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Continuous control for fully-damped mechanical
systems with input constraints: finite-time and

exponential tracking
Griselda I. Zamora-Gómez, Arturo Zavala-Rı́o, Daniela J. López-Araujo, Emmanuel Cruz-Zavala, and Emmanuel

Nuño, Member, IEEE

Abstract—A motion continuous control scheme for fully-
damped mechanical systems with constrained inputs is proposed.
It gives the freedom to choose among finite-time and (local)
exponential convergence through a simple design parameter.
The control objective is achieved from any initial conditions,
for desired trajectories that can be physically tracked avoiding
actuator saturation and loss of motion error dissipation, globally
induced through the aid of the natural damping terms explicitly
considered in the open-loop dynamics. The stability analysis is
based on a strict Lyapunov function and is formally developed
within an appropriate analytical framework that takes into
account the time-varying character naturally adopted by the
closed loop. Simulation tests are further included.

Index Terms—Uniform finite-time tracking, motion continuous
control, mechanical systems, input constraints, strict Lyapunov
function.

I. INTRODUCTION

F INITE-TIME control through continuous feedback has
been a research topic of increasing interest in the last

years. Such an intriguing topic has attracted attention on its
need for a suitable analytical framework around its concep-
tualization and characterization. In this direction, important
contributions have been developed for autonomous systems
in the works of [2], [3], by stating a precise definition of
a finite-time stable equilibrium, a Lyapunov-function-based
criterion for its determination, and a useful characterization
for homogeneous vector fields.

Finite-time stability and stabilization for time-varying vec-
tor fields has evolved more slowly and is still in progress.
Important extensions and generalizations of the previously
cited works from Bhat and Bernstein have been developed for
instance in [9] by stating precise definitions and Lyapunov-
type characterizations for non-autonomous systems. Uniform
stability has been very recently studied within the framework
of homogeneity in [13] where, in particular, the characteriza-
tion of global uniform finite-time stability has been extended
to time-varying vector fields. These contributions show the
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complexity entailed in the non-autonomous case in relation
to the previously cited time-invariant case. For instance, the
existence of a homogeneous Lyapunov function characterized
for autonomous vector fields in [12] does not apply for time-
varying ones, and a similar extension for the latter case does
not exist. Consequently, results based on such a fundamental
work of [12], like the finite-time-stability-preservation approx-
imation approach of [5], do not apply in the non-autonomous
case. Stability/stabilization studies in the time-varying context
shall take into account such important analytical limitations
and consequently entail a more complex analysis.

Finite-time continuous control of mechanical systems has
been treated for instance in [4], [6], [14], [16]. These works
mainly give rise to divers finite-time regulators and are con-
sequently developed within the framework of autonomous
systems. Once we move on to the tracking control problem,
which naturally implies a time-varying closed-loop dynamics,
the stability analysis suffers from the above mentioned im-
possibility to involve analytical tools exclusively addressed
to time-invariant vector fields, and shall consequently be
developed within the framework of non-autonomous systems,
for instance through the use of a suitable strict Lyapunov
function. Strict Lyapunov functions have hardly been very
recently constructed in [4] to support finite-time control of
robot manipulators disregarding input constraints, leaving the
more complex tracking-under-bounded-input case unsolved.

This work gives a solution to the —up to our knowledge—
open problem of (uniform) finite-time tracking continuous
control of constrained-input mechanical systems, under the
consideration of linear damping terms in the open-loop dy-
namics. The proposed approach actually gives the freedom
to choose the type of trajectory convergence, among finite-
time and exponential, through a simple control parameter.
The stability analysis is based on a suitable strict Lyapunov
function, and is formally developed within an appropriate
analytical framework that takes into account the inherent
time-varying nature of the closed loop. The design relies
on the consideration of the natural damping terms, which
are directly involved in the characterization of the subset
of desired trajectories for which the control objective is
achieved from any initial conditions (by ensuring motion
error dissipation globally, as will be made clear later on
in Remark 3.4). Such a characterization further restricts the
choice to desired motions generating open-loop (reaction and
inherent force/torque) terms whose addition remains within the
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actuator bounds; those transgressing such a restriction would
not even be physically possible to be accurately tracked. The
control synthesis thus guarantees the formulated goal through
control signals evolving within pre-specified bound values, in
order to avoid actuator saturation, which leads to one of the
main conceptual differences in the Lyapunov function design
with respect to the approach in [4]. Furthermore, following
the energy shaping plus damping injection methodology, the
approach in [4] focuses on providing sufficient conditions on
the closed-loop potential and dissipation energy functions and,
consequently, the corresponding Lyapunov analysis involves
such conditions leaving the referred energy functions implic-
itly represented, while explicit generalized control expressions
and corresponding design requirements are given here to
solve the considered constrained-input problem, and all the
analytical aspects supporting such a design methodology are
thoroughly developed. Moreover, although the strict Lyapunov
function involved here is inspired from [4], the closed-loop
analysis follows a different procedure, involving complemen-
tary analytical tools. It is worth adding that, while the proposed
approach includes the constant desired trajectory case, the
closed-loop autonomous nature in such a regulation case has
permitted in [16] a different analytical treatment leading to a
more generalized control structure giving rise to more degrees
of design flexibility in benefit of closed-loop performance
improvement (as shown in [16]).

II. PRELIMINARIES

Let X,Y 2 Rm⇥n and x 2 Rn. Throughout this work, Xij

denotes the element of X at its i
th row and j

th column and
xi stands for the i

th element of x. As conventionally, with
m = n, X > 0, resp. X � 0, denotes that X is positive
definite, resp. semidefinite, and X > Y , resp. X � Y , that
X � Y is positive definite, resp. semidefinite. 0n represents
the origin of Rn and In the n ⇥ n identity matrix. We
denote Rn

>0 = {x 2 Rn : xi > 0, i = 1, . . . , n} and
Rn

�0 = {x 2 Rn : xi � 0, i = 1, . . . , n}, while R>0 and R�0

will be used when n = 1. For a subset A ⇢ Rn, @A stands
for its boundary. k · k will conventionally denote the standard
Euclidean norm, i.e. the 2-norm for vectors and induced 2-
norm for matrices. Other p-norms will be denoted k · kp. An
n-dimensional closed ball and an (n� 1)-dimensional sphere,
both of radius c > 0, are denoted Bn

c
and Sn�1

c
, respectively,

i.e. Bn

c
= {x 2 Rn : kxk  c} and Sn�1

c
= {x 2 Rn :

kxk = c}. Let A and E be subsets (with non-empty interior)
of some vector spaces A and E, respectively. For any integer
m � 0, we denote Cm(A; E) the set of continuous functions
from A to E , being m times continuously differentiable when
m is strictly positive (with differentiability at any point on the
boundary of A meant as the limit from the interior of A).
Consider a function h 2 C2(R�0; E). The first- and second-
order rates of change of h are respectively denoted ḣ and ḧ.
For f 2 C1(Rn;R) and g : Rn ! Rn, we denote Dgf the
directional derivative of f along g, i.e. Dgf(x) =

@f

@x
g(x). We

will consider the sign function —sign(·)— to be zero at zero,
and denote sat(·) the standard (unitary) saturation function,
i.e. sat(&) = sign(&)min{|&|, 1}. Fundamental facts that will

be involved in this study are Young’s inequality, i.e. for any
�, 2 (1,1) such that 1

�
+ 1

 
= 1 and any a, b 2 R�0:

ab  a
�

�
+ b

 

 
; Hölder inequality, i.e. for any �, 2 [1,1]

such that 1
�
+ 1

 
= 1 and any x, y 2 Rn: |xT

y|  kxk�kyk ;
and the following properties of p-norms.

Lemma 2.1: For any x 2 Rn, kxkp is nonincreasing in p.
Proof. See Appendix A. ⇤

Remark 2.1: By equivalence of p-norms, for any k ·k� and
k ·k , with � 6=  , there exist constants c̄�, > c�, > 0 such
that c�, kxk  kxk�  c̄�, kxk , 8x 2 Rn. In particular,
by Lemma 2.1, c�, = 1 if � <  and c̄�, = 1 if � >  . 4

A. Mechanical systems
Consider the n-degree-of-freedom (DOF) fully-actuated me-

chanical system dynamics with linear damping effects

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = ⌧ (1)

where q, q̇, q̈ 2 Rn are the position (generalized coordinates),
velocity, and acceleration vectors, H(q) 2 Rn⇥n is the
inertia matrix, C(q, q̇) 2 Rn⇥n is the Coriolis and centrifugal
effect matrix defined through the Christoffel symbols of the
first kind, F 2 Rn⇥n is the (a priori symmetric positive
semidefinite) effect matrix, g(q) = rU(q) with U : Rn ! R
being the potential energy function of the system, and ⌧ 2 Rn

is the external input (generalized) force vector. Some well-
known properties characterizing the terms of such a dynamical
model are recalled here. Subsequently, we denote Ḣ the rate
of change of H; more precisely Ḣ : Rn ⇥ Rn ! Rn⇥n with
Ḣij(q, q̇) =

@Hij

@q
(q)q̇, i, j = 1, . . . , n.

Property 2.1: H(q) is a continuously differentiable positive
definite symmetric matrix function, and actually H(q) �
µmIn —whence kH(q)k � µm— 8q 2 Rn, for some µm > 0.

Property 2.2: The Coriolis and centrifugal effect matrix de-
fined through the Christoffel symbols of the 1st kind satisfies:

2.2.1. Ḣ(q, q̇) = C(q, q̇) + C
T (q, q̇), 8q, q̇ 2 Rn, and conse-

quently z
T
⇥
1
2Ḣ(x, y)� C(x, y)

⇤
z = 0, 8x, y, z 2 Rn;

2.2.2. C(w, x+ y)z = C(w, x)z+C(w, y)z, 8w, x, y, z 2 Rn;
2.2.3. C(x, y)z = C(x, z)y, 8x, y, z 2 Rn;
2.2.4. kC(x, y)k  #(x)kyk, 8x, y 2 Rn, for some # : Rn !

R�0.
We consider the bounded input case, where the absolute

value of each input ⌧i is constrained to be smaller than a given
saturation bound Ti > 0, i.e. |⌧i|  Ti, i = 1, . . . , n. More
precisely, letting ui represent the control variable (controller
output) relative to the i

th degree of freedom, we have that

⌧i = Tisat(ui/Ti) (2)

Assumption 2.1: The inertia matrix is bounded, i.e.
kH(q)k  µM , 8q 2 Rn, for some µM � µm > 0.

Assumption 2.2: #(·) in Property 2.2.4 is bounded; conse-
quently kC(x, y)k  kCkyk, 8x, y 2 Rn, for some kC � 0.

Assumption 2.3: The conservative (generalized) force vector
g(q) is bounded, or equivalently, every one of its elements,
gi(q), i = 1, . . . , n, satisfies |gi(q)|  Bgi, 8q 2 Rn, for
some Bgi > 0.
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Assumption 2.4: The damping effect matrix F is symmetric
positive definite, and consequently fmkxk2  x

T
Fx 

fMkxk2, 8x 2 Rn, for some constants fM � fm > 0.
Assumption 2.5: Ti > Bgi, 8i 2 {1, . . . , n}.
Assumptions 2.1–2.3 apply e.g. for manipulators having

only revolute joints [7]. Assumption 2.4 is coherent with the
dissipative nature of the damping term F q̇ in (1) [10].

B. Uniform finite-time stability
Consider an n-th order non-autonomous system

ẋ = f(t, x) (3)

where f : R�0 ⇥ D ! Rn is continuous, D ⇢ Rn is a
domain that contains the origin x = 0n, and f(t, 0n) = 0n,
8t � 0. We denote x(t; t0, x0) —or simply x(t) whenever
convenient or clear from the context— a solution of (3) with
initial condition x(t0; t0, x0) = x0 2 D at initial time t0 � 0,
and S(t0, x0) is the set of all solutions x(t; t0, x0) starting
from (t0, x0) 2 R�0 ⇥D.

Definition 2.1: [9] The equilibrium point x = 0n of (3) is
• weakly finite-time stable if:

1) it is Lyapunov stable;
2) for each t0 � 0, there exists �̄ = �̄(t0) > 0 such that,

if kx0k < �̄ then, for all x(t) 2 S(t0, x0):
a) x(t) is defined for all t � t0 � 0;
b) 9 T 2 [0,1) such that x(t) = 0n, 8t � t0 + T .

T0[x(t; t0, x0)] , inf{T � 0 : x(t; t0, x0) = 0n , 8t �
t0 + T} is called the settling time of x(t; t0, x0).

• finite-time stable if, in addition to items 1 and 2 above:
3) T0(t0, x0) , sup

x(t)2S(t0,x0) T0[x(t)] < 1.
T0(t0, x0) is called the settling time with respect to initial
conditions (at (t0, x0)).

Remark 2.2: If f in (3) is locally Lipschitz-continuous in
x on D \ {0n} (uniformly in t on R�0) then, by uniqueness
of solutions, the settling time of a solution x(t; t0, x0) and the
settling time with respect to initial conditions at (t0, x0) are
the same, i.e. T0(t0, x0) = T0[x(t; t0, x0)]. 4

Definition 2.2: [9] The equilibrium point x = 0n of (3) is
uniformly finite-time stable if:

1) it is uniformly asymptotically stable;
2) it is finite-time stable;
3) there exists a positive definite continuous function ' :

R�0 ! R�0 such that the settling time with respect to
initial conditions satisfies T0(t0, x0)  '(kx0k).

Theorem 2.1: [9] Let V : R�0⇥D ! R be a continuously
differentiable function such that W1(x)  V (t, x)  W2(x)
and V̇ (t, x)  �⌫

�
V (t, x)

�
, 8(t, x) 2 R�0⇥D, where W1(x)

and W2(x) are continuous positive definite functions on D,
V̇ = @V

@t
+ @V

@x
f , and ⌫ : R�0 ! R�0 is a positive definite

continuous function such that
R
$

0
dz

⌫(z) < 1, for some $ > 0.
Then x = 0n is uniformly finite-time stable.

Remark 2.3: With ⌫(z) = cz
↵̄, for any c > 0 and ↵̄ 2

(0, 1), we have
R
$

0
dz

⌫(z) =
$

1�↵̄

c(1�↵̄) < 1, for any $ 2 (0,1).
This special case generates a natural or direct extension to
time-varying vector fields of the celebrated Lyapunov-type
criterion stated for autonomous systems in [2]. 4

Remark 2.4: The stability properties stated through Def-
initions 2.1 and 2.2 are global if D = Rn and items 2a-2b
in Definition 2.1 are satisfied for any x(t0) = x0 2 Rn.
Moreover, one notes from Definition 2.2 that an equilibrium
may be concluded to be globally uniformly finite-time stable
if it is globally uniformly asymptotically stable and uniformly
finite-time stable. 4

C. Locally homogeneous functions
This work involves the notion of locally homogeneous func-

tion [15, Definition 2.1], stated in terms of family of dilations
�
r

✏
, defined as �r

✏
(x) = (✏r1x1, . . . , ✏

rnxn)T , 8x 2 Rn, 8✏ > 0,
where r = (r1, . . . , rn)T , with the dilation coefficients ri,
i = 1, . . . , n, being positive real numbers.

Lemma 2.2: [15] Suppose that, for every i = 1, 2, Vi

is a continuous scalar function being locally r-homogeneous
of degree ↵i > 0, with domain of homogeneity Di. Sup-
pose further that V1 is positive definite on D1. Let D =
D1 \ D2 and consider an (n � 1)-dimensional sphere Sn�1

c

of some radius c > 0 such that Sn�1
c

⇢ D. Then, for
every x 2 D: c1[V1(x)]↵2/↵1  V2(x)  c2[V1(x)]↵2/↵1 ,
with c1 = [min

z2Sn�1
c

V2(z)] · [max
z2Sn�1

c
V1(z)]�↵2/↵1 and

c2 = [max
z2Sn�1

c
V2(z)] · [min

z2Sn�1
c

V1(z)]�↵2/↵1 .
Remark 2.5: Observe that if V2 happens to be positive —

resp. negative— definite, then c1 and c2 in Lemma 2.2 are
both positive —resp. negative— constants. 4

D. Scalar functions with particular properties
Definition 2.3: A continuous scalar function � : R ! R

will be said to be:
1) strictly passive if &�(&) > 0, 8& 6= 0;
2) strongly passive —for (, a, b)— if it is a strictly

passive function satisfying |�(&)| � 
��b sat(&/b)

��a =

�
min{|&|, b}

�a, 8& 2 R, for some positive constants
, a and b.

3) bounded strongly passive —for (, a, b, ̄, ā, b̄)— if it
is a strongly passive function for (, a, b) such that
|�(&)|  ̄

��b̄ sat(&/b̄)
��ā = ̄

�
min{|&|, b̄}

�ā, 8& 2 R, for
some positive constants , a, b, ̄, ā and b̄.

Lemma 2.3: Let � : R ! R be a strongly passive function
for (, a, b) and k be a positive constant. Then, for all & 2 R:

Z
&

0
�(kz)dz � S(&) =

8
<

:

k
a

1+a
|&|1+a 8|&|  b

k

b
a

⇣
|&|� ab

k(1+a)

⌘
8|&| > b

k

(4)

Lemma 2.3 arises from Definition 2.3 whence, since
|�(&)| � |b sat(&/b)|a, we have that

R
&

0 �(kz)dz �R
&

0 sign(z)|b sat(kz/b)|adz = S(&).
Lemma 2.4: For every j = 1, . . . , n, let �j be a strongly

passive function for (, a, b), kj be a positive constant, km =
minj{kj}, kM = maxj{kj} and, for any x 2 Rn and c > 0,
S0(x; a, c) = kxk

�
min{kxk, c}

�a. Then
1)
P

n

j=1

R
xj

0 �j(kjzj)dzj � k
a
m

1+a
S0(x; a, b/kM ), 8x 2 Rn;

2)
P

n

j=1 xj�j(kjxj) � k
a

m
S0(x; a, b/kM ), 8x 2 Rn.

Proof. See Appendix B. ⇤
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Remark 2.6: Note that for a bounded strongly passive func-
tion � for some (, a, b, ̄, ā, b̄), we have 

�
min{|&|, b}

�a 
|�(&)|  ̄

�
min{|&|, b̄}

�ā  ̄|&|ā, 8& 2 R. 4
Lemma 2.5: Let � : R ! R be a bounded strongly passive

function for (, a, b, ̄, ā, b̄) and k be a positive constant. Then,
in addition to (4),

R
&

0 �(kz)dz  ̄k
ā

1+ā
|&|1+ā, 8& 2 R.

Lemma 2.5 arises from Remark 2.6 whence, since |�(&)| 
̄|&|ā, we have that

R
&

0 �(kz)dz 
R
&

0 sign(z)̄|kz|ādz. The
next lemma arises directly from Lemma 2.5 and Remark 2.1.

Lemma 2.6: For every j = 1, . . . , n, let �j be a bounded
strongly passive function for (, a, b, ̄, ā, b̄), kj be a positive
constant, km = minj{kj} and kM = maxj{kj}. Then, in
addition to item 1 of Lemma 2.4,

P
n

j=1

R
xj

0 �j(kjzj)dzj 
̄k

ā
M c̄

1+ā
1+ā,2

1+ā
kxk1+ā, 8x 2 Rn.

III. THE PROPOSED CONTROL SCHEME

We begin by characterizing —based on Assumptions 2.1–
2.5— a set of desired trajectories qd(t) for which the proposed
scheme will prove to guarantee the considered tracking objec-
tive avoiding input saturation and for any initial condition.

Assumption 3.1: qd 2 C2(R�0;Rn) such that kq̇d(t)k 
Bdv and kq̈d(t)k  Bda, 8t � 0, for sufficiently small (posi-
tive) bound values Bdv and Bda such that µMBda+kCB

2
dv

+
fMBdv < Tj �Bgj , 8j 2 {1, . . . , n}, and Bdv < fm/kC .

We propose the following control law

u(t, q, q̇) = �s1(K1q̄)� s2(K2 ˙̄q) +H(q)q̈d(t)

+ C
�
q, q̇d(t)

�
q̇d(t) + F q̇d(t) + g(q) (5)

where q̄ = q � qd(t); Ki = diag[ki1, . . . , kin] with kij > 0,
8i 2 {1, 2}, 8j 2 {1, . . . , n}; and for any x 2 Rn,
si(x) =

�
�i1(x1), . . . ,�in(xn)

�T , i = 1, 2, with, for each
j 2 {1, . . . , n}, �ij being a bounded strongly passive function
for some (i, ai, bi, ̄i, ai, bi) 2 R6

>0, both (i = 1, 2) being lo-
cally Lipschitz-continuous on R\{0} and such that a1 2 (0, 1],
a2 = 2a1

1+a1
2 (0, 1], and

Bj , sup
(&1,&2)2R2

���1j(&1) + �2j(&2)
��

< Tj � µMBda � kCB
2
dv

� fMBdv �Bgj (6)

Proposition 3.1: Consider system (1)-(2) in closed loop with
the proposed control law (5), under Assumptions 2.1–2.5 and
3.1. Thus, for any positive definite diagonal matrices K1 and
K2, |⌧j(t)| = |uj(t)| < Tj , j = 1, . . . , n, 8t � t0 � 0, and
the closed-loop trivial solution q̄(t) ⌘ 0n is:

1) globally uniformly finite-time stable if a1 2 (0, 1);
2) globally uniformly asymptotically stable with (local) ex-

ponential stability if a1 = 1.
Proof. The proof is divided into four stages.

1st stage: input saturation avoidance and closed-loop
dynamics. Observe that —for every j 2 {1, . . . , n}—
by Assumptions 2.1–2.4 and 3.1, and the satisfaction of
(6), we have, for any (t, q, q̇) 2 R�0 ⇥ Rn ⇥ Rn:
|uj(t, q, q̇)|  |�1j(k1j q̄j) + �2j(k2j ˙̄qj)| + kH(q)kkq̈d(t)k +
kC
�
q, q̇d(t)

�
kkq̇d(t)k+kFkkq̇d(t)k+|gj(q)|  Bj+µMBda+

kCB
2
dv

+fMBdv+Bgj < Tj . From this and (2), one sees that

Tj > |uj(t, q, q̇)| = |uj | = |⌧j |, 8(t, q, q̇) 2 R�0 ⇥ Rn ⇥ Rn,
which shows that, along the system trajectories, |⌧j(t)| =
|uj(t)| < Tj , j = 1, . . . , n, 8t � t0 � 0. This proves that,
under the proposed scheme, the input saturation values, Tj ,
are never attained. Thus, the closed-loop dynamics becomes

H(q)¨̄q + C(q, q̇) ˙̄q + C
�
q, q̇d(t)

�
˙̄q + F ˙̄q

= �s1(K1q̄)� s2(K2 ˙̄q) (7)

where Property 2.2.3 has been used.
2nd stage: energy function. Let us consider the con-

tinuously differentiable energy function V0(t, q̄, ˙̄q) =
1
2
˙̄qTH

�
q̄+qd(t)

�
˙̄q+
R
q̄

0n
s
T

1 (K1z)dz, where
R
q̄

0n
s
T

1 (K1z)dz =P
n

j=1

R
q̄j

0 �1j(k1jzj)dzj . From Property 2.1, Assumption 2.1
and Lemmas 2.4 and 2.6:

W01(q̄, ˙̄q)  V0(t, q̄, ˙̄q)  W02(q̄, ˙̄q) (8)

with W01(q̄, ˙̄q) , µm

2 k ˙̄qk2 + 1k
a1
1m

1+a1
S1(q̄) and

W02(q̄, ˙̄q) , µM

2 k ˙̄qk2 + ̄1k
a1
1M c̄

1+a1

1+a1
kq̄k1+a1 , where S1(q̄) =

S0(q̄; a1, b1/k1M ), k1m = minj{k1j}, k1M = maxj{k1j}
and c̄ = c̄1+a1,2. The derivative of V0 along the closed-loop
system trajectories is obtained, after basic developments, as
V̇0(t, q̄, ˙̄q) = � ˙̄qT s2(K2 ˙̄q) � ˙̄qTC

�
q, q̇d(t)

�
˙̄q � ˙̄qTF ˙̄q, where

H(q)¨̄q has been replaced by its equivalent expression from
the closed-loop dynamics (7) and Property 2.2.1 has been
used. Further, by Assumptions 2.2, 2.4, 3.1, and Lemma 2.4:

V̇0(t, q̄, ˙̄q)  �
nX

j=1

˙̄qj�2j(k2j ˙̄qj)� (fm � kCBdv)k ˙̄qk2

 �2ka2
2mS2( ˙̄q)� dk ˙̄qk2  �⌘k ˙̄qk1+a2 (9)

where S2( ˙̄q) = S0( ˙̄q; a2, b2/k2M ), k2m = minj{k2j}, k2M =
maxj{k2j}, d = fm � kCBdv > 0 (by Assumption 3.1) and

⌘ = min
n
2k

a2
2m , d

⇣
b2

k2M

⌘1�a2
o

.1 The expressions so far
obtained will prove to be useful next.

3rd stage: global uniform asymptotic stability. Let us now
define the scalar function

V (t, q̄, ˙̄q) = V
�

0 (t, q̄, ˙̄q) + "⇢
T (q̄)H

�
q̄ + qd(t)

�
˙̄q (10)

where V0 is as defined in the previous stage, � = (3 +
a1)/[2(1 + a1)], " is a positive constant, and ⇢(q̄) =
h(q̄; b1/k1M )q̄, with h 2 C0

�
Rn ⇥ R>0; (0, 1]

�
being con-

tinuously differentiable on Rn \ {0n}, uniformly on R>0, and
such that, for any c > 0, ⇢ is a continuously differentiable
function satisfying

k⇢(x)k = h(x; c)kxk  min{kxk, c} (11)

8x 2 Rn, and

�h(x; c) < Dxh(x; c) < 0 (12)

1Observe that for all k ˙̄qk  b2/k2M , we have that 2k
a2
2mS2( ˙̄q) +

dk ˙̄qk2 � 2k
a2
2mS2( ˙̄q) = 2k

a2
2mk ˙̄qk1+a2 � ⌘k ˙̄qk1+a2 , and for all k ˙̄qk >

b2/k2M that ka2
2mS2( ˙̄q) + dk ˙̄qk2 � dk ˙̄qk2 = dk ˙̄qk1�a2k ˙̄qk1+a2 �

d
⇣

b2
k2M

⌘1�a2
k ˙̄qk1+a2 � ⌘k ˙̄qk1+a2 .
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8x 6= 0n; an example of a family of functions h with such
properties is h(x; c) = c/

⇥
c
$ + kxk$

⇤1/$ for any $ > 0.2

Remark 3.1: In view of (12), h is decreasing on any radial
direction, and consequently (since h : Rn ⇥ R>0 ! (0, 1])
h(x; c) ! ! as kxk ! 1 for some non-negative constant !,
while, on any compact connected neighborhood of the origin
⌥ ⇢ Rn, h is lower-bounded by a positive value hm,⌥, or
more precisely: 1 � h(0n; c) � h(x; c) � infx2⌥ h(x; c) ,
hm,⌥ = infx2@⌥ h(x; c) > ! � 0, 8x 2 ⌥. 4

Remark 3.2: Observe, that @⇢

@x
(x) = @

@x

⇥
h(x; c)x

⇤
=

h(x; c)In + x
@h

@x
(x; c), whence we get that x

T @⇢

@x
(x)x =

x
T
⇥
h(x; c)In+x

@h

@x
(x; c)

⇤
x = h(x; c)xT

x+x
T
x
@h

@x
(x; c)x =

kxk2
⇥
h(x; c)+Dxh(x; c)

⇤
wherefrom, in view of (12) (whence

we have that 0 < h(x; c) + Dxh(x; c) < h(x; c) < 1,
8x 6= 0n), one sees that 0 < x

T @⇢

@x
(x)x < kxk2, 8x 6= 0n,

and consequently 0 <
@⇢

@x
(x)  In, 8x 2 Rn, which implies

that
�� @⇢
@x

(x)
��  1, 8x 2 Rn. 4

Remark 3.3: Let h1(q̄) = h(q̄; b1/k1M ). Useful facts on ⇢
that will be subsequently invoked are

k⇢(q̄)k1+a1  h1(q̄)S1(q̄)  S1(q̄) (13)

k⇢(q̄)k2 
⇣

b1
k1M

⌘1�a1

h1(q̄)S1(q̄) 
⇣

b1
k1M

⌘1�a1

S1(q̄) (14)

8q̄ 2 Rn. Indeed, based on the properties of ⇢ and
h1 (particularly (11) and h1(q̄) 2 (0, 1], 8q̄ 2 Rn),
we have, for all q̄ 2 Bn

b1/k1M
, that k⇢(q̄)k1+a1 =

[h1(q̄)]1+a1kq̄k1+a1 = h
a1
1 (q̄)h1(q̄)S1(q̄)  h1(q̄)S1(q̄) 

S1(q̄), and for all q̄ /2 Bn

b1/k1M
that k⇢(q̄)k1+a1 =

k⇢(q̄)ka1k⇢(q̄)k  (b1/k1M )a1h1(q̄)kq̄k = h1(q̄)S1(q̄) 
S1(q̄), corroborating (13). On the other hand, by (11) and
(13), we have that k⇢(q̄)k2 = k⇢(q̄)k1�a1k⇢(q̄)k1+a1 
(b1/k1M )1�a1h1(q̄)S1(q̄), 8q̄ 2 Rn, corroborating (14). 4

We will show that, for a sufficiently small value of ", V in
(10) is a suitable Lyapunov function through which the proof
will be completed; in particular, this will be proven with

" < "0 , min{"1,µm , "1,1k
a1
1m

, "2,h1m , "3,h1m} (15a)

where

"1,~ =
1

µM

✓
3 + a1

1 + a1
· ~
2

◆�
, "3,~ =

~1ka1
1m�⌘

�
µm

2

���1

2~1ka1
1m�1 + �

2
2
(15b)

"2,~ =
�⌘
�
µm

2

���1

c̄̄2k
a2
2Ma2


~1ka1

1m(1 + a1)

2c̄̄2k
a2
2M

�1/a1

(15c)

h1m , inf
q̄2Bn

b1/k1M

h1(q̄) = inf
q̄2@Bn

b1/k1M

h1(q̄) 2 (0, 1) (16)

(recall Remark 3.1) and

�1 =
kCb1

k1M
+µM , �2 = (2kCBdv+fM )

✓
b1

k1M

◆ 1�a1
2

(17)

2Letting ⇢̄$(x) = h̄$(x; c)x, $ > 0, with h̄$(x; c) , c/
⇥
c$ +

kxk$
⇤1/$ , one verifies after basic developments that Dxh̄$(x; c) =

�h̄$(x; c)(k⇢̄$(x)k/c)$ , whence one corroborates that �h̄$(x; c) <
Dxh̄$(x; c) < 0, 8x 6= 0n.

With such a goal in mind, let us begin by noting, from (10)
and (8), that

V � W
�

01(q̄, ˙̄q)� "µM

⇣
k⇢(q̄)k1/�k ˙̄qk1/�

⌘�
(18)

� W
�

01(q̄, ˙̄q)� "µM

✓
2

3 + a1
k⇢(q̄)k1+a1 +

1 + a1

3 + a1
k ˙̄qk2

◆�

(19)

� W
�

01(q̄, ˙̄q)� "µM

✓
2

3 + a1
S1(q̄) +

1 + a1

3 + a1
k ˙̄qk2

◆�

(20)

� W
�

01(q̄, ˙̄q)�W
�

10(q̄, ˙̄q) , W1(q̄, ˙̄q) (21)

with W10(q̄, ˙̄q) = ("µM )1/�
✓

2
3+a1

S1(q̄)+
1+a1
3+a1

k ˙̄qk2
◆

, where

Assumption 2.1 has been applied to get (18), Young’s in-
equality [with � = (3 + a1)/2 and  = (3 + a1)/(1 + a1)
(in accordance to the notation used in Section II)] to obtain
(19), and Remark 3.3 (more specifically inequality (13))
to get (20). Notice further that W

�

01(q̄, ˙̄q) � W
�

10(q̄, ˙̄q) >

0 () W
�

01(q̄, ˙̄q) > W
�

10(q̄, ˙̄q) () W01(q̄, ˙̄q) >

W10(q̄, ˙̄q) () W01(q̄, ˙̄q) � W10(q̄, ˙̄q) > 0. Hence, by
proving that W01(q̄, ˙̄q) � W10(q̄, ˙̄q) > 0, 8(q̄, ˙̄q) 6= (0n, 0n),
positive definiteness of W1(q̄, ˙̄q) in (21) is concluded. In this
direction, let us define mv ,

�
µm

2

�
� ("µM )1/�

�
1+a1
3+a1

�
and

mp ,
⇣
1k

a1
1m

1+a1

⌘
� ("µM )1/�

�
2

3+a1

�
, and let us further note

that, from Eqs. (15), one may corroborate, after basic devel-
opments, that " < "0  "1,µm =) mv > 0 and " < "0 
"1,1k

a1
1m

=) mp > 0. From this and the expressions defin-
ing W01(q̄, ˙̄q) and W10(q̄, ˙̄q), we have W01(q̄, ˙̄q)�W10(q̄, ˙̄q) =
mvk ˙̄qk2 + mpS1(q̄) > 0, 8(q̄, ˙̄q) 6= (0n, 0n), whence
positive definiteness of W1(q̄, ˙̄q) is concluded. Furthermore,
from previous arguments, one sees that mv =

�
µm

2

�
�

("µM )1/�
�
1+a1
3+a1

�
> 0 () ̄mv ,

�
µm

2

���"µM

�
1+a1
3+a1

��
>

0 and mp =
⇣
1k

a1
1m

1+a1

⌘
� ("µM )1/�

�
2

3+a1

�
> 0 ()

̄mp ,
⇣
1k

a1
1m

1+a1

⌘�
� "µM

�
2

3+a1

��
> 0. From this and (21),

one sees, for every j = 1, . . . , n, that lim
| ˙̄qj |!1

W1(0n, ˙̄q) =

lim
| ˙̄qj |!1

̄mv| ˙̄qj |2� = 1 on { ˙̄q 2 Rn : ˙̄q` = 0 8` 6= j}, and

lim
|q̄j |!1

W1(q̄, 0n) = lim
|q̄j |!1

̄mp(b1/k1M )a1� |q̄j |� = 1 on

{q̄ 2 Rn : q̄` = 0 8` 6= j}. Hence, under the consideration of
its positive definiteness, W1(q̄, ˙̄q) is additionally concluded to
be radially unbounded [8, p. 115]. Furthermore, from (8) and
the properties of ⇢ (particularly (11)), one gets

V (t, q̄, ˙̄q) 
✓
µM

2
k ˙̄qk2 + ̄1k

a1
1M c̄

1+a1

1 + a1
kq̄k1+a1

◆�

+ "µMkq̄kk ˙̄qk , W2(q̄, ˙̄q) (22)

Since W2(q̄, ˙̄q) � W1(q̄, ˙̄q), 8(q̄, ˙̄q) 2 Rn ⇥ Rn, and
W2(0n, 0n) = W1(0n, 0n) = 0, the time-invariant function
W2 is corroborated to be a positive definite (radially
unbounded) function. Therefore, from the conclusions
so far drawn on W1 and W2, V is concluded to be
a positive definite, radially unbounded and decrescent
function. Its derivative along the closed-loop system
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trajectories is obtained, after basic developments, as
V̇ (t, q̄, ˙̄q) = �V

��1
0 (t, q̄, ˙̄q)V̇0(t, q̄, ˙̄q)� "⇢T (q̄)C

�
q, q̇d(t)

�
˙̄q�

"⇢
T (q̄)F ˙̄q � "⇢

T (q̄)s1(K1q̄) � "⇢
T (q̄)s2(K2 ˙̄q) +

" ˙̄qTC(q, ˙̄q)⇢(q̄) + " ˙̄qTC
�
q, q̇d(t)

�
⇢(q̄) + " ˙̄qTH(q)⇢0(q̄) ˙̄q,

where H(q)¨̄q has been replaced by its equivalent expression
from the closed-loop dynamics (7), Properties 2.2.1 and
2.2.2 have been used and ⇢

0(q̄) = @⇢

@q̄
(q̄). At this point, it

is important to note (for its subsequent use in the analysis)
that, from Eqs. (15) and (16), one may corroborate that
" < "0  "2,h1m =) �m < �M,h1m , with

�m , "c̄̄2k
a2
2Ma2

�⌘
�
µm

2

���1
, �M,~ ,

✓
~1ka1

1m(1 + a1)

2c̄̄2k
a2
2M

◆ 1
a1

(23)

We proceed to analyze the terms of V̇ (t, q̄, ˙̄q).
First term. From (8) and (9) (recalling that � = (3 +
a1)/[2(1 + a1)] and a2 = 2a1/(1 + a1)), we get:
�V

��1
0 (t, q̄, ˙̄q)V̇0(t, q̄, ˙̄q)  ��W ��1

01 (q̄, ˙̄q)⌘k ˙̄qk1+a2 
��⌘

�
µm

2 k ˙̄qk2
���1k ˙̄qk1+a2  ��⌘

�
µm

2

���1k ˙̄qk2.
Second, third, sixth, seventh and eighth terms. From

Assumptions 2.1, 2.2, 2.4 and 3.1, the properties
of ⇢ (through inequality (11) and Remark 3.2),
Remark 3.3 (particularly inequality (14)), and Eqs.
(17), we get: �"⇢T (q̄)C

�
q, q̇d(t)

�
˙̄q � "⇢

T (q̄)F ˙̄q +
" ˙̄qTC(q, ˙̄q)⇢(q̄) + " ˙̄qTC

�
q, q̇d(t)

�
⇢(q̄) + " ˙̄qTH(q)⇢0(q̄) ˙̄q 

2"kCBdvk⇢(q̄)kk ˙̄qk + "fMk⇢(q̄)kk ˙̄qk + "kC

⇣
b1

k1M

⌘
k ˙̄qk2 +

"µMk ˙̄qk2  "�2

⇥
h1(q̄)S1(q̄)

⇤1/2k ˙̄qk+ "�1k ˙̄qk2.
Fourth term. From the definition of ⇢ and Lemma 2.4,

we get: �"⇢T (q̄)s1(K1q̄) = �"h1(q̄)q̄T s1(K1q̄) 
�"1ka1

1mh1(q̄)S1(q̄).
Fifth term. From Hölder and Young’s inequalities (both

with � = 1 + a1 and  = 2/a2), the definition of
s2, Remarks 2.1 (recalling that c̄ = c̄1+a1,2), 2.6 and
3.3, and the consideration of a positive constant � 2
(�m, �M,h1m) (recall (23)), we have (recalling that a2 =
2a1/(1 + a1)) that �"⇢T (q̄)s2(K2 ˙̄q)  "

��⇢T (q̄)s2(K2 ˙̄q)
�� 

"k⇢(q̄)k1+a1ks2(K2 ˙̄q)k2/a2
 "c̄k⇢(q̄)k̄2kK2 ˙̄qka2 

"c̄̄2k
a2
2M

⇣
�
a2/2

⇥
h1(q̄)S1(q̄)

⇤1/(1+a1)
⌘⇣
�
�a2/2k ˙̄qka2

⌘


"c̄̄2k
a2
2M

⇣
�
a1

1+a1
h1(q̄)S1(q̄) +

a2
2 �

�1k ˙̄qk2
⌘

.
Thus, from the expressions obtained above, we get

V̇  �

�⌘

⇣
µm

2

⌘��1
� "�1 �

"c̄̄2k
a2
2Ma2�

�1

2

�
k ˙̄qk2

+ "�2

⇥
h1(q̄)S1(q̄)

⇤1/2k ˙̄qk

� "

✓
1k

a1
1m � c̄̄2k

a2
2M�

a1

1 + a1

◆
h1(q̄)S1(q̄)

(24)

which may be rewritten as

V̇  �1

2

 ⇥
h1(q̄)S1(q̄)

⇤1/2

k ˙̄qk

!T

Q1

 ⇥
h1(q̄)S1(q̄)

⇤1/2

k ˙̄qk

!

� "kmp,1h1(q̄)S1(q̄)�
kmv

2
k ˙̄qk2 , W3(q̄, ˙̄q) (25)

where

Q~ =

 
"~1ka1

1m �"�2

�"�2 �⌘
�
µm

2

���1 � 2"�1

!

kmp,~ , ~1k
a1
1m

2 � c̄̄2k
a2
2M�

a1

1+a1
and kmv , �⌘

�
µm

2

���1 �
"c̄̄2k

a2
2Ma2�

�1. Furthermore, from (23), one may corroborate
after basic developments that �m < � < �M,h1m < �M,1

=) kmp,1 > 0 and kmv > 0, and from Eqs. (15) that
" < "0  "3,h1m < "3,1 =) Q1 > 0, whence W3(q̄, ˙̄q)
in (25) is concluded to be negative definite. Hence, V in (10)
is a strict Lyapunov function proving that the trivial solution
q̄(t) ⌘ 0n of the closed-loop system is globally uniformly
asymptotically stable [8, Corollary 3.3].

4th stage: uniform finite-time/exponential stability. Thus,
under the consideration of Remark 2.4, all that remains to
be proven is that the trivial solution is uniformly finite-time
stable if a1 2 (0, 1), or (locally) exponentially stable if a1 = 1.
With this goal in mind, we retake V in (10) and analyze
its derivative along the closed-loop system trajectories on
R�0 ⇥ Bn

b1/k1M
⇥ Bn

b2/k2M
. More precisely, one sees from

Remark 3.1 and (16) that, on R�0 ⇥ Bn

b1/k1M
⇥ Bn

b2/k2M
,

(24) takes the form V̇ (t, q̄, ˙̄q)  �
h
�⌘
�
µm

2

���1 � "�1 �
"c̄̄2k

a2
2Ma2�

�1

2

i
k ˙̄qk2 + "�2kq̄k(1+a1)/2k ˙̄qk � "

⇣
h1m1k

a1
1m �

c̄̄2k
a2
2M�

a1

1+a1

⌘
kq̄k1+a1 , which may be rewritten as

V̇ (t, q̄, ˙̄q)  �1

2

 
kq̄k(1+a1)/2

k ˙̄qk

!T

Qh1m

 
kq̄k(1+a1)/2

k ˙̄qk

!

� "kmp,h1mkq̄k1+a1 � kmv

2
k ˙̄qk2 , W4(q̄, ˙̄q) (26)

Furthermore, from (23), one may corroborate, after basic
developments, that �m < � < �M,h1m =) kmp,h1m > 0
and, from Eqs. (15), that " < "0  "3,h1m =) Qh1m > 0,
whence W4(q̄, ˙̄q) in (26) is concluded to be negative
definite (on Bn

b1/k1M
⇥ Bn

b2/k2M
). Furthermore, by defining

r̄i = (ri1, . . . , rin)T , i = 1, 2, with r1j = ↵0/(1 + a1)
and r2j = ↵0/2 for all j = 1, . . . , n and any positive
constant ↵0, and r̄ = (r̄T1 r̄

T

2 )
T , one can see that, for

every (q̄, ˙̄q) 2 Bn

b1/k1M
⇥ Bn

b2/k2M
and all ✏ 2 (0, 1], we

have on the one hand that k�r̄1
✏
(q̄)k  kq̄k  b1/k1M

and k�r̄2
✏
( ˙̄q)k  k ˙̄qk  b2/k2M , and consequently

�
r̄

✏
(q̄, ˙̄q) 2 Bn

b1/k1M
⇥ Bn

b2/k2M
, and on the other hand, from

(22) and (26), after basic developments, that W4(�r̄✏ (q̄, ˙̄q)) =
W4(�r̄1✏ (q̄), �r̄2

✏
( ˙̄q)) = W4(✏r1 q̄, ✏r2 ˙̄q) = ✏

↵0W4(q̄, ˙̄q)
and W2(�r̄✏ (q̄, ˙̄q)) = W2(�r̄1✏ (q̄), �r̄2

✏
( ˙̄q)) = W2(✏r1 q̄, ✏r2 ˙̄q) =

✏
↵0�W2(q̄, ˙̄q), i.e. that W2 and W4 are locally r̄-homogeneous

of degree ↵2 = ↵0� and ↵4 = ↵0, respectively, with
(common) domain of homogeneity Bn

b1/k1M
⇥ Bn

b2/k2M
.

Hence, by Lemma 2.2 and Remark 2.5, there exists a
positive constant c such that W4(q̄, ˙̄q)  �c[W2(q̄, ˙̄q)]↵4/↵2 ,
8(q̄, ˙̄q) 2 Bn

b1/k1M
⇥ Bn

b2/k2M
and, consequently, from

(22) and (26), we have that V̇ (t, q̄, ˙̄q)  �c[V (t, q̄, ˙̄q)]1/� ,
8(t, q̄, ˙̄q) 2 R�0⇥Bn

b1/k1M
⇥Bn

b2/k2M
, with 1

�
= 2(1+a1)

3+a1
 1.

Moreover, since a1 2 (0, 1) =) 1/� 2 (0, 1), by Theorem
2.1 and Remark 2.3, item 1 of the proposition is proven. On
the other hand, since a1 = 1 =) 1/� = 1, item 2 of the
proposition follows from [8, Proof of Corollary 3.4]. ⇤

Remark 3.4: One notes from the second stage of the proof
(see particularly (9)) that motion error dissipation is injected
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by the Saturating-Derivative (SD) type control term s2, while
the motion error damping term F ˙̄q is in charge to dominate
the damping-indefinite residual third term (from left to right)
in (7), C

�
q, q̇d(t)

�
˙̄q, thus rendering a damping compound

effect. The referred domination effect is included in the control
strategy in view of the impossibility of the bounded term s2

to dominate the referred unbounded residual term when this
generates force/torque values beyond the limits of the SD type
control term. The motion error damping term F ˙̄q thus proves
—in the third stage of the proof— to be useful to render the
uniform asymptotic stability of the closed-loop trivial solution
(q̄(t) ⌘ 0n) global. Locally, s2 actually suffices to provide
damping enough to guarantee the finite-time/exponential track-
ing. Indeed, suppose that the last inequality in Assumption
3.1 (Bdv < fm/kC) is omitted, permitting further that
F � 0; observe that this includes the naturally undamped
case F = 0. One sees (from footnote 1) that if d � 0 then
(9) holds on R�0 ⇥ Bn

b1/k1M
⇥ Bn

b2/k2M
with ⌘ = 2k

a2
2m

and consequently the fourth stage of the proof holds, while
if d < 0 then (9) holds on R�0 ⇥ Bn

b1/k1M
⇥ Bn

b2/k2M
with

⌘ = 2k
a2
2m + d(b2/k2M )1�a2 and consequently, for suitable

control parameters (for instance, sufficiently high control gains
K2) such that ⌘ > 0, i.e. 2ka2

2mk
1�a2
2M > (kCBdv � fm)b1�a2

(or even 2ka2
2mk

1�a2
2M > kCBdvb

1�a2 � (kCBdv�fm)b1�a2 ),
the fourth stage of the proof holds as well. 4

IV. SIMULATION RESULTS

The proposed scheme was implemented through computer
simulations considering the model of a 2-DOF mechanical
manipulator corresponding to the experimental robotic arm
used in [1], where the accurate expressions of H(q), C(q, q̇),
g(q) and F can be consulted (they are omitted here in view
of space limitations). For such a robot, Property 2.1 and
Assumptions 2.1–2.4 are satisfied with µm = 0.088 kg m2,
µM = 2.533 kg m2, kC = 0.1422 kg m2, fm = 0.175 kg m2/s,
fM = 2.288 kg m2/s, Bg1 = 40.29 Nm and Bg2 = 1.825 Nm.
Furthermore, the input saturation bounds are T1 = 150 Nm
and T2 = 15 Nm for the first and second links respectively,
whence one can corroborate that Assumption 2.5 is fulfilled
too. For the sake of simplicity, units are subsequently omitted.

For the implementation of the proposed scheme, we define
�ij(&) = sign(&)min{|&|ai ,Mij}, i, j = 1, 2, for constants
ai > 0 and Mij > 0. For each i = 1, 2, such func-
tions prove to be bounded strongly passive functions for
(i, ai, bi, ̄i, ai, bi), where bi = min{bi1, bi2}, i  1 and
̄i � b

�ai
i

max{Mi1,Mi2}, with —for every j = 1, 2—
bij = M

1/ai

ij
. Following the proposed design procedure, we

fixed a1 = 1/2 and a2 = 2/3 for the finite-time control
implementations, and a1 = a2 = 1 for the exponential
tracking tests. Let us note that by the defined functions �ij ,
we have Bj = M1j + M2j , j = 1, 2 (see (6)). On the other
hand, the simulations were run taking initial conditions at
q(0) = [�⇡/4 , �⇡/2], q̇(0) = [�5⇡ , �5⇡], and the desired
trajectory as qd(t) =

⇥
7⇡
4 + sin(t) , ⇡

4 + cos(t)
⇤T , for which

Bdv = 1 and Bda = 1. From this and the above-listed values
of the parameters characterizing Property 2.1 and Assumptions
2.1–2.4, one can corroborate that Assumption 3.1 is satisfied

Fig. 1. Position responses ("), control signals (#) and
���q̄T , ˙̄qT

�T
(t)

�� (!)

too. Moreover, from the considered desired trajectory, one sees
that (6) is satisfied provided that M11 + M21 < 104.74 and
M12 + M22 < 8.21. Hence, for all the simulations, we took
M11 = M21 = 50 and M12 = M22 = 4.

As a suggestion from an anonymous reviewer, we further
included a standard unbounded tracking controller in the
comparison. More specifically, we implemented the classical
PD+ controller, from [11], given as u(t, q, q̇) = �K1q̄�K2 ˙̄q+
H(q)q̈d(t) + C(q, q̇)q̇d(t) + g(q).

Fig. 1 shows results obtained taking control gains K1 =
diag[800, 50] and K2 = diag[28, 2] for all the implemented
controllers. The tracking objective is observed to be achieved
avoiding input saturation through the proposed scheme (for
both the finite-time and exponential versions) while the PD+
controller did undergo input saturation at several time intervals
during the transient (which is generally undesirable in practice,
as pointed out for instance in [1] and references therein).
One further observes that the finite-time controller accurately
achieves zero tracking error in less than 5 seconds, while with
the exponential algorithm the system error trajectories keep
approaching zero after 7 seconds; the transient time of the PD+
controlled system trajectories are observed to be practically
over in less than 5 seconds too but a post-transient error is
perceived, which arises in view of the omission of the system
damping term (F q̇ or F q̇d(t)) in the PD+ control expression, in
view of which qd(t) is not an equilibrium trajectory of the PD+
controlled (closed-loop) system. As a matter of fact, analog
post-transient errors could generally arise in practice due to
model inaccuracies, but with an acceptable model that includes
the linear components of the damping terms, the proposed
scheme is expected to give rise to smaller post-transient errors.
Work in this direction, concerning robustness aspects of the
proposed approach, is intended to be done in the future. It
is further worth observing that while the proposed approach
achieves the control objective giving rise to smooth control
signals and closed loop trajectories, the PD+ algorithm gives
rise to control signals and system trajectories that are highly
varying during the transient, demanding great efforts to the
actuators and producing an important overshoot.

V. CONCLUSIONS

In this work, the —up to our knowledge— open problem
of finite-time tracking continuous control of constrained-input
mechanical systems has been solved through a strict Lyapunov
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function, under the consideration of linear damping terms in
the open-loop dynamics. While the construction of such a strict
Lyapunov function and the corresponding analytical support
constitute by themselves an innovative analytical finding, the
proposed approach gathers a series of appealing properties by:
keeping a continuous structure; giving the freedom to choose
among finite-time and (local) exponential convergence through
a simple design parameter; guaranteeing the control objective
for any initial conditions; avoiding input saturation along the
closed loop trajectories, and keeping a Saturating-Proportional
(SP) Saturating-Derivative (SD) type action based structure
with no tuning restriction on the control gains. Nevertheless,
there are further aspects of the proposal that should still be
refined in order to enhance its applicability and theoretical
value, such as the achievement of the global character for
under-damped and undamped mechanical systems, as well
as the relaxation of the conditions on the desired trajectory
characterization and the requirements imposed to the bounds
of the SP and SD actions, which remain conservative in view
of the worst-case procedure followed in their derivation.

APPENDIX A
PROOF OF LEMMA 2.1

Since k0nkp = 0 for any p-norm (p � 1), it is clear
that

h
@
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since 0 <
|xi|p
kxkp

p
 1 () ln |xi|p

kxkp
p
 0, i = 1, . . . , n.

APPENDIX B
PROOF OF LEMMA 2.4

Item 1. Departing from Lemma 2.3, we have thatP
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