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Abstract. Using the Riesz-Feller fractional derivative, we apply the factorization algorithm to
the fractional quantum harmonic oscillator along the lines previously proposed by Olivar-Romero
and Rosas-Ortiz, extending their results. We solve the non-Hermitian fractional eigenvalue
problem in the k space by introducing in that space a new class of Hermite ‘polynomials’ that
we call Riesz-Feller Hermite ‘polynomials’. Using the inverse Fourier transform in Mathematica,
interesting analytic results for the same eigenvalue problem in the x space are also obtained.
Additionally, a more general factorization with two di↵erent Lévy indices is briefly introduced.

1. Introduction

A type of fractional quantum harmonic oscillator has been first discussed by Laskin in one
of his breakthrough papers [1] on fractional quantum mechanics, but he tackled only a
semiclassical approximation. Since then, several authors have dealt with the spatial fractional
Schrödinger equation with di↵erent types of fractional derivatives and various potentials
presenting contradictory results and arguments [2–7].

Some years ago, Olivar-Romero and Rosas-Ortiz [8] were first ones to apply the factorization
method [9, 10] to a fractional di↵erential equation choosing precisely the fractional quantum
harmonic oscillator as the case study for their considerations. In line with Laskin, they used
the Riesz fractional derivative reporting some interesting results and making suggestions for
future work. This motivated us to proceed with a substantial extension of their results, which
we present in this paper.

In Section 2, we briefly review the factorization method for the standard quantum harmonic
oscillator. In Section 3, where the main results of this work can be found, we present
the factorization algorithm for the fractional quantum harmonic oscillator with Riesz-Feller
derivatives instead of the Riesz ones as employed in [8]. We have been encouraged to work with
the non-Hermitian Riesz-Feller kinetic energy in the Hamiltonian for this case by the recent
physical results reported by Berman and Moiseyev [11] for the same type of Hamiltonian in the
case of impenetrable rectangular potential. In Section 4, we briefly address the factorization
with di↵erent fractional indices, and we end up stating the conclusions of this work.
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2. Factorization of the standard quantum harmonic oscillator revisited

Setting ~ = m = !0 = 1, the eigenvalue problem for the standard Hamiltonian operator of the
quantum harmonic oscillator is

Hh.o. n ⌘

✓
�
1

2

d
2

dx2
+

1

2
x
2

◆
 n = �n n , n = 0, 1, 2 . . . , (1)

where �n is the spectral parameter (dimensionless energy), is a basic quantum mechanical
eigenvalue problems. Suppose we take �0 = ✏, where ✏ is a constant to be specified later.
Then, as will be shown next, �1 = 1 + ✏, �2 = 2 + ✏,..., �n = n + ✏, ..., i.e., for a given � > �0,
the nearest spectral neighbors from below and from above are �� 1 and �+1, respectively, and
one can write (1) in the form

Hh.o. = � . (2)

By means of the factoring operators

a1 =
1p
2

�
�

d
dx + x

�
= �

1p
2
e

x2

2 d
dxe

�x2

2 , (3)

a2 =
1p
2

�
d
dx + x

�
= 1p

2
e
�x2

2 d
dxe

x2

2 , (4)

the Hamiltonian Hh.o. can be expressed as

Hh.o. = a1a2 + ✏ = a
†
a+ ✏, (5)

where ✏ is a factorization reminder known as the factorization constant, which for the quantum
harmonic oscillator is ✏ = 1/2, while the commutator of the factoring operators is [a2, a1] = 2✏ =
1. These factoring operators have been introduced in quantum mechanics by Fock and Dirac
already in the 1930’s, but as complex conjugated expressions of a1 and a2 called creation and
annihilation operators, respectively,

a
† =

1
p
2
(x� ip) ⌘ a1, a =

1
p
2
(x+ ip) ⌘ a2,

where p = �i
d
dx is the quantum mechanical momentum (recall that ~ = 1). Then, a1a2 =

Hh.o. �
1
2 and a2a1 = Hh.o. +

1
2 . Hence, the following intertwining formulas

Hh.o.a1 = a1(Hh.o. + 1), Hh.o.a2 = a2(Hh.o. � 1), (6)

allow an algebraic solution method (factorization algorithm) for the eigenvalue problem (2). If  
is an eigenfunction for eigenvalue �, then the intertwining relationships show that a1 and a2 

are the neighbor eigenfunctions at �+ 1 and �� 1, respectively. The first step of the algorithm
is to find the ground state eigenfunction from the kernel of a2,

a2 0 = 0,
d

dx
e

x2

2  0 = 0,  0 = N0e
�x2

2 ,

for which �0 = ✏ = 1
2 as can be checked in (2). The integration constantN0 is fixed toN0 = 1/ 4

p
⇡

through the normalization condition
R1
�1 | 0|

2
dx = 1.

In the second step, one can find each of the excited eigenfunctions  n, with eigenvalues
�n = n+ 1

2 , by applying n times a1 to  0,

 n = Cn(a1)
n
 0 = Nn(�1)n

✓
e

x2

2
d

dx
e
�x2

2

◆n

e
�x2

2 = NnHn(x)e
�x2

2 , (7)
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where Hn(x) are the Hermite polynomials,

Hn = (�1)n
✓
e

x2

2
d

dx
e
�x2

2

◆n

e
�x2

2 . (8)

The normalization constants Nn = N0/
p
2nn! are obtained by the normalization conditions for

 n.

3. The fractional factorization method

We follow Olivar-Romero and Rosas-Ortiz and consider a pair of operators A↵ and B↵ such that

H↵ ⌘
1

↵

✓
�

d
↵

dx↵
+ x

2

◆
= B↵A↵ + ✏↵, (9)

where the factorization remainder ✏↵ can be either a number (as in the conventional factorization)
or a fractional-di↵erential operator. The parameter ↵ defines the fractional order of the
derivative and is also known as the Lévy stability index because for positive values ↵  2
characterizes the Lévy stable probability distributions, see [1] for more details.

Usually, in fractional quantum mechanics, one works with ↵ in the interval (1,2] because for
↵  1 the Lévy distributions have undefined mean. However, in the factorization method, there
is no essential change in the formal results for subunit values of ↵.

The simplest expressions for the factoring operators are

A↵ =
1
p
↵

 
d
↵/2

dx↵/2
+ x

!
and B↵ =

1
p
↵

 
�

d
↵/2

dx↵/2
+ x

!
. (10)

These are the same as proposed in [8] up to the scaling 1/
p
↵ and provide

B↵A↵ =
1

↵

 
�

d
↵

dx↵
�
↵

2

d
↵/2�1

dx↵/2�1
+ x

2

!
. (11)

Comparing (11) with (9), one obtains

✏↵ =
1

2

d
↵/2�1

dx↵/2�1
, (12)

which shows that for ↵ 6= 2 the factorization remainder ✏↵ is a fractional di↵erential derivative
of order ↵

2 � 1 while the case ↵ = 2 leads to the constant ✏2 = 1/2 and the factoring operators
A2 and B2 reduce to the usual annihilation and creation operators of the standard harmonic
oscillator.

According to the factorization algorithm, we have to solve the kernel equation of A↵,

A↵ 
(↵)
0 (x) = 0 �!

"
d
↵/2

dx↵/2
+ x

#
 
(↵)
0 (x) = 0 . (13)

Since this is a fractional derivative equation, we will solve it in the k-space by taking into account
that the Fourier transform F of the (quantum) Riesz-Feller derivative d

↵
/dx

↵ of a function is
characterized by its specific symbol  ✓

↵

F{d
↵
 (x)/dx↵} := � ✓

↵ �(k),  ✓
↵ = |k|

↵
e
i sgn(k) ✓ ⇡

2 , (14)
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where �(k) = F{ (x)} and ✓ is the skewness (asymmetry) parameter. The latter is usually
restricted to numerical values located at the so-called Takayasu–Feller diamond domain, |✓| 
min[↵, 2� ↵] [11]. The factoring operators in the k dual coordinate are

Ak,↵ =  ✓
↵/2 + i

d

dk
, Bk,↵ =  ✓

↵/2 � i
d

dk
, (15)

and the kernel solution of Ak,↵ is the function

�
(↵)
0 (k) = exp

 
�
|k|

↵/2+1

↵/2 + 1

!
, (16)

as shown in Appendix A. We will call this ground state wave–function in the dual k coordinate
as the sub-Gaussian function for any ↵ < 2 which turns Gaussian for ↵ = 2. All the other
excited states are obtained by the repeated usage of the creation operator Bk,↵. For example,
the first three excited state in the k coordinate will be

�
(↵)
1 (k) = Bk,↵�

(↵)
0 (k) = 2i sgn(k) |k|

↵
2 �

(↵)
0 , (17)

�
(↵)
2 (k) = Bk,↵�

(↵)
1 (k) =


↵|k|

↵
2 �1

� 4|k|↵
�
�
(↵)
0 , (18)

�
(↵)
3 (k) = Bk,↵�

(↵)
2 (k) = i sgn(k)


� 8|k|

3↵
2 + 6↵|k|↵�1

� ↵
�
↵
2 � 1

�
|k|

↵
2 �2

�
�
(↵)
0 . (19)

The eigenfunctions in the x coordinate can be obtained by performing the inverse Fourier
transforms of the � functions. In Figs. 1 and 2, we present the ground state eigenfunctions
and the first three excited eigenfunctions in the k and x coordinates, respectively. All even
eigenfunctions �2n are real and all the odd eigenfunctions �2n+1 are purely imaginary, but
nevertheless their inverse Fourier transforms,  2n+1, are real.

Regarding the bell-shaped  0 wave–functions as obtained from the fractional sub–Gaussians
�0 for di↵erent values of ↵ by the inverse Fourier transform, they can be expressed analytically
in terms of a small set of generalized hypergeometric functions according to Mathematica. The
explicit expressions of  0 for ↵ = 3/2 and ↵ = 1 are provided in Appendix B. For both �0 and
 0 functions, one can define a degree of non–Gaussianity simply as

⌘̃↵ =
�
(2)
0 � �

(↵)
0

�
(2)
0

= 1�
�
(↵)
0

�
(2)
0

and ⌘↵ = 1�
 
(↵)
0

 
(2)
0

, (20)

respectively. For ↵ = 2, we have ⌘̃2 = ⌘2 = 0. It is easy to calculate ⌘̃↵ and ⌘↵ from

⌘̃↵ = 1� e
|k|2
2 �

(↵)
0 , ⌘↵ = 1� e

x2

2  
(↵)
0 . (21)

Both non-Gaussian deformations are displayed in Fig. 3 for the three illustrative values of ↵
used in this paper. The plots are up to the intersection points with the pure Gaussians, i.e.,
only for positive ⌘̃↵ and ⌘↵, since for the small negative values in the tail regions there are some
numerical problems related to the generalized hypergeometric functions.

In general, one can write

�n(k) = i
n eHn�

(↵)
0 , (22)
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Figure 1. The ‘ground state’ wave–function and the first three excited wave–functions in the k space for ↵ = 2
(red color), ↵ = 3/2 (blue color), and ↵ = 1 (green color). The odd wave–functions are purely imaginary.
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Figure 2. The wave–functions in the x space obtained by inverse Fourier transforms of the wave–functions
from the previous figure.
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Figure 3. Graphs of the non-Gaussian deformations in the k and x spaces for ↵ =1, 3/2 and 2 from top to
bottom, respectively.

where eHn(k) are the fractionally-deformed Hermite ‘polynomials’:

eH0 = 1,

eH1(k) = 2 sgn(k)|k|
↵
2 ,

eH2(k) = 4|k|
2↵
2 � ↵|k|

↵
2 �1

,

eH3(k) = sgn(k)


8|k|

3↵
2 � 6↵|k|

2↵
2 �1 + 2↵

2

�
↵
2 � 1

�
|k|

↵
2 �2

�
,

eH4(k) = 16|k|
4↵
2 � 24↵|k|

3↵
2 �1 + 6↵(↵� 1)|k|

2↵
2 �2

+2↵
2

�
↵
2 � 1

�
|k|

2↵
2 �2

� 2↵
2

�
↵
2 � 1

� �
↵
2 � 2

�
|k|

↵
2 �3

... (23)

that we also call Riesz-Feller Hermite ‘polynomials’. For ↵ = 2, they turn into the standard
Hermite polynomials up to a negative sign for the odd ones, though in the |k| variable. The
first five, leaving aside the trivial case of eH0, are plotted in Fig. 4. Due to the centrifugal type
terms (negative powers) present in their expressions for ↵ < 2, they are singular at the origin
unless eH1 which is only discontinuous there.

The general expression for eHn(k) is

eHn(k) = sgn(k)n
h
2n|k|

n↵
2 � p1(↵)|k|

(n�1)↵
2 �1 + p2(↵)|k|

(n�2)↵
2 �2

�p3(↵)|k|
(n�3)↵

2 �3 + ...+ (�1)n�1
pn�1(↵)|k|

↵
2 �(n�1)

i
, (24)

where pi(↵) are polynomials of order i in ↵ that can be determined from the following counterpart
of the Rodrigues formula

eHn(k) = (�1)nsgn(k)n e
2 |k|

↵
2 +1

↵
2 +1

d
n

dkn
e
�2 |k|

↵
2 +1

↵
2 +1

, (25)

which for ↵ = 2, turns into

eHn(k) = (�1)nsgn(k)n ek
2 d

n

dkn
e
�k2

, (26)
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Figure 4. Graphs of the first five Riesz–Feller Hermite ‘polynomials’ scaled by the inverse square of their
‘degree’ in the k space for ↵ = 1 (top left), 1.5 (top right), 1.95 (bottom left), and 2 (bottom right).

which can be compared with the standard x space formula

Hn(x) = (�1)n ex
2 d

n

dxn
e
�x2

.

Moving to the calculation of the eigenvalues �n(k) in the k space, it can be shown that the
expressions reported in [8] correspond to the asymmetry parameter ✓ = 0, (Riesz derivative). In
particular, the first three eigenvalues are:

�0(k) =
1
2 |k|

↵
2 �1

, (27)

�1(k) =
3
2 |k|

↵
2 �1

�
1
2

�
↵
2 � 1

�
|k|

�2
, (28)

�2(k) =
( 11↵

2 �6)|k|
↵
2 �1�10|k|↵�(↵

2 �1)(↵
2 �2)|k|�2

↵�4|k|
↵
2 +1 . (29)

However, for ✓ = 1 an additional complex term adds up to each eigenvalue. This term is given
by �

 1
↵ � 1

�
|k|

(2n+2)↵2 , n = 0, 1, 2, . . . , (30)

for the even eigenvalues �2n(k) and

�
 1

↵ � 1
�
|k|

(2n+1)↵2 , n = 1, 2, . . . , (31)

for the odd eigenvalues �2n�1(k). This means that all eigenfunctions, including the bell-shaped
sub-Gaussians, correspond to metastable states and we do not expect exceptional points like in
the case of impenetrable rectangular wells [11].
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4. Factorization with operators of di↵erent fractionallity

The use of di↵erent Lévy indices in the factoring operators has been another suggestion in [8].
Although this issue is beyond the scope of this work, here we briefly show how to do it leaving
its full consideration for future work.

Let us consider the following factoring operators

A� = D
�/2 + x, B� = �D

�/2 + x, (32)

where the D’s stand for the derivatives of the indicated Lévy fractional orders. Then, assuming
↵ = �+�

2 , we obtain
H↵ = B�A� + ✏��. (33)

Thus, the remainder operator has the more complicated dissipative form

✏�� =
�

2
D

�/2�1 + x

⇣
D

�/2
�D

�/2
⌘
. (34)

Notice that ✏�� = ✏↵ when � = � ⌘ ↵.
Besides, one can also use the reverted factorization

H↵ = �D
↵ + x

2 = A�B� � ✏�� , (35)

which displays a remainder operator given by

✏�� = �
�

2
D

�/2�1 + x

⇣
D

�/2
�D

�/2
⌘
. (36)

One can see that the second dissipative term is opposite in sign to the corresponding dissipative
term in (34).

Again, for the eigenvalue problems of the factored Hamiltonians, one should work in the
Fourier k-space and come back to the x-space by the inverse Fourier transform. To move
these operators in the k-space, i.e. to obtain their Fourier counterparts, the following Fourier
transforms are needed

F{D
↵
 0(x)} = � ✓

↵�0(k),

F{x
2
 0(x)} = �

d2�0(k)
dk2 ,

F{D
�
2�1

 0(x)} = � ✓
�
2�1

�0(k),

F{xD
�
2 0(x)} = i

d
dk

✓
 ✓

�
2

�0(k)

◆
= i�0(k)

d
dk

✓
 ✓

�
2

◆
+ i ✓

�
2

d�0(k)
dk .

We also need:

d

dk

⇣
 ✓

↵

⌘
=

d

dk


|k|

↵
e
i sgn(k)✓ ⇡

2

�
= ↵|k|

↵�1sgn(k)ei sgn(k)✓
⇡
2 = ↵ sgn(k) ✓

↵�1.

Using the last two equations, we obtain

F{xD
�
2 0(x)} = i

�

2
sgn(k) ✓

�
2�1

�0(k) + i ✓
�
2

d�0(k)

dk
.

Here, we provide the result for the remainder operator ✏̃�� in the Fourier space

✏̃�� = �
�

2
 ✓

�
2�1 + i

✓
� sgn(k)

2
 ✓

�
2�1 + 

✓
�
2

d

dk

◆
�

✓
� sgn(k)

2
 ✓

�
2�1

+ ✓
�
2

d

dk

◆�
.
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5. Conclusion

We have used the quantum Riesz-Feller derivative in the factorization of the fractional quantum
harmonic oscillator as proposed by Olivar-Romero and Rosas-Ortiz in [8]. We have obtained
more results in analytic form as counterparts of the standard factorization of the quantum
harmonic oscillator. We confirm the expressions for the fractional wave–functions in [8] that we
obtain when the value of the asymmetry parameter is taken ✓ = 1. On the other hand, we have
found that the eigenvalues have a supplementary complex term with respect to the formulas for
✓ = 0. Therefore all the ‘eigenstates’ are metastable despite the impenetrability of the parabolic
well. A factorization with di↵erent Lévy parameters has been also sketched up.

Acknowledgement The organizers of the QuantFest-2019 workshop are acknowledged for
the excellent conditions they o↵ered during the event. Both authors wish to thank Dr. Oscar
Rosas-Ortiz for invitation and the occasion to share memories about Bogdan Mielnik. Thanks
are also due to the referee for interesting comments.

Appendix A: E↵ective calculation of �0 for any ↵

The calculation of �0 proceeds as follows. The kernel equation

A↵ 0(x) ⌘
⇣
D

↵/2 + x

⌘
 0(x) = 0

is Fourier transformed by taking into account that the fractional derivative is a (quantum)
Riesz–Feller derivative

F{D
↵/2

 0}+ F{x 0} = 0 �! � ✓
↵/2�0 � i

d�0(k)

dk
= 0.

Separating variables and formally integrating, we obtain

ln�0 = i

Z
 ✓

↵/2dk = i

Z
|k|

↵
2 e

i sgn(k) ✓ ⇡
2 dk.

The integral in the right hand side is evaluated separately for the two possible cases:

(i) k > 0, then |k| = k, sgn(k) = +1.

ln�0 = i

Z
k
↵/2

e
i✓ ⇡

2 dk = ie
i✓ ⇡

2

Z
k
↵/2

dk = ie
i✓ ⇡

2
k

↵
2 +1

↵
2 + 1

.

Let ✓ = 1, then e
i✓ ⇡

2 = i, so

ln�0 = �
k

↵
2 +1

↵
2 + 1

�! �0 = Ce
� k

↵
2 +1
↵
2 +1

.

(ii) k < 0, let k = �p, then p > 0 and |p| = p. Then

ln�0 = �i

Z
|p|

↵/2
e
isgn(�p)✓ ⇡

2 dp = �ie
�i✓ ⇡

2

Z
p
↵/2

dp.

For ✓ = 1:

ln�0 = �

Z
p
↵/2

dp �! �0 = e
� p

↵
2 +1

↵
2 +1

�! �0 = Ce
� (�k)

↵
2 +1

↵
2 +1

.

From (i) and (ii), we conclude that for ✓ = 1:

�0 = Ce
� |k|

↵
2 +1

↵
2 +1

.
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Appendix B:  0 for ↵ = 1 and ↵ = 3/2

For ↵ = 1, the k-space ground state wave-function is

�0 = e
� 2

3 |k|
3/2

.

This is a fractional sub–Gaussian function, whose inverse Fourier transform can be written as
the following summation

 0 =
2X

m=0

a2mx
2m

f2m(�x
6
/62),

where f2m are generalized hypergeometric functions which together with the coe�cients a2m

are:

a0 = 21/3 · 32/3 · �

✓
5

3

◆
, f0 = 2F3

✓
5

12
,
11

12
;
2

6
,
3

6
,
5

6
;�

x
6

62

◆
,

a2 = �
3

2
, f2 = 3F4

✓
3

4
,
4

4
,
5

4
;
4

6
,
5

6
,
7

6
,
8

6
;�

x
6

62

◆

a4 =
7

16
·

✓
3

2

◆1/3

· �

✓
7

3

◆
, f4 = 2F3

✓
13

12
,
19

12
;
7

6
,
9

6
,
10

6
;�

x
6

62

◆
.

For ↵ = 3/2, the k-space ground state wave-function is

�0 = e
� 4

7 |k|
7/4

.

This is a fractional sub–Gaussian function, whose inverse Fourier transform can be written as
the following summation

 0 =
6X

m=0

a2mx
2m

f2m(�x
14
/146),

where f2m are generalized hypergeometric functions which together with the coe�cients a2m are
given next:

f0 = 6F11

✓
11

56
,
18

56
,
25

56
,
39

56
,
46

56
,
53

56
;
2

14
,
3

14
,
4

14
,
5

14
,
6

14
,
7

14
,
9

14
,
10

14
,
11

14
,
12

14
,
13

14
;�

x
14

146

◆
,

a0 =
73 · 74/7

11 · 2 · 21/7 · 32 · 52
�

✓
32

7

◆
,

f2 = 6F11

✓
19

56
,
26

56
,
33

56
,
47

56
,
54

56
,
61

56
;
4

14
,
5

14
,
6

14
,
7

14
,
8

14
,
9

14
,
11

14
,
12

14
,
13

14
,
15

14
,
16

14
;�

x
14

146

◆
,

a2 =
5 · 24/7

23 · 711/14
�
�
�

2
7

�

sin2
�
⇡
7

� sin
�
⇡
14

�

cos
�
3⇡
14

� ,

f4 = 6F11

✓
27

56
,
34

56
,
41

56
,
55

56
,
62

56
,
69

56
;
6

14
,
7

14
,
8

14
,
9

14
,
10

14
,
11

14
,
13

14
,
15

14
,
16

14
,
17

14
,
18

14
;�

x
14

146

◆
,

a4 =
13 · 22/7 · 75/14

27
�
�
6
7

�

sin2
�
⇡
7

� sin
�
⇡
14

�

cos
�
3⇡
14

� ,

f6 = 7F12

✓
35

56
,
42

56
,
49

56
,
56

56
,
63

56
,
70

56
,
77

56
;
8

14
,
9

14
,
10

14
,
11

14
,
12

14
,
13

14
,
15

14
,
16

14
,
17

14
,
18

14
,
19

14
,
20

14
;�

x
14

146

◆
,
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a6 = �
73 · 71/7

28 · 3 · 5
cot
⇣
⇡

7

⌘
tan

⇣
⇡

14

⌘
tan

✓
3⇡

14

◆
,

f8 = 6F11

✓
43

56
,
50

56
,
57

56
,
71

56
,
78

56
,
85

56
;
10

14
,
11

14
,
12

14
,
13

14
,
15

14
,
17

14
,
18

14
,
19

14
,
20

14
,
21

14
,
22

14
;�

x
14

146

◆
,

a8 =
77 · 71/7

19 · 43 · 35 · 53 · 214 · 22/7
�

✓
64

7

◆
,

f10 = 6F11

✓
51

56
,
58

56
,
65

56
,
79

56
,
86

56
,
93

56
;
12

14
,
13

14
,
15

14
,
16

14
,
17

14
,
19

14
,
20

14
,
21

14
,
22

14
,
23

14
,
24

14
;�

x
14

146

◆
,

a10 = �
78 · 72/7

11 · 13 · 17 · 29 · 35 · 53 · 217 · 24/7
�

✓
72

7

◆
,

f12 = 6F11

✓
59

56
,
66

56
,
73

56
,
87

56
,
94

56
,
101

56
;
15

14
,
16

14
,
17

14
,
18

14
,
19

14
,
21

14
,
22

14
,
23

14
,
24

14
,
25

14
,
26

14
;�

x
14

146

◆
,

a12 =
79 · 73/7

112 · 13 · 59 · 73 · 35 · 52 · 224 · 26/7
�

✓
80

7

◆
.

Counter to these expressions, the hypergeometric formula for the Gaussian function is

e
�x2/2 = 1F1

✓
1

2
,
3

2
;�x

2
/2

◆
�

x
2

3
1F1

✓
3

2
,
5

2
;�x

2
/2

◆
, (37)

which can be obtained from the confluent hypergeometric form of the erf function
p
⇡

2
erf(x) =

Z x

e
�t2

dt = x 1F1

✓
1

2
,
3

2
;�x

2

◆
,

the chain rule, and the formula (see, e.g., NIST Handbook of Mathematical Functions)

d

dz
1F1 (a, b; z) =

a

b
1F1 (a+ 1, b+ 1; z) ,

for z = �x
2.
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