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2 Centro de Bioloǵıa Molecular, CSIC Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
3 Interdisciplinary Center for Bioinformatics and Department of Computer Science, University of Leipzig, 04107 Leipzig, Germany
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Our goal was to examine the composition of methanogenic archaea (MA) and sulfate-reducing (SRP) and sulfur-oxidizing (SOP)
prokaryotes in the extreme athalassohaline and particularly sulfate-rich sediment of Tirez Lagoon (Spain). Thus, adenosine-5′-
phosphosulfate (APS) reductase α (aprA) and methyl coenzyme M reductase α (mcrA) gene markers were amplified given that
both enzymes are specific for SRP, SOP, and MA, respectively. Anaerobic populations sampled at different depths in flooded and
dry seasons from the anoxic sediment were compared qualitatively via denaturing gradient gel electrophoresis (DGGE) fingerprint
analysis. Phylogenetic analyses allowed the detection of SRP belonging to Desulfobacteraceae, Desulfohalobiaceae, and Peptococ-
caceae in ∂-proteobacteria and Firmicutes and SOP belonging to Chromatiales/Thiotrichales clade and Ectothiorhodospiraceae in
γ-proteobacteria as well as MA belonging to methylotrophic species in Methanosarcinaceae and one hydrogenotrophic species in
Methanomicrobiaceae. We also estimated amino acid composition, GC content, and preferential codon usage for the AprA and
McrA sequences from halophiles, nonhalophiles, and Tirez phylotypes. Even though our results cannot be currently conclusive
regarding the halotolerant strategies carried out by Tirez phylotypes, we discuss the possibility of a plausible “salt-in” signal in SRP
and SOP as well as of a speculative complementary haloadaptation between salt-in and salt-out strategies in MA.

1. Introduction

Molecular oxygen is found only in those biotopes that harbor
organisms carrying out oxygenic photosynthesis. In oxygen-
deficient systems, the nature of the redox couple and con-
centrations of electron acceptor/donor determine the suc-
cession of dissimilatory metabolisms due to thermodynamic
conditions [1]. For a given substrate and under standard con-
ditions, the aerobic dissimilatory metabolisms provide about
one order of magnitude more energy than the anaerobic
ones, for example, glucose respiration (∆G◦′ = −2877 kJ/
mol) versus glucose fermentation (∆G◦

′ = −197 kJ/mol) [2].

Therefore, in sedimentary environments oxygen is exhausted
at deeper layers and the dissimilatory metabolisms are anaer-
obic as a result. Anaerobic microorganisms are of interest
in extreme environments because environmental param-
eters such as temperature and salinity regulate the rates
of organic matter remineralization [3]. Extreme halophilic
microorganisms require at least 15% NaCl and tolerate up
to 35% NaCl. Interestingly, the low activity of water and the
expense on biosynthesis only select heterotrophs and strict
aerobes as extreme halophiles. However, some moderate
halophilic and strict anaerobes have been described; one
example is the methanogen Methanohalobium evestigatum,
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which uses methylated compounds (e.g., methylamine and
methanol) to generate methane. Methylated substrates yield
more energy (∆G◦′ = −78.7 to −191.1 kJ per mol substrate)
than H2/CO2 (∆G◦′ = −34 kJ/mol substrate) or acetate
(∆G◦′ = −31 kJ mol substrate) and allow that methy-
lotrophic methanogens such as M. evestigatum can tolerate
up to 29.2% NaCl [4]. Differences in bioenergetic yield deter-
mine an exclusion of hydrogenotrophic methanogens such as
Methanocalculus halotolerans, which tolerates a lesser salinity:
up to 12% NaCl [5]. A similar pattern has been described
for sulfate-reducing prokaryotes: acetoclastic sulfate reducers
(∆G◦′ = −47.6 kJ mol substrate), most of them belonging
to Desulfobacteraceae, cease to tolerate high osmolarity
conditions, for example, Desulfobacter halotolerans grows up
to 13% NaCl [6]; on the other hand, Desulfohalobiaceae
members have higher salt tolerances (up to 25% NaCl)
and grow with H2/CO2 (∆G◦′ = −152.2 kJ mol) or lactate
(∆G◦′ = −160 kJ/mol).

To define whether extremes of salinity are relevant in
composition and persistence of anaerobic ecotypes, the
ephemeral systems and spatial gradients constitute appropri-
ate sites of study. Even though there are some studies about
microbial communities present along salt gradients, those
approaches have been performed on thalassic microbial mats
[7]; therefore, they are depleted in sulfate at deep layers,
but most of them are also formed only on intertidal zones.
Sulfate is the second most abundant electron acceptor on
Earth and consequently the dominant electron acceptor
for anaerobic metabolism in marine sediments [8]. One
interesting ephemeral and sulfate-rich system is Tirez lagoon,
or sabkha, because it is subjected to flooding/desiccation
regimes, located in “La Mancha,” an arid region in Spain.
Tirez lagoon is athalassic since the ionic composition is far
from seawater and it is characterized by a low Cl : SO4 ratio
(about 1.18 in flooded season and 0.35 in the dry season),
whilst in the Dead Sea this ratio is above 103 [9]. This system
is maintained at a neutral pH due to a high Mg2+ and Ca2+

concentration in combination with a low CO3
2− content

at the saltern and sediment environments. The traces of
CO3

2− are removed as dolomite (CaMg(CO3)2) preventing
alkalinization [10]. Given this scenario, the primary objective
of this study was to characterize the composition of the
anaerobic populations in the ephemeral and sulfate rich Tirez
Lagoon.

The identification of environmental sulfate reducing
prokaryotes (SRP) and sulfur oxidizing prokaryotes (SOP)
can be performed by enrichment culturing and molecu-
lar ecology fingerprinting; however, a characterization of
methanogenic archaea (MA) through isolation techniques
is problematic given their slow growth rates [11]. The
use of molecular ecology fingerprinting techniques such as
denaturing gradient gel electrophoresis (DGGE) from PCR-
amplified genes is informative to assess the temporal and
spatial qualitative diversity in natural samples, and it also
requires fewer sequencing resources in comparison to clone
libraries and/or metagenomic analysis [12]. Instead of the
16S rRNA gene, the use of DGGE from PCR-amplified func-
tional gene markers is profitable to elucidate the composition
of the anaerobic pathways of sulfate respiration (SR), sulfur

oxidation (SO), and methanogenesis (MT). The 16S rRNA
gene-based analysis cannot provide an unambiguous link
between gene sequences and its physiological or metabolic
role [13].

Whereas the SRP and SOP organisms are phylogenet-
ically and physiologically disperse along the Bacteria and
Archaea domains [14], MA organisms are monophyletic
restricted to Archaea [15]. In the dissimilatory pathways of
sulfate reduction and sulfur oxidation, dissimilatory sulfite
reductase (Dsr) and adenosine-5′-phosphosulfate (APS)
reductase (Apr) are considered as key enzymes [14]. In the
sulfate-reducing pathway, sulfate has to be activated to APS
by ATP-sulfurylase (EC: 2.7.7.4) at the expense of ATP; Apr
(EC: 1.8.99.2) converts the APS to sulfite and AMP; hereafter,
sulfite is reduced to sulfide by Dsr (EC: 1.8.7.1). For the
sulfur-oxidizing pathway, the reverse direction is operated
by homologous and conserved enzymes [16]. The alpha
subunits of Apr and Dsr enzymes are found in all known
SRP and most of SOP [17]. Regarding the methanogenesis
pathway, the methyl coenzyme-M reductase (Mcr) (EC:
2.8.4.1) catalyses the reduction of a methyl group bound
to coenzyme-M, with the concomitant release of methane
[15]. McrA is unique and ubiquitous in all known MA [18].
McrA gene fragment provides more information than the 16S
rRNA gene; even if the saturation rates are similar between
the McrA gene fragment and the complete 16S rRNA gene,
the number of differences per site in the McrA fragment
is 2-3 times higher than that in the full-length 16S rrs
[19]. Therefore, assignment of genera with McrA sequences
offers more conclusive resolution than assignment with 16S
rRNA gene sequences. The mutation rates and selective
pressures of the AprA and McrA metabolic gene markers
and of the structural 16S rRNA gene are different; however,
phylogenetic studies done with partial sequences of AprA
and McrA belonging to the SRP, SOP, and MA lineages have
established an agreement with the phylogenetic relationships
based on 16S rRNA gene sequences [13, 18]. Therefore,
these functional gene markers can provide an estimate of the
SR, SO, and MT microbial diversity harbored in sediments
of Tirez Lagoon. Indeed, databases have been enriched in
sequences of model strains for these two enzymes; as a
consequence, the aprA and mcrA gene markers also provide
us information to identify SRP, SOP, and MA selectively in
complex microbial communities, for example, [20].

The second aim of this study was to investigate whether
the composition and distribution of the encoded amino acids
in aprA and mcrA genes are indicative of haloadaptation to
the hypersaline sediment. Diverse lines of evidence report
that halophilic microorganisms can bias their amino acid
composition to deal with the multimolar salinities of their
environment [21, 22]. This adaptative and energetically effi-
cient strategy is characteristic in “salt-in” halophiles, where
turgidity is maintained by the intracellular accumulation
of K+ that is usually equilibrated with the presence of
extracellular Cl− [23]. Therefore, an increase of the acidic
nature of cytoplasmic proteins, which is offset by an overall
decrease in basic amino acids, is needed to maintain an
appropriate folding and functionality under osmotic stress
[22, 24]. In cytoplasmic proteins, it has been also pointed
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out a slight decrease in hydrophobicity as another amino acid
haloadaptation [25, 26]. In contrast, “salt-out” halophiles
build up concentrations of osmolytes (also named osmopro-
tectants or compatible solutes) to increase the intracellular
osmolarity; thereby maintaining the protein native states
in spite of a highest energetic cost to manufacture the
organic molecules [27]. Accordingly, only proteins in “salt-
out” organisms exposed directly to the hypersaline medium
exhibit an excess of acidic amino acids [28]. All eukaryotes,
most halophilic bacteria, and the halophilic methanogenic
archaea (such as Methanohalobium evestigatum) have evolved
the “salt-out” strategy [21]. The widely disparate taxonomic
position of “salt-in” prokaryotes (Halobacteriales in Archaea,
Salinibacter ruber, and Halanaerobiales in Bacteria) suggests
a convergent evolution of this osmoadaptation strategy [27].

Several studies have also reported that a high genomic
CG content (often upwards of 60%) and a GC bias at the
codon usage level are common adaptations to hypersaline
environments, presumably to avoid UV-induced thymidine
dimer formation and accumulation of mutations [21, 23].
For example, the high GC composition (65.9%) of Halobac-
terium sp. NRC1 could reduce the chance of such lesions
and its third position GC bias correlates with an overrep-
resentation of acidic residues (i.e., Asp and Glu) [29]. The
unique exception to this general trend has been pointed out
so far in another extreme halophile Haloquadratum walsbyi
shows a remarkably low genomic GC content (47.9%) and a
weak GC-bias at the codon usage level [30]. Given that other
specific features of nucleotide selection may also be involved
in the GC content of organisms, the GC-bias measurements
are complementary to the amino acid composition but not
decisive in order to infer the “salt-in” strategy [25].

Therefore, the findings of this study try to contribute
to the knowledge of diversity and haloadaptation of the
SRP and MT thriving at rich sulfate sediment. Additionally,
Tirez system is analog to the ocean of Europa, satellite of
Jupiter, due to its sulfate abundance and neutral pH [31],
and sulfates have been detected on Mars indeed [32]. Thus,
this knowledge will provide insight regarding the possible
biological limits for life in other analogous places.

2. Materials and Methods

2.1. Study Site and Sampling Procedure. Sediment samples
were collected from Tirez lagoon, which has an area of
<1 km2 and it was originated after endorheic inflow under
semiarid conditions. The lagoon is located in the southern
subplateau of the Iberian region of La Mancha (39◦ 32′

42′′ N y 03◦ 21′ O). The salt content fluctuates from 6%
(w/v) during winter to 35% (w/v) during spring. In summer,
the system becomes an evaporite. Temperature oscillation is
about 40◦C and −7◦C, the mean annual thermal oscillation
is 55◦C, and the annual mean rainfall is averaged at 400 mm.
Water drains through material from the Triassic period;
dolomites and Ca-sulfate marls are from the Tertiary period
[31].

Samples were collected in February and July 2005 and
correspond to the winter and summer seasons, respectively.
The winter and summer samplings were done by triplicate

in three points at the lagoon; all of them were located in
the salt pan or lagoon basin because it is the region covered
by salts in summer. The sample cores were obtained from
sites separated from each other by several meters. In order to
analyze seasonal changes in the lagoon, the summer samples
were obtained from the holes-signals leaved by the winter
(flooded) sampling. Sediment cores were obtained with a
Ring Kit core-sampler for soft soil to a depth of 40 cm. The
sampled cores were cooled at −20◦C with jelly bags and kept
until further processing.

2.2. Physicochemical Parameters. The sediment cores were
sampled in winter and used to perform physicochemical
analyses. Eh and pH of the cores were measured with a probe
connected to a potentiometer Orion Model 290A + Thermo
Orion (Thermo Fisher Scientific). Also, dissolved oxygen
and temperature were measured with a Sylant Simplair F-15
oxymeter (Syland Scientific GmbH). In order to determine
the interstitial sulfide concentration, the sample cores from
surface to 20 cm in depth were sonicated for 5 min (Labsonic
B. Braun sonicator). After centrifugation (14,000 rpm 10 min
Sorvall RC-5), supernatants were mixed with Zn acetate
(2%) and sulfide concentration was determined using the
methylene blue method [33]. The core samples used to
analyze ion content (Cl−, SO4

2−, and NH4
+) and car-

bon : nitrogen (C : N) ratios were sampled from the surface
to 20 cm in depth; samples were dehydrated at 110◦C for
12 hrs for ionic chromatography and elemental analysis.
Ionic chromatography analysis was completed with 100 mg
of pulverized samples diluted in 25 mL of filtered milliQ
water, whilst the elemental analysis was performed with
dried and pulverized sediment. The sediments were assayed
by chromatographic methods with an IC Dionex DX-600
chromatograph and by spectrophotometric methods with a
LECO CHNS-932 elemental analyzer at the Servicio Interde-
partamental de Investigación (UAM).

2.3. Enrichment of SRP. SRP organisms from winter samples
were grown in a cysteine-reduced (4.12 mM) medium for
sulfate reducers, modified from Raskin et al. [34], and con-
tained glutamic acid (5.2 mM), glycine (0.2 mM), methanol
(14 mM), methylamine (27 mM), peptone (250 mg/L), and
yeast extract (250 mg/L). The salt content in sulfate-reducing
media was 3.5% the Tirez saltern. The inoculation was done
with sedimentary slurry from samples collected in February
2005 (winter season). Cell culture growth was monitored
through the count of the cell density with 4′,6-diamino-
2-phenylindole (DAPI), Molecular Probes (Invitrogen) [35]
in a Zeiss Axiovert 200M fluorescent microscope. Sulfide
increase was also followed [33] for 12 months of incubation
at 30◦C. Nonaxenic cultures were subjected to DNA extrac-
tion.

2.4. DNA Extraction. Core samples were cut with sterile sur-
gical blades according to depth regions. The three cores
with a weight of ∼210 g were mixed with three volumes
of PBS 1x at 4◦C to reduce microheterogeneities and to
wash salts. This mixture was sonicated for 3 min (Labsonic
B. Braun sonicator). Integrity of bacterial cells after the
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treatment was confirmed by 4′,6-diamino-2-phenylindole
(DAPI) 1 µg/mL. Total genomic DNA was extracted from
supernatants of washed and centrifuged sediments (500 rpm
for 1 min Hettich Mikro 22 R centrifuge to precipitate rocks).
In order to collect cells from nonaxenic cultures, 100 mL
of the samples were filtered onto 0.22 µm of polycarbonate
filters (Millipore). Sediment and soil samples are character-
ized by the presence of inhibitors such as humic acids and
exopolimeric substances, thus we used a specialized DNA
extraction kit (FAST DNA SPIN kit for soil) (QBiogene,
Irving, Calif, USA) which has proved to retrieve a reliable
DNA extraction to obtain a broad and intense band patterns,
in comparison with variants via phenol DNA extraction
[36], and it has been used for analyses of microbial diversity
by DGGE in sediments, for example, [20]. Total genomic
DNA was purified according to Genomic DNA purification
JetQuick kit (Genomed) instructions.

2.5. PCR Amplification. Amplifications were carried out in
a Thermal Cycler 2720 (Applied Biosystems). PCR reactions
were performed in a mixture of 50 µL containing: 2 µL
of template DNA, 1 mM dNTP’S, 0.5 µM of each primer,
3 mM MgCl2, 1x enzyme buffer, and 0.03 U/µL AmpliTaq
DNA Polymerase (Roche, Molecular Systems). The aprA
gene fragment of ∼0.4 kb was amplified with the APSfw
(TGGCAGATMATGATYMACGGG with a GC clamp) and
APSrv (GGGCCGTAACCGTCCTTGAA) primer pairs. The
following conditions were implemented: a first denaturing
step at 94◦C for 3 min, the completion of 35 cycles of 30 s
at 94◦C, an annealing at 60◦C for 55 s and at 72◦C for
1 min, and a final extension of 72◦C for 7 min [37]. In the
mcrA gene fragment amplification, at first a 0.76 kb fragment
was amplified with the primers ME1 (GCMATGCARATHG-
GWATGTC) and ME2 (TCATKGCRTAGTTDGGRTAGT).
The ME-PCR reaction was carried out with an initial
denaturing step at 94◦C (5 min), followed by 25 cycles of
1 min at 94◦C, an annealing at 57◦C for 1 min and at 72◦C
for 2 min, and a final extension of 72◦C during 10 min [38].
ME-PCR product was used as template to amplify an internal
0.47 kb fragment (Figure S4 see in supplementary Material
available at doi: 10.1155/2011/753758). Nested PCR was per-
formed with the primers MLf (GGTGGTGTMGGATTCA-
CACARTAYGCWACAGC) and MLr (TTCATTGCRTAGT-
TWGGRTAGTT) with a GC clamp applying the following
conditions: a denaturing step of 5 min at 94◦C, 5 cycles at
95◦C for 40 s, 55◦C for 1 min, 72◦C for 90 s (a ramp of
0.1◦C/s was included between the annealing to the extension
steps), followed by 30 cycles of 95◦C for 40 s, 55◦C for 1 min,
72◦C for 90 s, and an extension of 72◦C for 7 min [18]. The
GC clamp was equivalent to 40 bp of GC at the 5′ end in
order to prevent a complete melting of the DNA fragments.
Correct length PCR-DGGE products were visualized on
0.5 µg/mL ethidium-bromide-stained gels at 2% agarose.

2.6. Denaturing Gradient Gel Electrophoresis (DGGE). In
order to generate a DGGE pattern, an average of 50–70 µg
of DNA from PCR-DGGE products were resolved using
a D-Code Universal Mutation Detection System (BioRad
Laboratories) in polyacrylamide gels with a horizontal

denaturant gradient. All DGGE patterns were achieved under
standardized denaturant and electrophoretic conditions:
constant temperature of 60◦C polyacrylamide composition
(acrylamide-N,N′-methylene bisacrylamide, 37 : 1) contain-
ing 0–100% of denaturants (7 M urea and 40% formamide
deionized with mixed-bed resin), a running time of 4.5 hrs
and a constant voltage of 200 V [39]. High resolving band
patterns from environmental and culture samples were
obtained as follows (denaturant composition is given in
percentage): for aprA gene fragments, 50–80% from non-
axenic cultures, and 40–70% from environmental samples.
In mcrA gene fragments from environmental samples, the
performed gradients were done by duplicate at 40–70%
and 40–60% to increase the resolution of distance among
bands. The gels were incubated in ethidium bromide for
20 min and rinsed in distilled water for 30 min. All single
bands were excised from the gel with scalpels and eluted
in 10 µL of milliQ water to avoid desiccation; hereafter,
they were stored overnight at 4◦C. DNA was extracted
from polyacrylamide by electrophoresis in 2% agarose gels
(≤40 mA). The agarose bands were filtered through glass
fiber columns at 14,000 rpm for 2 min (Hettich Mikro 22 R
centrifuge). 5–10 µL of the precipitate obtained were used
as DNA template for the band reamplification of mcrA
and aprA genes under the same PCR conditions however,
a minor fraction of the bands were reamplified. The mcrA
and aprA gene PCR products were sequenced using primer
pairs APSfw/APSrv and MLf/Mlr in an ABI 377 sequencer
(Applied Biosystems). Nucleotide sequences were cleaned
and assembled using DNA Baser software (Heracle Software,
Germany, http://www.DnaBaser.com/).

2.7. DGGE Band Pattern Analysis. According to the review
of Fromin et al. [40], DGGE reproducibility mainly relies
on the DNA extraction and/or PCR amplification steps;
therefore, the fingerprint analysis (DGGE) was processed
once. The reproducibility of DGGE patterns has been tested
previously by experimenting differences along the procedure,
from sampling to PCR amplification conditions; despite
these modifications, the comparison of DGGE patterns was
consistent showing changes in band intensities only [41].
Thereby, the pattern of aprA DGGE gel from environmental
samples was used to define a dendrogram. Then, the bands
were qualitatively scored as present/absent and no semiquan-
titative analyses were performed for band intensity; the band
clustering was performed with the maximum likelihood
(ML) restriction analysis (RESTML) included in the PHYLIP
v.3.67 package [42].

GenBank Accession Numbers. The nucleotide sequence data
reported here are available under the GenBank accession
numbers: EU722715–EU722732, HM466937–HM466940,
HM466943–HM466946 (aprA phylotypes), and EU091355–
EU091364, HM466948 (mcrA phylotypes).

2.8. Phylogenetic Analysis. The translations of the aprA
and mcrA sequences into amino acids were defined using
the TRANSLATE tool with a standard code (http://expasy
.org/tools/dna.html/). The best frames for all the aprA
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and mcrA fragments were firstly selected by the unstopped
amino acid (aa) sequences and, secondly, by matching
their best hits with those compiled in the nonredundant
database of the GenBank, which were detected through the
BLASTP program (e-value ≤ 10−3) [43]. The final inferred
aa sequences were compared against the Swiss Prot and
GenBank databases in order to obtain their homologous
counterparts using the WU-BLAST program [44] with a
significant BLASTP e-value ≤ 10−3. From a first approach,
we also included aprA and mcrA sequences from reported
environmental samples as seed sequences. A complete list
of the sequences included in this study to reconstruct a
phylogeny for the AprA and McrA enzymes can be seen in
Supplementary Material (Tables S1 and S2, resp.).

Different filters were used, from the thousands of col-
lected sequences, in order to choose the final candidates
involved in the reconstruction of a phylogenetic hypothesis.
In this sense, we firstly applied a redundant analysis at
90% identity using the CD-HIT program [45]. From the
obtained sequences, a second analysis at 100% identity was
done with the CD-HIT program, which excludes redundant
phylotypes (subspecies and variants) of the same species,
warranting the diversity of sequences only by including
strictly different species from the same or different genera.
The AprA phylotypes aps cw 1 (EU722715) and aps cw
16 (EU722724) showed 100% of identity, as well as the
phylotypes aps cw 3 (EU722716) and aps cw 10 (EU722720).
Only one sequence was taken as a representative of the
identity cluster to reconstruct the phylogeny. In order to
support a robust identification in the final phylogeny, we
included species from the same genera for those cases in
which the homologous counterparts are closely related to the
phylotypes obtained in this work. When it was necessary,
individual phylogenetic trees for the Tirez phylotypes were
done previously in order to improve their identification and
to select the counterpart sequences for the final phylogeny.
The aa sequences obtained from the previous approaches
were then aligned using the CLUSTALX program with
default parameters [46]. In order to identify an evolutionary
signal from the sequence fragments obtained in this work
and their homologous counterparts, we applied a manual
and also an automatic approach to edit the alignment.

First, we manually edited the alignment through the use
of the BIOEDIT program v.7.0.9 [47] in order to include
only the functional domains of the α subunits of mcr and
apr enzymes. The functional description of these domains
is fully detailed in Section 4 and in the Supplementary
material. The N-terminal domain of the α-subunit of the
AprA (AprA alpha N) harbors the FAD cofactor-binding
domain (aa positions: 2–261 and 394–487) and the capping
domains (aa positions: 262–393). These functional domains
have been characterized from Archaeoglobus fulgidus in the
reduced state (FADred-APS, PDB ID: 1JNR) [16] and in the
oxidized state (FADox-APS, PDB ID: 2FJA) [48] as well as in
Desulfovibrio gigas (PDB ID: 3GYX) [49]. Thus, a total of 100
aa sequences were included in the AprA alignment, where 23
phylotypes are derived from this work. The AprA alignment
includes two of the nine (the absent sites are Asn-Nα74,
Tyr-Yα95, Glu-Eα141, Val-Vα273, Gly-Gα274, Leu-Lα278, and

Arg-Rα317) functional active sites of the AprA alpha N
domain: Arg-Rα265 and Trp-Wα234, previously reported [48].
See the AprA alignment and catalytic sites in Supplementary
Material (Figure S2). On the other hand, the C-terminal
domain of the α-subunit of the McrA enzyme (Mcr alpha C)
harbors an all-alpha multihelical bundle domain (PFAM
domain: PF02249). This functional domain has been charac-
terized in Methanosarcina barkeri (PDB ID: 1E6Y, C-terminal
domain: 328–460) [50], Methanothermobacter thermoau-
totrophicus (PDB ID: 1MRO, C-terminal domain: 315–440)
[51], and Methanopyrus kandleri (PDB ID: 1E6V, C-terminal
domain: 319–444) [52]. A total of 80 aa sequences, 11 of
them derived from this work, were included in the McrA
alignment. The McrA alignment includes five of the seven
functional active sites of the Mcr alpha C domain (absent
sites: Asn-Nα481 and Val-Vα482; present sites: Phe-Fα330, Tyr-
Yα333, Phe-Fα443, Tyr-Yα444, and Gly-Gα445) [51]. See the
McrA alignment and catalytic sites in the supplementary
material (Figure S3).

Finally, we readjusted a final alignment defining the
informative sites and conserving the functional active sites
of the enzymes previously described, through the use of
the software GBLOCKS v.0.91 [53]. Therefore, the final
alignments were performed on a region of 137 aas for AprA
and 139 aas for MrcA, from which 122 and 132 positions were
involved in the phylogenetic analysis, respectively. In order to
reconstruct a phylogenetic tree, a character-based approach
for the Apr alpha N and Mcr alpha C phylogenetic recon-
structions was developed using the PROTPARS program
in order to construct a maximum parsimony (MP) tree
of sequences. Pyrobaculum aerophilum and Archaeoglobus
fulgidus were used as outgroups in the Apr alpha N phy-
logeny; whereas Methanopyrus kandleri was used as outgroup
in the Mcr alpha C phylogeny. A distance approach for the
Apr alpha N and Mcr alpha C phylogenetic reconstructions
was also developed using the SEQBOOT program to generate
1000 bootstrapped datasets from the sequences, whereby the
pseudoreplicates were used in the PROTDIST program in
order to generate a distance matrix through the Jones-Taylor-
Thornton (JTT) model of evolution [54]. The evolutionary
distances are in the units of the number of amino acid
substitutions per site. The rate variation among sites was
modeled with a gamma distribution estimated previously
shape parameter = 0.9 for AprA and = 0.8 for McrA.
Then, the distance matrix was used in the NEIGHBOR
program to construct a neighbor-joining (NJ) tree [55].
The bootstrap consensus tree inferred from 100 replicates
is taken to represent the evolutionary history of the taxa
analyzed. Branches corresponding to partitions reproduced
in less than 60% bootstrap replicates were collapsed with the
CONSENSUS program (default parameters). The percentage
of replicate trees (>50%) in which the associated taxa
clustered together in the bootstrap test (100 replicates) is
shown next to the branches. All these programs belong to the
PHYLIP package v.3.68 [42]. No major branching differences
were detected between the MP and NJ topologies obtained
for both enzymes. The trees were visualized and reanno-
tated using the MEGA and Microsoft Photoshop programs
[56].
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2.9. Amino Acid Composition Analysis. We calculated the
amino acid composition of all AprA and McrA sequences
used previously to construct the phylogenies. Using the Perl
scripting language, a program was written to read each
amino acid sequence (FASTA format) and calculate the
frequency for each amino acid. We also calculated two
halophilia indicators from the amino acid composition of
every sequence: the PAB factor estimates the surplus of polar
and acidic amino acid compared to polar and basic ones (i.e.,
PAB = [Asx + Glx] − [Arg + Lys]) [57], and the AB ratio of
the acidic amino acids Glu and Asp to the basic amino acids
Lys, His, and Arg (i.e., AB = [Asp + Glu] : [His + Arg + Lys])
[21]. We divided the amino acid profiles from each marker
into two different data sets in order to calculate an average
and standard deviation of the samples. The first data set is
based on salinity adaptation by dividing sequences in Tirez,
halophilic, and nonhalophilic species. The second data set is
based on the species forming the major taxonomic groups
in which the Tirez phylotypes are phylogenetically allocated.
For AprA Desulfovibrionales, Desulfobacterales, Peptococ-
cales, and Chromatiales; whilst for McrA, Methanomicro-
biales and Methanosarcinales. Therefore, A spreadsheet was
created using Microsoft Excel software for data tabulation
and graph construction. See Supplementary Material.

2.10. GC Content and Codon Bias Analyses. We performed
the corresponding nucleotide alignments for all AprA and
McrA sequences used previously to construct the phyloge-
nies. In order to reduce the bias of the GC measurements
by the use of sequences with different length and highly
divergent regions (i.e., long indels), we manually edited
and readjusted the final alignment. Accordingly, highly
and long divergent regions (insertions and deletions) were
eliminated from the alignment. The final alignments only
include the strict codon positions encoding for the functional
domains of AprA (375 nucleotide positions, 125 codons) and
McrA (399 nucleotide positions, 133 codons) described on
the phylogenetic analysis section. Using the Perl scripting
language, a program was written to read each nucleotide
sequence (FASTA format) and calculate the total nucleotide
percentages as well as at the three individual codon positions
for each sequence. We divided the GC profiles from each gene
marker into the same data sets used to analyze amino acid
composition (i.e., salinity adaptation and taxonomic clades)
in order to calculate an average and standard deviation of the
samples. A correction for the amino acid usage was applied
by the calculation of the relative synonymous codon usage
(RSCU) values from the nucleotide datasets based on salinity
adaptation: Tirez, halophilic, and nonhalophilic species. The
RSCU for a particular codon (i) is given by: RSCUi =
Xi/
∑∑

Xi/n, where Xi is the number of times the codon
has been used for a given amino acid and n is the number
of synonymous codons for that amino acid. RSCU values are
the number of times a particular codon is observed, relative
to the number of times that the codon would be observed
in the absence of any codon usage bias [58]. In the absence
of any codon usage bias, the RSCU value would be 1.00. A
codon that is used less frequently than expected will have
a value of less than 1.00 and vice versa for a codon that is used

more frequently than expected. Finally, a spreadsheet was
created using Microsoft Excel software for data tabulation
and graph construction. See supplementary material.

3. Results

3.1. Physicochemical Characterization. Sediment cores from
Tirez Lagoon sampled at different depths were subjected
to physicochemical analysis. Sulfide showed higher concen-
trations at the zone of 0–10 cm depth (Figure 1(a)). The
occurrence and distribution of sulfide along the depth profile
can reflect a biogenic origin by the presence of sulfate-
reducing bacteria (SRB) in the hypersaline sediment. The
concentration of H2S coincided with the presence of a black
deposit of iron sulfide mainly in winter (Figure 2). Sulfate
levels increased with depth, its concentration ranging at
0.2 M, and the highest values were detected at 10–15 cm in
depth (≤300 mM), just below the highest concentration zone
of sulfide (Figure 1(a)). The complete sediment profile was
anoxic and in accordance with a negative redox potential
(Figure 1(b)). The redox potential and oxygen levels slightly
increased in the deepest zones (15–20 cm in depth). The
redox conditions of most part of the sediment core were in
the range of −300 and −200 mV, low enough to allow SR
and MT activities [59]. The lowest Eh values were reached
at 0–10 cm in depth and coincided with the increase in sul-
fide concentration (Figure 1(b)). Ammonium concentration
fluctuated between 1 and 6 µM. Likewise, the highest NH4

+

concentration (4–6 µM) was observed at 10–15 cm in depth
(Figure 1(c)). The Cl : SO4 proportion fluctuated between 0.1
and 0.3, these ratios are lower than the values reported in
the saltern [60] and they reflect the athalassic nature of the
system. Sulfate concentration in Tirez Lagoon was lower than
in the also athalassic Chaka Lake sediment (10−1 mM). Even
though chloride was undetermined in Chaka Lake sediment,
its Cl : SO4 proportion is two times higher than the highest
value registered at Tirez Lagoon [61]. Figure 1(d) shows the
pH course on sediment depth; it is possible to observe the
characteristic neutral pH of the system as well as a slight
acidification, probably a consequence of biological volatile
fatty acids (VFA) formation and sulfate reduction processes.
The C : N ratio determined in the samples showed values
characteristic of low photoautotrophic activity at the surface
[62] starting at >6 at 0–5 cm depth (Figure 1(d)). Therefore,
preferential nitrogen mineralizers should be found at the
surface preceding carbon mineralizers at deeper zones.
Figure 1(e) describes that divalent cations dominate over
monovalents. Finally, the ratio (Na+ + K+)/(Mg2++ Ca2+) in
Tirez is between 1.8 and 0.09, whilst in Salt Lake is >9.0 [9].

3.2. DGGE Patterns from aprA and mcrA Gene Fragments. We
applied a denaturing gradient gel electrophoresis (DGGE)
fingerprinting analysis through the use of two functional
genes: adenosine-5′-phosphosulfate reductase (Apr) and the
methyl coenzyme-M reductase (Mcr), in order to identify
ecotypes from the sediments samples and nonaxenic cultures
of Tirez Lagoon. AprA DGGE profiles are presented in
Figure 3 and McrA DGGE profile in Figure 4. Thus, we
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Figure 1: Profiles plotting depth against physicochemical parameters measured in Tirez sediments from winter cores. (a) Sulfide and sulfate;
(b) Redox potential (Eh) and oxygen; (c) chloride and ammonium; (d) pH and C : N ratio; (e) magnesium, calcium, potassium, and sodium.
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Figure 2: Cores of sediments of Tirez ephemeral lagoon for analysis collected from winter and summer showing the dark zone in the upper
region probably due to metal sulfide precipitation. The evaporite is founded in summer sample.

obtained sequences of diverse phylotypes from DGGE pro-
files representing the bulk content of three sampling points of
the lagoon salt pan. The bands were prefixed as aps and mcr
(from the gene marker) and subfixed as cw (from nonaxenic
cultures obtained in winter) and ew and es (environmental
sediment sampled in winter and summer, resp.).

The aprA DGGE pattern from sediment profile
(Figure 3(b)) revealed the presence of a more complex
banding pattern in comparison with the profile from
nonaxenic cultures (Figure 3(a)). At 15–25 cm depth, low
yield or no PCR product was obtained (Figure 3(b) lane
5). Given that a considerable number of environmental
bands from the aprA DGGE profile could not be sequenced
or specifically identified, probably due to the presence of
residual PCR inhibitors such as humic acids coextracted with
genomic DNA [63] that were not purified by the JetQuick
kit and that comigrate with DNA in the polyacrylamide
gel [64] changes in population distribution were estimated
through the use of P-analysis with Maximum Likelihood
(ML) in Phylip software in order to identify a significant
clustering. Bands were taken as species, and patterns were
constructed by presence and absence. The clustering pattern
is shown in Figure 3(c), and it was more in accordance with
a disturbance due to seasonality instead of sediment depth.
Additionally, P value showed no significant differences
between nodes W and S being P ≤ 0.05 as significant to
reject the hypothesis that two population sets were derived
from the same communities.

From previous studies carried out in thalassic commu-
nities, where salt gradient is between 8 and 20% (within

the range of Tirez), it has been reported that the rate of
methanogenesis is below 0.1% of the total sulfate-reduction
productivity [65]. Therefore, a lower abundance of MA was
expected in Tirez sedimentary community it is inferred from
the lower Cl : SO4 ratio. In addition, the population size
threshold for DGGE detection is ≤1% [39]. Thereby, we had
to perform a nested PCR from the mcrA gene in order to
improve the detection of the MA community in the sediment
samples from Tirez. We firstly obtained a 0.76 kb mcrA
fragment through the ME primer pair. Because such a length
is inadequate to obtain a discernible DGGE pattern [66] and
due to low yield in ME amplicons, a small 0.47 kb mcrA
fragment nested in the ME region was amplified through
the ML primer pair (supplementary material, Figure S4).
In agreement with Juottonen and collaborators [67], no
differences in the diversity of MA organisms were expected
from the use of ME and ML PCR products. Different
DGGE gradients for the ML-PCR products were tested in
order to obtain the best pattern resolution. We detected
two distinctive but adjacent bands in all DGGE winter
profiles (e.g., mcr-ew1 and mcr-ew2) obtained through
several gradients (Figures 4(a) and 4(c), 40–70% and 40–
60% gradients, resp.). A pattern of bands in pairs is a result
of the low DGGE resolution, where two DNA fragments
differ in one or few bases due to the use of ambiguous
primers [66]. Though ME-ML primers are ambiguous (see
Section 2), the phylotypes were placed in different orders
in methanogenic archaea. Thereby, nucleotide sequences
have similar electrophoretic mobilities but they represent
different sequences and, thus, a double band was ruled out.
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Figure 3: DGGE pattern of PCR-amplified aprA gene fragments from nonaxenic SRP cultures (a) and sediment samples (b). (a) series
of DGGE patterns obtained from nonaxenic cultures inoculated from winter sediment (cw); (b) Series of DGGE patterns obtained from
environmental samples: winter (ew) and summer (es) obtained from different depths (cm). The aprA gene fragment from 15–25 cm depth
(winter) was not amplified. (c) Maximum Likelihood cluster analysis of the B-pattern DGGE profile the scale bar represents expected
numbers of base substitutions.

We also obtained a DGGE pattern from sediment sampled in
flooded and dry seasons at different depths (Figure 4(c)). It is
interesting to note that the mcr-ew1 band (marked in Figures
4(a) and 4(c)) appeared uniquely associated with flooded
season at 0–5 cm in depth (Figure 4(c)).

3.3. Phylogenetic Diversity of Sulfate-Reducing, Sulfate-Oxidi-
zing and Methanogenic Organisms. Phylogenetic reconstruc-
tions were done for the inferred amino acid (aa) sequences
of aprA and mcrA gene markers and their homologous
counterparts. We decided to analyze aa instead of nucleotides
because the latter reduces the inherent variation seen in
protein sequences, except for the third codon base. We
defined two regions of unambiguously aligned aa, the first
one located in the N-terminal domain (137 aas) for the α
subunit of AprA (AprA alpha N), and the second one located
in the C-terminal domain (139 aas) of the α subunit of

McrA (MrcA alpha C), both of them containing some of
the catalytic sites involved in their metabolic role (supple-
mentary material, Figures S2 and S3, resp.). It is important
to note that not only the phylogenetic topologies obtained
for the AprA alpha N and McrA alpha C sequences are
robust, as can be seen by the significant bootstrap values
in the main clustering branches, but also the internal
groups are supported by the expected clustering of the
McrA and AprA crystals previously characterized for (a) the
McrA in Methanosarcina barkeri belonging to Methanosarci-
nales [50], Methanothermobacter thermoautotrophicus from
Methanobacteriales [51] and Methanopyrus kandleri in
Methanopyrales [52]; (b) the AprA from Archaeoglobus
fulgidus in Euryarchaeota [16], and Desulfovibrio gigas in
Deltaproteobacteria [49].

The phylogenetic analysis of the 25 AprA Tirez sequences
is presented in Figure 5. This analysis included representative
species from diverse SRP and SOP taxonomic groups such
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Figure 4: DGGE pattern of PCR-amplified McrA gene fragments from environmental sediment samples. (a) winter pattern (0–5 cm depth),
(b) winter patterns obtained from different depths, and (c) Winter (ew) and summer (es) patterns from different depths (cm). Bands across
several lanes were identified as being in the same genera, and the arrow for ew1 shows its absence in the 0–5 cm depth summer sample (es).
Band mcr-es5 is not shown in the figure.

as Euryarchaeota, Crenarchaeota, Firmicutes, β, γ, and
∂-proteobacteria (supplementary material, Table S1). The
major fraction (16 phylotypes) was affiliated to the SRP.
Some of the environmental AprA phylotypes were not
resolved at genera level, and the result has been discussed
for the next taxonomic rank. Cultured and environmen-
tal SRP populations were identified as follows: cultured
phylotypes (Desulfohalobiaceae, Peptococcaceae, and Desul-
fobacteraceae) and environmental phylotyeps (Desulfobac-
teraceae, and Peptococcaceae). One cluster formed by three
phylotypes (aps-cw2, -cw4, and -cw5) was closely related
to the halotolerant and alkaliphilic Desulfonatronovibrio
hydrogenovorans. Interestingly, the summer sediment did not
reveal the presence of species in the haloadapted Desul-
fohalobiaceae. Twelve phylotypes obtained from sediment
(summer and winter) and enrichments were related to the
acetoclastic and nonhalophilic species Desulfonema magnum.
Two phylotypes (aps-cw6 -es29) were identified as Pepto-
coccaceae. Whilst the phylotype aps-cw6 was conclusively
affiliated to Desulfotomaculum solfataricum belonging to
Firmicutes, the phylotype aps-es29 was not resolved at
genera level; however, aps-es29 was allocated basal to the
representative Firmicutes taxa used in this study. Actually,
the affiliation of phylotype aps-es29 and other SOP Tirez
phylotypes could become particularly uncertain given the
well-known horizontal APS reductase (Apr) gene transfer
(HGT) events between the SRPs from Firmicutes and δ-
proteobacteria as well as between the SOPs from β and γ-
proteobacteria, respectively (see Figure 5). Both main Apr-
HGT events are identified in this work and are in accordance
with previous phylogenetic studies [68].

In four of the environmental SOP phylotypes (aps-ew7,
-ew8, and -ew13, aps-es28), the assignment of the aprA gene
fragment could not be conclusive at species level; thus, a
detailed function in Tirez’s system remains uncertain. The
closest clade for three phylotypes was a group of noncultured
microorganisms (endosymbionts) in Hydrogenophilaceae in
β-proteobacteria. The phylotype from summer sediment
(aps-es28) remained unidentified at species level, and tree
topology helped to designate it as γ-proteobacteria. The
environmental phylotype aps-ew3 was conclusively affiliated
to endosymbionts and close to Thiotrichaceae and Chro-
matiaceae in γ-proteobacteria. Other three phylotypes were
derived from enrichment (aps-cw11, -cw12, and -cw13) and

resulted with a short distance with the cultured haloalka-
liphilic purple bacteria Thioalkalivibrio (Ectothiorhodospir-
aceae) in γ-proteobacteria.

The phylogenetic reconstruction of the eleven McrA
sequences obtained from the anoxic Tirez sediments is
shown in Figure 6. This analysis included representative
MA species within Methanomicrobiales, Methanosarcinales,
Methanococcales, and Methanobacteriales (supplementary
material, Table S2). The phylogenetic tree allowed the identi-
fication of McrA phylotypes belonging to the Methanosarci-
naceae and Methanomicrobiaceae. Nine phylotypes were
proximate to Methanohalobium evestigatum often found in
high-salt environments. In the same way, phylotype mcr-
ew2 was closely related to Methanolobus zinderi. Finally, the
phylotype mcr-ew1 closely clustered to the hydrogenotrophic
and nonosmoadapted species Methanoplanus petrolearius.

3.4. Amino Acid Composition, GC content, and Codon Usage
Bias in AprA and McrA Phylotypes. The aa composition and
GC content in proteins from “salt-in” halotolerant organ-
isms have been related to adaptations to high intracellular
concentration in order to favor an osmotic balance within
an hypersaline environment [23, 25]. Given that the catalysis
of AprA and McrA enzymes occur in the cytoplasm, we
were interested in determine whether Tirez AprA and McrA
sequences show a bias when compared to their halophilic
and nonhalophilic homologous counterparts. Thus, we
calculated the aa composition from the alignment used
to reconstruct the phylogeny in order to estimate the
hydrophobic (Gly, Leu, Val, Ile, Phe, Met, Ala, Trp, and Pro),
polar (Ser, Thr, Cys, Tyr, Gln, and Asn), basic (His, Arg, and
Lys) and acidic (Glu and Asp) contents of the AprA and McrA
enzyme fragments analyzed in this study. Additionally, we
used the nucleotide alignment that covers the aa positions
selected to reconstruct the phylogeny for each gene marker in
order to estimate the general codon bias GC content and the
relative synonymous codon usage (RSCU) (see Section 2).
For this purpose, we divided the sequence profiles from
each gene markers into two data sets the first one is based
on salinity adaptation (Tirez, halophilic and nonhalophilic
species) and the second one is based on the major taxonomic
groups in which the Tirez phylotypes are phylogenetically
allocated (AprA: Desulfovibrionales, Desulfobacterales, Pep-
tococcales, and Chromatiales; McrA: Methanomicrobiales
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and Methanosarcinales) (supplementary material, Tables S1
and S2, resp.).

The degree of excess acidic amino acids and dearth of
basic amino acids reflects the prevalence of the “salt-in”
strategy and the amount of adaptation necessary to cope with

the environmental stress. This can be quantified from two
estimations: by calculating the surplus of polar and acidic
amino acid compared to polar and basic ones (i.e., PAB =
[Asx + Glx] − [Arg + Lys]) [57] and by the ratio of the
acidic amino acids Glu and Asp to the basic amino acids Lys,
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His, and Arg (i.e., AB = [Asp + Glu] : [His + Arg + Lys])
[21]. On average, the amino acid composition measurements
(Table 1) indicated that AprA Tirez phylotypes (PAB =
2.87, AB = 0.62) were from similar to slightly higher in
comparison with halophilic (PAB = 2.70, AB = 0.59) and
nonhalophilic sequences (PAB = 2.35, AB = 0.62). However,
the observed differences in PAB and AB indicators between
Tirez phylotypes and halophilic species are out of proportion
to argue a “salt-in” signal in Tirez phylotypes given that
AprA differences are more than ten times less the difference
between Escherichia coli and Halobacterium salinarum or
Halomonas elongata and Halobacterium salinarum [57].

The total GC content of AprA Tirez phylotypes, halo-
philes, and nonhalophiles organisms is 57.60%, 55.70%, and
55.00%, respectively. The GC content of Tirez phylotypes
is higher than the reported for Escherichia coli (50.3%) but
lower than the extreme halotolerant species from the Dead
Sea metagenome (62–67%) and Halobacterium salinarum
(65.7%) (Table 1). A codon usage in AprA Tirez phylotypes
is consistent with that expected, when corrected for GC
composition (Figure 7). In comparison to halophiles and
nonhalophiles, AprA Tirez phylotypes show a significant

overrepresentation of amino residues with a preferential use
for a G or C in the third or first position: Val (GUC), Ser
(UCC), Gln (CAG), Lys (AAG), Asn (AAC), Asp (GAC), and
Glu (GAA). Even though Arg (CGG, AGG), Ala (GCG), and
Cys (UGC) are underrepresented amino acids in AprA Tirez
phylotypes as well as Leu (CUG) and Gly (GGC, GGG) do
not show compositional differences when compared with
halophiles and nonhalophiles sequences (supplementary
material, Figure S1b), all of them show a significant codon
usage with GC bias (RSCU > 1.5) (Figure 7). Accordingly,
the first, second, and third codon positions of AprA Tirez
phylotypes have GC percentages of 54.2%, 42.4%, and
76.0%, respectively, and they agree with the GC content
values previously reported in some “salt-in” halophiles
(Table 1), with high GC content and a third position GC bias
[21, 29]. Similar trends on aa composition and GC content
can be seen for the AprA clades (Table S3 and Figure S1).

A slighter segregation of the McrA Tirez phylotypes from
the nonhalophilic species is shown in Table 1. Accordingly,
the AB indicator for McrA phylotypes was slightly lower
(1.50) in comparison with the average of halophilic (1.67)
and nonhalophilic species (1.75), whilst an opposite trend
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Table 1: The amino acid composition and G + C content of Tirez McrA and AprA sequences, their halophilic and nonhalophilic homologous
counterparts, metagenomes, and reference strains.

Acid Asx +
Glx

Acid − Basic6

(Asx + Glx) −
(Arg + Lys)

Acid : Basic7

(Asp + Glu) : (His
+ Arg + Lys)

Lys Asp : Lys Arg
G + C % in

total
sequence8

G + C % in
third codon

position8

AprA

Tirez1 15.90 ± 2.24 2.87 ± 2.54 0.62 ± 0.13 6.90 ± 1.40 0.35 ± 0.22 6.14 ± 0.90 57.60 ± 4.56 76.00 ± 9.99

Halophilic species2 14.90 ± 2.74 2.70 ± 3.02 0.59 ± 0.18 6.20 ± 0.90 0.30 ± 0.09 6.02 ± 0.59 55.70 ± 7.56 66.50 ± 20.70
Nonhalophilic
species2 15.00 ± 1.95 2.35 ± 2.13 0.62 ± 0.12 6.30 ± 1.10 0.35 ± 0.11 6.34 ± 0.68 55.00 ± 6.94 65.50 ± 19.02

mcrA

Tirez1 22.07± 0.23 16.62 ± 0.24 1.50 ± 0.00 3.38 ± 0.62 2.04 ± 0.37 2.07 ± 0.40 47.20 ± 3.40 46.10 ± 11.70

Halophilic species3 21.09 ± 0.52 15.99 ± 0.76 1.67 ± 0.10 3.54 ± 0.29 2.08 ± 1.83 1.56 ± 0.00 51.50 ± 5.20 57.00 ± 12.60
Nonhalophilic
species3,4 21.75 ± 1.22 16.44 ± 1.63 1.75 ± 0.35 3.65 ± 0.99 2.08 ± 0.80 1.67 ± 0.3 50.30 ±7.20 56.30 ± 21.30

Metagenomic7

Dead Sea n.d. n.d. 1.46 n.d. n.d. n.d. 62–67 n.d.

Reference strains5

Halobacterium
salinarum

31.80 25.36 n.d. 2.34 ± 0.04 n.d. 4.10 ± 0.12 65.7 n.d.

Halomonas
elongata

25.98 17.56 n.d. 3.7 n.d. 5.25 n.d. n.d.

Escherichia coli 26.04 15.85 n.d. 6.03 ± 0.14 n.d. 4.16 ± 0.02 50.3–50.9 n.d.
1
Average composition from amino acid sequences derived from this study.

2Average composition from amino acid sequences listed in supplementary material Table S1.
3Average composition from amino acid sequences listed in supplementary material Table S2.
4Thermophilic species were not included.
5Amino acid composition of the bulk protein content in type species cultures [57].
6PAB: amino acid proportions according to [57].
7AB: amino proportions according to Rhodes et al.[21].
8GC content percentage is calculated as GC% = (G + C/G + C + A + T) ∗ 100.

is shown with the PAB indicator: 16.62 for Tirez, 15.99
for halophiles, and 16.44 for nonhalophiles. In contrast to
the AprA Tirez phylotypes, the total GC content (47.20%)
and the third codon GC bias (46.10%) are significantly
lower than the estimated for halophiles and nonhalophilic
species (Table 1). The GC content of the first (53.1%) and
second (42.4%) codon positions does not change the trend
of McrA Tirez phylotypes (supplementary material, Figure
S3c). Nevertheless, an overrepresentation of amino residues
in McrA Tirez phylotypes with a preferential codon use (in
comparison to nonhalophiles sequences only) can be pointed
out for Ile (AUU), Pro (CCA), Ala (GCA), Tyr (UAU), and
Asn (AAC, AAU). Even though Lys (AAA), Asp (GAU), Ser
(UCC, UCU), and Thr (ACA) are underrepresented amino
acids in McrA Tirez phylotypes in comparison to halophiles
and nonhalophiles sequences (supplementary material, Fig-
ure S1b), all of them show a preferential codon usage.
Furthermore, it is important to note that the aa composition
and GC content trends for McrA clade profiles showed a
differentiated tendency in contrast to the estimated average
from all McrA Tirez phylotypes (supplementary material,
Table S3). The first, second, and third codon position of
Methanomicrobiales present a high GC content values of
52.6% (Tirez 54.1%), 40.0% (Tirez 39.1%), and 73.1%
(Tirez 77.4%), respectively. Similarly, the polar and acidic

content in Methanomicrobiales (PAB = 17.12 and AB = 1.70)
is interestingly higher than the bulk cell protein content
reported for E. coli (15.85) and close to the haloadaptation
threshold of H. elongata (17.56) [57].

4. Discussion

4.1. Identification of Anaerobic Prokaryotes in the Sediment
by Functional Gene Approach. SRP and MA are the frequent
ecotypes responsible of major biogeochemical processes
in sedimentary systems. A functional gene PCR-DGGE
approach was applied to identify these anaerobic ecotypes.
Regarding the sediment profile and community structure
along time and depth, the bands identified in the aprA
DGGE pattern from environmental samples are in agreement
with the presence of black sediments below the evaporite
layer observed in summer and winter seasons (Figure 2).
This mineral precipitation and the sulfide detected in
the sediment (Figure 1(a)) are probably attributable to a
dissimilatory sulfate reduction where MA were also detected
(Figure 3(c)). The use of a nested PCR implies additional
amplification cycles, and, thus, it has been used to increase
the visualization sensitivity of species present in low numbers
by DGGE [69]. Interestingly, our findings via this approach
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denote a predominance of the SRP-SOP ecotypes over MA,
given that we performed the nested-PCR approach to obtain
a positive PCR product of mcrA gene fragment, whilst it was
not necessary to apply it for the aprA gene fragment. Finally,
a predominance of SRP-SOP ecotypes in Tirez Lake is in
accordance with the high values of sulfate registered on the
sediment.

After the clustering analysis of sedimentary populations
represented in the aprA DGGE pattern, the changes are better
explained by a seasonal disturbance in accordance with the
ephemeral lagoon. It is suggestible that population resilience
is mainly regulated by changes in salinity because the main
nodes indicate a partition into dry and flooded patterns
(Figure 3(c)); note that salinity fluctuates from 6% (w/v)
during winter to 35% (w/v) during spring. However, the
strong temperature oscillation can be also associated with
salinity over community composition. Additionally, the P
values (>0.05) indicate that the partition winter/summer is
not significant enough to describe well-differentiated com-
munities since flooded node and dry node are more clustered
than expected by chance.

Interestingly, most of the SOP, SRP, and MA phylo-
types obtained in this work were related to environmental
sequences described from alkaliphilic or thalassic hypersaline
systems [6, 20]. However, few data is available from athalassic
systems [70]. In SRP were detected phylotypes (aps-cw4, -
cw-5, and -cw2) from Desulfonatronovibrio hydrogenovorans,
a lithoheterotrophic, halotolerant (grows in a salinity range
of 1–12% NaCl), and alkaliphilic sulfate respirer. Surpris-
ingly, D. hydrogenovorans does not grow at pH of 7 and
the highest pH of Tirez is below 8.0. Desulfohalobiaceae
species are commonly adapted to high osmolarity due to
the anabolic metabolism of compatible solute synthesis and
dependent on the use of lactate and hydrogen as electron
donors [4]. Desulfohalobium retbaense is considered the neu-
trophilic and thalassic counterpart of D. hydrogenovorans,
but it was not detected in Tirez.

Gram-Positive Desulfotomaculum solfataricum (aps-cw6)
was detected in enrichments. Another phylotype, aps-es29,
is also a member of Peptococcaceae, but it could not be
assigned to a specific genus. These phylotypes did not
cluster with Desulfotomaculum halophilum sequences, which
tolerates up to 12% NaCl [71]. However, a previous study
reports Desulfotomaculum isolates in a salt pan [72]. Sulfate-
reducing bacteria in Peptococcaceae perform oxidation from
a broad spectrum of electron donors such as lactate [73].
Compatible solutes in Peptococcaceae have not been charac-
terized; however, the theoretical energy yield, for example, in
medium supplied with lactate is ∆G◦′ = −160 kJ/mol, would
give enough energy for the osmoprotectant synthesis or
transport as, for example, Desulfovibrio vulgaris; D. vulgaris
is trophically analog to Desulfotomaculum species. D. vulgaris
synthesizes sugars such as trehalose or accumulates amino
acids such as glycine betaine and proline as compatible
solutes as response to under salt stress. Stress response in D.
vulgaris is based on genes with homologous in diverse and
distant species such as Bacillus subtilis [74]; thus, the find-
ing of Peptococcaceae in Tirez, under analog bioenergetic

constraints, could be explained in the terms of the “salt-out”
strategy (see Section 4).

The presence of Methanohalobium evestigatum and
Methanolobus zinderi in the sulfate-rich and anoxic sediment
is easily sustained by functional arguments, even in summer
samples, because their metabolism requires methylated sub-
strates; thus, it is noncompetitive with SRP. M. evestigatum
and M. zinderi are theoretically productive in bioenergetic
terms [75], enough to exhibit compatible solute synthesis
[76]. Methanolobus zinderi was isolated from an estuary and
grows at the higher rate and tolerates upper levels of divalent
cations (Mg2+) in comparison with monovalent Na+ [77].
This characteristic is remarkable because M. zinderi could be
adequate to Tirez given that divalent cation Ca2+ dominate
over monovalents in the sediment (Figure 1(e)). On the
other hand, the increase of ammonium (NH+

4 4–6 µM) at
10–15 cm depth and the decrease of Eh across the sediment
profile (Figure 1) suggest the development of strict anaerobic
and methylotrophic MA metabolisms [78].

None of the genera detected in both seasons clustered
with acetoclastic MA. The absence of acetoclastic MA in
hypersaline systems has been widely accepted as a conse-
quence of the low Gibbs free energy dissipated from acetate as
substrate [4]. However, acetoclastic MA activity was reported
in Napoli mud volcano brines with 4.0 M chloride, where the
Cl : SO4 ratio is 200 times higher than the observed in Tirez
[79]. In Tirez, the absence of acetoclastic MA is probably
explained by substrate outcompetition, because the sulfate-
reducing conditions prevail due to the high abundance of
sulfate in Tirez and to the putative adaptation of acetoclastic
SRP such as Desulfonema magnum to the extreme sediment.

The sulfur-oxidizing populations have been frequently
described in extreme hypersaline systems. Some of the
phylotypes from environmental and enrichment culturing
were affiliated to endosymbionts; its potential ecological
role in the sediment is supported by the view that the
sulfur cycle has been described in marine oligochaetes, where
endosymbionts identified as proteobacterial microorganisms
participate as sulfur oxidizers [80]. Therefore, it is plausible
that the free-living and nonisolated relative populations in
Tirez sediment have an analogous metabolic role. Three
phylotypes from winter sediment and enrichments were
affiliated to the chemoautotrophic genus Thioalkalivibrio
and sulfur oxidizing endosymbionts in β/γ-proteobacteria
clade (Figure 5). These anaerobic ecotypes are expected
to be found in the extremely saline sediment as much
as the H2S is present (Figure 1(a)); in turn, H2S would
be oxidized anaerobically by these purple bacteria given
that low Eh and partial O2 pressure were observed in the
sampling site (Figure 1). The discrepancy in the finding of
Thioalkalivibrio is due to its narrow range of optimal pH
(9.5–10.0), the fact that species in Thioalkalivibrio are true
alkaliphilic and are well adapted to athalassic soda lakes, that
is, dominated by monovalent cations [81], and considering
that other sulfur oxidizing and halophilic SOP species such
as Thiomicrospira halophila or Hallochromatium spp. [82]
were not detected and probably better adapted to neutral
Tirez saltern. Unfortunately, the SOP Tirez phylotype from
summer sediment was not identified at species level.
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It has been argued that hypersaline environments are
inappropriate for the biological development of anaerobic
acetate oxidation as a consequence of the low negative
balance of the standard ∆G yielded by this dissimilatory
metabolism and due to the high maintenance energy needed
for the synthesis/accumulation of compatible solute under
high osmotic conditions [4]. However, at high sulfate con-
centrations, Desulfonema magnum populations were un-
equivocally detected in the evaportitic sediment and winter
sediment samples (environmental and derived from enrich-
ment culturing) at 0–15 cm depth under an extreme salinity
stress of 35% salts. This acetate-oxidizing Desulfobacteraceae
has not been described in hypersaline systems and was
the most abundant phylotype identified in Tirez lagoon.
D. magnum has an optimal salinity about 2.5% NaCl and
has been described in marine microbial mats [83]. Previous
studies have shown that Desulfobacteraceae are present in
thalassic hypersaline basins [70] and athalassic soda lakes [6].
This is a notable finding for the understanding of carbon
cycle in extreme hypersaline ecotypes because under extreme
conditions there is a decline in organic matter remineraliza-
tion; thereby, organisms encoding the corresponding aprA
gene probably face the salinity changes. Halophilic species
from Desulfobacterales have not been isolated; Desulfobacter
halotolerans is member of Desulfobacterales but has an
optimum growth with only of 1-2% NaCl [84]. Nevertheless,
very little is known about the mechanisms involved in energy
conservation that allow acetoclastic SRP organisms to survive
in extreme saline conditions. The haloadaptation mechanism
“salt-in” osmoadaptation has been suggested for Desulfobac-
teraceae ecotypes identified in soda lakes to compensate
saline stress [6]. Possibly, Desulfonema, being an acetoclastic
SR, exerts additional energy conserving mechanisms (as
in the case of MA and acetogenic bacteria) consisting in
extra transference of electrons from membrane complexes
dependent on H+ or Na+ pumping. Such process is likely
to occur in the acetoclastic Desulfobacteraceae Desulfobac-
terium autrotrophicum whose conservation mechanism of
chemiosmotic energy is analogous to that in homoacetogenic
bacteria [85].

A mcrA phylotype from the hydrogenotrophic Metha-
noplanus petrolearius was detected in the surface DGGE
profile from winter sediment at 0–5 cm depth (Figure 4),
when salt content in the saltern is averaged at 6% w/v.
This organism has a maximum tolerance at 5% and an
optimal growth at 1–3% NaCl [86]. It is feasible that the M.
petrolearius salt tolerance determines its absence in summer
samples and is correlated with the low energy yielded by the
methanogenic pathway based on H2 and formate as electron
donors. MT activity based on these substrates has a low
theoretical energy yielded (∆G◦′). Therefore, it is plausible
that M. petrolearius is less abundant than methylotrophic
MA. Methanoplanus clones, which have been reported in
thalassic hypersaline sediments but at 2.2 M Cl− and sulfate
below the detection limit [87].

4.2. Halotolerant Strategies in Tirez Lagoon. In order to adjust
to lower water activities of the environment and the resulting

decrease in cytoplasmic water, microorganisms must accu-
mulate intracellular ions or organic solutes to reestablish the
turgor pressure and preserve enzyme activity [27, 88]. “Salt-
in” halophiles are adapted to hypersaline environments by
a mechanism that involves at least equimolar extracellular
and intracellular salt concentrations by a selective influx of
potassium ions into the cytoplasm. The “salt-in” strategy
favors solubility and is energetically efficient, but unfolds
proteins at high concentration [24]. As a consequence, this
halotolerant strategy requires that the entire intracellular
machinery, that is, proteins, nucleic acids,s and their specific
interactions with one another, must be adapted to high
salt intracellular levels. The adaptations generally include an
increase of the acidic nature of intracellular proteins and/or
an increment of genomic CG content and a GC-bias at the
codon usage level. Nevertheless, Paul et al. [25] demonstrated
common genomic and proteomic trends in halophiles that
transcend the boundary of phylogenetic relationship and
the genomic GC content of the species. Accordingly, it
has been suggested that distantly lineages adopted “salt-
in” strategy independently by convergent evolution given its
radical nature [27].

All previous studies have estimated average trends of
amino acid composition and GC content from selected
sequences or enzymes in marine aerobic populations [21,
57] or from completely sequenced genomes obtained from
diverse aerobic environments [22, 25]. Even though “salt-in”
strategy was recently proposed to explain the finding of the
resilience Desulfobacteraceae at hypersaline and alkaline lakes
[6], this salt-adaptation strategy has been neither reported in
species of the SRP-SOP nor in MA; in part, given the absence
of complete sequenced genomes and sequenced 16s RNAs
from uncultured species. Therefore, we consider it useful
to use AprA and McrA markers to test “salt-in” signals. An
intuitive justification would be to expect a naturally biased
selection for AprA and McrA enzymes given their frequent
or higher expression levels in the cytoplasm (in comparison
to other encoded genes at the genome) in order to cope
with their ecological and metabolic role on anaerobic and
hypersaline sediments.

Our results cannot be conclusive regarding the halo-
tolerant strategies carried out by Tirez phylotypes, until a
large sequence data set can be achieved for these organisms.
Nevertheless, the amino acid composition, GC content,
and preferential codon usage trends exhibited by the AprA
marker from Tirez phylotypes suggest a plausible “salt-in”
signal when compared to halophiles and non-haphiles. The
increase in negatively charged (Asp and Glu) and polar (Ser,
Asn, and Gln) residues in AprA Tirez phylotypes can be
explained by a codon usage with GC bias at the third posi-
tion. The overrepresentation of these amino acid residues
and their preferential codon usage are consistent with reports
on “salt-in” adaptation [22, 25]. Similarly, a higher frequency
of Val in AprA Tirez phylotypes compared to nonhalophiles
and halophiles supports the observation of Madern et al. [24]
and Paul et al. [25], but disagree with earlier propositions
on underrepresentation of all strong hydrophobic residues
in halophiles [89]. We also report a slight decrement of
the basic residue Arg in AprA Tirez phylotypes. The role of
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Arg in haloadaptation is quite controversial; its increment
in halophilic species can be expected by mutational bias
[25] given that five of the six codons have a bias towards
GC nucleotides; however, Arg has been also reported in a
consistent decrement in specific haloadapted species [29, 57].
Even though the slight increment of Lys observed in AprA
Tirez phylotypes contradicts all previous propositions on
underrepresentation of the most important basic residues in
all “salt-in” halophiles [22, 25], it has been recently suggested
that dipeptides like Val-Lys significantly contribute to the
halostability in proteins [90].

As described on results, the mcr-ew1 Tirez phylotype
allocated in Methanomicrobiales shows an interestingly phy-
logenetic tendency to use amino acids, not initially biased by
GC content or codon usage, that could be involved in a weak-
moderate “salt-in” strategy. For example, slight increments
of the polar residues Asn, Ser, and Tyr, the negatively
charged residues Asp and Glu, and the hydrophobic residues
Ala, Ile, and Pro in McrA Methanomicrobiales phylotypes
are in agreement with salt-in signals previously reported
[57]. Charged amino acids prevent charged ions from
attaching to proteins and thus they have a significant role
in stabilizing proteins against salty conditions and keeping
water molecules around these proteins [25, 50]. Similar to
AprA Tirez phylotypes, we observed a decrement of Arg
and an increment of Lys (supplementary material, Table S3).
The remaining McrA Tirez phylotypes do not exhibit a clear
tendency about expected aa composition, GC content, and
codon usage bias to carry out “salt-in” haloadaptation. These
phylotypes could compensate high salt extracellular concen-
trations through mechanisms independent of amino acid
composition and GC content and that do not compromise
the enzymatic activity [91]. The “salt-out” strategy requires
the accumulation of specific small-molecular-weight com-
pounds (i.e., compatible solutes or osmolytes) into the
cytoplasm. Thereby, “salt-out” signal can be expected on the
McrA Tirez phylotypes close clustered at Methanohalobium
evestigatum and Methanohalobium sp. species belonging to
the Methanosarcinales. This observation is in agreement
with the compatible solute characterization described for this
clade [92]. It is also well know that M. evestigatum uses
methylated compounds such as methylamine and methanol
to generate methane. These methylated substrates not only
provide more energy to M. evestigatum than the use of others
substrates for anabolic reactions, including the synthesis
of compatible solutes, but also allow a tolerance up to
29.2% of NaCl [93]. In “salt-out” strategy, little or no
adjustment is required to intracellular macromolecules; in
fact, the compatible solutes often act as more general stress
protectants as well as just osmoprotectants [27].

Furthermore, halophiles do not live at constant salt
concentrations; but in many natural settings they are exposed
to changing salinities due to evaporation or rain, and thus
also the intracellular conditions change considerably [23].
Accordingly, enzyme activity on “salt-in” halophilic strategy
will depend not only on the nature and concentration of the
salt, but also on extensive genetic alterations as a prerequisite
for adaptation to a saline intracellular environment [24,
27]. Tajima’s neutrality test [94] for the AprA and McrA

enzyme fragments (used in this study) shows that both gene
markers are evolving under positive selection (DAprA = 3.13
and DAprA = 2.96) (supplementary material, Table S4). This
means that key functional enzymes of anaerobic microor-
ganisms on Tirez lagoon could undergone extensive genetic
alterations that, if they help the organism to cope and adapt
with a saline intracellular environment, could be clearly
differentiated and fast fixed on the populations. Two clear
examples of this flexible genetic alterations and selective fix-
ation can be seen on AprA sequences of same species but that
were obtained from different strains: Thermodesulforhabdus
norvegica DSM 9990 (EF442952.1) [95]; AF418159.1, [68]
and Archaeoglobus fulgidus DSM 4304 (PDB: 1JNR-A) [16];
PDB: 2FJA-A, [48], which show interesting amino acid
changes from basic (Lys and K) to polar (Gln, Q and Asn,
N) residues (see Figure 5 and supplementary Figure S2).

In spite of the considerable diversity in nucleotide con-
tent and amino acid composition of the AprA and McrA
enzyme fragments involved in all analyses, it can be seen
a crucial conservation of catalytic sites (Arg-Rα265-Trp-
Wα234 in AprA and Phe-Fα330-Tyr-Yα333-Phe-Fα443-Gly-Gα445

in McrA) as well as of cofactor and nucleotide binding sites
in both gene markers (Figures S1 and S2 for AprA and
McrA aa alignments, resp.). As previously reported for McrA
[50], the same conservative trend holds true for most of the
surrounding residues of the AprA and McrA catalytic sites.
Probably, the amino acid conservation and/or the structural
localization of these catalytic regions on AprA and McrA
gene markers underestimate the general trend composition
of “salt-in” adaptation from moderately to high halotolerant
organisms in Tirez lagoon. In fact, it is not possible to figure
out at the moment if the diversity, weakness, or absence of
amino acid, GC content, and codon usage patterns reported
for Tirez phylotypes in this study are a consequence of a
minor and biased coverage of their not completely sequenced
genomes or if these inconclusive trends are true salt-in
signals or a consequence of the use of complementary salt-
adaptation strategies in bioenergetically constrained species,
given that Tirez phylotypes have a clear anaerobic mode of
life on highly saline and sulfate sediments.

Accordingly, we do not discard the presence of mixed
types of osmoadaptation in AprA and McrA Tirez phy-
lotypes, where K+ accumulates to high levels (“salt-in”)
along with neutral and negatively charged organic solutes
(“salt-out”), as previously reported for many slightly and
moderately halophilic methanogens [96]. For example,
Methanohalophilus portucalensis grows in 2.0 M NaCl and its
intracellular concentration of K+ is 0.76 M, indicating that
concentration of intracellular K+ need not be the same as
that of extracellular Na+. Presumably, M. portucalensis uses
three zwitterions and other osmolytes to balance osmotic
pressure [92, 96]. Likewise, K+ plays an important role
in the response of Methanococcus thermolithotrophicus to
hyperosmotic (increased NaCl) or hypoosmotic (decreased
NaCl) shock. At the beginning of higher NaCl extracellular
concentration, M. thermolithotrophicus internalizes K+ until
reach a new steady-state intracellular concentration; then,
synthesis and accumulation of L-α-glutamate occur. The
K+-α-glutamate pair functions as a temporary osmolyte
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whilst the nonmetabolizable zwitterion (Ne-acetyl-b-lysine)
is synthesized and accumulated by M. thermolithotrophicus
exclusively in response to high salt concentrations [96, 97].

4.3. Implications of Anaerobic Diversity for Tirez Biogeochem-
istry. The characterization of SRP, SOP, and MA diversity
in Tirez lagoon contributes to the knowledge of anaerobic
diversity of microorganisms in athalassohaline systems and
has inferences on the survival and adaptation of life under
steep salt gradients. A characterization of the anaerobic
diversity in Tirez lagoon is a first step to explain functional
issues such as why not all anaerobic dissimilatory path-
ways occur optimally in extreme biotopes and whether an
anaerobic way of life faces higher energetic constraints in
hypersaline systems in terms of salt composition [4]. Any
quantitative interpretation can be inferred because PCR-
DGGE fingerprint is an inconclusive source of information
and fluorescence in situ hybridization (FISH), parallel exper-
iments designed specifically to quantify ∂-proteobacteria and
methanogen populations along the sediment profile (winter
and sediment), failed to yield any positive result (data not
shown).

The structure and activity of hydrogenotrophic metha-
nogenesis and acetoclastic sulfidogenesis under thalassic
hypersaline systems have been extensively studied [98, 99].
But, it should be kept in mind that Tirez sediment is a sulfate-
rich system with a peculiar salt composition, considering
that in the evaporitic period minerals such as gypsum
(CaSO4·2H2O), epsomite (MgSO4 ·7H2O), and hexahydrite
(MgSO4·6H2O) are deposited and dominate over halite
(NaCl) [60], and most importantly, the sulfate has a relevant
role in anaerobic systems as electron acceptor. Thus, present
results might be of importance for the understanding of
acetate mineralization as a key process for carbon cycling
in extreme environments. In Tirez sulfate-rich sediment,
among all the detected phylotypes, Desulfonema magnum
and Methanoplanus petrolearius are the ecotypes of major
interest due to energetic constraints; therefore, these ecotypes
constitute a probable signal of haloadaptation in anaerobic
populations.

Although it was possible to characterize several anaer-
obic prokaryotes involved in distinctive metabolic lineages
across the Tirez sediment, DGGE and phylogenetic analyses
revealed a poor SRP, SOP, and MA phylotype composition;
probably underestimated in comparison with other extreme
systems [100]. Nevertheless, extant conditions in Tirez,
as well as in other hypersaline environments, enable the
persistence of low energetic anaerobic metabolic capabilities
such as the Halanaerobiales fermenting bacteria (manuscript
in prep.), which use a well-adapted fermentation of organic
compounds to produce CO2/H2 and volatile fatty acids
(VFA) such as acetate by the use of the “salt-in” strategy
[101].

Typically, the carbon cycle in halophilic communities
implicates low rates of carbon mineralization to CO2 which
explains the accumulation of acetate at salt saturation
levels [102]. In addition to H2 and acetate, methylated
compounds as fermentation products of compatible solutes
can be mineralized by MA [78, 103]. The perspective for

the nitrogen cycle is different in Tirez, its completion is
predictable given that it shares the characteristics of other
hypersaline systems, where methylotrophic MA contribute
to nitrogen mineralization [103]. About the sulfur cycle,
the sulfate-reducing microorganisms were identified in the
sulfate-rich sediment and represent probable suppliers of
sulfide for sulfur-oxidizing populations. This understanding
is useful to infer possible biological processes in analogous
systems such as Europa because the ocean present in the
satellite is rich in sulfates and divalent cations and probably
it is also in anoxic state [31, 104].

5. Conclusion

Extensive phylogenetic and physiological characterizations of
thalassic and alkaline anaerobic biotopes have been reported.
Phylogenetic studies have been traditionally determined by
physiological characterization of marine species, and the
records of anaerobic phylotypes in hypersaline systems are
dominated by thalassic species. Tirez lagoon has sabkha
properties thus, it is a brine of interest to analyze strong
spectra in salinity. Also, Tirez lagoon is characterized by a
low chloride/sulfate ratio; this is remarkable considering that
sulfate serves as terminal electron acceptor in the marine sys-
tems; however, few biological descriptions have been made
when this anion is abundant under hypersaline conditions.
Using the PCR-DGGE fingerprint technique for the func-
tional adenosine-5′-phosphosulfate (aprA) and the methyl
coenzyme M reductase (mcrA) gene markers, we have con-
firmed the occurrence of hydrogenotrophic methanogenic
and acetoclastic sulfate-reducing organisms in Tirez sedi-
ment. Despite the steep osmotic change along the year in the
lagoon, changes in composition of PCR-DGGE dendrogram
reflected weak differences on winter-summer community
structure.

The persistence of Desulfobacteraceae phylotypes in
summer sediment as well as the finding of Methanomi-
crobiales at the hypersaline and sulfate-rich sediment is
remarkable (hydrogenotrophic MA are outcompeted by SRP
in high concentrations of sulfate). Probably, these ecotypes
are energetically constrained and, unfortunately, our findings
on amino acid and nucleotide compositions cannot be
currently conclusive regarding the halotolerant strategies
carried out by Tirez phylotypes until a large sequence
data set can be achieved for these uncultured, anaerobic
and bioenergetically constrained organisms. Nevertheless,
it looks like AprA gene marker could be a useful “salt-in”
indicator for different environmental (e.g., marine versus
sedimentary) samples, not only because its amino acid
overrepresentation and codon usage bias well correlate with
those found in halophiles but also because AprA gene marker
could exhibit a preferential use of amino acid (e.g., Val and
Lys) on sediments in contrast to those found in marine and
aerobic environments. Similarly, McrA gene marker shows
an unexpected amino acid and nucleotide composition with
nonclear “salt-in” signals exhibited. However, we speculate
that the diverse and not conclusive salt-in signals in these
ecotypes (perhaps due to the absence of complete sequenced
McrA genes) could reflect that whereas protective osmolytes
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“salt-out” can be produced by MA Tirez populations in re-
sponse to salt stress, probably also a weak “salt-in” strategy
may contribute to adaptation of osmotic stress on sedimen-
tary MA Tirez populations.

An extended understanding for acetoclastic sulfate re-
ducing activity under high osmolarity conditions is needed
in order to elucidate mechanisms that are involved in the
biological carbon mineralization. On the long term, the
findings of this work will provide valuable information
to determine habitable conditions of Europa, the most
interesting moon of Jupiter for the Astrobiology field, as an
anoxic and hypersaline environment.
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