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Abstract.
In this work we propose a simple example of a one-dimensional

thermodynamic system where non-interacting particles are allowed to move over
the [0, 1] interval, which are influenced by a potential with a fractal structure. We
prove that the system exhibits a phase transition at a finte temperature, which is
characterized by the fact that the Gibbs-Boltzmann probability measure passes
from being absolutely continuous with respect to Lebesgue (at high temperature)
to being singular continuous (at low temperatures). We prove that below the
critical temperature (when the Gibbs-Boltzmann probability measure is singular
continuous) the probability measure is supported on the middle-third Cantor
set and that further lowering the temperature, the probability measure does
not change anymore. This means that, in some sense, the system reaches the
ground-state before the zero temperature, indicating that the system “freezes” at
a positive temperature.
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1. Introduction

Thermodynamical systems having some underlying characteristics of fractality has
been a subject of intense research [1–4]. It has been noticed that the fractal nature of
these class of systems (both, in equilibrium and out of equilibrium) affects, in several
different ways the observed thermodynamic properties [5–8]. Spin systems on fractal
lattices [6, 7], the energy landscape of protein folding [9–11], the effective thermal
conductivity of liquids with nanoparticle inclusions [8] and the diffusion of particles
on fractal geometries [12, 13] are a few examples of thermodynamical systems having
a underlying fractal structure exhibiting properties influenced by the fractality.

In this paper we provide a simple example of a one-dimensional thermodynamic
system with a fractal structure, which can be solved in an explicit way. This system
consists of an ensemble of non-interacting particles moving on a one-dimensional
fractal potential. It exhibits some features that, up to our knowledge, has not been
previously reported. For example, most of the models mentioned above assume that
the particles move on a geometrically confined region with a fractal structure. In
contrast, in our model, the particles can move on a non-fractal space, the interval
[0, 1], but they are influenced by a potential with a fractal structure. We show that
this system undergoes a phase transition, in which, below certain critical temperature;
all the particles collapse into a fractal set. More precisely, the probability measure
characterizing the equilibrium state (the Gibbs-Boltzmann probability measure) is
absolutely continuous with respect to Lebesgue at high temperatures but, it is singular-
continuous at low temperatures.

In this context, our work is related to the freezing phase transition phenomenon,
which was studied in one-dimensional spin systems with long-range interactions [14]
and is defined as the transition in which the support of the equilibrium state collapses
into the ground-state ‡ at a finite temperature. This means that, below the critical
temperature the system does not change anymore as the temperature is lowered further
(this is why this kind of phase transition is called “freezing” [14]). In contrast, in our
model, the fractal potential can be defined in such a way that the set of configurations
minimizing the energy is empty, implying that it has an empty ground-state. Despite
this property, the system still exhibits the phase transition and the support of the
Gibbs-Boltzmann probability measure still collapses into a fractal set (the middle-
third Cantor set by construction).

In this work we first show that our model for a fractal potential is well defined.
We show that a slight modification of the potential model can be made it such that the
minima of the fractal potential is just the middle-third Cantor set. We show that the
Gibbs-Boltzmann distribution associated to the fractal potential undergoes through a
phase transition at a finite temperature. Subsequently we show that above the critical
temperature the Gibbs-Boltzmann distribution is absolutely continuous with respect
to Lebesgue and below, the Gibbs-Boltzmann distribution is singular-continuous, in
fact it corresponds to the Cantor distribution. More over, the critical temperature is
actually related to the fractal dimension of the Cantor set.

The paper is organized as follows: in Section 2 we give the concepts and definitions
used in the paper. Section 3 is devoted to the statements of our results. We give
comments and some concluding remarks in section 4. And finally in sections 5 and 6,
we give the proofs for our results and the technical lemmas, respectively.

‡ The term ground-state in physics is the set of configurations minimizing the energy.
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2. The Model and Generalities

2.1. Cantor structure of the model

First of all, let us give the standard definition of the middle-third Cantor set as the
limit of a monotonically decreasing sequence of finite union of intervals. Let C0 := [0, 1]
be the first element of the sequence, and define C1 := [0, 1/3] ∪ [2/3, 1], obtained by
removing the middle third interval (see Figure 1), and so on. Then, the middle-third
Cantor set can be defined as the limit of the sequence of Cm, as follows,

C :=
∞
⋂

m=1

Cm.

By convenience, for every m ∈ N, let us write the removed middle-third intervals as
follows,

Bm := Cm−1 \ Cm.

In Figure 1 we can see a representation of Cn and Bn for the first values of n.
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Figure 1. Schematic representation of Cn and Bn for the first values of n.

2.2. The potential

We propose a model for a fractal potential. In order to define it, let us consider a
function φk : [0, 1] → R defined as follows:

φk(x) :=

{

1 if x ∈ Bk,
0 if x $∈ Bk.

Notice that the function φk(x) is nothing but the characteristic function of the set Bk.
Next, let the function ψn : [0, 1] → R be given by

ψn(x) := −
n
∑

k=1

Akφk(x), (1)

where {Ak : k ∈ N} is a monotonically increasing sequence such that Ak > 0 for every
k and limk→∞ Ak = +∞. The fractal potential ψ : [0, 1] → R is then defined as the
limit of the sequence of functions ψn as n → ∞,

ψ(x) := lim
n→∞

ψn(x) = −
∞
∑

k=1

Akφk(x).
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Notice that the sequence of finite-step potentials depends on an increasing sequence
of real numbers which is not bounded, by definition. In figure 2 we can appreciate a
schematic representation of the potential function ψn for a finite value of n. Then, the
first step is to determine whether the limit function ψ(x) exists in some sense. This
is actually the matter of our first result, the existence of the limit with respect to the
Lp-norm.

Proposition 2.1. Consider the finite-step potential ψn defined in equation (1). If the

sequence of constants {Ak : k ∈ N} is such that Ak = o
( (

3
2

)k/p )
, for every p ≥ 1,

then the sequence {ψn : n ∈ N} converges in the Lp-norm.

The proof of this proposition can be found in section 5.1.

(b)

(a)

Figure 2. Schematic representation ψn. (a) The Cantor set construction. (b)
The potential for a finite n (actually for n = 5). Notice that the value of the
potencial on Bk (1 ≤ k ≤ n) is constant and that the value of the potential on
Cn is zero.

Notice that the above defined potential is such that the set of points minimizing
ψ is empty. This is because the points minimizing the nth potential, ψn, is just Bn

by construction (this is because ψn(x) = −An if x ∈ Bn, also note that ψn(x) = 0 for
all x ∈ Cn). This means that the nth groundstate is the set Bn, and we can see that
limn→∞ Bn = ∅. However, we can redefine the potential in order to have a non empty
limiting groundstate. This is done by requiring that the value of the potential in Cn

be the lowest. We denote by ψ̃ the potential

ψ̃n(x) := −
n
∑

k=1

Akφk(x) −An+1χCn
.

This slight modification makes the groundstate for ψ̃n to be Cn. Then, it is clear that
the limiting groundstate becomes the middle-third Cantor set by construction. It is
easy to see that ψ̃ is well defined and that all the theorems we state below also hold
for ψ̃.
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2.3. Gibbs-Boltzmann distribution

Here we introduce the main quantity of this paper, which is the distribution associated
to the potentials defined in the previous section. We consider our space [0, 1] and with
the collection of intervals as the measurable sets. Given a real positive number β as
the inverse temperature of the system, and a natural n, let us define µβ,n, the Gibbs-
Boltzmann distribution associated to the finite-step potential ψn of a measurable set
A ⊂ [0, 1], as follows:

µβ,n(A) =

∫

A
ρβ,n(x)dx, (2)

where ρβ,n is the density of µβ,n defined as the Boltzmann factor,

ρβ,n(x) :=
e−βψn(x)

Zβ,n
.

And Zβ,n is the partition function given by

Zβ,n :=

∫

[0,1]
e−βψn(x)dx.

Our main result establishes that this distribution has a support that “collapses”
into the middle-third Cantor set at a finite temperature. This means that at a
finite temperature the (non-interacting) particles reach the groundstate before zero
temperature.

2.4. Weak distance and the Kullback-Leibler divergence

We are interested in the convergence of a sequence of probability distributions µβ,n to
certain limiting measure. For this purpose we introduce the notions of two different
forms in which the measures may converge. First, on the one hand, we consider the
weak distance between two measures µ and ν defined on the same probability space,

d(µ, ν) := sup

{
∣

∣

∣

∣

∫

fdµ−

∫

fdν

∣

∣

∣

∣

: f ∈ C0

}

.

On the other hand, one has a stronger sense of convergence, called total variation.
Given two probability distributions µ and ν on a sigma-algebra F , the total variation
distance is equal to

||µ− ν||TV := sup
A∈F

|µ(A)− ν(A)|.

And we also have the Kulback-Leibler divergence for two probability distributions µ
and ν, which is given by

DKL(µ||ν) =

∫

log
dµ

dν
,

whenever µ << ν and infinite otherwise. It is important to mention that DKL(µ||ν)
is not a distance on the space of probability distributions, yet it is related to the total
variation distance by the Pinsker’s inequality given by,

1

2
||µ− ν||2TV ≤ DKL(µ||ν).

The above inequality states that convergence in Kullback-Leibler sense implies
convergence in total variation (see for instance Ref. [15]).
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3. Results

Our results state that the Gibbs-Boltzmann measure for the fractal potential ψ is well
defined at all temperatures, in general, but there exists a critical inverse temperature
βc for which the limiting measure and the convergence properties of the sequence µβ,n
change substantially. That is what we refer as freezing phase transition. The following
proposition claims the existence of the limiting measure.

Proposition 3.1. Let µβ,n be the Gibbs-Boltzmann distribution associated to the
finite-step potential ψn at the inverse temperature β given by equation (2). Consider
an arbitrary but fixed real number α > 0, k ∈ N and let Ak := αk. Then the sequence
{µβ,n : n ∈ N} converges to a unique limit measure µβ for all β > 0.

Proof. The proof of this proposition is actually contained in theorems 3.1 and 3.2
below.

Before we continue with our results, let us make the following remark on the
partition function and the existence of the critical inverse temperature.

Remark 3.1. The existence of the βc in our system is a consequence of the role that
fractality plays on the different sets of the space. This is why it is related with the
fractal dimension of the Cantor set. In order to see it, let us compute the partition
function, take any β and n ∈ N,

Zβ,n =

∫

[0,1]
e−βψn(x)dx =

n
∑

k=1

∫

Bk

eβαkdx+

∫

Cn

dx

=
n
∑

k=1

((Bk)e
βαk + ((Cn).

These equalities hold because of the definition of ψn, and where, ((A) stands for the
length of the set A ⊂ [0, 1]. Also, observe that we can always take that partition of the
unit interval, say, (

⋃

k Bk) ∪Cn, which is induced by the chosen n. Now observe that

((Cn) =
(

2
3

)n
and ((Bk) =

2k−1

3k . So let us introduce the quantity,

h = − log
(2

3

)

,

then, one has that:

Zβ,n =
1

2

n
∑

k=1

e(βα−h)k + e−hn. (3)

The last equation makes clear that for βα−h ≤ 0 the sequence Zβ,n converges and on
the contrary, for βα− h > 0 it diverges. So we define our critical inverse temperature
βc =

h
α = log(2/3)

α .

3.1. Case β ≤ βc.

Here we give our result for the case when the inverse temperature is lower that the
critical one.
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Theorem 3.1. For β < βc the sequence of measures {µβ,n : n ∈ N} converges in the
total variation distance to a limit measure which is absolutely continuous with respect
to Lebesgue. Moreover, its density ρβ := limn→∞ ρβ,n, is given as follows:

ρβ(x) =
eψ(x)

Zβ
,

where ψ(x) is the fractal potential assured by Proposition 2.1 and Zβ is the partition
function given by,

Zβ =
1

2

1

1− eβα−h
.

The proof of this theorem is given in section 5.2.

3.2. Case β > βc.

Next, for the case where the inverse temperature is larger that the critical one, stated
in the proposition 3.1, one has the following results.

Theorem 3.2. For β > βc one has that the sequence {µβ,n} converges to a limit
measure µ∗ in the weak distance. Moreover the limit measure corresponds to the
Cantor distribution, which is a singular continuous distribution, such that µ∗(C) = 1.

The proof of this theorem is given in section 5.3. Next, we give other results
related to the cumulative distribution function of the limit measure µ∗.

Proposition 3.2. For β > βc the cumulative distribution function F (x) associated
to the measure µ∗ is continuous.

Proof. Take x, y ∈ [0, 1] such that |x − y| ≤ 3−k for some fixed k ∈ N. Then we
have that i) both x and y are contained in some interval of Ck, ii) both x and y are
contained in some interval of Bl for some 1 ≤ l ≤ k, iii) one of the points x, y belongs
to some interval of Ck and the other belongs to some interval of Bl for some 1 ≤ l ≤ k.

For the case i) let us denote by Ck,j the interval containing x and y. The notice
that

|Fβ,n(x)− Fβ,n(y)| =

∣

∣

∣

∣

∫ y

x
ρβ,n(z)dz

∣

∣

∣

∣

≤ µβ,n(Ck,j).

Since

lim
n→∞

µβ,n(Ck) = 1,

by Theorem 3.1, we have that

lim
n→∞

|Fβ,n(y)− Fβ,n(x)| ≤ lim
n→∞

µβ,n(Ck,j) = 2−k.

For the case ii) let us denote by Bl,i the interval containing x and y. Then we
have that

|Fβ,n(x)− Fβ,n(y)| =

∣

∣

∣

∣

∫ y

x
ρβ,n(z)dz

∣

∣

∣

∣

≤ µβ,n(Bl,i).

By Theorem 3.1 it is clear that

lim
n→∞

|Fβ,n(x) − Fβ,n(y)| ≤ lim
n→∞

µβ,n(Bl,i) = 0.
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Finally for the case iii) it is easy to see that

|Fβ,n(x)− Fβ,n(y)| =

∣

∣

∣

∣

∫ y

x
ρβ,n(z)dz

∣

∣

∣

∣

≤ µβ,n(Ck,j) + µβ,n(Bl,i).

Again, by Theorem 3.1, we have that

lim
n→∞

|Fβ,n(y)− Fβ,n(x)| ≤ lim
n→∞

[µβ,n(Ck,j) + µβ,n(Bl,i)] = 2−k.

This shows that the cumulative distribution function F (x) is continuous.

Proposition 3.3. For β > βc the cumulative distribution function Fβ,n(x) associated
to the density ρβ,n is such that

lim
n→∞

dFβ,n(x)

dx
= 0,

for almost every x with respect to Lebesgue.

Proof. The derivative of the cumulative distribution function Fβ,n(x) is the density
ρβ,n. This means that we only need to prove that ρβ,n(x) = 0 for almost every x with
respect to Lebesgue. Thus, take x ∈ Bk for fixed k and notice that

ρβ,n(x) =
e−βψn(x)

Zβ,n
=

eβαk

Zβ,n
.

Now, by Remark 3.1 we have that Zβ,n → ∞ as n → ∞. Since we assumed that k is
finite it is clear that

ρβ,n(x) =
eβαk

Zβ,n
→ 0 as n → ∞.

Since
⋃∞

k=1 Bk = [0, 1] \ C we have that ρβ,n(x) = 0 for almost every x with respect
to Lebesgue. This proves our statement.

4. Concluding remarks

We have introduced a simple model which can be dealt with in a rigorous way.
This model is a system of non-interacting particles which are influenced by a fractal
potential. The system exhibits a phase transition, which is mainly characterized
by the fact that the support of the Gibbs-Boltzmann measure “collapses” into the
middle-third Cantor set. The latter essentially means that above certain critical
temperature, the Gibbs-Boltzmann probability measure is absolutely continuous with
respect to Lebesgue and below the critical temperature it becomes singular continuous.
Moreover, once the system has reached the critical temperature, the Gibbs-Boltzmann
measure does not change anymore by further decreasing the temperature. This last
property means that the system “freezes” at a finite temperature, a phenomenon that
was already shown to occur in spin systems [14].

From the physical point of view, the occurrence of phase transition in our model
is related to the occurrence of anomalous diffusion. For example, we can think of
our model as a system consisting of non-interacting overdamped particles moving on
a fractal periodic potential by extending our fractal potential model periodically to
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the whole real line. In this case, it is known that the exact diffusion coefficient is
proportional to the inverse of the partition function [16],

Deff ∝
1

ZβZ−β
.

Since Zβ diverges for β > βc it is clear that Deff goes to zero, having as a consequence
the occurrence of a normal to anomalous diffusion transition. This fact suggest that
the freezing transition is also accompanied by transition in which the particles does not
spread linearly in time, a phenomenon known as slowing down. The importance of our
study is that we have shown that within the anomalous diffusion phase, the system
does not present a density of particles because of the singular continuous measure.
It would be interesting to see if some other systems, for which the occurrence of
anomalous diffusion is reported (see for instance Refs. [17–22]), exhibit a singular
continuous measure. This, of course, would requiere a much more detailed further
study.

From the mathematical our system presents interesting properties. For example,
we have shown that the convergence properties of the successive finite-step Gibbs-
Boltzmann measures to the limit, substantially changes from one case to the other.
That is, in one case the convergence is in total variation (or information theoretic
sense) and below the critical temperature, it is only in the weak sense. Moreover,
we have also shown that, despite the system has not a ground-state (the set of point
minimizing the potential) our system still exhibits a freezing transition.

And finally, we would like to point out the reference [23], which in some sense is
related to our work. In that paper, the authors propose a spin system with nearest-
neighbor interaction. The potential is defined in a very special way, in a form of
wells-in-wells, alternating one ferromagnetic and the other antiferromagnetic. They
showed that there is no low-temperature limit of any sequence of Gibbs measures. It
would be interesting to know if the phenomenon we observe in our system can also
occur in spin systems.

5. Proofs

5.1. Proof of proposition 2.1

By the definition of ψn, the sequence {ψn} converges (probably to infinity) pointwise
to the function ψ. Here we go further by proving the convergence in Lp-norm. For
exposition purposes, first we will show that the L1-distance between the finite step
functions ψr and ψs goes to zero if one takes r and s large enough. Let r < s, for
every x ∈ [0, 1] we have that,

|ψs(x)− ψr(x)| =
s
∑

k=r+1

Akφk(x).

Observe that, for every n ∈ N, one has the partition for the unit interval given as
follows,

[0, 1] =
(

n
⋃

i=1

Bi

)

∪ Cn. (4)
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Consider the L1-distance between ψr and ψs, and using the partition (4), one has

||ψs − ψr||L1 =
n
∑

i=1

∫

Bi

|ψs(x)− ψr(x)|dx +

∫

Cn

|ψs(x) − ψr(x)|dx

=
n
∑

i=1

∫

Bi

s
∑

k=r+1

Akφk(x)dx +

∫

Cn

s
∑

k=r+1

Akφk(x)dx. (5)

Recall that φk is the characteristic function of the set Bk, and observe that for every
n, the first term in equation (5), can be written as follows:

n
∑

i=1

∫

Bi

s
∑

k=r+1

Akφk(x)dx =
n
∑

i=1

s
∑

k=r+1

∫

[0,1]
Ak · χBi∩Bk

(x)dx.

A direct but useful observation is that, whenever i $= k,

Bi ∩Bk = ∅. (6)

Next, the second term in eq. (5) can be written as follows,
∫

Cn

s
∑

k=r+1

Akφk(x)dx =
s
∑

k=r+1

∫

[0,1]
Ak · χCn∩Bk

(x)dx.

Now we proceed by proving that for every n, that is no matter the thickness of the
partition one has the same estimate for the L1-norm. For clarity, we do it separately
for each of the two summands in eq. (5) and we consider three cases, first, for n ≤ r.
Observe, that Cn ∩Bi = ∅ for all i ≤ n, so one has that

n
∑

i=1

∫

[0,1]

s
∑

k=r+1

Ak · χBi∩Bk
(x)dx = 0,

using also observation (6). For r < n ≤ s one has the following,
n
∑

i=1

∫

[0,1]

s
∑

k=r+1

Ak · χBi∩Bk
(x)dx =

n
∑

i=r+1

Ai · ((Bi),

where, ( stands for the usual length. Finally for n > s, one has that
n
∑

i=1

∫

[0,1]

s
∑

k=r+1

AkχBi∩Bk
(x)dx =

s
∑

i=r+1

Ai((Bi),

since for all i > r the integral vanishes and using again the observation (6). It remains
to estimate the second term in (5). We consider again the three cases for n, we remind
the reader the observation Cn∩Bk = ∅, for all k ≤ n and that Cn∩Bk = Bk whenever
k > n. So, for n ≥ s,

∫

Cn

s
∑

k=r+1

Akφk(x)dx =

∫

[0,1]

n
∑

k=r+1

AkχCn∩Bk
(x)dx = 0.

For r + 1 ≤ n < s, one has
∫

Cn

s
∑

k=r+1

Akφk(x)dx =
s
∑

i=n+1

Ai((Bi).

And finally, for n < r + 1,
∫

Cn

s
∑

k=r+1

Akφk(x)dx =
s
∑

i=r+1

Ai((Bi).
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So putting all together, one has that for every n,

||ψs − ψr||L1 =
s
∑

i=r+1

Ai((Bi).

Provided that, for every i, the length ((Bi) = 1
2

(

2
3

)i
, thus, making Ai = o

( (

3
2

)i )
, one

has that the summation
∑s

i=r+1 Ai((Bi) goes to zero when r, s are sufficiently large.
That finishes the proof for the L1-norm. Next, for p > 1, we proceed analogously. By
now, we will focus on the term,

|ψs(x)− ψr(x)|
p =

(

s
∑

k=r+1

Akφk(x)
)p

=
∑

j1+···+js−r=p

(

p

j1, . . . , js−r

) s−r
∏

t=1

(Atφt(x))
jt .

Where the last part is the multinomial. Observe that independently of the combination
of terms in the product, one has that

∏s−r
t=1 φt(x)

jt = 1 only when jt = p for every
single t, and is 0 otherwise. This is true because of the the observation (6). Therefore
for every x and every p,

(

s
∑

k=r+1

Akφk(x)
)p

=
s
∑

k=r+1

Ap
kφk(x).

Then, we proceed exactly as in the previous case, obtaining,

||ψs − ψr||Lp =
(

s
∑

i=r+1

Ap
i ((Bi)

)1/p
,

and so, choosing Ai = o
( (

3
2

)i/p )
allows us to obtain the desired result.

5.2. Proof of Theorem 3.1.

Now we proceed to prove that the sequence {µβ,n : n ∈ N} converges to a limit
measure in the information-theoretic sense by using the Kullback-Leibler divergence.

First of all let us recall that, in the case of β < βc, the partition function Zβ,n
given by (3) converges in the limit n → ∞ to

lim
n→∞

Zβ,n =
1

2

1

1− eβα−h
.

And thus the density for the expected limit measure µβ should be,

ρβ(x) =
e−βψ(x)

Zβ
,

where ψ is the fractal potential obtained as the limit of the sequence ψn, assured by
Proposition 2.1. Then our goal in the following, will be to prove that the sequence
of finite-step densities {ρβ,n : n ∈ N} converges in the information-theoretic sense
towards ρβ , i.e.,

D(ρβ,n‖ρβ) → 0 as n → ∞,

where the Kullback-Leibler divergence D(·‖·) between ρβ,n and ρβ is given by

D(ρβ,n‖ρβ) =

∫

[0,1]
ρβ,n(x) log

(

ρβ,n(x)

ρβ(x)

)

dx.
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From the definition of the density of the finite-step measure µβ,n, we have that,

D(ρβ,n‖ρβ) =

∫

[0,1]

e−βψn(x)

Zβ,n
log

(

e−βψn(x)

Zβ,n

Zβ
e−βψ(x)

)

dx

= log

(

Zβ
Zβ,n

)

+ β

∫

[0,1]
(ψ(x)− ψn(x))

e−βψn(x)

Zβ,n
dx.

And so, one obtains the following inequality,

D(ρβ,n‖ρβ) ≤

∣

∣

∣

∣

log

(

Zβ
Zβ,n

)
∣

∣

∣

∣

+ β

∫

[0,1]
|ψ(x)− ψn(x)|

e−βψn(x)

Zβ,n
dx. (7)

Next, since φk is zero outside the set Bk, and ψ(x) − ψn(x) is zero over Bk for all
1 ≤ k ≤ n, we have that the second part of the right-hand side of inequality (7) is
equal to

∫

[0,1]
|ψ(x)− ψn(x)|

e−βψn(x)

Zβ,n
dx =

1

Zβ,n

∫

Cn

|ψ(x)− ψn(x)| dx

≤
1

Zβ,n
‖ψ(x)− ψn(x)‖L1 .

Then going back to (7) we can see that

D(ρβ,n‖ρβ) ≤

∣

∣

∣

∣

log

(

Zβ
Zβ,n

)
∣

∣

∣

∣

+ β
1

Zβ,n
‖ψ(x)− ψn(x)‖L1

As we saw in Proposition 2.1 we have that ψn converges in L1 to the limit potential
ψ. Thus it is clear that ‖ψ(x)−ψn(x)‖L1 → 0 as n → ∞. On the other hand we have
also established that Zβ,n goes to Zβ. Thus, we conclude that

D(ρβ,n‖ρβ) → 0,

as n → ∞ which finishes the proof.

5.3. Proof of Theorem 3.2

This section is devoted to the proof of Theorem 3.2. We will prove that for every
measurable Lipschitz continuous and bounded above function f , the sequence {µn(f)}
is a Cauchy sequence with respect to the weak distance. Since the space of probability
distributions with the weak distance is a complete metric space, the limit distribution
µ∗, actually exists and is a probability distribution. We will prove that given a
measurable Lipschitz continuous and bounded above function f : [0, 1] → R, for
every ε > 0 there exists a N ∈ N such that for n,m > N one has that

∣

∣

∣

∣

∫

[0,1]
fdµn −

∫

[0,1]
fdµm

∣

∣

∣

∣

< ε.

In order to do this, we give a list of useful lemmas that will be used in the proof of
our theorem.

Lemma 5.1. Let β > βc, and µβ,n be the Gibbs-Boltzmann measure associated to the
n-step potential. Then for every ε > 0 and any k ∈ N there is a N ∈ N such that for
all n > N ≥ k, one has that,

µβ,n(Ck) > 1− ε.
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Corollary 5.1. Let β > βc. For all ε > 0 there is a N ∈ N such that

L
∑

k=1

µβ,m+L(Bk) < ε

for all m > N and all L ∈ N.

Lemma 5.2. Let f : [0, 1] → R be a bounded-above Lipschitz continuous function.
Then for every ε > 0 there exits a N such that for all n > m ≥ N one has that,

∣

∣

∣

∣

1

((Bn)

∫

Bn

f(x)dx−
1

((Bm)

∫

Bm

f(x)dx

∣

∣

∣

∣

< ε.

Lemma 5.3. For β > βc and for all ε > 0 there is a N ∈ N such that

L−1
∑

l=0

∣

∣µβ,n (Bn−l)− µβ,m (Bm−l)
∣

∣ < ε

for all n,m > N and all L such that 1 ≤ L ≤ min{n,m}.

Lemma 5.4. For all ε > 0 there is a N ∈ N such that

µβ,n(Cn) < ε

for all n > N .

Now, let us going on the proof of the theorem. First let us recall that we are in the
case β > βc. According to the definition of µn we have that

∫

[0,1]
fdµn =

∫

[0,1]
f(x)

e−βψn(x)

Zn
dx.

Since ψ is piecewise constant on the sets Bk for 1 ≤ k ≤ n, it is natural to, and we
can always, decompose the integral as a series by using the partition {Bk : 1 ≤ k ≤
n} ∪ {Cn}. This gives us
∫

[0,1]
fdµn =

n
∑

k=1

∫

Bk

f(x)
e−βψn(x)

Zn
dx+

∫

Cn

f(x)
e−βψn(x)

Zn
dx

=
n
∑

k=1

∫

Bk

f(x)
eβAk

Zn
dx+

1

Zn

∫

Cn

f(x)dx

=
n
∑

k=1

(

eβAk

Zn
((Bk)

)

1

((Bk)

∫

Bk

f(x)dx +

(

((Cn)

Zn

)

1

((Cn)

∫

Cn

f(x)dx.

Where we used the fact that ψ(x) = −Ak for x ∈ Bk, and ψ(x) = 0 elsewhere. Next,
notice that the quantities inside the parenthesis in the above equation can be written
as follows:

eβAk

Zn
((Bk) =

∫

Bk

eβAk

Zn
dx =

∫

Bk

e−βψn(x)

Zn
dx = µn(Bk),

((Cn)

Zn
=

∫

Cn

1

Zn
dx =

∫

Cn

e−βψn(x)

Zn
dx = µn(Cn).

Then we have that
∫

[0,1]
fdµn =

n
∑

k=1

µn(Bk)
1

((Bk)

∫

Bk

f(x)dx + µn(Cn)
1

((Cn)

∫

Cn

f(x)dx. (8)
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In order to enlighten the calculations, let us introduce the notation fk and fn for the
following averages:

fk :=
1

((Bk)

∫

Bk

f(x)dx, fn =
1

((Cn)

∫

Cn

f(x)dx.

Using this short-hand notation we can rewrite expression (8) as,
∫

[0,1]
fdµn =

n
∑

k=1

µn(Bk)fk + µn(Cn)fn. (9)

If we assume that n > m we can write n = m + L, with L ≥ 0. Using this fact, we
have that the first summand of the right hand side of the equation (9) can be written
as,

n
∑

k=1

µn(Bk)fk =
m+L
∑

k=1

µm+L(Bk)fk =
L
∑

k=1

µm+L(Bk)fk +
m
∑

k=1

µm+L(Bk+L)fk+L.

So, using an expression for
∫

[0,1] fdµm analogous to (9), we write,

∫

[0,1]
fdµn −

∫

[0,1]
fdµm =

m
∑

k=1

µm+L(Bk+L)fk+L −
m
∑

k=1

µm(Bk)fk

+
L
∑

k=1

µm+L(Bk)fk + µn(Cn)fn − µn(Cm)fm.

Hence, by adding and subtracting the quantity
∑m

k=1 µm(Bk)fk+L and then using the
triangle inequality, one obtains the following inequality,
∣

∣

∣

∣

∫

[0,1]
fdµn −

∫

[0,1]
fdµm

∣

∣

∣

∣

≤
m
∑

k=1

∣

∣µm+L(Bk+L)− µm(Bk)
∣

∣

∣

∣fk+L

∣

∣+

m
∑

k=1

∣

∣fk+L − fk

∣

∣µm(Bk) +
L
∑

k=1

µm+L(Bk)
∣

∣fk

∣

∣+ µn(Cn)
∣

∣fn

∣

∣+ µm(Cm)
∣

∣fm

∣

∣. (10)

Now let us define the following quantities f̃1 := max{
∣

∣fk+L

∣

∣ : 1 ≤ k ≤ m},

f̃2 := max{
∣

∣fk

∣

∣ : 1 ≤ k ≤ m} and M := max{µm(Bk) : 1 ≤ k ≤ m}. So that,
the inequality (10) can be recast into,
∣

∣

∣

∣

∫

[0,1]
fdµn −

∫

[0,1]
fdµm

∣

∣

∣

∣

≤ f̃1

m
∑

k=1

∣

∣µm+L(Bk+L)− µm(Bk)
∣

∣+M
m
∑

k=1

∣

∣fk+L − fk

∣

∣

+ f̃2

m
∑

k=1

µm+L(Bk) + µn(Cn)
∣

∣fn

∣

∣+ µm(Cm)
∣

∣fm

∣

∣.

Then by Lemmas 5.1, 5.2, 5.3 and 5.4 we have that given any ε′ one can find a N such
that

∣

∣

∣

∣

∫

[0,1]
fdµn −

∫

[0,1]
fdµm

∣

∣

∣

∣

≤
(

f̃1 +M + f̃2 +
∣

∣fn

∣

∣+
∣

∣fm

∣

∣

)

ε′

for all n,m > N . Where N is the maximum out of the following set of integers,

N := max{N1(ε
′), N2(ε

′), N3(ε
′), N4(ε

′)},
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the specific integers given in the lemmas 5.1, 5.2, 5.3 and 5.4,

N1(ε
′) =

∣

∣

∣

∣

log(ε/Jβ)

βα− h

∣

∣

∣

∣

, N2(ε
′) =

⌊
∣

∣

∣

∣

log (ε/6KL)

log(3)

∣

∣

∣

∣

⌋

+ 1,

N3(ε
′) =

∣

∣

∣

∣

log

(

εG1
2K1

2(K1 + 2)

)
∣

∣

∣

∣

, N4(ε
′) =

∣

∣

∣

∣

log (εK1)

βα

∣

∣

∣

∣

.

Finally by making F := max{f̃1, f̃2,
∣

∣fn

∣

∣,
∣

∣fm

∣

∣}, the maximum of the averages of f
and observing that M ≤ 1, we have that

∣

∣

∣

∣

∫

[0,1]
fdµn −

∫

[0,1]
fdµm

∣

∣

∣

∣

≤ (1 + 4F ) ε′.

Thus, choosing ε′ as ε/ (1 + 4F ) we prove that the sequence {µn(f)} is a Cauchy
sequence. It remains to prove that the measure is concentrated at the Cantor set, but
this is a consequence of lemmas 5.1, 5.3 and 5.4.

6. Proofs of the technical lemmas

6.1. Proof of lemma 5.1.

Recall that we are in the case where β > βc. In order to estimate the lower bound for
µβ,n(Ck) for a given Ck and n, observe that for n > k one has that

Ck =

(

n
⋃

m=k+1

Bm

)

∪ Cn,

which implies that {Bm}nm=k+1 ∪ {Cn} is a partition of Ck. Then, µβ,n(Ck), can be
written as follows,

µβ,n(Ck) =
n
∑

m=k+1

∫

Bm

e−βψn(x)

Zβ,n
dx+

∫

Cn

e−βψn(x)

Zβ,n
dx.

Since ψn(x) is constant on each element of the partition, ψn(x) = Am for all x ∈ Bm

and that ψn(x) = 0 for all x ∈ Cn, then, it is clear that

µβ,n(Ck) =
1

Zβ,n

n
∑

m=k+1

eβAm((Bm) +
((Cn)

Zβ,n
.

Recall that h was defined so that, ((Bm) = 1
2e

−hm, and ((Cn) = e−hn. Also recall
that Ak = αk, then we have

µβ,n(Ck) =
1

Zβ,n

1

2

n
∑

m=k+1

e(βα−h)m +
e−hn

Zβ,n
.

From the proposition 3.1, the partition function Zn can be written explicitly as

Zβ,n =
1

2

n
∑

m=1

e(βα−h)m + e−hn.

Then we have that

µβ,n(Ck) =
1
2

∑n
m=k+1 e

(βα−h)m + e−hn

1
2

∑n
m=1 e

(βα−h)m + e−hn

= 1−
1
2

∑k
m=1 e

(βα−h)m

1
2

∑n
m=1 e

(βα−h)m + e−hn
.
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Next, for the moment, let us focus in obtaining a bound for the quotient of
geometric series in the previous equation. First of all, for the sake of clarity, let us
denote by b the difference βα− h and observe that

k
∑

m=1

e(βα−h)m =
eb(k+1) − eb

eb − 1
=

ebk − 1

1− e−b
<

1

1− eb
ebk,

where the inequality is valid for all k ≥ 1 and all b > 0, which is actually the case,
since β > βc. Analogously it is also clear that,

n
∑

m=1

e(βα−h)m =
ebn − 1

1− e−b
.

Letting K1 := 1
1−e−(βα−h) , we have that

1
2

∑k
m=1 e

(βα−h)m

1
2

∑n
m=1 e

(βα−h)m + e−hn
<

K1ebk

K1(ebn − 1) + 2e−hn

=
K1e−b(n−k)

K1(1− e−bn) + 2e−(h+b)n
.

Let us consider, the function

g(n) :=
K1

K1(1 − e−bn) + 2e−(h+b)n
,

it is not difficult to see that g(n) is non negative and bounded above for all n ∈ N

and b > 0. The value of n minimizing g is non-trivial (it is not necessarily n = 1 or
n = ∞) because g varies non-monotonically with n. Thus, let us denote by Jβ the
optimal upper bound for g,

Jβ := sup
n∈N

{

K1

K1(1− e−bn) + 2e−(h+b)n

}

.

Thus we have that
1
2

∑k
m=1 e

(βα−h)m

1
2

∑n
m=1 e

(βα−h)m + e−hn
< Jβe

−b(n−k) = Jβe
−(βα−h)(n−k),

for every n > k and all b > 0 (that is, for β > βc := h/α). This result allows us to see
that

µβ,n(Ck) = 1−
1
2

∑k
m=1 e

(βα−h)m

1
2

∑n
m=1 e

(βα−h)m + e−hn
> 1− Jβe

−(βα−h)(n−k).

The above result implies that, if we require that µβ,n(Ck) > 1 − ε for a given ε it is
necessary that

n > N := k +

∣

∣

∣

∣

log(ε/Jβ)

βα− h

∣

∣

∣

∣

,

which proves the lemma.
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6.2. Proof of the corollary 5.1

Let us consider the set CL :=
(

⋃L
k=1 Bk

)c
, for L ∈ N. Now take the measure of Cc

L

with respect to µβ,m+L (we remind that β > βc),

µβ,m+L (Cc
L) = µβ,m+L

(

L
⋃

k=1

Bk

)

=
L
∑

k=1

µβ,m+L(Bk) = 1− µβ,m+L (CL) .

Since all the sets Bk are pairwise disjoint. By Lemma 5.1 we have that for every ε > 0
there is a N ′ such that

ε > 1− µβ,m+L(CL) =
L
∑

k=1

µβ,m+L(Bk), (11)

for all m+L > N ′ and every L ∈ N. The proof of Lemma 5.1 states that the value of
N ′ is given by

N ′ := L+

∣

∣

∣

∣

log(ε/Jβ)

βα − h

∣

∣

∣

∣

.

Therefore we have that the inequality (11) is valid for all m such that

m+ L > L+

∣

∣

∣

∣

log(ε/Jβ)

βα− h

∣

∣

∣

∣

.

This means that choosing N as

N :=

∣

∣

∣

∣

log(ε/Jβ)

βα− h

∣

∣

∣

∣

,

then the corollary is true, concluding the proof.

6.3. Proof of lemma 5.2

First let us observe that for every n > m, the set Bn ⊂ Cm, and clearly Cm ⊂ Cm−1.
By definition the sets Cm−1 and alsoBm both have 2m subintervals. We will enumerate
them as follows, Cm−1,i and Bm,i where i = 1, . . . , 2m−1. Notice that the analogous
decomposition into 2n−1 subintervals can be achieved for the set Bn (instead of Bm).

Next, let us for the moment consider the integral of f(x) over the set Bm, which
because of the disjointness of the subintervals Bm,i’s, one has that

1

((Bm)

∫

Bm

f(x)dx =
1

((Bm)

2m
∑

i=1

∫

Bm,i

f(x)dx.

Now, given that f is continuous and the integral is taken with respect to Lebesgue,
there is no measure contribution at the end points of every subinterval, so we can take
the integral over Bm, the closure of Bm, and thus we can make use of the mean value
theorem for integrals, by which for every j, there exists a y∗m,j ∈ Bm such that

1

((Bm)

∫

Bm

f(x)dx =
1

((Bm)

2m
∑

i=1

∫

Bm,i

f(x)dx =
1

((Bm)

2m−1
∑

i=1

f(y∗m,j)((Bm,j).

One can write an analogous expression for the integral over Bn. Next, for every
i = 1, . . . , 2m−1, let us choose arbitrarily but then fixed, a x∗

i ∈ Cm−1,i, so we can
write,
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∆ :=
∣

∣

∣

1

((Bn)

∫

Bn

f(x)dx −
1

((Bm)

∫

Bm

f(x)dx
∣

∣

∣

=
∣

∣

∣

1

((Bn)

2n−1
∑

k=1

f(z∗n,k)((Bn,k)−
1

2m−1

2m−1
∑

i=1

f(x∗
i ) +

1

2m−1

2m−1
∑

i=1

f(x∗
i )

−
1

((Bm)

2m−1
∑

i=1

f(y∗m,i)((Bm,i)
∣

∣

∣
.

Which, by explicitly write the length of the sets, is equals to:

∆ =
∣

∣

∣

1

2n−1

2n−1
∑

k=1

f(z∗n,k)−
1

2m−1

2m−1
∑

i=1

f(x∗
i ) +

1

2m−1

2m−1
∑

i=1

f(x∗
i )−

1

2m−1

2m−1
∑

i=1

f(y∗m,i)
∣

∣

∣
.

By the triangle inequality,

∆ ≤
∣

∣

∣

1

2n−1

2n−1
∑

k=1

f(z∗n,k)−
1

2m−1

2m−1
∑

i=1

f(x∗
i )
∣

∣

∣
+
∣

∣

∣

1

2m−1

2m−1
∑

i=1

f(x∗
i )−

1

2m−1

2m−1
∑

i=1

f(y∗m,i)
∣

∣

∣
.(12)

We continue by estimating an upper bound for each part. Take first the second one,
and let K be the Lipschitz constant of f so one has that,

∣

∣

∣

1

2m−1

2m−1
∑

i=1

f(x∗
i )−

1

2m−1

2m−1
∑

i=1

f(y∗m,i)
∣

∣

∣
≤

1

2m−1

∑

i

∣

∣f(x∗
i − f(y∗m,i)

∣

∣

≤
1

2m−1

∑

i

K|x∗
i − y∗m,i| ≤

K

3m−1
.

It remains to find an upper bound for the first part of equation (12). Observe that we
may write it as follows,

∣

∣

∣

1

2n−1

2n−1
∑

k=1

f(z∗n,k)−
1

2m−1

2m−1
∑

i=1

f(x∗
i )
∣

∣

∣
=

∣

∣

∣

1

2m−1

2m−1
∑

i=1

1

2n−m

i(2n−m)
∑

j=(i−1)(2n−m)+1

f(z∗n,j)−
1

2m−1

2m−1
∑

i=1

f(x∗
i )
∣

∣

∣
.

Notice that the summation over j involves those values of z∗n,j belonging to the set
Cm,i. This means that all the z∗n,j in the summation are as near to x∗

i as 3−m+1

because x∗
i ∈ Cm−1,i. Now let us consider the part inside the sum over the j index in

the expression above. For each i fixed, we define f̃i as the average function

f̃i :=
1

2n−m

∑

j

f(z∗n,j).

Since f is continuous in general, but specifically on every Cm−1,i, as a consequence of
the Intermediate value theorem, there must exist a z̃i ∈ Cm−1,i such that f(z̃i) = f̃i.
And thus, one may write,
∣

∣

∣

1

2m−1

∑

i

1

2n−m

∑

j

f(z∗n,j)−
1

2m−1

∑

i

f(x∗
i )
∣

∣

∣
≤

1

2m−1

∑

i

∣

∣

∣

∑

j

f(z∗n,j)− f(x∗
i )
∣

∣

∣
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=
1

2m−1

∑

i

∣

∣

∣
f(z̃i)− f(x∗

i )
∣

∣

∣
≤

1

2m−1

∑

i

K|z̃i − x∗
i |

≤
1

2m−1
K
∑

i

max{|z∗n,j − x∗
i |} ≤

K

3m−1
.

Therefore, putting both parts together, one has that ∆ ≤ 2K
3m−1 , so by choosing a m

sufficiently large one proves the lemma.

6.4. Proof of lemma 5.3

Given n > m and l = 1, . . . ,m. Consider the measures µβ,n (Bn−l) and µβ,m (Bm−l)
associated to the finite-step potential n and m of the sets Bn−l and Bm−l, respectively.
By the definition, one has that,

∣

∣µβ,n (Bn−l)− µβ,m (Bm−l)
∣

∣ =
1

2

∣

∣

∣

∣

e(βα−h)(n−l)

Zβ,n
−

e(βα−h)(m−l)

Zβ,m

∣

∣

∣

∣

.

For the sake of brevity, let us define b := βα − h > 0, by hypothesis; since
β > βc = h/α. So we may write that

∣

∣µβ,n (Bn−l)− µβ,m (Bm−l)
∣

∣ =
1

2

∣

∣

∣

∣

ebn

Zβ,n
−

ebm

Zβ,m

∣

∣

∣

∣

e−bl. (13)

Now, let K1 := 1
1−e−b , so we can also write the partition function Zβ,n as follows:

Zβ,n =
1

2

n
∑

k=1

ebk + e−hn = K1e
bn + e−hn.

Using the expression above we have that

1

2

∣

∣

∣

∣

ebn

Zβ,n
−

ebm

Zβ,m

∣

∣

∣

∣

=

∣

∣

∣

∣

ebn

K1(ebn − 1) + 2e−hn
−

ebm

K1(ebm − 1) + 2e−hm

∣

∣

∣

∣

=

∣

∣

∣

∣

1

K1 −K1e−bn + 2e−(h+b)n
−

1

K1 −K1e−bm + 2e−(h+b)m

∣

∣

∣

∣

=

∣

∣

∣

∣

K1(e−bn − e−bm)− 2(e−βαn − e−βαm)

(K1 −K1e−bn + 2e−βαn) (K1 −K1e−bm + 2e−βαm)

∣

∣

∣

∣

.

Next we define the function g1 : N → R as follows

g1(k) := K1 −K1e
−bk + 2e−βαk,

which is a bounded above non-negative function. The latter means that g1 attains an
infimum, which we denote by G1, such that 0 < G1 < ∞. So we are able to give the
following estimate

1

2

∣

∣

∣

∣

ebn

Zβ,n
−

ebm

Zβ,m

∣

∣

∣

∣

≤
1

G2
1

∣

∣G1(e
−bn − e−bm)− 2(e−βαn − e−βαm)

∣

∣

≤
1

G2
1

K1

∣

∣e−bn − e−bm
∣

∣+ 2
∣

∣e−βαn − e−βαm
∣

∣

≤
1

G2
1

(K1 + 2)
∣

∣e−bn − e−bm
∣

∣,



Freezing phase transition in a fractal potential 20

since b = βα − h. Therefore, from (13), the last inequality and making the sum over
the index l, one has

L−1
∑

l=0

∣

∣µβ,n
(

Cn−l

)

−
∣

∣µβ,m
(

Cm−l

)
∣

∣e−bl ≤
L−1
∑

l=0

1

G2
1

(K1 + 2)
∣

∣e−bn − e−bm
∣

∣e−bl

≤
1

G2
1

(K1 + 2)
(
∣

∣e−bn
∣

∣+
∣

∣e−bm
∣

∣

)

(

1− e−bL

1− e−b

)

≤
2(K1 + 2)

G2
1

K1e
−bm.

Observe from the previous expression that takingm larger than the following quantity,
which we define by N ,

N :=

⌈
∣

∣

∣

∣

log

(

εG2
1K1

2(K1 + 2)

)
∣

∣

∣

∣

⌉

,

then one assures that
L−1
∑

l=0

∣

∣µβ,n (Bn−l)− µβ,m (Bm−l)
∣

∣ < ε,

which proves the lemma.

6.5. Proof of lemma 5.4

By definition of the measure µβ,n(Cn) of the set Cn, we have that,

µβ,n(Cn) =
e−hn

Zβ,n
.

Since Zβ,n can be written explicitly as,

Zβ,n = K1e
(βα−h)n + e−hn,

(cf. proof of Lemma 5.3) then it is clear that

µβ,n(Cn) =
e−hn

K1e(βα−h)n + e−hn
=

1

K1eβαn + 1
<

e−βαn

K1
.

Given ε, one can take,

N := −
log (εK1)

βα

and thus, for all n > N , we have that

µβ,n(Cn) < ε

which proves our claim.
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