
This article may be downloaded for personal use only. Any other use 
requires prior permission of the author or publisher. 

The following article appeared in Zeitschrift für Naturforschung A, 73(10): 
883-892, (2018). And may be found at: 10.1515/zna-2018-0055

Copyright © 2011–2019 by Walter de Gruyter GmbH. 

https://doi.org/10.1515/zna-2018-0055


Traveling wave solutions for wave equations with two exponential nonlinearities

Stefan C. Mancas∗

Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114-3900, USA

Haret C. Rosu† and Maximino Pérez-Maldonado‡
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Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potośı, S.L.P., Mexico

We use a simple method which leads to the integrals involved in obtaining the traveling wave
solutions of wave equations with one and two exponential nonlinearities. When the constant term
in the integrand is zero, implicit solutions in terms of hypergeometric functions are obtained while
when that term is nonzero all the basic traveling wave solutions of Liouville, Tzitzéica and variants,
and sine/sinh-Gordon equations with important applications in the phenomenology of nonlinear
physics and dynamical systems are found through a detailed study of the corresponding elliptic
equations.
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I. INTRODUCTION

Some of the best known and well-studied hyperbolic
nonlinear second-order differential equations are the sine-
Gordon equation [1], its variant the sinh-Gordon equa-
tion, the Tzitzéica equation [2–4] and its variants, such as
the Dodd-Bullough equation [5] and the Dodd-Bullough-
Mikhailov equation [6, 7], and last but not least, the Li-
ouville equation [8], a simpler case in this class. Dis-
covered in the realm of differential geometry of surfaces
with particular properties of the curvature, like in the
sine-Gordon (1862) and Tzitzéica (1907) cases, or during
the study of such surfaces as stated by Liouville (1853) in
his short note, all of them have been revived much later
when it became clear that they have important applica-
tions in solid state physics, nonlinear optics, biological
physics, and quantum field theory through their soliton
type solutions which can describe a variety of dynamical
entities. This is especially true for the sine-Gordon equa-
tion whose soliton solutions have been identified with dis-
locations in crystals, fluxons in long Josephson junctions,
waves in magnetic materials and superfluids, nonlinear
DNA and microtubule excitations, neural impulses, and
muscular contractions, among others [9, 10].
In this paper, we will approach all these equations

as particular cases of second-order differential equations
with two exponential nonlinear terms of the form

ψuv = αeaψ + βebψ , (1)

where a and b are nonzero real constants, while α and β
are real constants not simultaneously zero. The main ad-
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vantage of this approach is to have a unifying treatment
of these famous equations which in general are considered
separately by the majority of authors, as illustrative ex-
amples of their solution methods. In the 1970s, during
the remarkable advance in the solution method for non-
linear evolution equations brought by the inverse scatter-
ing method, Dodd and Bullough [11] posed and solved the
problem of which equations of the form yxt = f(y) admit
infinitely many integrals of motion, a property of soli-
ton evolution equations discovered by Zakharov and Sha-
bat in their breakthrough paper of 1972 [12]. Dodd and
Bullough showed that beyond the linear case, the only
allowed hyperbolic nonlinear equations with this prop-
erty are precisely of the Liouville, sine/sinh-Gordon, and
Tzitzéica form and the variants of the latter. This was a
confirmation of the fact that these type of equations have
soliton solutions, some of which were already known at
that time.
On the other hand, this kind of equations can be turned

into polynomial nonlinear equations

∂2

∂u∂v
log h = αha + βhb, (2)

by using the change of variables ψ = log h.

Along the two characteristics z = u − λv, t = u + λv,
λ 6= 0, Eq. (1) becomes the nonlinear wave equation

ψtt − ψzz =
1

λ

(

αeaψ + βebψ
)

(3)

or in the logarithmic variable

h(htt − hzz)− (ht
2 − hz

2) =
h2

λ

(

αha + βhb
)

. (4)

Furthermore, the usage of the traveling wave ansatz
h(z, t) = h(ξ) with ξ = kz − ωt, and k 6= ±ω in Eq. (4)
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yields the following ordinary differential equation (ODE)

hhξξ − hξ
2 =

h2

λγ

(

αha + βhb
)

≡ f(h), (5)

with γ = ω2−k2 6= 0. Once the traveling variable reduc-
tion is performed, one cannot avoid to recall that there
is a multitude of papers on a variety of effective meth-
ods to solve the resulting ODE’s based on polynomial
ansatze of the solution, in general stemming from the
breakthrough tanh-method of Malfliet and Hereman [13–
15]. We mention the equivalent G′/G-expansion method
[16], the sinh-cosh [17] and tanh-coth methods [18], the
Q-function method [19, 20], and the more powerful Ja-
cobi elliptic function method and their extended versions
which can be used for more complicated equations such as
the double sine-Gordon [21] or to derive doubly periodic
wave solutions of a variety of Boussinesq-like equations
[18]. In fact, the G′/G-expansion method and the tanh-
method have been already applied to Tzitzéica’s equation
and its variants in [7, 22]. However, for the ODE in (5),
we will apply here a simple trick that we used in a previ-
ous paper [23] to reduce it to a Bernoulli equation thus
allowing us to obtain easily all the basic solutions both
in its full generality and simplified to the important cases
mentioned above. This reduction is apparently not well
known in this context which motivated us to write the
present paper.

II. THE IMPLICIT SOLUTION

A simple method to solve ODEs of type (5) is to let
hξ = u(h(ξ)), and use hξξ = u du

dh
[23], to obtain

hu
du

dh
− u2 = f(h), (6)

which can be turned into a Bernoulli equation using the
substitution u2 = z

dz

dh
− 2

h
z =

2

h
f(h). (7)

The solution for this equation is

z = h2
(

c0 + 2

∫

f(h)

h3
dh

)

, (8)

and using back the transformations u = ±√
z = dh

dξ
, then

h is obtained by the quadrature

∫

dh

h
√

c1 +
α
a
ha + β

b
hb

= ±
√

2

λγ

∫

dξ . (9)

In general, this quadrature can be performed only if the
function h satisfies the elliptic equation or if c1 = 0. In
the latter case, one obtains the following implicit solution

involving the hypergeometric function

h
−b

√

αha

a
+

βhb

b
2F1

(

1, 1− a

2(a− b)
; 1− b

2(a− b)
;− bα

aβ
h
a−b

)

= ∓ β√
2λγ

(ξ − ξ0) ,

(10)

which also implies β 6= 0. We will show in the next sec-
tion how the quadrature in (9) is solved in the important
particular cases mentioned in the introduction for c1 6= 0.

III. PARTICULAR CASES

A. Liouville equation

We start with the simplest case, which is the Liouville
equation, ‘the widely known example of an exactly in-
tegrable non-linear partial differential equation’ [24] in
mathematical physics. For example, in cosmology, the
inflationary expansion epoch of the early universe is usu-
ally generated by means of one or several scalar fields
with an exponential potential and are dubbed Liouville
cosmologies [25].
The Liouville equation corresponds to α = 1, β =

0, a = 1, b = 0, which is

∂2

∂u∂v
log h = h . (11)

The quadrature in Eq. (9) takes the form

∫

dh

h
√
c1 + h

= ±
√

2

λγ
(ξ − ξ0), (12)

and the function h is obtained by solving the elliptic
equation

hξ
2 = a3h

3 + a2h
2 + a1h+ a0 (13)

with the coefficients given by the system

a0 = 0
a1 = 0
a2 = 2c1

λγ

a3 = 2
λγ

.

(14)

For convenience, denote r = 1
λγ

, and p = 2c1
λγ

; then

Eq. (13) becomes the reduced elliptic equation

h2ξ = 2rh3 + ph2 , (15)

with soliton solution if p > 0, or periodic solution if p < 0

h(ξ) = − p
2r sech

2
[

1
2

√
p(ξ − ξ0)

]

, p > 0
h(ξ) = − p

2r sec
2
[

1
2

√−p(ξ − ξ0)
]

, p < 0 ,
(16)

which by using system (14) give the solutions

h(ξ) = −c1sech2
(
√

c1
2λγ (ξ − ξ0)

)

, c1
2λγ > 0

h(ξ) = −c1sec2
(√

−c1
2λγ (ξ − ξ0)

)

, c1
2λγ < 0.

(17)
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Since we are in the case β = 0, we cannot apply (10)
when c1 = 0. However, the integration of (12) is easily
performed and corresponds to the most degenerate case
of the Weierstrass elliptic equation (26) when both germs
g2 and g3 are zero, which leads to the rational solution

h(ξ) =
2λγ

(ξ − ξ0)2
. (18)

Plots of all these three types of Liouville solutions are
given in Fig. (1). The only nonsingular solution is the
soliton one which is the usual solution employed in the
literature.
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Figure 1: The soliton and periodic solutions (17) and the
rational solution (18) of the Liouville equation.

B. The Tzitzéica equation

Tzitzéica’s equation,

∂2

∂u∂v
log h = h− 1

h2
, (19)

emerged in 1907-1910 in the area of geometry, but only
after eighty years it has been found to have applications
in physics. For example, Euler’s equations for an ideal
gas with a special equation of motion can be reduced to
the Tzitzéica equation, and a 2+1-dimensional system in
magneto-hydrodynamics has been shown to be in one-to-
one correspondence with it [26, 27]. Very recently, dark
optical solitons and traveling waves of Tzitzéica type have
been also discussed in the literature [28, 29].
For Tzitzéica’s equation, we identify the constants in

(1) as α = 1, β = −1, a = 1, b = −2, which gives the
quadrature

∫

dh
√

h3 + c1h2 +
1
2

= ±
√

2

λγ
(ξ − ξ0). (20)

For c1 = 0, the quadrature reads:

∫

dh
√

h3 + 1
2

= ±
√

2

λγ
(ξ − ξ0), (21)

with solution given by the equianharmonic function of
case (2) i) below, while implicitly, the equianharmonic h
satisfies Eq. (10) and simplifies to

h 2F1

(

1

2
,
1

3
;
4

3
;−2h3

)

= ±ξ − ξ0√
λγ

. (22)

The solution h is obtained explicitly by solving the el-
liptic equation (13) with coefficients given by the system

a0 = r
a1 = 0
a2 = 2c1r
a3 = 2r .

(23)

which becomes

hξ
2 = 2rh3 + ph2 + r . (24)

Using the scale shift transformation

h(ξ) =
1

r

(

2℘(ξ; g2, g3)−
p

6

)

, (25)

Eq. (24) becomes the Weierstrass equation

℘ 2
ξ = 4℘3 − g2℘− g3 . (26)

The germs of the Weierstrass function are given by

g2 =
a2
2
−3a1a3
12 = p2

12 = 2(e21 + e22 + e23)

g3 =
9a1a2a3−27a0a

2

3
−2a3

2

432 = − 1
4

(

r3 + p3

54

)

= 4e1e2e3

(27)
and together with the modular discriminant

∆ = g2
3 − 27g3

2 = − r3

16
(p3 + 27r3)

= 16(e1 − e2)
2(e1 − e3)

2(e2 − e3)
2 (28)

are used to classify the solutions of Eq. (24), where the
constants ei are the roots of the cubic polynomial

s3(t) = 4t3−g2t−g3 = 4(t−e1)(t−e2)(t−e3) = 0. (29)

Case (1). If ∆ ≡ 0 ⇒ p = −3r ⇒ c1 = − 3
2 . This de-

generate case implies that s3(t) has repeated root
of multiplicity two. Then the Weierstrass solutions
can be simplified since ℘ degenerates into hyperbolic
or trigonometric functions. Because of the degen-
eracy, Eq. (20) can be factored as

∫

dh
√

(h− 1)2
(

h+ 1
2

)

= ±
√

2

λγ
(ξ − ξ0). (30)

Depending on the sign of g3 we have the sub-cases:

Case (1a). r > 0 with g2 > 0 ⇒ g3 = − r3

8 < 0 ⇒ λγ > 0,
so Eq. (30) has the dark soliton solution

h(ξ) = 1− 3

2
sech2

(

1

2

√

3

λγ
(ξ − ξ0)

)

. (31)
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By letting e1 = e2 = ê > 0 then e3 = −2ê < 0,
hence

g2 = 12ê2 > 0
g3 = −8ê3 < 0

(32)

the Weierstrass ℘ solution to Eq. (26) reduces
to

℘(ξ; 12ê2,−8ê3) = ê + 3ê csch2(
√
3êξ) . (33)

For ê = 1
4λγ > 0, the Weierstrass solution

replaced by (33) gives the singular (blow-up)
soliton

h(ξ) = 1 +
3

2
csch2

(

1

2

√

3

λγ
(ξ − ξ0)

)

. (34)

Case (1b). r < 0 with g2 > 0 ⇒ g3 = − r3

8 > 0 ⇒ λγ <
0, so Eq. (30) has the following solution with
periodic negative singularities

h(ξ) = 1− 3

2
sec2

(

1

2

√

3

−λγ (ξ − ξ0)

)

(35)

By letting e2 = e3 = −ẽ < 0 with ẽ > 0, then
e1 = 2ẽ > 0, hence

g2 = 12ẽ2 > 0
g3 = 8ẽ3 > 0

(36)

the Weierstrass ℘ solution reduces to

℘(ξ; 12ẽ2, 8ẽ3) = −ẽ+ 3ẽ csc2(
√
3ẽξ). (37)

For ẽ = − 1
4λγ > 0, the Weierstrass solution re-

placed by (37) gives

h(ξ) = 1− 3

2
csc2

(

1

2

√

3

−λγ (ξ − ξ0)

)

, (38)

which is similar to (35). All the Tzitzéica solu-
tions corresponding to these cases are displayed in
Fig. (2). The dark soliton solution may have phys-
ical applications, especially in optics and hydrody-
namics, while the other singular solutions look un-
physical for the time being. However, we notice
that there are already detailed mathematical stud-
ies of the blow up problem in the Tzitzéica case
[30].

Case (2). If ∆ 6= 0 ⇒ p 6= −3r ⇒ c1 6= − 3
2 we include

two particular solutions which will fix the integra-
tion constant c1 as follows: the equianharmonic
(g2 = 0) and lemniscatic case (g3 = 0), respec-
tively.

i) For the equianharmonic case g2 = 0 ⇒ p = 0 ⇒
g3 = − r3

4 . Because ∆ = − 27
16r

6 < 0, then s3(t) has
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Figure 2: The Tzitzéica dark soliton (31) and the periodic sin-
gular solution (35) (top). The Tzitzéica solution (34), which
can be also called Tzitzéica’s singular soliton, and the periodic
singular solution (38) (bottom).

a pair of conjugate complex roots, and since c1 = 0
the solution to Eq. (20) reduces to

h(ξ) = 2λγ℘

(

ξ − ξ0; 0,−
1

4λ3γ3

)

. (39)

ii) For the lemniscatic case g3 = 0 ⇒ p =

−3 3
√
2r ⇒ g2 = 3 3

√
4

4 r2. Because ∆ = 27
16r

6 > 0,
then s3(t) has three distinct real roots given by

e3 = −
√
g2
2 , e2 = 0, and e1 =

√
g2
2 . Although the

Weierstrass unbounded function has poles aligned
on the real axis of the ξ− ξ0 complex plane, we can
choose ξ0 in such a way to shift these poles a half
of period above the real axis, so that the elliptic
function simplifies using the formula [31]

℘(ξ; g2, 0) = e3+(e2−e3)sn2
(√
e1 − e3(ξ − ξ′0);m

)

(40)

with elliptic modulus m =
√

e2−e3
e1−e3 . Using the val-

ues of the roots together with ξ′0 = 0 we obtain

℘(ξ; g2, 0) = −
√
g2

2
cn2 4

√
g2ξ;

√
2

2

)

. (41)

Because c1 = − 3
3
√
4
the solutions for the lemniscatic

case are reduced using the transformation (25) to
periodic cnoidal waves, and they become

h(ξ) =
1
3
√
4

[

1−
√
3 cn2

4
√
3

3
√
2
√
λγ
ξ;

√
2

2

)]

. (42)
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Figure 3: The lemniscatic (cnoidal) and equianharmonic so-
lutions, (42) and (39), respectively, of the Tzitzéica equation
(top). The Weierstrass solution (43) of the Tzitzéica equation
(bottom).

iii) For the most general case, g2 6= 0, g3 6= 0 the
general solution to Eq. (20) is

h(ξ) = λγ

[

2℘

(

ξ − ξ0;
c1

2

3λ2γ2
,−4c1

3 + 27

108λ3γ3

)

− c1
3λγ

]

.

(43)

The equianharmonic, lemniscatic, and Weierstrass solu-
tions of Tzitzéica’s equation are displayed in Fig. (3).
We notice that the only regular solutions are the peri-
odic cnoidal ones corresponding to the lemniscatic case.
All the other solutions have periodic positive or negative
blow ups and are interesting rather from the mathemat-
ical standpoint [30] than for applications to the physical
phenomenology.

C. The Dodd-Bullough equation

This variant of Tzitzéica’s equation has been intro-
duced in the first dedicated study of the polynomial con-
served quantities of the sine-Gordon equation [5]. Its
form in the h variable is

∂2

∂u∂v
log h = −h+

1

h2
, (44)

thus, we identify the constants to be α = −1, β = 1, a =
1, b = −2 which gives the quadrature

∫

dh
√

−h3 + c1h2 − 1
2

= ±
√

2

λγ
(ξ − ξ0). (45)

In implicit form, the h function satisfies Eq. (10) which
simplifies to

h 2F1

(

1

2
,
1

3
;
4

3
;−2h3

)

= ∓ ξ − ξ0√
−λγ (46)

and up to a sign, the implicit solution is the same as the
Tzitzeica solution.
Using Tzitzéica solutions, provided that r → −r ⇒

λγ → −λγ and c1 → −c1, we have:

Case (1). If ∆ ≡ 0 ⇒ c1 = 3
2 , then

Case (1a). λγ < 0 so Eq. (45) has soliton solution

h(ξ) = 1− 3

2
sech2

(

1

2

√

3

−λγ (ξ − ξ0)

)

. (47)

while the solution corresponding to (34) is

h(ξ) = 1 +
3

2
csch2

(

1

2

√

3

−λγ (ξ − ξ0)

)

. (48)

Case (1b). λγ > 0 so Eq. (45) has periodic solution

h(ξ) = 1− 3

2
sec2

(

1

2

√

3

λγ
(ξ − ξ0)

)

(49)

and the periodic solution corresponding to
(38) is

h(ξ) = 1− 3

2
csc2

(

1

2

√

3

λγ
(ξ − ξ0)

)

. (50)

Case (2). If ∆ 6= 0 ⇒ c1 6= 3
2 then the Weierstrass

solution of Eq. (45) is

h(ξ) = −λγ
[

2℘

(

ξ − ξ0;
c1

2

3λ2γ2
,−4c1

3 − 27

108λ3γ3

)

− c1
3λγ

]

.

(51)

i) For the equianharmonic case, c1 = 0, we have:

h(ξ) = −2λγ℘

(

ξ − ξ0; 0,
1

4λ3γ3

)

. (52)

ii) For the lemniscatic case, c1 = 3
3
√
4
, we have:

h(ξ) =
1
3
√
4

[

1−
√
3 cn2

4
√
3

3
√
2
√−λγ

ξ;

√
2

2

)]

. (53)

Respecting the rules of changing the signs of the pa-
rameters, the Dodd-Bullough solutions are identical to
the Tzitzéica solutions and consequently we will not plot
them here.
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D. The Tzitzéica-Dodd-Bullough equation

This variant equation reads

∂2

∂u∂v
log h = h+

1

h2
, (54)

thus, we identify the constants to be α = 1, β = 1, a =
1, b = −2 which gives the quadrature

∫

dh
√

h3 + c1h2 − 1
2

= ∓
√

2

λγ
(ξ − ξ0) . (55)

We can use the Dodd-Bullough solutions, Eqs. (47)-(51,)
with h→ −h and ξ → −ξ.

E. The Dodd-Bullough-Mikhailov equation

The last Tzitzéica variant equation reads

∂2

∂u∂v
log h = −h− 1

h2
, (56)

thus the constants are identified as α = −1, β = −1, a =
1, b = −2 which gives the quadrature

∫

dh
√

−h3 + c1h2 +
1
2

= ∓
√

2

λγ
(ξ − ξ0) . (57)

From the polynomial in the integrand, one can see that
the solutions of this variant equation are obtained from
Tzitzéica solutions by h→ −h and ξ → −ξ.

F. The sine-Gordon equation

According to [32], Tzitzéica’s equation is the “nearest
relative” of the well-known sine-Gordon equation which
can be written as

∂2

∂u∂v
log h =

1

2i

(

hi − h−i
)

= sin(log h) . (58)

Thus, we identify the constants to be α = 1
2i , β =

− 1
2i , a = i, b = −i which gives the quadrature

∫

dh

h
√

c1 − cos(log h)
= ±

√

2

λγ
(ξ − ξ0), (59)

that is equivalent to

∫

dψ
√

c1 − cos(ψ)
= ±

√

2

λγ
(ξ − ξ0). (60)

In implicit form, h satisfies Eq. (10) which simplifies to

hi
√

cos(log h) 2F1

(

1,
3

4
;
5

4
;−h2i

)

= ∓ ξ − ξ0

2
√
2λγ

. (61)

The explicit solution satisfies Eq. (60), with c1 = 0, which
gives

∫

dψ
√

cos(ψ)
= ∓

√

2

−λγ (ξ − ξ0) (62)

Using the definition of the elliptic integral of the first

kind ξ = F (φ;m) =
∫ φ

0
dψ√

1−m sin2 ψ
[33, 34], then (62)

becomes

F

(

ψ

2
; 2

)

= ∓1

2

√

2

−λγ (ξ − ξ0). (63)

By inverting, the explicit solution is

ψ(ξ) = 2 am

(

∓1

2

√

2

−λγ (ξ − ξ0); 2

)

, (64)

where the function am(ξ;m) is the Jacobi Amplitude
function, which can also be obtained from (70) for c1 = 0.
For the special case of c1 = 1, Eq. (60) simplifies to

∫

dψ

sin ψ
2

= ± 2√
λγ

(ξ − ξ0). (65)

for λγ > 0, and using the identity tan θ
2 = 1−cos θ

sin θ we
obtain the kink-antikink solutions

ψ(ξ) = 4 arctan
(

e
± ξ−ξ0

√

λγ

)

. (66)

When c1 = −1, Eq. (60) simplifies to

∫

dψ

cos ψ2
= ± 2√

−λγ (ξ − ξ0) (67)

for λγ < 0, and using the identity tan
(

θ
2 + π

4

)

= 1−cos θ
sin θ

the shifted kink-antikink solution is obtained

ψ(ξ) = −π + 4 arctan
(

e
± ξ−ξ0

√

−λγ

)

. (68)

Plots of the c1 = ±1 arctan solutions (66) and (68) are
displayed in Fig. (4). As well known, these kink solutions
are overwhelmingly encountered in applications [9].
When c1 6= ±1, then ψ satisfies the elliptic equation

ψξ
2 =

2

λγ
(c1 − cosψ), (69)

with solution given by

ψ(ξ) = 2 am

(

∓
√

c1 − 1

2λγ
(ξ − ξ0);

2

1− c1

)

. (70)

For plots of the sine-Gordon Jacobi amplitude solutions,
see Fig. (5). Only the Jacobi amplitude solutions of su-
perunitary modulus |m| are periodic and bounded, and
are physically acceptable.
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Figure 4: The arctan kink solutions (66) and (68) of the sine-
Gordon equation.
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Figure 5: The Jacobi amplitude solution (70) of the sine-
Gordon equation for |m| > 1 (top) and |m| < 1 (bottom).

G. The sinh-Gordon equation

The hyperbolic version of the sine-Gordon equation,
the sinh-Gordon equation, is also extensively used in
integrable quantum field theory [35, 36], kink dynam-
ics [37], and hydrodynamics [38]. Here, we will use the
parametrization in [35] and write the corresponding equa-
tion in the variable h in the form

∂2

∂u∂v
log h =

1

2

(

h2 − h−2
)

= sinh(2 log h) . (71)

Thus, we identify the constants to be α = 1
2 , β =

− 1
2 , a = 2, b = −2 which gives the quadrature

∫

dh

h
√

c1 +
1
2 cosh(2 logh)

= ±
√

2

λγ
(ξ − ξ0), (72)

which is equivalent to

∫

dψ
√

c1 +
1
2 cosh(2ψ)

= ±
√

2

λγ
(ξ − ξ0). (73)

In implicit form, h satisfies Eq. (10) which simplifies
to

h 2F1

(

1

2
,
1

4
,
5

4
;−h4

)

= ±ξ − ξ0√
2λγ

. (74)

By a simple transformation, the explicit solution for c1 =
0 is obtained by solving the integral

∫

dψ
√

cosh(2ψ)
= ±

√

1

λγ
(ξ − ξ0), (75)

and using (62) and (76) we obtain

ψ(ξ) = i am

(

±
√

1

−λγ (ξ − ξ0); 2

)

, (76)

which can also be obtained from (82) for c1 = 0.
For the special case of c1 = − 1

2 , Eq. (75) simplifies to

∫

dψ

sinhψ
= ±

√

2

λγ
(ξ − ξ0). (77)

with the kink-antikink solutions

ψ(ξ) = 2 arctanh

(

e
±
√

2

λγ
(ξ−ξ0)

)

. (78)

When c1 = 1
2 , Eq. (75) simplifies to

∫

dψ

coshψ
= gd(ψ) = ±

√

2

λγ
(ξ − ξ0), (79)

where the Gudermannian function gd(ψ) =

2 arctan
(

tanh ψ
2

)

gives also the kink-antikink so-

lutions

ψ(ξ) = 2 arctanh

[

tan

(

± 1√
2λγ

(ξ − ξ0)

)]

. (80)

The arctanh solutions are plotted in Fig. (6). Being sin-
gular, they have only theoretical interest from the point
of view of blow-up analysis.
When c1 6= ± 1

2 , then ψ satisfies the elliptic equation

ψξ
2 =

2

λγ

(

c1 +
1

2
cosh(2ψ)

)

, (81)

with solutions given by the Jacobi amplitude function

ψ(ξ) = i am

(

±
√

2c1 + 1

−λγ (ξ − ξ0);
2

2c1 + 1

)

. (82)

Plots of (82) are given in Fig. (7). Similarly to the sine-
Gordon case, only the Jacobi amplitude solutions of su-
perunitary modulus |m| are bounded periodic functions.



8

-10 -5 5 10
ξ

-2

-1

1

2

ψ(ξ)

c1=0.5,λ=1,γ=1,

c1=-0.5,λ=1,γ=1

Figure 6: The arctanh solutions (78) and (80) of the sinh-
Gordon equation.
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Figure 7: The Jacobi amplitude solution (82) of the sinh-
Gordon equation for |m| > 1 (top) and |m| < 1 (bottom).

IV. CONCLUSION

In summary, we have used a very simple method to
obtain all the basic soliton, periodic and Weierstrass

solutions of wave equations with two exponential non-
linearities whose particular cases correspond to cele-
brated equations in mathematical physics, such as Liou-
ville, Tzitzéica and its variants, sine-Gordon, and sinh-
Gordon equations. All these solutions are obtained con-
sistently in the traveling variable by a thorough analy-
sis of the elliptic equation. Novel implicit solutions in
terms of a generic hypergeometric function are also ob-
tained through a direct integration. Although there are
other methods to obtain these translation-invariant so-
lutions, e.g., the integral bifurcation method [39], some
of these solutions, in particular the Weierstrass solutions
of the Tzitzéica class of equations and the amplitude Ja-
cobi solutions of the sine/sinh-Gordon equations cannot
be obtained by the tanh method usually employed in the
literature. Consequently, with a few exceptions in the
case of the amplitude Jacobi solutions [33, 34], their po-
tential for realistic physical applications has been ignored
in the past. As for the the Weierstrass solutions of the
Tzitzéica class of equations, their potential in the area of
optical solitons is still to be assessed [28, 29].

We also plan a future publication with the aim to ex-
tend the unifying approach presented in this paper to the
hyperelliptic cases [40].

Finally, for more complicated multiple-soliton (multi-
phase soliton) solutions, one should use Darboux and
Bäcklund transformations [32, 41, 42].
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