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Abstract

A numerical calculation for the stationary magnetic field produced by arrangements of non-concentric
and non-coplanar loop current circuits is presented. The calculation is done by superposing the solution
of the magnetic field produced by a set of loops with constant currents that mimic two and three
dimensional systems. In the three dimensional cases, this is achieved by rotating the magnetic field
produced by the non-coplanar loops and adding all the contributions at any arbitrary point in the
space. We report the case of two coplanar non-concentric loops that do not overlap and two concentric
coplanar rings with di↵erent radii carrying currents in the same and opposite directions. Then we
consider two non-coplanar rings that are tilted by an angle. More complicated systems consist of a set
of loops forming a semi-doughnut. As an extension, we add at the two ends of this system concentric
loops to form a horseshoe magnet with a circular cross-section and analyze the results as a function of
its geometric characteristics. We can calculate the solutions of the magnetic field in all the space and
plot their field lines using a technique that makes use of the Runge-Kutta fourth-order method. In all
the cases we plot with di↵erent colors the field lines to give information on their strength.

Keywords: Magnetic field; non-concentric loops; numerical calculation of non-concentric current loops.

Introduction

In a recent publication, we reported the calculation of the magnetic fields produced by homogeneously
charged objects with axial symmetry, rotating along their symmetry axis [1]. We took advantage of the
superposition principle to calculate the magnetic field produced by the objects, assuming that they are
made of a set of circular loops. We superposed the analytic solution of all the loops to obtain the magnetic
field in all the space. Furthermore, in all the examples some of the magnetic field lines were drawn using
a numerical Runge-Kutta fourth order method [2].

The cases reported were a rotating disk; a hollow sphere, where the internal magnetic field is strictly
homogeneous; ellipsoids with various eccentricities; cylinders, capped and uncapped in which we combine
the solution of a hollow cylinder with one disk at one end or capped at both ends; and an object composed
by two spheres and a cylinder. Similar problems have been the subject of various recent publications [3,
4, 5].
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All the cases mentioned have azimuthal symmetry and the problem reduces to sum the contribution
of concentric loops with particular radii and electric currents. In this paper, we go a step further and
use the superposition principle to calculate the magnetic field produced by a set of circular current loops
that are non-concentric and/or non-coplanar. The simplest examples consist of two non-overlapping loops
on the same plane with the same radii and two concentric coplanar circuits with di↵erent radii, in both
cases we assume that the loops carry equal currents flowing in the same or opposite directions as shown
in figures 1 and 2. Then, we present the case of loops with the same radii but tilted an angle ⌘ one with
respect to the other and being part of a doughnut. To calculate the magnetic fields in this example, we
calculate the magnetic field of one loop, rotate the vector field ~B by an angle ⌘ and sum the contributions
of one loop on the xy-plane and the other that is tilted. As pointed out in a publication at the beginning
of this millennium, Grivich and Jackson [6] noticed that to rotate a vector field one must apply a vector
field operator, which transforms vector fields the way a rotation matrix transforms scalar fields. They
applied this operation to calculate the magnetic field produced by a current flowing along a regular n-sided
polygon.

We also discuss the case of rings forming a half-doughnut, i.e. a set of n loops tilted by an angle ⇡/n
following that geometry. Finally a horseshoe magnet is modeled by a set of circular loops added to the
two ends of the half-doughnut. In all the cases, we calculate the magnetic field along particular directions
and plot the magnetic field lines using the Runge-Kutta method; we plot the lines with di↵erent colors
to give an idea of the magnetic field strength.

For completeness, in section 1 we recall the well known calculation of the magnetic field produced by
a single loop with radius a, that carries a stationary current I. In section 2 we present the case of two
coplanar non-concentric and non-overlapping loops with the same radii and carring stationary currents of
the same magnitude I, flowing in the same and opposite directions. In section 3 we analyze the rotation
of a vector field, and we study the magnetic fields produced by various arrangements that are part of a
cylindrical cross-section horseshoe; first we study two loops whose planes are tilted by an angle ⌘ = ⇡/4
and their centers are in a circle of radius 2a. Next we consider a set of five loops that form a half doughnut
and finally we add pairs of loops to model the horseshoe with circular cross section. Finally, in section 4
we present our conclusions.

1 The magnetic field produced by a current in a circular loop

Since all our discussion and results are based on the magnetic field of a circular loop carrying an stationary
electric current I, throughout the discussion we will use cylindrical coordinates (⇢, z,�).

As it is well known, the magnetic field produced at any point of the space, ~r(⇢, z), by a circular loop
of an infinitely thin wire located at the xy plane, with radius a, centered in the origin and in which an
stationary electric current I is flowing, is independent of � and the polar components of the ~B field are
given by the following equations [7]:

B⇢ = B0
�

⇡
p
�


1 + ↵2 + �2

� � 4↵2
E(k2)�K(k2)

�
, (1)

Bz = B0
�

⇡
p
�


1� ↵2 � �2

� � 4↵2
E(k2)�K(k2)

�
, (2)

where,

↵ =
⇢

a
,� =

z

a
, � =

z

⇢
, B0 =

µ0I

2a
, � = (1 + ↵)2 + �2 , k2 =

4↵

�
. (3)

K and E are the complete elliptic integrals of first and second kind, respectively.
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Equation (2) could be written as the well known expression:

Bz =
µ0Ia2

2(a2 + z2)3/2
. (4)

Notice that the magnetic filed lines can be characterized by

d~r

ds
= B̂(~r) , (5)

where ds is a di↵erential distance along the line and B̂(~r) is a unit vector along the field. Equation (5)
can be expressed in terms of the polar components, as

d⇢

ds
=

B⇢

B
, ⇢

d�

ds
=

B�

B
,

dz

ds
=

Bz

B
, (6)

where B⇢, B� and Bz are the cylindrical components of the magnetic field. Equation (6) gives place to
an ordinary di↵erential coupled equations. To solve it, we make use of the fourth order Runge-Kutta
method. Its solution defines the field line curves in three-dimensional space. For more details the reader
is referred to Ref. 1.

2 The magnetic field of two coplanar non-concentric loops

In this section we calculate the magnetic field produced by two non-concentric coplanar loops with radius
a, carrying an stationary current I in both, the same and opposite directions. The two loops are on the
xy-plane, the origin of the coordinate system is located at the center of the left-hand loop and the center
of the second loop we choose it at (0, 4a, 0).

The magnetic field produced by the first loop is given by equations 1 to 3. The second one is obtained
by translating the center of the loop to (0, 4a, 0). The total field in each point of the space, is simply
the superposition of the contributions of both magnetic fields. Figure 1(a) shows the field lines on the
yz-plane produced by the two loops carrying a current in the same direction. In this case, the magnetic
field along the line perpendicular to the y-axis that crosses at y = 2a, ~Bz(0, 2a, z), is parallel to the z-axis
and di↵erent from zero everywhere, except for two symmetric points above and below the y-axis. At
those points the magnetic field produced by both rings cancels each other, this means Bx(0, 2a, z) = 0
and By(0, 2a, z) = 0.

Figure 1(c) shows the dependence of Bz(0, y, 0) as a function of y for the range �2a  y  6a. In this
case, for large negative values the field is small and negative. As the y values reach the ring border, the
field increases and diverges at y = �a. For values inside the ring, Bz acquires large positive values and
decreases to the value close to Bz = B0 = µ0I/2a. The discontinuities at the ring boundaries, arise from
the 1/r dependence of the magnetic field produced by a linear wire. From one side of the ring it is positive,
and negative from the other side. In the space between the rings, apart from the edge discontinuities,
the magnetic field is small and almost uniform for a long range with a minimum value at y = 2a. The
magnetic field for values y > 2a has the same characteristics to the one described for the left ring.

It is worth mentioning that the diverging form of Bz shown in the figures 1(c) and 2(c), is physically
meaningless due to the fact that the solution is valid only far enough from a real current carrying wire.
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(a)

(b) (c)

Figure 1: (a) Some of the field lines on the yz-plane, produced by two non-concentric coplanar loops with
the same radii a, carrying a stationary current I in the same direction. The strength of the magnetic
field is denoted by a di↵erent color, being red (green) the most (less) intense. (b) The dependence of
z-component of the magnetic field as a function of z for the range �4a  z  4a. The z-values were taken
along the line perpendicular to the y-axis that crosses at y = 2a. (c) The dependence of Bz(0, y, 0) as a
function of y for the range �2a  y  6a. The center of the loops are located at y = 0 an y = 4a.

The magnetic field lines for the case in which the currents of the two rings flow in opposite directions
is shown in figure 2(a). Comparing these field lines with those of figure 1(a), the di↵erence between
both cases is clear. In the case of opposite current flows, Bz = 0 along the whole line (0, 2a, z) but
the component By along the same line is di↵erent from zero except at z = 0. The z dependence of the
magnetic field is shown in figure 2(b). It has negative values as one approaches the xy-plane from negative
z values, acquires its minimum value and then changes its sign at z = 0. For positive values of z, the
magnetic field increases to a maximum value and then decreases for larger values. In figure 2(c) we show
the y dependence of Bz for the same range of y values as figure 1(c). The discontinuities at the rim
values are present and follow the direction of the right hand rule. In the point between the two rings the
magnetic field vanishes.
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(a)

(b) (c)

Figure 2: (a) Some of the field lines on the yz-plane, produced by two non-concentric coplanar loops with
the same radii a, carrying a stationary current I in opposite directions. The strength of the magnetic
field is denoted by a di↵erent color, being red (green) the most (less) intense. (b) The dependence of
y-component of the magnetic field as a function of z for the range �4a  z  4a. The z-values were taken
along the line perpendicular to the y-axis that crosses at y = 2a. (c) The dependence of Bz(0, y, 0), as a
function of y for the range �2a  y  6a.

3 Rotation of vector fields

Here we outline the theory to calculate the magnetic field ~B that is produced by a loop of radius a carrying
an stationary current I, which lies on a plane that is tilted an angle ✓ around the x axis, as illustrated
in figure 3(a). The coordinate system in which the loop lies is called x0y0z0. The goal is to calculate the
magnetic field in the xyz coordinate system.

We proceed as follows: First we rotate the x0y0z0 arround the common x and x0 direction by an angle
�✓, such that the two coordinate systems coincide and the loop is on the xy plane. This means that we
rotate the tilted loop to finally set it on the xy-plane (figure 3(b)). The relationship between the tilted
coordinates and the original ones are given by

x0 = x,

y0 = y cos(✓) + z sin(✓),

z0 = z cos(✓)� y sin(✓).

Now one can calculate the field components (Bx, By, Bz) that corresponds to the loop on the plane
xy. The component Bz is given by equation (2) and the components Bx and By are given in terms of
B⇢ by

Bx = B⇢ sin(�),

By = B⇢ cos(�),

with � = arctan(y/x).

5

Page 5 of 12 AUTHOR SUBMITTED MANUSCRIPT - EJP-103859.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



Thus, the magnetic field ~B0 in the original system produced by the tilted loop (figure 3(c)), can
be obtained by performing an inverse rotation of the field components (Bx, By, Bz) through the next
transformations:

B0
x(x, y, z) = Bx(x

0, y0, z0)

B0
y(x, y, z) = By(x

0, y0, z0) cos(✓)�Bz(x
0, y0, z0) sin(✓),

B0
z(x, y, z) = By(x

0, y0, z0) sin(✓) +Bz(x
0, y0, z0) cos(✓),

(a) (b) (c)

Figure 3: Procedure to calculate the magnetic field ~B that is produced by a loop which is tilted an angle
✓ around the x axis (a). The system is tilted by an angle �✓ and the field components (Bx, By, Bz),
that corresponds to the loop on the plane xy, are calculated (b). Finally, the magnetic field in the
original system, produced by the tilted loop, can be obtained by performing an inverse rotation of the
field components (c).

Finally, by using the superposition principle, we can calculate the magnetic filed of systems made of
two non-coplanar rings, as one lying on the xy-plane and the other, tilted by an angle ✓ around the x
axis.

3.1 Two non-coplanar and non-concentric rings

We now apply the theory to two non-coplanar and non-concentric circular loops with radii a and carrying
an stationary current I in the same direction. These two rings follow the geometry of a doughnut; i.e.
the centers of the two rings lie on the internal circle of the doughnut. We choose ✓ = ⇡/4 for the angle
between the two ring planes.

In figure 4 we show some magnetic field lines and the magnetic dipole at the center of each loop. If
the field line is close to one of the rings and in the space where the two rings are far apart, they follow
the normal circular path along the ring (path a). If the line is close to the region where the two rings are
close, the magnetic fields produced by the two conductors add to generate a path that is a distorted circle
(path c). For regions that are not to close to the rings and where they are more separated, the field line
follows a complicated path in the form of a number eight in which the extreme parts follow a semicircle
(paths b).
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Figure 4: Some magnetic field lines produced by two non-coplanar and non-concentric circular loops
carrying a current in the same direction. The centers of the two rings lie on a circle. The angle between
the two ring planes is ⇡/4. The blue arrows denote the magnetic moment of each loop.

3.2 A semi-doughnut system

We model now a semi-doughnut with five circular rings arranged in a geometry such that the centers of
the rings are located along a half a circle corresponding to the internal center of a doughnut. The angle
between each pair of neighbor planes containing the rings is, obviously, ⇡/4; in this way we complete a
semi-doughnut with five rings.

The figures 5(a), 5(b) and 5(c) we show some of the magnetic field lines seen from di↵erent perspectives.
In figure 5(a) the central ring lies in the plane perpendicular to the paper sheet and the field lines that
go through this ring are symmetric to it. Note that the di↵erent field strengths are shown with di↵erent
colors (red is intense and green is weak). As expected, the field strength is reduced as one moves close
to the most external part of the doughnut. We also show two field lines that pass only through the two
extreme rings. Viewing the system with the central loop lying on the plane of the view, we obtain the
figure 5(b). The field lines that cross the central ring are also symmetric. In figure 5(c) we show several
field lines that pass along the diameter of the central ring. This case corresponds to a view of the system
rotated along the z-axis by ⇡/4. Here we also observe the obvious reduction of the magnetic field strength
as the lines go into the open space.
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(a) (b) (c)

Figure 5: Some of the magnetic field lines (seen from di↵erent perspectives) produced by five circular
loops with the same radii a, carrying the same current I whose centers lie in a circle. The angle between
each pair of neighbor planes containing the rings is ⇡/4. The blue arrows denote the magnetic moment
of each loop.

3.3 A horseshoe system

We now proceed to model a horseshoe magnet. We take the semi-doughnut discussed above and add to
the extremes two rings along the z-axis equally spaced by a distance a/2. Thus we have a horseshoe with
cylindrical legs. All the rings have the same radii a and carry an stationary current I.

The results for the magnetic field lines that pass through the horizontal diameter line of the top ring
are shown in figures 6(a), 6(b) and 6(c). Figure 6(a) shows the results as seen from a frontal view. A side
view is presented in figure 6(b), where it can be seen how some lines at the extremes extend out of the
horse shoe body. In figure 6(c) we show the field lines from a rotated perspective that shows more clearly
the geometry of the field lines.
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(a) (b) (c)

Figure 6: Some of the magnetic field lines (seen from di↵erent perspectives) produced by a model of
a horseshoe magnet formed by a semi-doughnut and two rings added to the extremes along the z-axis
equally spaced. All the rings have the same radii a and carry the same current I. The blue arrows denote
the magnetic moments associate to each ring. The blue arrows denote the magnetic moment of each loop.

3.3.1 Horseshoe system analysis

Notice that there is a dependence between the number of pairs of rings added to the semi-doughnut to
form the horseshoe and the shape of the field lines. In particular, the field lines close to the inner border
of the last ring bend outwards at di↵erent angles. To show this e↵ect, the field line that passes through
the points with coordinates (0.8a, 0, ze) was calculated, where ze is the z-coordinate of the lowest ring.
We call P1 and P2 the points of the field line (symmetrical with respect to the xz plane) for which the
radius of curvature is minimal (green dots in Fig. 7(a)). Observe that a plane can be defined using P1,
P2 and the point in the field line that is furthest away from the yz plane, P3 (red dot). Furthermore, it
is worth noticing that the horseshoe plane of symmetry is the plane yz and the first loops that complete
the semi-doughnut are in the xy-plane. The angle between the xy-plane and that defined by P1, P2 and
P3 is denoted by ✓.

We estimated the angle between those planes as a function of the number of pair of rings n added to
the semi-doughnut. The space between neighbor pairs is a/2 and n = 0, 1, . . . , 16.
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(a) (b) (c)

Figure 7: Figure (a) shows the positions of the points P1, P2 and P3 (see text), the rings have been drawn
transparent. In Figures (b) and (c) the examples for n = 1 and n = 3, respectively.

Figure 8: The dependence of ✓ on n; the angle between the plane defined by P1, P2 and P3, and the
xy-plane for a horseshoe magnet with legs formed by n pairs of rings added to the semi-doughnut.

In Figures 7(b) and 7(c) we show the plane for n = 1 and n = 3, respectively. The plane for n = 3
is almost parallel to the xy-plane. The dependence on n of ✓ is presented in Figure 8. Observe that the
angle ✓ goes from positive to negative values and tends very rapidly to an asymptotic value as a function
of the length of the horseshoe legs.
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(a) (b)

Figure 9: Some of the magnetic field lines (seen from di↵erent perspectives) produced by ten circular
rings with the same radii a, carrying the same current I, forming a doughnut. The centers of the loops
are located along a circle. The angle between each pair of neighbor planes containing the rings is ⇡/5.
The blue arrows denote the magnetic moment of each loop.

3.4 A doughnut system

The next example corresponds to a doughnut. We construct the system with ten rings, the angle between
two consecutive rings is ⇡/5. All the rings are equivalent and carry an stationary current I in the same
direction.

In figure 9(a) we show some field lines from a top view. All the field lines shown are trapped inside
the doughnut and the strength of the magnetic field diminish as one moves to the external part. The
blue arrows denote the dipole moments of each ring. The most external field lines are wavy curves that
extend outside the doughnut space. This e↵ect is reduced as the number of rings in the system increases.
Figure 9(b) shows the field lines from a non-symmetric perspective presenting the rich geometrical char-
acteristics of the field lines, including the ten-fold symmetry.

4 Conclusions

We have presented a method that allows to obtain the magnetic field produced by non-concentric and non-
coplanar circular loops carrying constant current. For simplicity we assumed, in all the examples, circular
loops with the same radii and carrying the same intensity of the current.Nevertheless, this method can
be applied to any circular loop geometries and parameters by making use of the superposition principle
and performing the necessary tilts of the loops composing the system. In all the cases presented in this
paper, we calculated the magnetic field and, using the four order Runge-Kutta method, we draw some of
the field lines to show their complexity and beautiful geometry.

The examples presented here, help the reader to visualize and appreciate the magnetic field produced
by stationary currents flowing in arbitrary space arrangements of any number of tilted circular loops.
Furthermore, this work could help to enhance the teaching of vectorial transformations in combination
with the superposition principle in magnetic field calculations at both undergraduate and early graduate
level. In addition, the implementation of numerical methods to visualize the field lines, would allow them
to solve more complex examples than those presented in the textbooks.

Systems consisting of any number of tilted loops and arbitrary oriented linear wires can be also studied
by this method. It is to foresee an even more interesting magnetic behavior for these cases.
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