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Highlights 

 

 Two-stage decoupled ANN modeling approach of the degradation rate of bisphenol-A. 

 Study of the dependence of the photocatalyst performance on its synthesis conditions. 

 Assessment of the contaminant degradation in terms of its apparent rate constant. 

 Two-stage inverse optimization in terms of maximizing the degradation rate. 

 

 

 

Abstract 

Artificial neural network (ANN) modeling was applied to study the photocatalytic degradation of 

bisphenol-A. The operating conditions of the Ag/ZnO photocatalyst synthesis and its 

performance were simultaneously modeled and subsequently optimized to target the highest 

efficiency in terms of the degradation reaction rate. Two ANN models were developed to 

simulate the stages of the photocatalyst synthesis and photodegradation performance, 

respectively. A direct dependence between the two networks was also established, thus making 

it possible to directly relate the degradation rate of the contaminant, not only to the 

photodegradation conditions, but also to the photocatalyst synthesis conditions. In this respect, 

an optimization study was carried out, by means of an evolutionary algorithm, in order to 

identify the optimal synthesis and photodegradation conditions that would result in the 

degradation of a maximal amount of the contaminant. Through this integrated approach it was 

demonstrated that neural network models can be proven valuable tools in the evaluation, 

simulation and, ultimately, the optimization of different stages of complex photocatalytic 

processes towards the maximization of the efficiency of the synthesized photocatalyst. 
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1 Introduction 

Endocrine-disrupting compounds (EDCs) is a class of chemical substances that pollute water and 

other environmental resources. They are responsible for adverse developmental, reproductive, 

neurological and immune side-effects on both humans and wildlife as they interfere with the 

organism’s endocrine system. Bisphenol-A (BPA) is an EDC that was used initially (i.e., in the 

1930’s) as an estrogenic drug for birth control and later as a monomer in the synthesis of 

polycarbonate as well as an additive in the synthesis of polyvinylchloride, polyesters, epoxy 

resins, lacquer coatings, etc. It is these latter applications that have facilitated the extensive, 

worldwide spread of this contaminant, presently detected in various aqueous media including 

fresh and marine surface waters and groundwater (Flint et al., 2012; Klečka et al., 2009). 

Among the several studies on the removal of EDCs and pharmaceuticals from drinking water, 

sunlight-induced photocatalytic degradation is an attractive approach that has gained significant 

attention over the last years (Bohdziewicz et al., 2016; Esplugas et al., 2007; Fernández et al., 

2014; Sin et al., 2012; Sornalingam et al., 2016; Tijani et al., 2013). Yet, despite the undisputed 

advantages of the process, such as its clean – non-chemical nature and its relatively low cost, 

heterogeneous photocatalysis is a complex process whose efficiency is related to a number of 

factors associated with the catalyst properties (e.g., crystal structure, morphology, surface area, 

defect sites, polarity, active surface sites and reactive charges life-time) and the photocatalytic 

reaction conditions (e.g., pH, contaminant concentration, catalyst dose, light intensity). Hence, 

the control of the photocatalytic performance of UV/Metal Oxide systems is not a trivial 
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problem since it requires an optimal combination of the above mentioned material and process 

characteristics and conditions. In this respect, the development of an accurate robust 

mathematical model of the process becomes of profound importance to the study and 

implementation of this decontamination technique.  

Traditional modeling approaches of such systems are based on kinetic models that simulate the 

contaminant degradation curves on the basis of a commonly adopted first-order kinetics 

equation (Amani-Ghadim & Seyed Dorraji, 2015; Rosenfeldt & Linden, 2004; R. Wang et al., 

2009). On the other hand, alternative modeling methodologies (e.g., empirical models or 

response surface methodologies) (Asl et al., 2012; Babaei et al., 2011; Kiattisaksiri et al., 2015; 

Lee & Hamid, 2015; Merabet et al., 2016) are constantly gaining ground in the area, mainly due 

to the complex nature of the photodegradation processes and the lack of thorough 

understanding of all the mechanisms involved, which inhibits the development of generalized 

powerful mechanistic models. Among these alternatives, Artificial Neural Network models 

display an evergrowing presence in the most recent relevant studies.  

Artificial Neural Networks (ANN) are powerful tools that can be implemented on a set of raw 

experimental data to establish non-linear mathematical relations between the input/output of 

the process. They belong to the general class of ‘data-driven models’ (DDM), which attempt to 

create connections between the input variables and the responses of a system, without 

requiring any prior knowledge on the underlying physical phenomena (Solomatine et al., 2008). 

Other advantages of this class of models are their ability to extract and recognize patterns in 

data, as well as their rather quick and simple development and implementation to completely 

different processes. 
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Under the condition of existence of a sufficient number of experimental data, ANN models can 

be proven quite efficient and accurate, both in correlating the existing data as well as in 

predicting the system behavior (within the limits of the explored experimental space), while 

they can also be easily customized to different systems. They are commonly developed with the 

aid of specifically designed software or software package toolboxes (e.g., the ANN toolbox of 

Matlab®), which are simple to use and quite flexible in terms of the customization of the model 

structure and characteristics (Sivanandam et al., 2006).  

A review of the implementation of ANN on heterogeneous photocatalytic water and 

wastewater treatment processes was published by Khataee and Kasiri (2010). The accuracy of 

ANN models was also assessed in a recent study by Amani-Ghadim and Seyed Dorraji (2015), 

who compared three different model types, namely a kinetic model, an empirical model and an 

ANN model on the photodegradation of Acid blue 9 using UV/ZnO. In this study, the authors 

investigated the effect of different factors (i.e., contaminant initial concentration, ZnO content, 

light intensity, pH and time) on the photodegradation efficiency and concluded that ANN 

modeling allows an accurate description of the photocatalytic process without the necessity to 

resort to complex mathematical descriptions of the kinetics. 

Traditionally, ANN models have been applied to photocatalytic degradation processes in order 

to study the effect of a variety of reaction conditions on the photocatalytic performance by 

means of percentage of degradation or removal efficiency. It is only recently that the apparent 

reaction rate constant of a first-order photocatalytic degradation curve was considered as the 

simulated response of the developed ANN model (Behnajady & Eskandarloo, 2015; Delnavaz, 

2015). The characteristics of a series of similar recent studies are summarized in Table 1. 
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As can be seen, ANN models can be used to assess the effect of numerous important factors of 

the process, such as light intensity, organic/inorganic ions concentration and oxygen dose, 

which influence the photocatalytic performance but are rarely considered in kinetic models. For 

instance, Vaez et al. (2015) studied the effect of anions naturally present in wastewater (i.e., 

sulfate SO4
2-, chloride Cl-, bicarbonate HCO3

- and carbonate CO3
2-) and peroxide, on the 

photodegradation of Acid Red 73 on UV/TiO2 nanoparticles immobilized on sackcloth fiber. In 

another noteworthy example, Tanasa et al. (2013) successfully studied the effect of both 

photocatalyst properties (i.e., crystallite size, surface area and absorption edge) and reaction 

conditions (i.e., dye initial concentration, time and catalyst dose) on the color removal of Eosin Y 

in UV/ZnO/SnO2 systems.  

In the present work, a novel modeling framework is proposed for the study of a photocatalytic 

degradation process of a water contaminant. In this respect, the two major stages of the 

photocatalytic process, namely the photocatalyst synthesis and the contaminant degradation 

experiments, are decoupled in order to separately assess the effects of the factors affecting 

these two process stages on the overall photocatalytic efficiency of the synthesized 

photocatalyst. Two artificial neural networks are developed for the modeling of these two 

stages, linked together by the fact that the output of the ANN model on the photocatalyst 

synthesis is, at the same time, an input for the ANN model on the photodegradation 

experiments. In a subsequent optimization analysis, the two models are separately optimized in 

the inverse order (i.e., starting from the model on the photodegradation tests), thus connecting 

the photodegradation efficiency (i.e., related to the objective function of the first optimization 
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study on the second ANN model) with the photocatalyst synthesis conditions (i.e., optimal 

decision variables of the second optimization study on the first ANN model). 

The system under study concerns the use of silver-modified ZnO particles (Ag/ZnO) as effective 

catalysts for the photodegradation of BPA in water. ZnO, charged with silver nanoparticles 

(AgNPs), is a prominent photocatalyst that has been employed in several contaminant 

photodegradation studies due to its decreased charge-carriers recombination rate, increased 

photostability and efficiency (Georgekutty et al., 2008; J. Wang et al., 2011; Xie et al., 2010). The 

detailed characteristics of the experimental system have been extensively presented in a recent 

publication (Jasso-Salcedo et al., 2016) and will not be the subject of the present work. To the 

best of the authors’ knowledge, this is the first time that a two-stage, de-coupled ANN 

modelling framework is proposed for the study and, subsequently, the optimization of the 

photocatalytic degradation of an endocrine disrupting contaminant. The proposed approach 

allows for the evaluation of the effects of the factors of the two principal stages of the 

photodegradation process (i.e., the catalyst synthesis and the degradation experiments) on the 

final photodegradation efficiency, by distinguishing these two stages without completely 

isolating them from the overall process. 

 

2 Methodology 

2.1 Data collection 
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2.1.1 Preparation of Ag/ZnO 

The Ag/ZnO photocatalyst was prepared by photodeposition (PD) and impregnation (IMP) 

methods (Jasso-Salcedo et al., 2014). For both methods, a suspension containing ZnO and 

stabilized silver nanoparticles (AgNPs) was adjusted at desired initial pH values using 0.1N HCl 

and/or 0.5 N NaOH. The suspension was stirred under UV irradiation or in darkness, for PD and 

IMP methods, respectively. Then the sample was submitted to centrifugation/re-dispersion 

cycles in distilled water and ethanol solutions several times to remove the free AgNPs (i.e., not 

attached to the ZnO surface). The actual weight percentage of AgNPs that were finally attached 

to the ZnO surface was calculated by the following expression:  

𝑊Ag% =
𝑊Ag

𝑊Ag+𝑊Zn
 100 (1) 

where the quantities of Ag and Zn were obtained from elemental quantification using 

inductively coupled plasma spectrometry (ICP-OES, 730-ES, Varian Inc.) at 328 nm and 213.9 

nm, respectively. Before the analysis, the samples were submitted to acid digestion (69% Nitric 

acid), diluted with DI H2O and filtered (0.45 um). 

2.1.2 Photocatalysis experiments 

An aqueous solution of BPA and photocatalyst was mechanically stirred for 10 min in darkness 

and then irradiated at different wavelengths, namely at 254, 302 or 365 nm using a UV lamp 

(3UV-38, UVP Inc.) and at 450 nm using a fluorescent lamp (F8T5/CW, Hampton Bay). The 

experiments were carried out in a dark box, with the lamp placed at a distance of 8 cm above 

the sample, at room temperature and without external oxygen supply (Jasso-Salcedo et al., 

2014). Samples were then collected at regular time intervals and centrifuged at 3,000 rpm for 
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10 min to recover the photocatalyst powder. The liquid samples were filtered (0.45 μm) before 

liquid chromatography (HPLC 1200 Series, Agilent Technologies) analysis.  

The apparent kinetic rate constant of the BPA degradation was obtained as follows: the 

experimental data (i.e, BPA concentration vs time plots) were initially approximated by an 

exponential decay function, as shown in Eq.(2):  

𝐶𝑁 = 𝑎 exp(𝑏𝑡) ;   𝑏 < 0 (2) 

where CN denotes the normalized BPA concentration (C/C0). A least squares regression provided 

the values of α and b for each experiment. In order to associate the BPA degradation curves 

with a rate constant, the differential form of Eq.(2) was then transformed into a typical rate 

function of order n: 

nN
app N

dC
r k C

dt

 
   
 

  (3) 

In the above equation, kapp and n are the apparent kinetic rate constant and the order of the 

reaction, respectively and r denotes the rate of the reaction. The values of kapp and n can be 

estimated by substituting Eq.(2) into Eq.(3): 

1

app

n

k b




 
  

The first order rate of the BPA degradation was also confirmed by plotting ln(r) vs ln(CN) and 

estimating the regression parameters of the produced straight line, according to the linearized 

form of Eq.(3): 

     ln ln lnapp Nr k n C    (4) 
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Note that the value of the correlation coefficient, R, of this linear regression is given, for each 

experiment, in Table 5, along with the values of the experimental measurements. 

2.2 Artificial neural network modeling 

A neural network is a cluster of processing nodes (i.e., neurons) arranged in several layers and 

interconnected in a variety of topologies, following the paradigm of the functionality of the 

human brain. The successful development and implementation of an ANN model relies onto 

three principal conditions, each one with its own significance for the accuracy and efficiency of 

the developed model:  

I. Correct identification of the input and output variables of the system, also called factors 

and responses, respectively. The selection of the principal factors (i.e., the ones with the 

greatest effect on the targeted response) from all possible candidates is a procedure 

that requires a minimum knowledge of the actual process. Its importance lies in the fact 

that the number and nature of the selected factors will affect, on the one hand, the 

number of required experimental data (i.e., the more factors considered, the greater the 

number of data required for an accurate model development), and on the other hand, 

will define whether important effects on the measured response have been omitted. In 

the case where prior knowledge on the process is completely absent, a small number of 

exploratory experiments can be carried out.  

II. Definition of the experimental space and execution of a set of experiments for the 

acquisition of data. Given that the main factors of the process have been correctly 

identified and under the assumption that there exists a correlation between these 
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factors and the targeted response of the system, an ANN model can identify this 

correlation on the basis of a set of experimental data. Evidently, the ability of the ANN to 

successfully correlate the input(s) (i.e., factors) and output(s) (i.e., response(s)) is directly 

proportional to the number of available data. On the other hand, the number of 

experiments that can be carried out is always subject to feasibility constraints (e.g., time 

and/or cost limitations, etc.) that may dictate the studied process. Hence, the 

implementation of an experimental design strategy can become invaluable during this 

second stage of the model development procedure. The Design of Experiments (DoE) 

approach enables to obtain a maximum amount of information from a given predefined 

experimental effort. Typical DoE strategies include full- or fractional-factorial designs, 

central composite designs, Box–Behnken designs , Plackett– Burman (PB) designs, D-

optimal and E-optimal designs, etc. (Ferreira et al., 2007; Georgakis, 2013; Heiligers, 

1994; Witek-Krowiak et al., 2014). 

III. Identification of the topology of the ANN: The structure of the network, in terms of the 

number and size of the hidden layers, as well as its characteristics (i.e., training 

algorithm, type of transfer functions, etc.), display a significant effect on the accuracy of 

the model. To identify these parameters, most studies follow a trial and error procedure 

where different topologies of the ANN are tested until satisfactory accuracy has been 

achieved. Note that the random initialization of the values of the network parameters 

(e.g., the neuron’s weights) as well as of the data separation (c.f. next paragraph) must 

be taken into account during this procedure.  
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Once the experimental data have been acquired and the factors/responses and architecture of 

the ANN model have been defined, the development of the model proceeds via a series of 

subsequent training (i.e., parametric identification) steps. In general, the accuracy of such 

models is assessed in terms of different statistical magnitudes, such as the Mean Square Error, 

MSE, or the correlation coefficient, R, calculated on the basis of the comparison of the model 

responses and the respective experimental targets. These latter are divided into three distinct 

subsets that serve for the training, validation and testing of the network, respectively. The 

training data set is used for the identification of the model parameters while the test data set is 

used to assess the accuracy of the model on a set of data different than the ones used for the 

training and validation processes. The validation data set is used to avoid overfitting 

phenomena by monitoring the error (i.e., on this data set) throughout the training process. This 

error normally decreases along with the training set error. An increase on the validation error 

for a number of sequential epochs (i.e., training passes of the network) is an indication of 

overfitting that triggers the stopping of the training process, returning the network (i.e., the 

values of weights and biases) corresponding to the minimum value of the validation error. In the 

present work, the number of sequential epochs of increasing validation error before stopping 

the training of the network was set to seven.  

Among the various types of existing ANNs, the most commonly encountered in physicochemical 

process modeling is the feed-forward (i.e., the responses of each layer are used as inputs of the 

next layer) back-propagation (i.e., the measured error at the output layer is back transferred to 

re-adjust the model parameter values) network, while the sigmoidal (e.g., logarithmic sigmoidal 

or tangent hyperbolic sigmoidal) and linear transfer functions are widely applied on the hidden 
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and output layers, respectively (Cheng & Titterington, 1994; Haykin, 1994; Meireles et al., 2003; 

Sivanandam et al., 2006). Additional details on the principles and the characteristics of neural 

networks can be found in the relevant literature (Cheng & Titterington, 1994; Haykin, 1994; 

Meireles et al., 2003; Sivanandam et al., 2006).  

Photocatalytic processes are greatly influenced by both catalyst properties and reaction 

conditions. These effects are traditionally studied separately (see Table 1), probably due to the 

complexity of assessing them simultaneously in a single study. An exception to this rule is the 

work of Tanasa et al. (2013), who studied the system of Eosin Y dye photocatalytic degradation 

using ZnO/SnO2, taking into account the effects of crystallite size, surface area, absorption edge, 

catalyst dose and total organic carbon values in their model that was developed on the basis of 

a set of 547 experimental data. In addition, another commonly adopted practice is the 

consideration of the irradiation time as a factor in the modeling of the percentage of 

contaminant degradation (i.e., response). Given that the percentage of contaminant 

degradation will normally increase with the reaction time, this approach finally leads to a rather 

obvious correlation that, in turn, may come in the cost of missing other important effects of 

different factors.  

In the present work, a model development is presented that does not comply with the above 

commonly adopted approaches. In order to combine the effects of both important stages of the 

photocatalytic process, namely the catalyst synthesis and the photodegradation experiments, a 

two-stage decoupled ANN model is developed where the response of the first network becomes 

a factor for the second network. Thus, in the first stage of the model, the effects of three 

operating conditions of the synthesis of Ag/ZnO (i.e., nominal silver concentration, pH and 
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reaction time, which were identified in Jasso-Salcedo et al., 2014 as the most significant 

parameters of the process) on the actual amount of Ag attached on the surface of ZnO of the 

synthesized photocatalyst were assessed in terms of an initial neural network, henceforth called 

ANN1. In the second stage of this modelling framework, the effect of the actual amount of Ag 

attached on the surface of ZnO, pH of the medium, initial contaminant concentration and 

wavelength of light on the photodegradation performance of the photocatalyst were assessed 

in terms of a second neural network, ANN2. A direct dependence between the two networks 

was established by directly introducing the response of ANN1 as a factor of ANN2. The 

photodegradation performance (i.e., the response of ANN2) was evaluated in terms of an 

apparent kinetic rate constant, kapp, of the degradation reaction of BPA. This way, the 

photocatalyst synthesis conditions were directly associated to its final photodegradation 

performance, taking simultaneously into account the effects of the photodegradation 

conditions. Note that, since the evaluation of the performance of the photocatalyst was based 

on the rate of degradation of the contaminant, there was no need to consider the irradiation 

time among the factors of the photodegradation process, which was kept constant for all 

experiments and equal to 120 min.  

The experimental ranges of all factors of the two sub-models (i.e., ANN1 and ANN2) are given in 

Tables 2 and 3, respectively. Note that for the modification experiments of ZnO, a central 

composite design was employed. The photocatalyst concentration used for the degradation 

tests was set to 1 g/L. A general schematic of the proposed modeling framework is shown in 

Scheme 1.  
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2.2.1 Neural network structure 

A multi-layer feedforward network with Levenberg-Marquardt learning algorithm was used in 

this study. The experimental data corresponding to each model were randomly divided into 

training, validation and testing subsets (50 %, 25 % and 25 % of data, respectively). All data were 

normalized in the range [-1:1] prior to their introduction into the models. 

The topology of the network models, denoted as (In:Hid:Out), corresponds to the numbers of 

neurons in the input, hidden and output layers, respectively. Several configurations of the 

network were tested to determine the best number of neurons in the hidden layer(s), based on 

the values of the MSE of the data sets. The MSE value between the ANN model predictions and 

the experimental data is typically calculated by the expression:  

𝑀𝑆𝐸 =
∑ (𝑦𝑗

mod−𝑦𝑗
exp

)
2

𝑁
𝑗=1

𝑁
 (5) 

where the exponents ‘mod’ and ‘exp’ denote the outputs of the model (i.e., the responses) and 

the experiment (i.e., the targets), respectively and N is the total number of experimental data. 

Note that, in the present work, log-sigmoidal and linear transfer functions were used for hidden 

and output layers, respectively. The Neural Network Toolbox of the commercial software 

package MATLAB 8.3.0.532 (academic license) was used for the development of the models. 

2.3 Optimization study 

An ultimate purpose of process models, especially data-driven models, is their implementation 

in an optimization study in order to identify the combination of the different process conditions 

that will result to the desired properties/performance of the product/process under study. 

Among the plethora of different mathematical methods and techniques that have been 
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developed for the treatment of optimization problems, evolutionary algorithms constitute a 

powerful approach with specific advantages and disadvantages.  

In general, an evolutionary algorithm (EA) is based on the principle of the continuous 

improvement of a criterion (i.e., the optimization criterion) of the individuals of a population. 

The initial population is composed of a large set of randomly selected individuals (e.g. 

experimental conditions), which are characterized by a measured property or model response 

(e.g., the degradation efficiency corresponding to each of these experiments). The population is 

classified from the best individual to the worst, according to its corresponding value of the 

criterion and depending on whether the problem is a minimization or a maximization one, and is 

subsequently subjected to a series of cycles of improvement of this criterion. The best 

individuals are combined to generate new ones that might perform better, while the worst 

individuals are removed from the population after each cycle and the procedure continues until 

the population has “evolved” to such a point where the desired convergence to an optimal has 

been achieved. Detailed information on the theoretical basis of EAs for mono- and multi-

objective optimization, applied on physicochemical processes, can be found in the relevant 

literature (Camargo et al., 2011; Fonteix et al., 1995; Viennet et al., 1996; Xi et al., 2013). EAs 

have also been successfully implemented in the optimization study of the degradation of phenol 

by a combined photocatalysis/electro-Fenton system (Khataee et al., 2014). 

In the present work, an optimization study, on the basis of an EA, was also carried out in order 

to identify the optimal catalyst synthesis and photodegradation conditions that would result to 

the highest photodegradation rate of BPA. In accordance to the two-stage structure of the 

model, the optimization was also carried out in two consecutive steps, following an inverse 
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direction. In this respect, an initial optimization problem was solved on the basis of ANN2 in 

order to identify the different photodegradation conditions that would result to a maximum 

degradation rate of BPA. Among these conditions, the pH, BPA concentration and light 

wavelength can be directly set to their optimized values, according to the results of this first 

optimization study. On the other hand, the actual silver content of the photocatalyst depends 

on the conditions of the photocatalyst synthesis process. Hence, a second optimization problem 

was subsequently solved, via the implementation of an EA on the basis of ANN1, in order to 

identify the photocatalyst synthesis conditions that would result in the optimal amount of 

attached AgNPs on the ZnO surface, as defined by the output of the first optimization run. Thus, 

both important stages of the overall process (i.e., the synthesis of the photocatalyst and its 

subsequent use in the photodegradation experiments) were taken into account and their 

optimal conditions were identified in view of a maximal photodegradation rate of BPA. The 

overall optimization approach is schematically depicted in Scheme 2. 

 

3 Results and discussion 

The development of the two ANN sub-models was based on a total of 63 experiments for ANN1 

and 27 experiments for ANN2, divided into the two methods of the photocatalyst synthesis (i.e., 

PD and IMP methods) as shown in Tables 4 and 5. On the basis of these experimental data, the 

identification of the optimal network topologies initially took place and subsequently the ANN 

models were tested and validated before their implementation into the optimization study.  
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3.1 Selection of optimal network topology 

The selection of the network topology was based on a typical trial and error approach where the 

number of neurons of the hidden layer(s) was varied in the range 1-20 (i.e., for a single hidden 

layer) and 1:1-10:10 (i.e., for two hidden layers) and the accuracy of the developed model was 

assessed in terms of the MSE values between the model predictions and the experimental data. 

An example of the results obtained by this procedure is shown in Figure 1 for the ANN1 model 

and the PD method. In this Figure, the ten best (i.e., corresponding to the lowest MSE values) 

network configurations are shown in a MSE-increasing order. Note that the errors 

corresponding to all data, validation and testing data sets are shown in order to verify the 

consistency of the model performance vis-à-vis the different data sets. Each network topology 

was run 50 times (i.e., 50 different ANNs with the same topology were developed and 

evaluated) and the average value of MSE was used for comparison, in order to avoid random 

correlation effects.  

 

The numerical data corresponding to Figure 1, as well as the data corresponding to the other 

three models (i.e., ANN1-IMP, ANN2-PD and ANN2-IMP) are given in Table S.1 of the 

supplementary material section. The network topologies that were retained according to this 

procedure are shown in Table 6:  

 

3.2 Evaluation of the ANN models 
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Neural network models are typically assessed, in terms of their accuracy in simulating the 

experimental data, by plotting the model response with respect to the experimental 

measurements. A comparison of the points of such plots with the diagonal (i.e., the linear curve 

corresponding to y=x) reveals the accuracy of the developed model. Figures 2 and 3 depict such 

plots for the ANN1 and ANN2 models, respectively. In these plots, the all data and test data sets 

are shown in order to reveal the accuracy of the model with respect to all available data, 

including the training data for which a higher accuracy is expected, as well as with respect only 

to the test data, which represent a subset of the available data that has not been used during 

the model training process. The value of the correlation coefficient, R, of the linear regression of 

the data is also shown on the plots. It can be seen that the ANN1 model exhibits higher accuracy 

than the ANN2 model, which seems to under-predict the experimental values at the high-values 

domain of kapp but, in general, remains quite accurate as well. This can be partially attributed to 

the smaller size of available experimental data for the second model. The values of the 

experimental data used for the development of the models and the respective model 

predictions are also given in Tables 4 and 5. Note that, for the training of the models of the 

photodegradation experiments, ANN2, the target values of the experimental apparent rate 

constant were transformed to their log values, in order to avoid a variation over several orders 

of magnitude. Nevertheless, in all graphical and numerical results presented in this paper, the 

original non-transformed values are shown for reasons of simplicity. 
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3.3 Analysis of the model results 

Once the ANN models have been successfully developed and validated, they can be directly 

implemented, using input values that do not necessarily correspond to the experimentally 

tested conditions, in order to assess the effect of the different conditions of each sub-process 

(i.e., the catalyst synthesis and the degradation tests) to the respective response of interest (i.e., 

the actual amount of attached Ag on the photocatalyst and the apparent degradation rate 

constant, respectively). In this respect, Figures 4a-4f show the effect of pH and actual silver 

content on the degradation rate of BPA, under different conditions of BPA amount and light 

wavelength, as produced by the ANN2-PD model. An initial observation is that the response 

surfaces are highly irregular, not displaying a clear increasing or decreasing effect. It should be 

noted at this point that the presented curves can only serve to acquire a general idea about the 

different trends that the model might display with respect to the variation of certain inputs. 

They cannot be used to identify specific points or values with accuracy since the viewpoint angle 

and the graphical interpolation used for their creation may lead to errors. 

Concerning the effect of pH, it can be seen that, as pH increases the values of kapp initially 

increase, reaching a maximum within the range of pH values 6-9, and then decrease. This effect 

is particularly obvious in Figures 4d-4f. The pH is an important factor in photocatalysis since it 

affects the surface charges of both the photocatalyst and the contaminant as follows. In the 

vicinity above neutral pHPZC=8.3 (i.e., value of neutral surface charges for ZnO),  hydroxyl-

compounds of zinc such as ZnOH+, Zn(OH)2, and Zn(OH)3
- are formed in the solution and they 

interact with the undissociated BPA (HO-C15H14-OH) toward its oxidation. Below this value, an 

increase in the hydroxyl ion (-OH) concentration and, subsequently, to the hydroxyl radical 
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(●OH) concentration leads to the oxidation of BPA. Comparable results have been reported on 

the degradation efficiency of BPA by pure ZnO by Rahman et al. (2005), who reported 80% 

degradation efficiency of 100 mg/L of BPA in the pH range of 2 to 8.5, and a significant decrease 

to 60% at pH 11. Also, Clament Sagaya Selvam et al. (2013) reported the complete degradation 

of 200 mg/L of BPA at pH 8 and a subsequent decrease of the degradation efficiency at pH 

values above 9.  

On the other hand, the effects of BPA concentration and UV wavelength are not so evident. 

Nevertheless, the initial contaminant concentration seems to display an inversely proportional 

effect on the values of kapp, since they seem to be decreasing at higher BPA concentrations. This 

effect can be partially explained by an absorbance of the UV light (at 255 and 277 nm) by BPA 

molecules. This way, the activation of the photocatalyst surface is reduced thus producing a 

screening effect of the BPA molecules towards the UV light penetration.  

A similar effect for all factors can be observed for the impregnation model, ANN2-IMP, as well. 

Four representative surfaces are shown in Figures 5a-5d, under different conditions of BPA 

content and light wavelength. As can be seen, the value of kapp displays once more a maximum 

around the middle of the pH and BPA concentration domains and decreases with increasing BPA 

concentration.  

Concerning the first model, ANN1, a similar analysis can be made on the effects of the catalyst 

synthesis conditions on the overall functionalization degree, FD, defined as the ratio of the 

actual amount of silver on the catalyst particles over the nominal amount of silver used during 

the catalyst synthesis. In Figures 6a and 6b, two surface plots, similar to the ones previously 

depicted for ANN2, are shown corresponding to the photodeposition method and to two 
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different values of nominal amount of silver. The corresponding plots for the impregnation 

method are depicted in Figures 6c and 6d. As can be seen, there is no significant variation of FD 

with respect to pH and time when the photodeposition method is implemented. On the other 

hand, the reaction time seems to have an overall positive effect on the FD values and to display 

a maximum around 150 min, when the impregnation method is used.  

The effect of pH seems to vary with the time of reaction and the nominal AG amount, especially 

for the photodeposition method. At the same time, an excess nominal amount of silver does not 

seem to display a positive effect on the functionalization degree when the impregnation 

method is implemented, which is particularly obvious in Figure 6d. It should be noted at this 

point that the experimental values of FD that are higher than 1 are due to experimental 

sampling and titration errors, as explained in (Jasso-Salcedo et al., 2014). As a consequence it is 

normal that the developed neural network model, which was trained on the basis of these 

experimental values, provides responses that result in values of FD higher than 1.  

 

3.4 Optimization step 1 - apparent kinetic rate constant, kapp 

Given the nature of the photodegradation process and the definition of the output of the 

process on the basis of the apparent kinetic rate constant of a first-order degradation reaction, 

it becomes evident that the desired value of this constant is the maximal possible value it could 

attain, as this will lead to a faster degradation of a maximum amount of BPA. Hence, the first 

step of the optimization study, on the basis of ANN2, was the solution of a maximization 

problem in terms of the conditions of the photodegradation process, namely the actual amount 

of attached AgNPs, the pH, the BPA concentration and the light wavelength. The deployment of 
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an EA for the solution of this problem for both methods of photocatalyst synthesis resulted in 

the sets of optimal conditions shown in Table 7. Note that, for the EA algorithm, the following 

parameters were used: the size of the population was set to 1000 individuals, the survival rate 

was set to 70% and the mutation rate to 10%. The program was entirely written and run on 

MATLAB (version 8.3.0.532; academic license) while the convergence of the algorithm was 

tested in terms of a tolerance in the relative difference between the best and worst criterion 

values of each generation, set in the order of 1%.The CPU time required for every optimization 

run was in the order of 30 s on a 2x2.4 GHz Intel® Xeon® Workstation.  

 

In order to follow the evolution of the optimization and to verify its convergence around one (or 

more) optimal(s), one can plot the positions of a number of ‘best’ (i.e., top ranked) individuals, 

corresponding to an equal number of optimal conditions, along different generations of the 

optimization procedure. In Figures 7a-7d, a set of 50 optimal conditions is depicted, as 

calculated by the EA optimization of the ANN2-PD model.  

 

Since there are four different factors for this model, two plots are produced for each 

generation, one corresponding to the optimal values of the actual amount of silver and pH and 

another corresponding to the optimal values of the UV wavelength and the initial BPA amount. 

The same Figures have been plotted for three different generations at the early stages of the 

optimization (i.e., generations 1, 2 and 10, cf. Figures 7a and 7b) as well as for three generations 

at the middle and final stages of the optimization (i.e., generations 16, 39 and 56, cf. Figures 7c 

and 7d). This illustration reveals the convergence of the optimization around a unique set of 
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optimal conditions (cf. Table 7). In this specific case, the convergence was achieved after 56 

iterations, according to the convergence criterion defined earlier in this Section. Note that the 

predicted optimal value of kapp is significantly increased with respect to the experimentally 

measured values. 

Figures 8a-8d present the corresponding plots of the same optimization problem but for the 

impregnation method (i.e., on the basis of ANN2-IMP). In this case, several local maxima seem to 

exist so the optimization does not converge around one single set of optimal conditions. The 

conditions reported in Table 7 are the ones that lead to the maximum attaint value of the 

apparent rate constant and correspond to the set of points located on the right in Figure 8c and 

on the top left in Figure 8d. In any case, this method seems to lead to significantly lower optimal 

values of the rate constant, in comparison to the photodeposition method.  

 

 

3.5 Optimization step 2 - actual amount of silver in the ZnO photocatalyst 

On the basis of the optimal amount of AgNPs defined by the previous optimization step, a 

second optimization run was carried out in order to define the conditions that would result in 

the synthesis of a photocatalyst with this optimal amount of silver nanoparticles. So, in this 

case, the goal was to minimize the objective function defined by the absolute difference 

between the model response (i.e., the actual Ag amount) and the desired Ag amount, as this 

was defined in the previous optimization step. This second step of the optimization study was 
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based on ANN1 and the results of the EA that was deployed for the solution of this problem are 

shown in Table 8. In both cases, the error between the desired and attained value was inferior 

to 0.01%, significantly lower than the associated experimental error of the measurements. 

  

 

 

The respective 2D plots of the evolution of the 50 optimal conditions in terms of the model 

factors are presented in Figures 9a-9d and 10a-10d, for the photodeposition and the 

impregnation methods respectively. Note that, as the number of factors is limited to three in 

this case, both couples that are used in the plots contain pH as one of the factors. 

The results of these optimization runs are quite similar to the first optimization runs as, once 

again, the impregnation method seems to provide several alternatives as local minima, 

especially in terms of the value of the pH, as becomes evident in Figures 10a and 10c. The 

photodeposition method, on the other hand, has a clear minimum of the objective function that 

is identified by the EA algorithm already somewhere between the 10th and 48th iteration, 

despite the fact that the algorithm requires more than 160 iterations to meet the convergence 

criterion. Finally, a paradox is observed in both optimization results since the optimal nominal 

amount of Ag is lower than the desired actual amount of Ag. Once again, this is due to the fact 

that the models have been trained with experimental data containing such discrepancies, which 

are caused by the experimental error associated with the experimental protocol and the 

analytical method (Jasso-Salcedo et al., 2014). This should not be interpreted as an error 

associated with the modeling framework or the optimization approach.  
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4 Conclusions 

In the present work, a modeling framework on the basis of Artificial Neural Networks was 

presented for the simulation of the effects of two important stages of a photocatalytic process, 

namely the catalyst synthesis and the photodegradation experiments, on the final 

photodegradation performance of the synthesized photocatalyst. In this respect, a two-stage 

ANN model was developed, connected by means of introducing the response of the first model 

as a factor to the second model. The developed models were subsequently introduced in an 

optimization study, carried out with the aid of an evolutionary algorithm and comprised also of 

two steps. Through this integrated approach, it has been possible to study simultaneously the 

effects of a series of important conditions associated with two totally distinct stages of the 

process and to connect the initial photocatalyst synthesis conditions with its final 

photodegradation performance.  

By means of the developed models, the effects of pH, nominal amount of silver nanoparticles 

introduced in the suspension and reaction time were assessed in terms of their effects on the 

actual amount of silver nanoparticles that are finally retained on the ZnO surface. At the same 

time, this amount of attached silver along with the pH, the light wavelength and the initial 

contaminant amount present in the photodegradation experiments were studied in terms of 

their effect on the photodegradation performance of the synthesized photocatalyst. This 

performance was associated with an apparent rate constant, thus eliminating the time from the 

factors of the photodegradation tests.  
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The decoupling of these two processes that was proposed in this study allowed a better 

understanding of the nature of the indisputable indirect bond that exists between them. In this 

respect, it has been shown that an intermediate quality criterion of the photocatalyst, namely 

the actual amount of silver attached to the ZnO surface that, in turn, can only be controlled by 

the photocatalyst synthesis conditions, displays a direct effect on its photodegradation 

performance. Finally, by investigating two different methods of the photocatalyst synthesis, 

namely a photodeposition and an impregnation method, the study has also demonstrated that 

it can display an important effect on the final photodegradation efficiency of the photocatalyst.  
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Figure 1. MSE for all data, validation and test datasets as function of neurons in the hidden layer on the network 

topology for the developed ANN1 model (photodeposition method). 
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Figure 2. Regression plots of the experimental data (all data and test data sets) versus model predicted values for 

the developed neural network models ANN1-PD (top) and ANN1-IMP (bottom). 
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Figure 3. Regression plots of the experimental data (all data and test data sets) versus model predicted values for 

the developed neural network models ANN2-PD (top) and ANN2-IMP (bottom). 
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Figure 4: Effect of pH and actual silver content (% w/w) on the apparent degradation rate constant under different 

conditions of BPA content and UV wavelength, as simulated by the ANN2-PD model. 
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Figure 5: Effect of pH and actual silver content (% w/w) on the apparent degradation rate constant under different 

conditions of BPA content and UV wavelength, as simulated by the ANN2-IMP model. 
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Figure 6: Effect of pH and nominal silver content (% w/w) on the functionalization degree (i.e., the ratio of actual to 

nominal amount of Ag) under different values of nominal Ag amount as simulated by the ANN1-PD (a, b) and ANN1-

IMP (d, c) models. 
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Figure 7: Presentation of the 50 optimal conditions in terms of the actual amount of Ag and pH (a, c) and the UV 

wavelength and the BPA amount (b, d), as predicted by the EA optimization on the basis of the ANN2-PD model 

after 1, 5 and 10 generations (a, b) as well as after 16, 39 and 56 generations (c, d). 
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Figure 8: Presentation of the 50 optimal conditions in terms of the actual amount of Ag and pH (a, c) and the UV 

wavelength and the BPA amount (b, d), as predicted by the EA optimization on the basis of the ANN2-IMP model 

after 1, 5 and 10 generations (a, b) as well as after 20, 47 and 68 generations (c, d). 
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Figure 9: Presentation of the 50 optimal conditions in terms of the nominal amount of Ag and pH (a, c) and the 

reaction time and pH (b, d), as predicted by the EA optimization on the basis of the ANN1-PD model after 1, 5 and 

10 generations (a, b) as well as after 48, 114 and 163 generations (c, d). 
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Figure 10: Presentation of the 50 optimal conditions in terms of the nominal amount of Ag and pH (a, c) and the 

reaction time and pH (b, d), as predicted by the EA optimization on the basis of the ANN1-IMP model after 1, 5 and 

10 generations (a, b) as well as after 26, 60 and 87 generations (c, d). 
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Scheme 1. Description of the input/output characteristics and connecting points of the two ANN 

models. 
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Scheme 2. Methodology used on the Evolutionary Algorithm - ANN coupled optimization approach on this study. 
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Table 1. Neural Network modeling studies of the photocatalytic performance on the degradation of water 

contaminants. 

Photocatalyst 
Model 
contaminant 

ANN 
Topology 
(In:Hid:Out) 

Data 
number Input / Factors 

Output / 

Response Reference 

ZnO Acid Blue 9 5:9:1 152 
AB9, pH, ZnO, 
UV intensity 

Degradation 
efficiency (%) 

Amani-Ghadim 
and Seyed 
Dorraji (2015) 

ZnO/Montmorillonite 
K10 

Disperse Red 54 
(DR54) 5:10:1 N/A 

DR54, 
ZnO/MMT, time 

Decolorization 
efficiency (%) 

Kiransan et al. 
(2015) 

ZnO/Montmorillonite 
K10 

Basic yellow 28 
(BY28) 3:14:1 N/A 

BY28, 

ZnO/MMT 

dosage, UV 

radiation time 
Decolorization 
efficiency (%) 

Kıransan et al. 
(2015) 

TiO2 Acid Red 27 4:8:1 56 
TiO2, AR27, pH, 
UV intensity 

Reaction rate 
constant (Kap) 

Behnajady and 
Eskandarloo 
(2015) 

TiO2-Light expanded 
clay aggregates Phenol 5:6:4:2 325 

Reaction time, 
Phenol, pH, 
TiO2, UV 
intensity 

Photocatalytic 
reactor 
efficiency (%) 
and Kinetic 
constant (Kapp) 

Delnavaz 
(2015) 

TiO2/sackcloth fibre Acid Red 73 5: 15:1 300 

pH, time, anion, 
H2O2, AR73 
concentration 

Photocatalytic 
efficiency (%) 

Vaez et al. 
(2015) 

SnO2/Fe3O4 Phenol  red 4:20:30:20:1 30 

SnO2/Fe3O4, 
phenol red, 
stirring 
intensity, UV 
intensity 

Dye removal 
(%) 

Sargolzaei et al 
2015 

TiO2/ZrO2 
Carbamazepine 
(CBZ) 4:5:1 130 

TiO2/ZrO2, pH, 
reaction time, 
CBZ CBZ removal (%) 

Das et al. 
(2014) 

TiO2 
Chromium (Cr 
(VI) 4:4:1 558 

Cr(VI), pH, TiO2, 

irradiation time 

Photocatalytic 
reduction Cr 
(VI) (%) 

Sabonian and 
Behnajady 
(2014) 

TiO2 

N,N-diethyl-m-
toluamide 
(DEET) 3:13:1 17 

TiO2, DEET, UV 
intensity 

Photocatalytic 
oxidation (%) 

Antonopoulou 
and 
Konstantinou 
(2013) 

TiO2 

Total phenolic 
compounds 
(TPh) 3:12:1 17 

TiO2, TPh, UV 
intensity 

Photocatalytic 
oxidation of TPh 
(%) 

Antonopoulou 
et al. (2012) 

TiO2 

17α-
ethynylestradiol 
(EE2) 5:13:1 222 

Reaction time, 

TiO2, EE2, water 

dissolved 

organic carbon, 

water 

conductivity 
EE2 conversion 
(%) 

Frontistis et al. 
(2012) 

TiO2 
4-nitrophenol 
(4-NP) 4:14:1 147 

Nano TiO2 , 
time, UV 
intensity, 4-NP Removal  (%) 

Ghanbary et al. 
(2012) 

TiO2 
Reactive black 5 
(RB5) 4:10:1 N/A 

pH, TiO2 dose, 
RB5, time 

Photocatalytic 
efficiency (%) 

Dutta et al. 
(2010) 
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Table 2. Experimental range of the Ag/ZnO photocatalyst synthesis conditions 

Input variables Photodeposition Impregnation 

Nominal amount AgNPs (% w/w) 0.1-1 0.1-5 

Initial pH  7-11 7-11 

Time (h) 0.5-1 2-5 

 

Table 3. Experimental range of the photodegradation test conditions 

Input variables   

Initial pH  2.8 to 10.5 

Actual amount AgNPs (%w/w) 0-1.2 

Bisphenol-A (mg/L) 10-40 

Wavelength (nm) 254, 302, 365 and 450 
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Table 4. Experimental conditions for the synthesis of Ag/ZnO photocatalyst and actual amount of Ag attached 

to the ZnO surface as measured experimentally and predicted theoretically by the ANN1 models 

Nominal 
Ag 
%w/w pH 

Reaction 
time 
(min) 

Attached Ag 
%w/w 
(experimental) 

Attached 
Ag 
%w/w 
(ANN1 
model) 

Nominal 
Ag 
%w/w pH 

Reaction 
time 
(min) 

Attached Ag 
%w/w 
(experimental) 

Attached 
Ag 
%w/w 
(ANN1 
model) 

Photodeposition method Impregnation method 

0.3573 7 30 0.320 0.327 0.1072 7 60 0.100 0.116 

0.3573 7 60 0.342 0.348 0.1072 7 120 0.106 0.121 

0.1073 7 30 0.082 0.084 0.1072 7 300 0.094 0.094 

0.1073 7 60 0.107 0.102 1.0623 7 60 1.179 1.179 

1.0623 7 30 0.991 0.920 1.0623 7 120 1.203 1.203 

1.0623 7 60 1.093 1.099 1.0623 7 300 0.820 0.807 

0.3573 9 30 0.358 0.356 5.095 7 60 0.521 0.522 

0.3573 9 60 0.375 0.378 5.095 7 120 0.585 0.773 

0.1073 9 30 0.062 0.062 5.095 7 300 0.668 0.671 

0.1073 9 60 0.074 0.075 0.1072 9 60 0.099 0.093 

1.0623 9 30 1.170 1.104 0.1072 9 120 0.110 0.110 

1.0623 9 60 1.132 1.130 0.1072 9 300 0.096 0.100 

0.3573 11 30 0.454 0.451 1.0623 9 60 0.970 1.012 

0.3573 11 60 0.426 0.397 1.0623 9 120 1.192 1.188 

0.1073 11 30 0.091 0.092 1.0623 9 300 1.194 1.193 

0.1073 11 60 0.116 0.121 5.095 9 60 0.423 1.044 

1.0623 11 30 1.183 1.182 5.095 9 120 0.494 0.336 

1.0623 11 60 1.147 1.137 5.095 9 300 0.571 0.580 

0.3573 7 45 0.320 0.325 0.1072 11 60 0.116 0.105 

0.1073 9 45 0.074 0.071 0.1072 11 120 0.121 0.121 

1.0623 9 45 1.132 1.132 0.1072 11 300 0.116 0.120 

0.3573 9 45 0.362 0.365 1.0623 11 60 0.239 0.239 

0.1073 7 45 0.096 0.096 1.0623 11 120 0.366 0.561 

0.1073 11 45 0.103 0.102 1.0623 11 300 1.108 1.101 

1.0623 7 45 1.050 1.054 5.095 11 60 0.374 0.375 

1.0623 11 45 1.162 1.161 5.095 11 120 0.389 1.144 

0.3573 9 45 0.371 0.365 5.095 11 300 0.498 0.503 

0.3573 9 45 0.368 0.365 1.0623 9 120 1.169 1.188 

0.3573 9 45 0.385 0.365 1.0623 9 120 1.223 1.188 

0.3573 9 45 0.357 0.365 1.0623 9 120 1.023 1.188 

0.3573 9 45 0.362 0.365 1.0623 9 120 1.179 1.188 

     1.0623 9 120 1.167 1.188 
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Table 5. Experimental conditions of bisphenol-A degradation and apparent kinetic rate constant kapp used on the 

ANN2 model 

pH 
Actual amount 
Ag (%w/w) 

BPA 
(mg/L) 

Wavelength 
(nm) R1 

Reaction 
order n 

kapp 
experimental 

kapp predicted (ANN2 
models) 

2Pure ZnO photocatalyst      ANN2-PD ANN2-IMP 

10.5 0 10 302 0.973 0.887 4.53E-03 4.53E-03 5.74E-03 

10.5 0 10 450 0.988 0.999 6.23E-04 2.27E-04 6.23E-04 

7.5 0 10 254 0.992 1.161 2.55E-03 2.79E-03 2.55E-03 

2.81 0 10 254 0.999 1.019 3.83E-03 3.78E-03 4.59E-03 

4.27 0 10 254 0.999 0.999 3.89E-03 3.78E-03 3.89E-03 

9.38 0 10 254 0.986 1.001 4.97E-03 4.92E-03 4.97E-03 

10.5 0 10 254 0.999 1.022 7.55E-03 7.44E-03 7.87E-03 

7.25 0 20 254 0.999 1.031 1.75E-03 1.73E-03 1.75E-03 

8.53 0 20 302 0.990 1.013 1.10E-03 1.21E-03 1.67E-03 

8.53 0 20 365 0.999 0.992 2.31E-03 2.41E-03 2.31E-03 

Photodeposition method    ANN2-PD 

10.5 1.093 10 254 0.999 1.018 1.02E-02 1.01E-02 

10.5 1.093 10 302 0.999 1.006 1.86E-02 1.52E-02 

10.5 1.093 10 365 0.990 1.002 1.54E-02 1.41E-02 

10.5 1.093 20 254 0.999 1.022 4.97E-03 5.33E-03 

7.51 1.093 40 254 0.982 0.970 1.73E-03 1.24E-03 

10.5 1.147 10 254 0.999 1.024 1.21E-02 1.11E-02 

10.5 1.147 10 302 0.999 1.011 1.85E-02 1.61E-02 

10.5 1.147 10 365 0.999 1.008 1.02E-02 1.01E-02 

10.5 1.147 10 450 0.999 1.046 1.86E-02 1.52E-02 

7.2 1.147 40 254 0.999 0.956 1.54E-02 1.41E-02 

Impregnation method    ANN2-IMP 

10.5 1.203 10 254 0.999 1.007 8.28E-03 9.25E-03 

10.5 1.203 10 302 0.999 0.995 9.37E-03 9.37E-03 

10.5 1.203 10 365 0.999 0.993 1.10E-02 9.02E-03 

10.5 0.366 10 254 0.999 1.006 8.42E-03 8.36E-03 

10.5 0.366 10 302 0.999 0.992 1.22E-02 1.22E-02 

10.5 0.366 10 365 0.999 1.006 1.37E-02 1.17E-02 

10.5 0.366 10 450 0.999 1.009 1.28E-03 1.28E-03 
1 Correlation coefficient of the linear regression of the experimental data, as explained in section 2.1. 
2 Common experiments, used for the development of both PD and IMP ANN2 models. 
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Table 6. Network topology of the developed models 

 Photodeposition – PD Impregnation – IMP 

ANN1 3:8:10:1 4:9:8:1 

ANN2 3:10:10:1 4:8:10:1 

 

 

 

 

Table 7: Results of the first optimization step on the maximization of kapp 

Optimal photodegradation conditions for the photodeposition method (kapp,max = 0.0383 min-1) 

Actual amount Ag, %w/w pH (initial value) BPA concentration, mg/L Wavelength, nm 
1.10 6.7 10.8 330 

Optimal photodegradation conditions for the impregnation method (kapp,max = 0.0167 min-1) 

Actual amount Ag, %w/w pH (initial value) BPA concentration, mg/L Wavelength, nm 
0.78 10.1 10.2 358 

 

Table 8: Results of the 2nd optimization step on the synthesis of a photocatalyst with a desired content of AgNPs 

Optimal photocatalyst synthesis conditions for the photodeposition method (Actual Ag %w/w = 1.10) 

Nominal amount Ag, %w/w pH  Time, min 
1.00 9.5 48 

Optimal photocatalyst synthesis conditions for the impregnation method (Actual Ag %w/w = 0.78) 

Nominal amount Ag, %w/w pH  Time, min 
  0.69 8.5 214 

 

 

 


