015 ms-1. It is worth mentioning that in the Infiernillo 

Channel, the Stokes residual current (Figure 5b) is southwards whereas in the 

Euler residual current (Figure 5a) the flow is dominantly northwards.              
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Once the Euler and the Stokes residual currents were estimated applying 

equations (29) and (30) for a neap-spring tidal cycle, the following step was to 

estimate the Lagrange residual current. The Lagrange residual current, obtained 

using the equation, StokesEulerLagrange uuu +≈ , is shown in Figure 6a. It can be 

compared with the Lagrange residual current calculated using trajectories which is 

shown in Figure 6b. Both patterns are quite similar, with the same gyres in the 

northern part of the Gulf of California and with the same order of magnitude. It is 

evident that the corrections introduced by the Stokes residual current (Figure 5b) in 

the areas of the Colorado River Delta, in the Adair Bay and in the Infiernillo 

Channel appear in both calculations of the Lagrange residual current. The 

Lagrange residual current reaches values ranging between 0.01 and 0.03 ms-1 in 

the area of the Colorado River Delta. On the west side of this area, a strong 

cyclonic residual circulation develops. A couple of gyres, one of them cyclonic and 

the other one anticyclonic, develops in the central part from a northwards current. 

A relatively strong tidal residual current appears to the south of Tiburon Island, i.e. 

in the transition zone from deep to shallower regions. Another interesting result is 

that along the east coast of the gulf, the residual current is dominantly southwards 

whereas along the west coast the flow is northwards. From the southern part of the 

archipelago region until the Colorado River Delta in the northernmost part of the 

gulf there is a meandering residual current produced by the seven tidal 

constituents (M2, S2, K2, N2, K1, O1, P1). Although it is not shown, it is worth 

mentioning that tidal residual currents are very small in the southern half of the Gulf 

of California, only in the shallow areas of the eastern coast is the residual current 

of some significance.       

 

Discussion 

It is known that in some sea areas of the world, the neap-spring tidal cycle is 

modulated by the synodic month, i.e. by moon phase changes. The synodic neap–

spring cycles occur when the M2 and S2 tidal constituents come into phase or out 

of phase (Pugh, 1987). Not all neap-spring tidal cycles are determined by a period 
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of 14.765 days, i.e. half a synodic month. There are basins in which the neap-

spring tidal cycle is driven by half a tropical month (13.66 days), like in the Gulf of 

Mexico (Kvale, 2006). This neap-spring cycle is generated by the tidal constituents 

K1 and O1. In the Gulf of California, the M2 and S2 tidal constituents are in phase 

every 14.765 days. In the northern part of the gulf, the relative importance of tides 

like the K1 and O1 has been often considered as small. In Figure 7, time series of 

the sea surface elevation at a point in the area of the Colorado River Delta, is 

shown. Whereas the combination of the M2 and S2 tidal constituents generate 

amplitudes of about 3 m, the tidal constituents K1 and O1 produce amplitudes of 

about 0.5 m. Observe that the neap-spring tidal cycle is different for these two 

numerical experiments and that the influence of the tidal constituents K1 and O1 is 

important. To calculate the Lagrange, Euler and Stokes residual currents, a period 

of 14.765 days was applied. The most important characteristics of the Euler, 

Stokes and Lagrange residual currents have been described previously, 

emphasizing the generation of several gyres, some of them in pairs. Another 

important result is a continuous and meandering current with velocities varying 

between 0.01 and 0.02 ms-1 which extends from the transition zone, from deep to 

shallower regions in the southern part of Tiburón Island, until the Colorado River 

Delta in the northernmost part of the gulf. These residual currents of about 0.02 

ms-1 would transport a passive tracer a distance of about 1730 m in a day, or about 

50 km in a month.  

 

 

The analysis of the Euler, Stokes and Lagrange residual currents has also 

revealed another interesting process in the archipelago region. In Figure 8a, on the 

east side of Tiburon Island (Infiernillo Channel) there is a northwards Euler residual 

current with values of about 0.008 ms-1. Just the opposite, i.e. a southwards flow 

occurs in the Stokes residual current shown in Figure 8b. The velocity values for 

this residual current are of the order of 0.01 ms-1. This stronger southwards flow 

overlaps the Euler residual current as it can be seen in Figure 8c where the 

Lagrange residual current is displayed. The Euler and Stokes residual current were 
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calculated according to the equations (29) and (30) respectively. The Lagrange 

residual current was estimated using trajectories of particles that initiated the 

displacement in the middle of every grid cell. This result indicates that from the 

superposition of the Euler and Stokes residual currents arises a rectification 

process of the oscillating tidal flow around Tiburón Island where an anticyclonic 

circulation is generated (Figure 8c). It is important to mention that this rectification 

process is observed both in the sum of Euler and Stokes residual currents and in 

the Lagrange residual current calculated with particle trajectories. The rectification 

process is not so obvious around Angel de la Guarda Island. An anticyclonic 

circulation occurs in almost three quarters of the length around the island. At the 

southern side, the presence of a relatively strong northwards flow inhibits the 

complete anticyclonic circulation around Angel de la Guarda. The rectification of 

oscillating tidal flows has been explained in several forms (Zimmerman, 1978; 

Loder, 1980). Continuity, Coriolis effects and bottom friction play a relevant role in 

the rectification mechanism (Huthenance 1973).  Zimmerman (1978) asseverated 

that Coriolis and frictional torques caused by a variable bottom bathymetry, 

produce a vorticity field that is transferred to the mean flow by the non-linear 

advection terms. Loder (1980) explained the rectification process as an interaction 

of the mean flow and the oscillating tidal currents in a topographic gradient. In this 

research work, to explain the rectification of tidal currents by the presence of 

Tiburón Island use is made of the Euler, Stokes and Lagrange residual currents. 

Loder (1980) called the attention about the importance of the Stokes residual 

current in the rectification process. The clockwise sense of rotation of the 

circulation around Tiburón Island in the Gulf of California is the same as that 

calculated and observed in Georges Bank, in the neighborhood of the Gulf of 

Maine, on the west coast of the North Atlantic Ocean. 

 

    

To estimate the Lagrange residual currents was necessary to calculate trajectories 

of particles. This was carried out applying a bilinear method to interpolate the 

horizontal components of the vector velocity in an Arakawa C mesh. The 
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Lagrangian trajectories of particles were calculated at different points in the 

northern part of the Gulf of California and for distinct combinations of tidal 

constituents. The principal interest was to visualize the influence of the geometry of 

the basin on the trajectories. Pure Kelvin waves exhibit a rectilinear motion along 

an ideal rectilinear coast. Although this condition is not met in real seas, the 

oscillating tidal flow is often almost rectilinear close to the coast (on the right side of 

a propagating Kelvin wave in the northern hemisphere). The presence of 

embayment may generate Poincare waves with an increase of the eccentricity of 

the tidal ellipses. From this discussion, nearly rectilinear flow or ellipses with a 

small eccentricity are expected in the neighborhood of the coasts. Since the 

exponential decay of Kelvin waves is not the same for the different tidal 

constituents, far away from the coast the relative amplitude values changes. 

Another geometrical factor that may influence the Lagrangian trajectories is the 

presence of islands, like in the archipelago region, in the central part of the Gulf of 

California. In Figure 9, the Lagrangian trajectories generated by the M2 tide in the 

northern part of the Gulf of California are shown. The trajectories are displayed for 

the time equivalent to 5 M2 periods, i.e. about 62.1 hours. At the points A, B, C, E 

and F, the eccentricity of the ellipses is small. These points are located in the 

neighborhood of coasts. The coastline imposes restrictions on the flow according 

to the property of Kelvin waves of a rectilinear flow. The reflection process of the 

Kelvin wave, described by Taylor (1921), imposes also conditions on the 

eccentricity of tidal ellipses. It is interesting to note that the residual current at F is 

very small. This can be corroborated in Figures 5 and 6 where the Euler, Stokes 

and Lagrange residual currents are very small in that area. At point H, the ellipses 

are not deformed and the eccentricity of the ellipses is small. At points D and G, 

the ellipses are strongly distorted. Point D is located in a convergence zone of 

several flows with a relatively strong Lagrange residual current. The clockwise 

circulation around Tiburón Island, produced in the rectification process, exhibits a 

flow in the northwest direction in the area of point G. The net displacement of this 

particle reflects this fact. Since the point G is located in an area with variable 
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residual currents, the trajectories have a complicated form and they do not 

describe closed ellipses.          

 

 

When several tidal constituents are considered in the calculation of Lagrangian 

trajectories, the paths followed by the particles is much more complex. Since the 

exponential decay of Kelvin waves is not the same for the different tidal 

constituents, far away from the coast the relative amplitude values changes. This 

may lead to complex trajectories. Another geometrical factor that may influence the 

Lagrangian trajectories is the presence of islands, like in the archipelago region, in 

the central part of the Gulf of California. The phase differences may also play a role 

in the complexity of trajectories of particles. Although the Gulf of California is a 

narrow sea, the Lagrangian trajectories are far from a rectilinear motion. The 

presence of a complex geometry, coasts and bathymetry evenly contribute to this 

intricacy of particle trajectories. In Figure 10, the trajectories of the particles reflect 

the fact that there is a transition from neap to spring tides, i.e. the amplitudes tend 

to be larger. As in the case of the M2 tide, at point G the particle trajectory in that 

area is very complicated. In the very shallow area of the Colorado River Delta, the 

trajectory at point A is also complex. The initial point (triangles) and the end point 

(black circles) reflect the tendency of the Lagrangian residual currents. It is 

remarkable that no matter the complicated trajectories of water particles, as shown 

in Figure 10, the net effect of these trajectories leads to a smooth behavior of 

residual currents. Finally, the strong rectilinear tidal currents are rectified by the 

geometry of the basin producing a net clockwise circulation around Tiburon Island 

and a series of clockwise and anticlockwise gyres in the Northern Gulf of 

California.     

 

 

Conclusions 

In this research work, a detailed study have been carried out of residual currents in 

the Northern Gulf of California. The Lagrangian residual current for the M2 revealed 
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several cyclonic and anticyclonic gyres. When the calculation considered several 

tidal constituents (M2, S2, K2, N2, K1, O1, P1), the Euler, Stokes and Lagrange 

residual currents were calculated. The structure of the Euler and Lagrange residual 

currents were quite similar to that of the M2 alone, but the intensity of currents was 

larger. It indicates that residual currents are strongly influenced by the geometry of 

the basin and by friction. In fact, all calculated gyres can be considered as the 

result of a rectification process. The periods considered in the calculations were 

12.4206 hours for the M2 and 14.765 days for the neap-spring tidal cycle. The 

Stokes residual current revealed relative high values only in several zones of the 

northern part of the gulf, particularly in the Colorado River Delta, in the bays of 

Adair and San Carlos and in the Infiernillo Channel. Euler and Stokes residual 

currents are quite different, but the superposition of them determines a more 

realistic picture of residual currents. For example, it has been demonstrated that 

around Tiburon Island, the observed rectification of tidal currents is explained by 

the superposition of the Euler and Stokes residual currents. This rectification 

process generates an anticlockwise circulation around Tiburón Island. In fact, the 

Lagrange residual currents can be obtained from the addition of the Euler and 

Stokes residual currents. Since the Lagrangian residual currents, obtained from 

Lagrangian trajectories, is practically the same, the rectification process is also 

observed in this calculation. Although the Gulf of California is a narrow sea, the 

Lagrangian trajectories of particles at different positions can be very complex.    
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CAPTIONS 

Figure 1. Bathymetry of the Gulf of California. The position and names of relevant zones 

are shown. The box indicates the geographical region and the small square specifies the 

studied northern part of the gulf. 

Figure 2. M2 tidal amphidromic system in the Gulf of California. The phases are 

referenced with respect to the phase in Cabo San Lucas at the entrance to the Gulf 

of California which considered as zero. 
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Figure 3. Instantaneous tidal currents at two different times to show the northwards 

(a) and southwards (b) flow patterns. The box indicates the studied part of the Gulf 

of California. 

 

Figure 4. Lagrange residual current for the M2 tide. The residual current was 

estimated using Lagrangian trajectories.  

 

Figure 5. Euler residual current (a) and Stokes residual current (b). The residual 

currents were calculated for a neap-spring tidal cycle.  

 

Figure 6. Lagrange residual current calculated from the sum of the Euler and 

Stokes residual currents (a). Lagrange residual current calculated using trajectories 

(b). The calculations were carried out for a neap-spring tidal cycle. 

 

Figure 7. Time series of the sea surface elevation at a point in the Colorado River 

Delta. Considering the tidal constituents M2 and S2 (a). Simulation considering the 

tidal constituents K1 and O1 (b). Consideration of the tidal constituents M2, S2, K1 

and the O1 (c). Observe that the neap-spring tidal cycle is not the same in (a) and 

(b).  

 

Figure 8. Residual currents applying the tidal constituents M2, S2, K2, N2, K1, O1, 

P1.  (a) Euler residual current. (b) Stokes residual current. (c) Lagrange residual 

current as the superposition of Euler and Stokes residual currents. The rectification 

process (thick arrows) is evident around Tiburon and Angel de la Guarda Islands 

as a clockwise circulation.   
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Figure 9. Lagrangian trajectories of particles in different zones of the northern part 

of the Gulf of California. The trajectories were calculated considering the tidal 

constituents M2. Triangles indicate the starting point.  

 

Figure 10. Lagrangian trajectories of particles in different zones of the northern part 

of the Gulf of California. The trajectories were calculated considering the tidal 

constituents (M2, S2, K1, O1, N2). Triangles indicate the starting point.  
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