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In this work we introduce a method for estimating entropy rate and entropy production rate from finite symbolic time
series. From the point of view of statistics, estimating entropy from a finite series can be interpreted as a problem
of estimating parameters of a distribution with a censored or truncated sample. We use this point of view to give
estimations of entropy rate and entropy production rate assuming that they are parameters of a (limit) distribution. The
last statement is actually a consequence of the fact that the distribution of estimations obtained from recurrence-time
statistics satisfy the central limit theorem. We test our method using time series coming from Markov chain models,
discrete-time chaotic maps and real a DNA sequence from human genome.

Entropy rate as well as entropy production rate are fun-
damental properties of stochastic processes and determin-
istic dynamical systems. For instance, in dynamical sys-
tems the entropy rate is closely related to the largest Lya-
punov exponent, stating that the positivity of entropy rate
is a signature of the presence of chaos. Similarly, the en-
tropy production rate is a measure of the degree of irre-
versibility of a given system. Thus, in some sense, a non
zero entropy production rate states how much, a system,
is far from equilibrium. However, estimating either, en-
tropy rate or entropy production rate is not a trivial task.
One of the main limitations to give precise estimations of
these quantities is the fact that observed data (time series)
are always finite, but the entropy rate and entropy pro-
duction rate are asymptotic quantities defined as a limit
for which it is necessary to have infinitely long time-series.
We use the recurrence-time statistics combined with the-
ory of censored samples from statistics to propose sam-
pling schemes and define censored estimators for the en-
tropy rate and the entropy production rate, taking advan-
tage of the finiteness of the observed data.

I. INTRODUCTION

Entropy rate and entropy production rate are two quantities
playing a central role in equilibrium and nonequilibrium sta-
tistical mechanics. On the one hand, entropy rate (also called
Kolmogorov-Sinai entropy) is closely related to the thermody-
namical entropy1,2 which is a fundamental quantity in the con-
text of equilibrium statistical mechanics. On the other hand,
entropy production has a prominent role in the development
of nonequilibrium statistical mechanics3–5. Both, entropy rate
and entropy production rate, have a rigorous definition in dy-
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namical systems and stochastic processes (see Ref. 6 for com-
plete details). The entropy production rate quantifies, in some
way, the degree of time-irreversibility of a given system from
a microscopic point of view, which in turn tells us how much
such a system is far from the thermodynamic equilibrium4,5,7.
Moreover, time-irreversibility of certain dynamical processes
in nature might be an important feature because it would im-
ply the influence of nonlinear dynamics or non-Gaussian noise
on the dynamics of the system 8. All these features of time-
irreversibility has encouraged the study of this property in sev-
eral systems. For instance, in Ref. 9 it has been found that
real DNA sequences would be spatially irreversible, a prop-
erty that has been explored aimed to understand the intriguing
statistical features of the actual structure of the genome. The
fact that DNA might be spatially irreversible has been used to
propose a mechanism of noise-induced rectification of parti-
cle motion10 that would be important in the study of biolog-
ical processes involving the DNA transport. Testing the irre-
versibility of time series has also been the subject of intense
research. For example, in Ref. 8 it has been proposed a sym-
bolic dynamics approach to determine whether the time series
are time-irreversible or not. Another important study has been
reported in Ref. 11, where the authors introduced a method
to determining time-irreversibility of time series by using a
visibility graph approach. That approach has also been used
to understanding the time-reversibility of non-stationary pro-
cesses12. The possibility of determining this temporal asym-
metry has also lead to try to understand the dynamics of sev-
eral processes beyond physical systems. In Ref. 13 it has been
explored the time-irreversibility of financial time-series as a
feature that could be used for ranking companies for optimal
portfolio designs. In Ref. 14 it has been studied the time-
irreversibility of human heartbeat time-series, and relating this
property to aging and disease of individuals. Moreover, time-
irreversibility has also been used to understand several prop-
erties of classical music15.

In the literature one can find many estimators of the entropy
rate in symbol sequences produced by natural phenomena as
well as in dynamical systems, random sequences or even in
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natural languages taken from written texts. Perhaps, the most
used method for entropy estimation is the empirical approach,
in which one estimates the probability of the symbols using
their empirical frequency in the sample and then, this is used
to estimate the entropy rate directly from its definition16,17.
One can find a lot of works in this direction trying to find bet-
ter, unbiased and well-balanced estimators (see Ref. 18 and
references therein). One can go further by asking for the con-
sistency and the fluctuation properties of these estimators. For
instance in Refs. 19 and 20 there are explicit and rigorous fluc-
tuation bounds under some mild additional assumptions, for
these so-called “Plug-In" estimators. On the other hand, but
in the same empirical approach, there are also estimators for
the relative empirical entropy as a quantification of the entropy
production21,22.

From another point of view, the problem of estimating the
entropy rate of stationary processes has also been studied us-
ing the recurrence properties of the source. This is, another
major technique used in the context of stationary ergodic pro-
cesses on the space of infinite sequences, in areas such as in-
formation theory, probability theory and in the ergodic theory
of dynamical systems (we refer the interested reader to Ref. 23
and the references therein ). The basis of this approach is
the Wyner-Ziv-Ornstein-Weiss theorem which establishes an
almost sure asymptotic convergence of the logarithm of the
recurrence time of a finite sample (scaled by its length), to
the entropy rate23. This result uses the Shannon-McMillan-
Breiman theorem, which in turn, can be thought as an ergodic
theorem for the entropy23. Under this approach it is possi-
ble to define estimators using quantities such as return time,
hitting time, waiting time among others24. Here we will use
the term “recurrence time” as a comprehensive term for those
mentioned before. Moreover, it is possible to obtain very pre-
cise results on the consistency and estimation of the fluctua-
tions of these estimators by applying the available results on
the distribution of these quantities25–27.

In the setting of Gibbs measures in the thermodynamic for-
malism, one can also find consistent estimators defined from
the return, hitting, and waiting times for entropy rate and one
also has precise statements on their fluctuations, such as the
central limit theorem28, large deviation bounds and fluctua-
tion bounds20,28. Similarly occurs within the study of the
estimation of the entropy production rate. In the context of
Markov chains applied to the quantification of the irreversibil-
ity or time-reversal asymmetry see Refs. 7 and 29, in Gibb-
ssian sources see Ref. 30 as well as for their fluctuation prop-
erties in Ref. 30 and 31.

Nonetheless, for real systems, determining the value of the
entropy rate and the entropy production rate is not a trivial
task. This is because these quantities are obtained as limit val-
ues of the logarithm of recurrence times, as the sample length
goes to infinity. This is a fundamental limitation, since obser-
vations are always finite. So, instead of having the true value
of the entropy rate or the entropy production rate, one always
obtains a finite-time approximation. This makes us believe
that there is a need to define estimators for finite samples, us-
ing the point of view of the recurrence times.

The article is organized as follows. In Section II we give a

summary of the asymptotic properties of the estimators based
on the recurrence-time statistics. We also describe the method
used for estimating parameters of the normal distribution from
a given censored sample. In Section III we propose our sam-
pling schemes for estimating the entropy rate and the reversed
entropy rate using the recurrence-time statistics. There, we
also describe the method that will be used for implementing
the estimations in real data. In Section IV we test the method-
ology established in Section III for estimating the entropy
rate and the reversed entropy rate in an irreversible three-state
Markov chain. We compare our estimations with the exact
values that can be actually computed. In Section V we imple-
ment the proposed estimating method in deterministic chaotic
systems, a n-step Markov chain and a real DNA sequence. Fi-
nally in Section VI we give the main conclusions of our work.

II. ENTROPY RATE AND ENTROPY PRODUCTION
RATE

A. Recurrence time statistics

Consider a finite set A which we will refer to as alphabet.
Let X := {Xn : n ∈ N} a discrete-valued stationary ergodic
process generated by the law P, whose realizations are infi-
nite sequences of symbols taken from A, that is, the set of
all posible realizations is a subset of AN. Here we denote by
x = x1x2x3 . . . an infinite realization of the process X. Let ! be
a positive integer, we denote by x!1 the string of the first ! sym-
bols of the realization x. A finite string a := a1a2a3 . . .a! com-
prised of ! symbols will be called either !-word or !-block, we
may use one or the other without making any distinction. We
will say that the !-word a “occurs” at the kth site of the tra-
jectory x, if xk+!−1

k = a. An alternative notation for indicating
the !-block at the kth site of x will be: x(k,k+ !− 1).

Next, we introduce the return time, the waiting time and
the hitting time. Let us consider a finite string a!1 made out
of symbols of the alphabet A. Given two independent realiza-
tions x and y, let x!1 and y!1 be their first ! symbols, then the
return, the waiting and the hitting time are defined as follows,

ρ! := ρ!(x) := inf{k > 1 : xk+!−1
k = x!1}, (1)

ω! := ω!(x,y) := inf{k ≥ 1 : yk+!−1
k = x!1}, (2)

τ! := τ!(a
!
1,x) := inf{k ≥ 1 : xk+!−1

k = a!1}, (3)

respectively.
Wyner and Ziv (see for instance Ref. 32) proved that for an

stationary ergodic process, the quantity 1
! logρ! converges to

the entropy rate in probability, and that for stationary ergodic
Markov chains, 1

! logω! also converges to the entropy rate h,
in probability. That is, these quantities grow exponentially fast
with ! and their limit rate is equal to the entropy rate in proba-
bility. Later, Ornstein and Weiss33 showed that for stationary
ergodic processes

lim
!→∞

1
!

logρ! = h P− a.s. (4)
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For the waiting time, it was proved by Shields23 that for sta-
tionary ergodic Markov chains one has,

lim
!→∞

1
!

logω! = h P×P− a.s. (5)

These theorems are based on the Shannon-McMillan-Breiman
theorem, which claims that − 1

! logP([x!1]) converges almost
surely to the entropy rate h, where [x!1] stands for the cylin-
der set [x!1] := {z ∈ AN : z!1 = x!1}. Furthermore, in Ref. 27,
Kontoyiannis has obtained strong approximations for the re-
currence and waiting times of the probability of a finite vector
which in turn, have let him to obtain an almost sure conver-
gence for the waiting time in ψ-mixing processes, extending
previous results for Markov chains. He has also obtained an
almost sure invariance principle for logρ! and logω!. This im-
plies that these quantities satisfy a central limit theorem and a
law of iterated logarithm.27

In the same spirit, the works of Abadi and collabora-
tors24–26 provide very precise results for the approximation
of the distribution of the hitting times (properly rescaled) to
an exponential distribution, under mild mixing conditions for
the process. They also give sharp bounds for the error term
for this exponential distribution approximation. This enables
to obtain bounds for the fluctuations of the entropy estimators
using hitting times.20,28,31

B. Asymptotic behavior of the estimators

We are interested in estimating the entropy and the entropy
production rates, moreover, we need to assure that their esti-
mators have good properties of convergence and fluctuations,
since this will enable us to use our method.

Here, we are interested in estimators defined by recurrence
times, for which one can find very precise asymptotic results
regarding their fluctuations. It is known33 that

lim
!→∞

1
!

logρ! = h, (6)

almost surely in ergodic process, thus one can use the return
time as an estimator of the entropy rate. Furthermore, under
the Gibbssian assumption, it has been proved that the random
variable (logρ!− !h)/

√
! converges in law to a normal distri-

bution, when ! tends to infinite.34

The waiting and hitting times are also used as estimators.
For instance, it has beed proved that,

lim
!→∞

1
!

logω!(x,y) = h, (7)

for P×P almost every pair (x,y), where the distribution P is
a Gibbs measure.28 This is obtained from an approximation
of the 1

! logω! to the − 1
! logP([x!1]) which, by the Shannon-

McMillan-Breiman theorem, goes almost surely to the en-
tropy rate. Also, they proved the same log-normal fluctuations
for the waiting times, i.e.,

lim
!→∞

P×P

{ logω!− !h

σ
√
!

< t
}

= N (0,1)(−∞, t], (8)

where in this case, σ2 = lim!→∞
1
!

∫

(logω!− h)2d(P×P).
So, in the context of Gibbs measures, the asymptotic nor-

mality it is fulfilled for both, the return times and the waiting
times. This also holds for exponential φ -mixing processes.
Moreover it is satisfied a large deviations principle for both
quantities as well28 (with some additional restrictions in the
case of the return-time). For the case of the hitting times, one
has to overcome the bad statistics produced by very short re-
turns for which the approximation changes (see Ref. 35).

In the same context, one can find fluctuation bounds for
both, the plug-in estimators and for the waiting and the hitting
time estimators.20 One of the main tools used is the concen-
tration inequalities that are valid for very general mixing pro-
cesses. Using the concentration phenomenon, one can obtain
non-asymptotic results. That is, upper bounds for the fluctu-
ations of the entropy estimator which are valid for every n,
where n denotes the length of the sample.

Next, for the estimation of the entropy production rate, in
Ref. 30, two estimators of the entropy production were intro-
duced. The entropy production was defined as a trajectory-
valued function quantifying the degree of irreversibility of the
process producing the samples, in the following way: let P be
the law of the process and let us denote by Pr the law of the
time-reversed process, then the entropy production rate is the
relative entropy rate of the process with respect to the time-
reversed one,

ep = h(P|Pr) := lim
!→∞

H!(P|Pr)

!
, (9)

where

H!(P|Pr) := ∑
x!1∈A!

P([x!1]) log
P([x!1])

P([x1
! ])

. (10)

Here x1
! stand for the word x!1 reversed in order. The estimators

defined in Ref. 30 using the hitting and waiting times are given
as follows:

S
τ
! (x) := log

τx1
!
(x)

τx!1
(x)

, (11)

where τx!1
(x) := inf{k ≥ 1 : xk+!

k = x!1}. Notice that the estima-
tor actually quantifies the logarithm of the first time the word
x!1 appears in the reversed sequence divided by the first return
time of the first ! symbols in x. For the case of the estimator
using the waiting time, one has in an analogous way that:

S
ω
! (x,y) := log

ωr
! (x,y)

ω!(x,y)
, (12)

where ω!(x,y) := τx!1
(y) and ωr

! (x,y) := τx1
!
(y). In the con-

text of Gibbs measures or exponential ψ-mixing,30 it has been
studied the fluctuation properties of such estimators for which
its consistency has also been proved, that is, P× P-almost
surely we have that,

lim
!→∞

S ω
!

!
= ep, (13)
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as well as, P-almost surely

lim
!→∞

S τ
!

!
= ep. (14)

The asymptotic normality also holds, in that case, the asymp-
totic variance of the estimator coincides with that of the en-
tropy production. In the same reference the authors also ob-
tain a large deviation principle for the waiting time estimator.
Later in Ref. 31 the fluctuation bounds were obtained for the
same estimators introduced in Ref. 30 under the same setting.
This result is interesting from the practical point of view since
it provides bounds that are valid for finite time and not only in
the asymptotic sense.

Here, we will use the approach defined in Ref. 7 for the es-
timation of the entropy production rate, since we want to com-
pare it with the exact results one is able to obtain for Markov
chains. In Ref. 7 it is shown that the entropy production rate
can be obtained as the difference between the entropy rate and
the reversed entropy rate for Markov processes. For more gen-
eral systems, the entropy production is defined in some anal-
ogous way.5 The reversed entropy rate is defined as the rate
of entropy of the reversed process in time, i.e., as if we were
estimating the entropy rate of the process evolving backwards
in time. From the practical point of view, in a time series, the
entropy production rate may be estimated as the difference
between the entropy rate and the entropy rate estimated from
the reversed time series. To implement the latter methodol-
ogy using the recurrence time statistics, in Section III we will
define the reversed recurrence times which will allow us to
give estimations of the reversed entropy rate and eventually,
the corresponding estimations of the entropy production rate
as a measure of time-irreversibility of the process. It is im-
portant to mention that our methodology can still be applied
further than Markov chains, nevertheless, in those cases, one
expects to obtain results displaying the irreversibility as a con-
sequence of the positivity of the entropy production, and not
the exact results.

C. Parameter estimation of a normal distribution from
censored data

Let us denote by Θ! the random variable whose realizations
are estimations of the !-block entropy rate obtained by the
recurrence-time statistics. To be precise, Θ! can be defined as

Θ! =
1
!

log(T!), (15)

where T! can be the return, hitting, or waiting time random
variable. As pointed out above, Θ! satisfy the central limit
theorem regardless the choice of the recurrence time statistics.
This fact enables us to assume that Θ! has a normal distribu-
tion, with mean h! and variance σ2

! . As mentioned before, one
of the problems arising in implementing this estimator for real
time series is that the return time T! is censored from above by
a prescribed finite value Tc . From eq. (15), it is clear that the
random variable Θ! becomes censored from above by a finite
value hc := log(Tc)/! which will be referred to as censoring

entropy. Taking into account this observation, we can state
our problem as follows: given a sample set {hi : 1 ≤ i ≤ m} of
independent realizations of Θ!, we wish to estimate h! and σ!
knowing that such a sample is censored from above by hc.

It is important to remark that, since the realizations of Θ!
are censored from above by hc, then any sample set H := {hi :
1≤ i≤m} of (independent) realizations of Θ! will contain nu-
merically undefined realizations; i.e., hi such that hi > hc. We
well refer to these numerically undefined values as censored
realizations or censored samples. Those sample with a well-
defined numerical value will be called uncensored samples o
realizations. We will see below that censored sample data will
be used for the estimation of h! and σ!.

Let m := |H | be the size of the sample and let us assume
that the total number of uncensored realizations in the sam-
ple set H is exactly k, with k < m. Then, the total number of
censored realizations in H is m−k. Since the realizations are
assumed to be independent (a usual hypothesis in statistics),
we have that k can be seen as a realization of a random vari-
able with binomial distribution. Thus, the fraction p̂ := k/m
of uncensored samples with respect to the total number of re-
alizations in H is an estimation of the parameter p of the
above-mentioned binomial distribution. As we said above, Θ!

has normal distribution, implying that the parameter p is given
by,

p = Φ

(

hc − h!

σ!

)

, (16)

where Φ is the distribution function of a standard normal ran-
dom variable, i.e.,

Φ(x) :=
1√
2π

∫ x

−∞
e−y2/2dy. (17)

In Appendix A, following calculations from Ref. 36, we
show that the parameters h! and σ2

! can be estimated by using
the censored sample as follows:

ĥ = h̄+ ζ̂ (hc − h̄), (18)

σ̂2 = s2 + ζ̂ (hc − h̄)2, (19)

where h̄ is the sample mean of the uncensored samples and s2

the corresponding sample variance, i.e.,

h̄ :=
1
k

k

∑
i=1

hi, (20)

s2 :=
1
k

k

∑
i=1

(hi − h̄)2. (21)

Additionally ζ̂ is defined as:

ζ̂ :=
φ(ξ̂ )

p̂ ξ̂ +φ(ξ̂ )
(22)

where ξ̂ is obtained by means of the normal distribution func-
tion as

ξ̂ := Φ−1(p̂). (23)



Estimating entropy rate from censored symbolic time series 5

III. SAMPLING SCHEMES FOR ESTIMATING ENTROPY
RATE FROM RECURRENCE-TIME STATISTICS

As we said above, we are interested in estimating the en-
tropy rate and the entropy production rate from an observed
trajectory. The trajectory, in this context, stands for a finite-
length symbolic sequence x = x1x2x3 . . .xn which is assumed
to be generated by some process with an unknown law P. As
we saw in section II, we have to assume that the process com-
plies with the appropriate mixing properties, such as exponen-
tial φ -mixing or Gibbs, in order for the central limit theorem
to be valid. The next step is to obtain samples of the recur-
rence time statistics, i.e., we need to establish a protocol for
extracting samples of return, waiting or hitting-times from the
sequence x. The method for extracting samples we use, is sim-
ilar to the one introduced in Ref. 37, which is used for estimat-
ing the symbolic complexity and particularly, the topological
entropy of a process. After that, we will define the estimators
of the entropy rate and entropy production rate, using the fact
that the observed samples might be censored.

A. Return time

First, we establish the method for obtaining samples of the
return-time. Given a sequence x of size 2n, take two non-
negative integers ! and ∆ such that ! < ∆ ( n. Then define
the set M

ρ
! = {ai : ai = x(i∆+ 1, i∆+ !),0 ≤ i < m}, where

m := )n/∆*, of words of length ! and evenly ∆-spaced along
the first half of the trajectory x. In Fig. 1 we show a schematic
representation of how the sample words in M

ρ
! are collected

from the trajectory x.

2n

a1 a a a2 3 ... m

n

x

FIG. 1. Selection of sample words for return-time statistics.

Next, we define the sample sets of return times R! and re-
versed return times R! as follows. First, we associate to each
word a ∈ M

ρ
! the censored return time, ρ (n)

! (a,x), and the

reversed return time, ρ (n)
! (a,x), as follows,

ρ (n)
! (a,x) := inf{t > 1 : xk+t+!−1

k+t = a, t ≤ n,a := xk+!−1
k },

(24)

ρ (n)
! (a,x) := inf{t > 1 : xk+t+!−1

k+t = a, t ≤ n,a := xk
k+!−1}.

(25)

Observe that a stands for the block a with its symbols in a
reversed order. Next, R! and R! are defined by

R! := {t ∈ N : ρ (n)
! (a) = t,a ∈ M

ρ
! }, (26)

R! := {t ∈ N : ρ (n)
! (a) = t,a ∈ M

ρ
! }. (27)

It is necessary to stress the fact that the values in the above-
defined sample set are not necessarily all of them numerically
well-defined (or uncensored). This is because the return-time
defined in eq. (24) is actually censored from above. Notice
that we impose the condition that ρ (n)

! take a value no larger
that n. This is imposed by two reasons: on the one hand,
we have that the return-time cannot be arbitrarily large due
to the finiteness of the trajectory x. And, on the other hand,
although it is possible that the return-time for some sample
words might be larger than n and still well-defined, it is not
convenient for the statistics. Let us explain this point in more
detail. If we take a sample word a located at the kth site,
its corresponding return-time can in principle be at most as
large as n+ k− !. This happens when the word a occurs (by
chance) at the n+ k − !th site. Since all the sample words
in M

ρ
! are located at different sites along x, it is clear that

their corresponding return-time values have different upper
bounds. Therefore, if we do not impose a homogeneous upper
bound, the collection of return-time samples results in inho-
mogeneous censored data. As we have seen in section II C,
having a homogeneous bound (homogeneous censored data)
is crucial for implementing our estimators.

2n

x

k

a

a

a

a

a

a

(B)

(C)

(A)

k+n

FIG. 2. Uncensored and censored return-time values. First we
suppose that a sample word a occurs at the kth site along a finite
trajectory x of length 2n. In order to get ρ

(n)
! (a) we should look for

the occurrence of a along x, from the (k+1)th symbol to the (k+n)th
symbol of x. This section of the trajectory is written x(k + 1,k +

n). (A) If a is found in x(k+ 1,k + n), then ρ
(n)
! (a) is numerically

well defined, thus called uncensored. (B) If a is found in x but not
in the section x(k + 1,k + n) we consider that ρ

(n)
! (a) is censored

(numerically undefined ). (C) Finally, if we do not observe any other
occurrence of a in x beyond the (k + 1)th symbol, it is clear that

ρ
(n)
! (a) is numerically undefined, henceforth, censored.

In the following, we will refer to this homogeneous upper
bound for return-times as censoring time and, whenever con-
venient it will alternatively be denoted by Tc. In Fig. 2 we give
an illustrative description of the censoring of the samples.

Once we have the return-time sample set R!, we introduce
the estimator of the entropy rate and the entropy production
rate. As we saw in section II, if we take a return-time value
t from the sample set R!, then the quantity log(t)/! can be
interpreted as a realization of the block entropy rate, h! which
in the limit when !→ ∞, obeys the central limit theorem. This
fact enables us to implement the following hypothesis: for
finite !, the value log(t)/! is a realization of a normal random
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variable with (unknown) mean h! and variance σ2
! . Then, the

sample sets

H
ρ
! := {h = log(t)/! : t ∈ R!}, (28)

H
ρ
! := {h = log(t)/! : t ∈ R!}, (29)

can be considered as sets of realizations of normal ran-
dom variables censored from above by the quantity hc :=
log(Tc)/!= log(n)/! that we call censoring entropy. Then the
estimation procedure for the block entropy is essentially the
one described in section II C. Here we summarize the steps
for performing the estimation of h! for return-time statistics.

1. Given a finite sample trajectory or a symbolic sequence
x of size 2n, define the censoring time as the half of the
size of the sample trajectory, i.e., Tc = n. Fix the number
m of sample words or blocks to be collected and the size
of the block ! to be analyzed. Next, define the spacing
∆ := )n/m* and the sample set M

ρ
! of evenly ∆-spaced

words that lies along the first half of the trajectory x,
i.e.,

M
ρ
! = {ai : ai = x(i∆+ 1, i∆+ !),0≤ i < m}.

2. Define the sets of return-time samples and reversed
return-time samples as

R! := {t ∈ N : ρ (n)
! (a) = t,a ∈ M

ρ
! }, (30)

R! := {t ∈ N : ρ (n)
! (a) = t,a ∈ M

ρ
! }. (31)

3. Using the previous sets of return-time samples define
the sets of block entropy and reversed block entropy

H
ρ
! := {h = log(t)/! : t ∈ R!}, (32)

H
ρ
! := {h = log(t)/! : t ∈ R!}. (33)

4. Next, define the rate uncensored sample values p̂ :=
k/m, where m is the total number of samples in H

ρ
! and

k is the number of uncensored samples in H
ρ
! (hence-

forth there are m− k censored samples in H
ρ
! ).

5. Let 1 ≤ i ≤ k, and denote by hi, each of the uncensored
samples in H

ρ
! . Then its mean and variance are given

as follows

h̄ :=
1
k

k

∑
i=1

hi, (34)

s2 :=
1
k

k

∑
i=1

(hi − h̄)2. (35)

6. Define the sample functions (see section II C and ap-
pendix A for details)

ζ̂ :=
φ(ξ̂ )

p̂ ξ̂ +φ(ξ̂ )
, (36)

ξ̂ := Φ−1(p̂), (37)

where φ(x) = e−x2/2/
√

2π is the probability density
function of the standard normal distribution and Φ its
(cumulative) distribution function.

7. Finally, the estimations for the mean of the block en-
tropy and its variance using the return-time estimator
are given by

ĥ! = h̄+ ζ̂ (hc − h̄), (38)

σ̂2
! = s2 + ζ̂ (hc − h̄)2. (39)

where hc is the censoring entropy and it is defined as

hc := log(Tc)/!.

8. Repeat steps 4 – 7 for the set R! in order to have an esti-
mation of the reversed block entropy rate, which allows
to have an estimation of the block entropy production
rate just by taking the difference between the reversed
block entropy and the block entropy7 as follows,

êp := ĥR
! − ĥ!. (40)

B. Waiting time

The waiting-time estimator for the block entropy requires
two distinct trajectories. In practical situations, we normally
have one single trajectory. In order to overcome this prob-
lem, we split the original sequence in two equal-sized parts.
Since we assume sufficiently rapid mixing, it is possible to re-
gard the second half of the sample to be independent of the
first half, provided that the size of the sample is large enough.
Thus, one may consider the two parts of the sample as two
independent trajectories. After that, we collect m different
!-words at random along one of those trajectories. This col-
lection is denoted by M ω

! , and will play the role of the set
of sample words, in the same way as it was done by set M

ρ
!

in section III A. A schematic representation of this sampling
procedure is shown in Fig. 3.

x

n 2n

a a a a1 2 43

FIG. 3. Selection of sample words for the waiting time statistics.

The next step consists in defining the censored waiting-time
corresponding to each word in the sample M ω

! . Let x be the
trajectory consisting of 2n symbols. Assume that the sam-
ples are randomly collected from the segment x(n+1,2n−!).
Then we define the censored waiting-time and the censored
reversed waiting-time for a ∈ M ω

! as follows,

ω(n)
! (a,x) := inf{t ≥ 1 : xt+!−1

t = a}, (41)

ω(n)
! (a,x) := inf{t ≥ 1 : xt+!−1

t = a}. (42)
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It is important to notice that the both, the waiting time and the
reversed waiting time are bounded from above by n, i.e., the
sample waiting times are homogeneously censored by n.

The rest of the method follows the lines of the one described
in section III A. Here we summarize the main steps:

1. Given a finite sample trajectory x of size 2n, set the cen-
soring time Tc = n equals to the half of the size of the
sample trajectory. Fix the number m of sample words to
be collected and the size of the block !. Next, collect m
different words at random along the symbolic sequence
x(n+ 1 : 2n). We denote by M ω

! this collection of !-
words.

2. Define the sets of waiting-time samples and reversed
waiting-time samples as

W! := {t ∈N : ω(n)
! (a,x) = t,a ∈ M

ω
! }, (43)

W ! := {t ∈N : ω(n)
! (a,x) = t,a ∈ M

ω
! }. (44)

3. From the sets of waiting-time samples define the sets of
block entropy and reversed block entropy

H
ω
! := {h = log(t)/! : t ∈ W!}, (45)

H
ω
! := {h = log(t)/! : t ∈ W !}, (46)

4. Define the rate of uncensored sample values as p̂ :=
k/m, where m is the total number of samples in H ω

!
and k is the number of uncensored samples also in H ω

!
( thus, the remaining m− k samples are censored).

5. Let 1≤ i≤ k, denote by hi, each of the uncensored sam-
ples in H ω

! . Then its mean and variance are given as
follows

h̄ :=
1
k

k

∑
i=1

hi, (47)

s2 :=
1
k

k

∑
i=1

(hi − h̄)2. (48)

6. Define the sample functions (see section II C and ap-
pendix A for details)

ζ̂ :=
φ(ξ̂ )

p̂ ξ̂ +φ(ξ̂ )
, (49)

ξ̂ := Φ−1(p̂), (50)

where φ(x) = e−x2/2/
√

2π is the probability density
function of the standard normal distribution and Φ its
(cumulative) distribution function.

7. Finally, the estimations for the mean of the block en-
tropy and its variance using the return-time estimator
are given by

ĥ! = h̄+ ζ̂(hc − h̄), (51)

σ̂2
! = s2 + ζ̂ (hc − h̄)2, (52)

again, hc is the censoring entropy defined as above.

8. Repeat steps 4 – 7 for the set H
ω
! in order to have an

estimation of the reversed block entropy rate, which al-
lows to have an estimation of the block entropy produc-
tion rate by taking the difference between the reversed
block entropy and the block entropy7 as follows,

êp := ĥR
! − ĥ!. (53)

C. Hitting time

The hitting-time estimator requires a set of sample words
which should be drawn at random from the process that gen-
erates the observed trajectory x. Although we do not know
the law of the process, we can still avoid this problem if the
set of sample words is obtained by choosing the !-words at
random from another observed trajectory. However, this is the
very same method we used for collecting the sample words
for the waiting-time estimator. Then, from the statistical point
of view, the hitting-time and waiting-time method can be re-
garded as the same method.

IV. ESTIMATIONS TESTS

Now, we will implement the above defined methods for es-
timating the block entropy and entropy production rates. First
of all, we will perform numerical simulations in order to im-
plement a control test statistics which will be compared with
the numerical experiments using our methods.

In section III we established two methods for estimating
block entropies by using either, the return-time statistics or
the waiting-time statistics. These methods assume that we
only have a single “trajectory” or, better said, symbolic se-
quence, obtained by making an observation of real life. Our
purpose here is to test the estimators themselves, and not the
sampling methods. The latter means that we will implement
the estimators (20) and (21) for both, the return-time and
the waiting-time statistics, without referring to the sampling
schemes mentioned in section III. This is possible because we
have access to an unlimited number of sequences, which are
produced numerically with a three-states Markov chain. In
this sense we have control of all of the parameters involved
in the estimators, namely, the length of the block !, the en-
tropy threshold hc (by which the recurrence-time samples are
censored) and the sampling size |H!|. After that, we will im-
plement the estimation method described in section III using
a single sequence obtained from the Markov chain defined be-
low. The latter is a numerical experiment done to emulate an
observation of real life where the accesible sample symbolic
sequences are rather limited.

A. Finite-state Markov chain

For numerical purposes we consider a Markov chain whose
set of states is defined as A = {0,1,2}. The corresponding
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FIG. 4. Entropy rate and entropy production rate. (a) We show the
behavior of entropy rate h and reversed entropy rate hR as a func-
tion of the parameter q using the exact formulas given in eqs. (55)
and (56). (b) We display the behavior of entropy production rate as a
function of q using the exact formula (57).

stochastic matrix P : A ×A → [0,1] is given by,

P =





0 q 1− q
1− q 0 q

q 1− q 0



 , (54)

where q is a parameter such that q∈ [0,1]. It is easy to see that
this matrix is doubly stochastic and the unique invariant prob-
ability vector π = πP is given by π = ( 1

3 ,
1
3 ,

1
3 ). Moreover,

it is easy to compute the entropy rate and the time-reversed
entropy rate, indeed, they are given by,

h(q) =−q log(q)− (1− q) log(1− q), (55)
hR(q) =−(1− q) log(q)− q log(1− q). (56)

Additionally, the corresponding entropy production rate is
given by

ep(q) = (2q− 1) log
(

q

1− q

)

. (57)

The behavior of the entropy rate and entropy production rate
can be observed in Figure 4 We will use this model to generate
symbolic sequences in order to test the estimators.

B. Statistical features of estimators for censored data

The first numerical experiment we perform is intended to
show the statistical properties of the estimators without im-
plementing the sampling schemes introduced above. To this
end, we produce a censored sample set of 5×104 return times
obtained from several realizations of the three-state Markov
chain. We obtain each of those return times as follows. First
we initialize the Markov chain at the stationary state (i.e., we
choose the first symbol at random using the stationary vec-
tor of the chain) and we make evolve the chain. This proce-
dure generates a sequence which grows in time, say for in-
stance a1,a2, . . .at . The evolution of the Markov chain will
be stoped at time t either, until the first !-word a1,a2, . . . ,a!
appears again, that is if, at−!+1,at−!+2, . . . ,at = a1,a2, . . . ,a!
or when the time t − !+ 1 exceeds a given bound Tc. Then,

0.2 0.4 0.6 0.8
h

0.1

1

10

lo
g(

 f 
)

0.2 0.4 0.6 0.8

0.1

1

10

lo
g(

 f 
)

0.2 0.4 0.6 0.8

(a)

(d)

(b) (c)

(e) (f)

FIG. 5. Return-time entropy density for q = 0.60 and ! = 10. (a)
hc = 0.48, (b) hc = 0.57, (c) hc = 0.66, (d) hc = 0.75, (e) hc = 0.84,
(f) hc = 1.02.

the corresponding return time (for the ith realization) will be
either, ρi := t − !+ 1 or an undefined value ρi > Tc.

Once we have collected the sample set of return times {ρi}
we obtain a set of block entropy rates by means of the equation

hi =
log(ρi)

!
, (58)

whenever ρi is numerically defined. Of course, we might
obtain some numerically undefined sample block entropies
hi > hc due to the censored return times.

Analogously, we obtain a sample set of reversed entropy
rates. That is, we make evolve the Markov chain and stop
its evolution at time t until the first !-word a1,a2, . . . ,a! ap-
pears reversed in the realization, i.e., at−!+1,at−!+2, . . . ,at =
a!,a!−1, . . . ,a1 or until the time t − !+ 1 exceeds the given
upper bound Tc. The reversed return time for the realiza-
tion i will be ρi = t − !+ 1 or it is numerically undefined if
t − !+ 1 > Tc. Then we obtain the sample set {hi} by means
of equation hi = log(ρi)/!.

Notice that this procedure involves two parameters that can
freely vary. These are the block length ! and hc (or equiv-
alently Tc), where hc is an upper bound for the possibly ob-
served block entropy rates, thus, by censoring the correspond-
ing sample set.

Then, we analyze statistically the sample set of block en-
tropy rates and reversed block entropy rates for several values
of the free parameters. In Figure 5 we show the histogram of
the relative frequencies of the block entropy rate for ! = 10,
q = 0.60 and several values of hc. Correspondingly, in Fig-
ure 6 we show the histogram of the relative frequencies of the
reversed block entropy rate for ! = 10, q = 0.60 and several
values of hc.

We can appreciate how the density of the block entropy rate
is censored while ! is kept fix. If the value of hc is small, for
most of the samples the return time is numerically undefined
because the samples are censored from above. This is seen
for instance, in Figure 5a, in which hc takes the smallest value
for the displayed graphs. In this case, approximately only a
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FIG. 6. Reversed return-time entropy density for q = 0.60 and ! =
10. (a) hc = 0.48, (b) hc = 0.57, (c) hc = 0.66, (d) hc = 0.75, (e)
hc = 0.84, (f) hc = 1.02.

25% of the samples are numerically well-defined resulting in
the ‘partial’ histogram displayed in Figure 5a. In Figure 5b,
the value of hc is increased causing the histogram to ‘grow’.
In the remaining graphs, from Figure 5c to Figure 5d, this ten-
dency is clear, as we increase the value of hc the number of
numerically defined samples grows, thus completing gradu-
ally the corresponding histogram. Something similar occurs
for the reversed block entropy shown in Figure 6.

On the other hand, if we keep hc constant and vary the block
length !, we can appreciate the evolution of the histogram to-
wards a normal-like distribution. We show this effect in Fig-
ure 7 for q = 0.60 and hc = 1.155 fixed. This is in agree-
ment with the central limit theorem, as we have mentioned
in previous sections. In Figure 7 we show the histograms for
! = 6,9,12,15,18 and 19 (panels (a)–(f) respectively). We
observe that for the lowest value of !, the histogram is rather
irregular, which means that the central limit theorem is still
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FIG. 7. Entropy estimated by means of the return-time statistics
for the three-states Markov chain We show the histograms of the es-
timated entropy density for q = 0.60, hc = 1.155 and (a) ! = 6, (b)
!= 9, (c) != 12, (d) != 15, (e) != 18, (f) ! = 19. We obtained the
corresponding histograms using 5×104 sample words in each case.
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FIG. 8. Return-time entropy estimations as a function of hc for
several values of !. Panel (a): The graphics shows the behavior of
ĥ as we increase the entropy threshold hc for ! = 6 (filled squares),
! = 9 (filled triangles), ! = 12 (filled circles), ! = 15 (X’s), ! = 18
(stars), ! = 19 (plus). Panel (b): it is shown the behavior of the
estimated reversed entropy for the same parameter values used in
panel (a).

not well manifested for the block entropy rate. We can also
observe that increasing the block length, the histogram pro-
gressively evolve towards a bell-shaped distribution, which is
reminiscent of the normal one. This shows that an estimation
using our approach could be more accurate for large values of
block lengths due to the central limit theorem.

Once we have the sample set of block entropy rates we
use the estimation procedure for censored data as described
in Section III. We perform this procedure for the entropy rates
and reversed entropy rates obtained from the the return-time
and the waiting-time statistics.

In Figure 8 we show the estimation of the block entropy
rate and the reversed block entropy rate using the return-time
statistics. In Figure 8a, the displayed curves (solid black lines)
show the behavior of the estimation of the block entropy rate
as a function of the censoring bound hc for several values of
!. This figure exhibits two important features of our estima-
tion technique. Firstly, we notice that the estimation of the
entropy rate has large fluctuations for small hc. We can say
that the smaller hc, the larger statistical errors are observed, as
expected. Secondly, we observe that, the larger !, the better
the estimation. The latter can be inferred from the fact that
the curve with the largest value of ! in Figure 8a is closest to
the exact entropy rate (solid red line). A similar behavior oc-
curs for the reversed block entropy rate estimations shown in
Figure 8b.

For the waiting-time statistics an analogous behavior oc-
curs. In Figure 9 it is shown the curves for the estimations
of the block entropy rate, in panel (a), and the reversed block
entropy rate, in panel (b). As expected, the estimations for
small values of the censoring bound hc have large fluctua-
tions, which gradually decrease as hc is increased. This is
clearly observed in Figure 9 because the black solid lines de-
viate largely from the exact value (solid red line) for small
values of hc. Concerning the value of !, it is clear that for the
largest value of !, the estimation is closer to the exact entropy
rate for hc large enough (see the insets in Figure 9).

All these observations allows us to state that, for obtain-
ing the best estimations (as far as possible within the present
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FIG. 9. Waiting-time entropy estimations as a function of hc for
several values of !. Panel (a): The graphics shows the behavior of
ĥ as we increase the entropy threshold hc for ! = 6 (filled squares),
! = 9 (filled triangles), ! = 12 (filled circles), ! = 15 (X’s), ! = 18
(stars), ! = 19 (plus). Panel (b): it is shown the behavior of the
estimated reversed entropy for the same parameter values used in
panel (a).

scheme) we should keep hc as large as possible. Similarly, in
order to assure the central limit to be valid, we should take the
block length ! as large as possible.

Now, we turn our attention to the implementation of the es-
timations of block entropy rate using the schemes described
in Section III. For this purpose, first, we generate a single se-
quence of N = 12× 106 symbols by means of the three-states
Markov chain. Then, we implement the sampling schemes for
the return-time and the waiting-time statistics. In each case,
we collect m = 5× 104 sample words, which correspond to
m= 5×104 samples of block entropy rates and reversed block
entropy rates. These sample sets contain both, numerically
defined and undefined samples, the latter ones are due to the
censoring. In this case, the censoring bound for entropy rate
hc is determined by

hc =
log(N/2)

!
. (59)

We should emphasize that in the present case we have con-
trol only on a single parameter, which we take as the length
of the block !. Contrary to the above exposed numerical ex-
periments, in this case hc is no longer a free parameter; it is
actually determined by means of the length of the symbolic
sequence N and !, the length of the block. Consequently,
changes in the values of ! imply changes in the value of hc.
The latter is important for two reasons: on the one hand, we
have that, in order to assure the validity of the central limit the-
orem, we should take ! as large as possible (actually, the true
entropy rate is obtained in the limit !→∞). On the other hand,
it is desirable to have as much as non-censored samples as
possible, i.e., it is convenient for hc to be as large as possible.
However, in practice, we cannot comply with both require-
ments at once because of expression (59): the larger !, the
shorter hc, whenever the length N of the symbolic sequence is
kept constant (which commonly occurs in real-world observed
data).

An important consequence of the latter, that we cannot
make ! as large as we want. Actually, the maximal block
length that it is possible to use for entropy estimations is de-
termined by the accuracy we would like to obtain. This is,
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FIG. 10. Estimation of block entropy rate as a function of !. Black
lines stand for the estimated block entropy rate and red lines are
the exact entropy rate. We show the curves corresponding to the
Markov chain parameter q = 0.50 (solid lines), q = 0.60 (dotted
lines), q = 0.70 (dashed lines), q = 0.80 (dotted–dashed lines) and
q = 0.90 (double-dotted–dashed lines). (a) Block entropy rate es-
timations using the return-time statistics. (b) Same as in (a) using
waiting-time statistics. (c) Reversed block entropy rate estimations
using the return-time statistics. (d) Same as in (c) using waiting-time
statistics.

TABLE I. Block entropy estimations using the return-time statistics.

Parameters Estimations
q !∗ p̂ ĥ ∆ĥ ∆ĥ/h

0.5 22 0.6066 0.692325 0.000822 0.001187
0.6 23 0.5488 0.669906 0.003106 0.004636
0.7 25 0.5718 0.607702 0.003162 0.005203

0.80 30 0.5880 0.496892 0.003510 0.007064
0.9 30 0.9250 0.328234 0.003151 0.009600

for a large ! we have a short censoring upper bound, implying
that only a few samples for block entropy rates are numeri-
cally well-defined. This entails a loss of accuracy since, the
less numerically well-defined samples, the larger becomes the
variance of the estimators. This phenomenon can be observed
in Figure 10 for several values of the parameter q of the three-
states Markov chain defined in Section IV A.

In Figure 10a we show the estimation of block entropy rate
as a function of ! using the return-time statistics. The red
lines show the exact value of the entropy rate obtained with
eq. (55), while the black lines correspond to the estimations
of the block entropy rate using the return-time statistics under
the sampling scheme described in Section III A. Figure 10b
shows the same as in Figure 10a but using the waiting-time
statistics. Figures 10d and 10d show the corresponding curves
for the reversed block entropy rate for the return-time and the
waiting-time statistics, respectively.
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TABLE II. Block entropy estimations using the waiting-time statis-
tics.

Parameters Estimations
q !∗ p̂ ĥ ∆ĥ ∆ĥ/h

0.5 22 0.6096 0.691518 0.001630 0.002357
0.6 23 0.5460 0.670477 0.002535 0.003781
0.7 26 0.4590 0.609711 0.001153 0.001891
0.8 30 0.5926 0.496028 0.004374 0.008818
0.9 30 0.9242 0.333756 0.008673 0.025986

TABLE III. Time-reversed block entropy estimations using the
return-time statistics.

Parameters Estimations
q !∗ p̂ ĥR ∆ĥR ∆ĥR/hR

0.5 22 0.6104 0.691449 0.001698 0.002456
0.6 21 0.4620 0.751255 0.002850 0.003794
0.7 17 0.4504 0.933973 0.015810 0.016928
0.8 12 0.5586 1.272741 0.059438 0.046701
0.9 8 0.4642 1.981793 0.101070 0.050999

Observe that all the curves of the estimated block entropy
rate have a common behavior that we anticipated above: there
is a special value of ! for which the estimation seems to be
optimal. But, for small and large values of ! the estimated en-
tropy deviates visibly from the exact value. This phenomenon
is produced because, the estimators become better as the !
increases but also decreases the number of numerically well-
defined samples due to the censoring. A criterium for obtain-
ing an optimal !∗ might not be unique, so here we use a simple
one. First of all, once the value of ! is chosen, the censoring
entropy rate is fixed according to eq. (59). This bound in turn,
determines the number of numerically well-defined samples;
the shorter hc, the lower number k of numerically well-defined
samples we have. Due to relationship (59) we can also say that
the larger !, the lower number k of numerically well-defined
samples. A simple way to optimize this interplay between !
and k = k(!), is taking the block length !∗ for which k(!∗) is
as close as possible to the half of the sample size m.

Using this criterium we compute the optimal block length
!∗, and the corresponding estimated value of entropy rate, for
several values of the parameter q of the Markov chain. Ta-
bles I and II we show the estimated entropy rate ĥ and the op-

TABLE IV. Time-reversed block entropy estimations using the
waiting-time statistics.

Parameters Estimations
q !∗ p̂ ĥR ∆ĥR ∆ĥR/hR

0.5 22 0.6094 0.692784 0.000363 0.000524
0.6 21 0.4612 0.751243 0.002861 0.003808
0.7 16 0.6494 0.938406 0.011377 0.012124
0.8 12 0.5286 1.285067 0.047112 0.036661
0.9 8 0.4472 1.999906 0.082957 0.041480

TABLE V. Entropy production estimations from return and waiting
time statistics.

Return Waiting
q êp ∆ep êp ∆ep

0.50 −0.000876 0.000876 0.001266 0.001266
0.60 0.081349 0.000256 0.080766 0.000327
0.70 0.326271 0.012648 0.328695 0.010224
0.80 0.775849 0.055928 0.789039 0.042738
0.90 1.653559 0.104221 1.666150 0.091630

timal value !∗ for q = 0.50, q = 0.60, q = 0.70, q = 0.80, and
q = 0.90 for the return-time and the waiting-time statistics re-
spectively. We also show a comparison of the estimated block
entropy rate with their corresponding exact values. We can
appreciate from these tables that the relative error ∆ĥ/h (the
relative difference between the estimation and the exact value)
is lower than 0.06. Moreover, for q = 0.50 and q = 0.60, the
relative errors are even less than 1%. In Tables III and IV we
show the estimations of reversed entropy rate, and the corre-
sponding optimal !∗, for the return-time and the waiting-time
statistics respectively.

In Figure 11 we show both the block entropy rate (panel
a) and the reversed block entropy rate (panel b) as a function
of the parameter q. In that figure, the estimation correspond-
ing to the return-time and waiting-time statistics are compared
with the exact value. We observe that the return-time and
waiting-time statistics have approximately the same accuracy.
From Figure 11 we can also see an interesting behavior of
the estimation, that is, the larger the entropy rate, the larger
the deviation from the exact result. This effect can actually
be explained as follows. First we should have in mind that
the return-time and waiting-time can be interpreted as mea-
sures of the recurrence properties of the system. Specifically,
the entropy rate itself can, in some way, be interpreted of as
a measure of the recurrence time per unit length of the word
(this is a consequence of the fact that the logarithm is a one-to-
one function). Thus, it becomes clear that the larger entropy
rate, the larger the recurrence times in the system. Since all
the samples are censored from above it should be clear that a
system having larger recurrence times will have larger errors
in the estimations. Therefore we may say that a system with
large entropy rate will exhibit large statistical errors in its es-
timations. Despite of this effect, we observe in Figure 11 that
the errors in the estimations are sufficiently small for practical
applications.

Finally we show in Table V the entropy production rate of
the system by taking the difference between the block entropy
rate and the reversed block entropy rate, for both, the return
and the waiting-time statistics. It is important to remark that
these recurrence statistics are consistent one to each other,
having moderate deviations (statistical errors) when compared
with the exact values.
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FIG. 11. Estimation of block entropy rate and reversed block entropy
rate as a function of q. (a) It is shown the block entropy rate estimated
from the return-time statistics (black filled circles) and the waiting-
time statistics (red filled squares). We also show the corresponding
exact values of the entropy rate (black solid line) of the system for
comparing these estimations. In panel (b) the same as in panel (a),
but for the reversed entropy rate.

V. EXAMPLES

In this section we apply our methodology for estimating en-
tropy rate in some well-studied systems for which either, the
entropy rate or the (positive) Lyapunov exponents are known.
We also include a couple of examples for estimating the en-
tropy production rate for showing the performance of our
estimator for the analysis of the time-reversibility (or time-
irreversibility) of the process from a finite time-series.

A. Entropy rate for chaotic maps

For one-dimensional chaotic maps, a theorem of Hofbauer
and Raith38 allows to compute the entropy rate by means of
the Lyapunov exponent and the fractal dimension of the cor-
responding invariant measure. We use the results reported in
Ref. 39 for the entropy rate estimated from the Lyapunov ex-
ponents as reference values. We test our methodology for
three chaotic maps: a Lorenz-like transformation, the logis-
tic map and the Manneville-Pomeau map.

The first chaotic map we use to exemplify our estimator for
entropy rate is a Lorenz-like map L : [0,1]→ [0,1] defined as

L(x) :=

{

1−
(3−6x

4

)3/4
if 0 ≤ x < 1/2

( 6x−3
4

)3/4
if 1/2 ≤ x ≤ 1.

(60)
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FIG. 12. Estimation of block entropy rate as a function of the cen-
soring time Tc for several chaotic maps. In all these numerical exper-
iments we obtained a symbolic sequence of 8× 106 symbols long.
We obtained a sample set of 2 × 104 words following the waiting
time sampling scheme. We fix the censoring time Tc and compute the
corresponding estimations for entropy rate. We repeat the estimation
for several values of the censoring time Tc. Solid lines represent the
waiting-time estimations and dashed lines represent the estimation
reported in Ref. 39 of the Lyapunov exponent for (a) the Lorenz-like
map (b) the logistic map (a = 3.8) and (c) the Manneville-Pomeau
map (z = 31/64).

It is clear that this map has a generating partition defined by
{[0,1/2), [1/2,1]} allowing a direct symbolization of the time
series.

The second chaotic map we use is the well-known family
of logistic maps defined as

Ka(x) := ax(1− x). (61)

We take a = 3.6, a = 3.8 and a = 4 corresponding to the en-
tropy rate (estimated from Lyapunov exponents) reported in
Ref. 39. As in the case of the Lorenz-like map, the generating
partition is given by {[0,1/2), [1/2,1]} which is the one we
use for the symbolization of the time-series.

Finally we test our method on the Manneville-Pomeau
maps defined as

Mz(x) := x+ xz(mod 1), (62)

which is a family of chaotic maps exhibiting a dynamics
with long range correlations. This family is parametrized by
z ∈ R+. We concentrate on parameter values within the in-
terval 1 < z < 2 for which the map admits a unique abso-
lutely continuous invariant measure39. Additionally, for such
parameter values the dynamics has a power law decay of cor-
relations. We use the parameter values z1 = 3/2, z2 = 7/4,
z3 = 15/8, z4 = 31/16, z5 = 63/32, and z6 = 127/64. In
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TABLE VI. Entropy rate estimations for chaotic maps. The esti-
mated entropy rates hLyap were obtained from Ref. 39 and correspond
to the estimation of entropy rate through the Lyapunov exponent.

Estimation
Map Parameter !∗ hLyap

39 ĥ σ̂ ∆ĥ/h

Lorenz 29 0.5129 0.5134 0.060 10−4

a = 3.6 53 0.1834 0.1971 0.035 0.074
Logistic a = 3.8 34 0.4318 0.4375 0.075 0.013

a = 4.0 22 0.69314 0.6813 0.076 0.017
z = 3/2 25 0.5621 0.5877 0.190 0.046
z = 7/4 35 0.3597 0.4214 0.226 0.171

Manneville- z = 15/8 61 0.2176 0.2384 0.123 0.097
Pomeau z = 31/16 91 0.1580 0.1494 0.071 0.054

z = 63/32 115 0.1213 0.1141 0.078 0.059
z = 127/64 111 0.1164 0.1196 0.075 0.027

this case the natural partition (which is a generating one) is
{[0,ci), [ci,1]} where ci is defined as the solution to the equa-
tion Mzi(c

−
i ) = 1.39

In Ref. 39, the authors estimated the entropy rate by means
of the Lyapunov exponent. We take these values as reference
for comparison with our results, which are displayed in Ta-
ble VI.

The estimations of entropy rate for these examples are per-
formed as follows. First of all we generate a time-series
from the dynamics of each map. Each sequence is symbol-
ized according to the corresponding generating partition. The
symbolic sequences obtained from this procedure are 8× 106

symbols long. Then, in order to test the performance of our
method, we estimate the entropy rate for several values of the
censoring time N. For a fixed value of censoring time we ap-
ply the sampling scheme for the waiting time estimator and
we use the criterium given in the preceding section to opti-
mize the block-length !∗ which the best estimation with re-
spect to the number of samples (recall that !∗ is the block-
length for which the number of samples is closest to the half
of the sample words). In this experiments we fix the number
of samples to m= 2×104 and we estimate the entropy rate for
Tc = 2 j ×103, with j = 1,2,3, . . .12. This means that each es-
timated value of the entropy rate actually does not uses all of
the information available in the sample trajectory (except the
last one corresponding to j = 12). This numerical experiment
is intended to show the actual performance of our estimators
for cases in which the sample trajectories have a “small” num-
ber of symbols. The estimations of entropy rate as a function
of the censoring time Tc are shown in Figure 12. In that figure
we show the estimations for the Lorenz map, the logistic map
(a = 3.8) and the Manneville-Pomeau map (z = 31/64).

The behavior of the estimated entropy rate displayed in Fig-
ure 12 shows the performance of our estimations when we
vary the censoring time Tc. We emphasize that these numeri-
cal experiments exhibit certain robustness of our method; for
low censoring times (i.e. for Tc = 1000 or Tc = 2000) the
deviation of the estimated entropy from the reference value
is maintained within the same order of magnitude as the es-
timated entropy obtained from large censoring times (Tc =
2048000 or Tc = 4096000). This behavior means that the pro-

posed estimation methods could, in principle, be implemented
in situations in which the sample symbolic sequences are rel-
atively small. It is also important to notice that the way in
which the estimated entropy rate behaves is different for every
chaotic map. For instance, the Lorenz-like map seems to con-
verge rapidly with Tc, the “oscillations” around the reference
value might be occasioned by the fluctuations of the estimator
itself. Conversely, for the logistic map and the Manneville-
Pomeau map the estimated entropy remains above in the for-
mer and below in the latter, from the corresponding reference
value. This behavior might be the result of several situations
that were not be taken into account in the presented study.
For example, in the Manneville-Pomeau map we should be
aware of the presence of the long-range correlations. These
correlations might cause to reach the central limit so slowly
in such a way that the proposed estimators might be biased.
This effect can be appreciated in Table VI where we summa-
rize the estimated entropy rates for all the chaotic map (and
the parameter values) described above using a censoring time
Tc = 1024000. Here we can see that the half censored sam-
ples criterium is meet at large values of the block-length (for
z = 63/32 it is necessary to analyze blocks of length of 115
symbols). This phenomenon can be explained as follows. Due
to the correlations, the symbolic sequences obtained from the
symbolization of the chaotic trajectories, might contain large
blocks composed, for instance, from a single symbol. Thus
any recurrence time associated to these blocks largely devi-
ates from the typical recurrence time, resulting in a bias in the
estimated entropy rate. This clearly deserves a much more
detailed study. On the other hand, regarding the estimated re-
sults displayed in Table VI, we should emphasize that all the
reported entropy rates are consistent40 with the ones reported
in reference 39. We should notice that in this table we display
the estimated standard deviation σ̂ which is an additional re-
sult of our treatment. Since we assume that the estimator has a
normal distribution we can estimate how much the estimated
entropy rate will deviate from the exact (unknown) value, a
deviation that is always present for finite ! regardless the size
of the sample. As we can see in Table VI, this quantity is con-
sistent with the fact that the reference value is located within
the estimated error, taking the error as the estimated standard
deviation. Finally in Table VI we also show the relative er-
ror of our estimated entropy rate compared with the reference
entropy reported in Ref. 39. These results exhibit the same be-
havior as we found in analyzing the Markov chain: the larger
entropy rate the larger the relative error in our estimations.
This phenomenon might also be the result of the fact that for
large entropy rate values, the system exhibits a large diversity
of blocks of given length. This diversity would imply that, for
estimating entropy rate it becomes necessary to have access to
a large amount of sample blocks in order to sample accurately
all the possible recurrence times and, consequently, to have a
sufficient statistics for the block entropy rate estimations.
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B. Testing time-irreversibility

In this section we test the time-irreversibility of a sym-
bolic sequence by using our estimators for entropy rate. The
first example we use is a three-states n-step Markov chain
which is defined as follows. First, take some n ∈ N, we use
n = 6,8,10,12, and 14 for our numerical experiments. De-
fine a stochastic process {Xt ∈ A : t ∈ N0} with state space
as A = {0,1,2}. The process is initialized as follows. For
0≤ t < n we define Xt as an independent random variable with
uniform distribution in A . Then, the random variable Xn+ j is
dependent on the random variable Xj in such a way that the
conditional probability of Xn+ j taking the value a ∈ A given
that Xj took the value b ∈ A is defined as

P(Xn+ j = a|Xj = b) = Pb,a, (63)

for all j ∈ N0. Here P is a 3× 3 square matrix given by the
one introduced in eq. (54), i.e.,

P =





0 q 1− q
1− q 0 q

q 1− q 0



 . (64)

The case n= 1 reduces to the 1-step three-states Markov chain
introduced in section IV for testing the entropy estimators. It
is clear that, by construction, the irreversibility of the process
will be manifested when analyzing block lengths larger than
n, no matter which method is used for estimations. This is be-
cause each realization of the n-step Markov chain can be in-
terpreted as a n-independent realization of the 1-step Markov
chain. In other words, for 0 ≤ k < n, we can interpret the pro-
cesses {Xn j+k : j ∈ N} as a collection of n realizations of a
1-step Markov chain given by the stochastic matrix P. So, in
order to see the effects of the irreversibility it is necessary to
analyze blocks with size beyond n.
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FIG. 13. Estimation of block entropy production rate as a function
of ! for a n-step Markov chain. For these estimations we used a
sequence of 8 × 106 symbols long. We collected a sample set of
2× 104 words of size !. We vary ! from ! = 2 up to the value of
! such that the number of censored samples exceed 80%. We make
these estimations for the n-step Markov chain for n = 6,8,10,12 and
14.
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FIG. 14. Estimation of block entropy rate as a function of !.

For the numerical experiments we perform a realization of
the n-step Markov chain obtaining a symbolic sequence of
8× 106 symbols long for n = 6,8,10,12, and 14 and we fix
q = 0.60. Then we use this sequence to obtain an estima-
tion of entropy production rate. We perform such estimations
by implementing the sampling scheme for the waiting-time
statistics with a censoring time Tc = 4×106. The total number
of collected samples was 2×104. The entropy production rate
was obtained as the difference between the reversed entropy
rate and the entropy rate, as a function of the block-length !
starting at ! = 2 and increasing this value successively. The
algorithm is stopped when the block-length ! is such that the
number of censored samples exceeds 80%. This estimation of
the entropy production rate could be used as an irreversibil-
ity index which can be appreciated in Figure 13. We can see
that the estimated entropy production rate is consistent with
the fact that no entropy production is present while analyz-
ing block-lengths smaller that the order of the Markov chain.
Notice that, as shown in Figure 13, the estimated entropy pro-
duction rate is, in average, zero for block-lengths below n and
that above such value the estimated entropy production rate
gives a positive value.

Another interesting application is the analysis of the irre-
versibility of DNA. In Ref. 9 Provata et al explored the irre-
versibility of some chromosomes of human DNA. Particularly
they use the empiric measure to estimate the entropy rate and
the reversed entropy rate to give an estimation of the degree
of irreversibility of the chromosomes 10, 14 20 and 22. The
estimation of the entropy rate they report was done under the
assumption that the genomic sequences are produced by a 4-
step Markov chain.9 They report the values for entropy rate
ĥ∗ = 1.339 and ĥ∗R = 1.416 (see Table VI in Ref. 9).

Here we obtain from the GenBank41 the chromosome 20 of
the Homo sapiens and we use this sequence to estimate en-
tropy rate and the reversed entropy rate using the sampling
scheme corresponding to waiting time statistics given in sec-
tion III. Although chromosome 20 has 63× 106 base pairs
(symbols) we only use a segment of 8×106 base pairs long to
achieve our estimators. We actually estimate the entropy rates
for several values of the censoring time Tc.

These values are 2 j × 103, for 0 ≤ j ≤ 12. The purpose of
these estimations is to see how much the estimations deviate
when using a “small sample” in the sense of the size of the
observed trajectory. We fix the number of sample words to
m = 2×104. We also use the criterium given in the preceding
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section in order to optimize the block-length !∗ which gives
the best estimation with respect to the number of censored
samples.

In Figure 14 we display the behavior of ĥ and ĥR as a func-
tion of the censoring time Tc. We can appreciate that the en-
tropy rate and the reversed entropy rate has a difference which
is, the average, the same for all the values of the censoring
times implemented. This fact suggest that the DNA sequence
might be spatially irreversible in the sense of the positivity of
the entropy production rate. These results are compared with
the values for the entropy rate and the reversed entropy rate
reported in Ref. 9. For Tc = 4096000 we obtain ĥ = 1.277
and ĥR = 1.352 which are, up to some extend, consistent with
the values obtained in Ref. 9 since we obtain an entropy pro-
duction rate êp = 0.075 while the one reported in Ref. 9 is
ê∗p = 0.077.

VI. CONCLUSIONS

The entropy rate is the limit of the block entropy rate when
the block length goes to infinity. Attaining the limit of infi-
nite block length is impossible in practice. Moreover, estimat-
ing block entropy rate from empiric measures would require a
large amount of data even for moderately large block lengths.
Furthermore, in this work we have shown that the finiteness
of the observed trajectories may lead to errors that can be as-
sociated to censored samples of the entropy rate.

We have studied estimators for the entropy rate defined
from the recurrence-time statistics; specifically the return-
time and waiting-time estimators. Taking into account the
problem of the finiteness of the observed trajectory, we have
used the theory of censored samples from statistics in order
to obtain improved estimators for the entropy rate. From this
point of view, we established a couple of sampling schemes
for the return-times and waiting-times in order to implement
the corresponding maximum likelihood estimators for the cen-
sored normal distribution. The latter is justified by assuming
that the entropy rate estimator comply with the central limit
theorem. These results show that there is some compromise
between the length of the words used for the estimation and
the size of the sample it self. This must be considered in order
to obtain the optimal estimation for a given sample. The pro-
tocols we define are, in some sense, a new technique since we
take advantage of the approach of the recurrence-time statis-
tics for estimating the entropy rate (and entropy production
rate) combined with the existing tools for censored data statis-
tics.

In view of the examples analyzed for the case of one-
dimensional maps with chaotic dynamics we can say that the
proposed methodology is at least as accurate as the existing
tools for estimating entropy rates. Moreover, we have also
shown through two simple examples (an n-step Markov chain
and a real DNA sequence) that our method could be a use-
ful tool for detecting reversibility or irreversibility in a time
series.

We would like to highlight the importance of this approach,

since it might be applicable for more general systems than
Markov chains. The main assumptions we have made are
applicable to more general dynamical systems and stochastic
processes satisfying the appropriate mixing properties. Never-
theless, for the specific case of entropy production rate, if one
uses directly the protocol here defined, one would obtain esti-
mators of certain indexes of irreversibility instead of the true
entropy production rate. Finally, we have defined applicable
protocols for time series taken from real data, and thus, im-
portant for practical purposes, as we have shown for the case
of DNA.
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Appendix A: Maximum Likelihood estimators for normal
censored samples.

In this appendix we derive formulas (18) and (19) for es-
timating the mean and variance (respectively) of the entropy
rate assuming a normal distribution. These formulas essen-
tially correspond to the maximum likelihood estimations of
the mean and the variance of a normal distribution with sam-
ples censored from above. Although the derivation of these
estimators are found in Ref. 36, we include the following cal-
culations for the sake of completeness of the present work.

Let Θ be a random variable normally distributed with mean
h and variance σ2. Let H := {hi : 1 ≤ i ≤ m} be a sample
of independent realizations of Θ censored from above, i.e., a
given sample hi is either, uncesored in the sense that it has
a specific numerical value, or censored, that is, hi has a value
larger than the censoring threshold hc. We order the sample set
in such a way that the first k (k ≤ m) samples are uncensored
ones, i.e. hi is uncensored for 1 ≤ i ≤ k and censored if k+
1 ≤ i ≤ m. Let us also denote by p̂ := k/m as the fraction
of uncensored samples in the whole sample set H . Notice
that p̂ is an estimation of the probability of the sample to be
uncensored. Since Θ is assumed to be normal we have that

p := Φ

(

hc − h

σ

)

, (A1)

where Φ is the distribution function of a standard normal ran-
dom variable, i.e.,

Φ(x) :=
1√
2π

∫ x

−∞
e−y2/2dy. (A2)

Next, the likelihood function, which can be interpreted as
the probability of the occurrence of the collected samples, is
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given by

L(h,σ2;H ) :=

(

k

∏
i=1

(

∆h

σ
φ

(

hi − h

σ

))

)

(1− p )m−k ,

(A3)
where φ is the probability density function of the standard
normal distribution, φ(x) := e−x2/2/

√
2π . It is not hard to see

that the logarithm of the likelihood function (some times also
called log-likelihood function) can be written as

logL :=

(

−
k

∑
i=1

(hi − h)2

2σ2

)

+ k log
(

∆h√
2π

)

(A4)

−
k

2
log(σ2)+ (m− k) log

(

1−Φ

(

hc − h

σ

) )

.

Now, in order to obtain the maximum likelihood estima-
tions we need to maximize the log-likelihood function with
respect to the parameters h and σ2. After some calculations it
is possible to see that the first derivatives of logL with respect
to h and σ2 are given by

∂ logL

∂h
=

k

∑
i=1

hi − h

σ2 +

(

m− k

σ

) φ
(

hc−h
σ

)

1−Φ
(

hc−h
σ

) , (A5)

∂ logL

∂σ2 =
k

∑
i=1

(hi − h)2

2σ4 −
k

2σ2

+ (m− k)

(

hc − h

2σ3

) φ
(

hc−h
σ

)

1−Φ
(

hc−h
σ

) . (A6)

To maximize logL we have to equate to zero the above par-
tial derivatives. The solutions will correspond to the maxi-
mum likelihood estimations for the mean and variance of the
distribution. Then we can write,

k

∑
i=1

hi − h

σ2 +

(

m− k

σ

) φ
(

hc−h
σ

)

1−Φ
(

hc−h
σ

) = 0, (A7)

k

∑
i=1

(hi − h)2

2σ4 −
k

2σ2 +(m− k)

(

hc − h

2σ3

) φ
(

hc−h
σ

)

1−Φ
(

hc−h
σ

) = 0.

(A8)

For further calculations it is important to have a short-hand
notation, then we define the following quantities. First we
denote by h̄ and s2 the sample mean and variance, respectively,
as

h̄ :=
1
k

k

∑
i=1

hi, (A9)

s2 :=
1
k

k

∑
i=1

(hi − h̄)2. (A10)

Next we denote by ξ the following,

ξ :=
hc − h

σ
. (A11)

In terms of the above quantities it is possible to see that
equations (A7) and (A8) can be rewritten as

h̄− h

σ
+

(

1− p

p

)

φ (ξ )

1−Φ(ξ )
= 0, (A12)

s2 +(h̄− h)2

2σ2 −
1
2
+

(

(1− p)ξ

2p

)

φ (ξ )

1−Φ(ξ )
= 0. (A13)

Equations (A12) and (A13) can be further simplified as fol-
lows. First let us denote by Ω the combination

Ω :=
(

1− p

p

)

φ (ξ )

1−Φ(ξ )
. (A14)

Then equations (A12) and (A13) can be rewritten as

h− h̄ = σΩ, (A15)
s2 +(h̄− h)2 = σ2 [1− ξ Ω] . (A16)

Now we can use equation (A12) into equation (A13) to elimi-
nate the dependence on h− h̄. This results in

s2 = σ2 [1− ξ Ω−Ω2] , (A17)

or, equivalently, as

σ2 = s2 +σ2 [ξ Ω+Ω2] , (A18)

On the other hand, recalling the definition of ξ , we can write
h= hc−σξ . Using this identity into equation (A12) we obtain

σ =
hc − h̄

(ξ +Ω)
. (A19)

Using the last identity into equation (A18) we obtain

σ2 = s2 +
ξ Ω+Ω2

(ξ +Ω)2

(

hc − h̄
)2

= s2 +
Ω

ξ +Ω

(

hc − h̄
)2
.

(A20)
The identity (A19) can also be used into equation (A15) which
results in

h = h̄+
Ω

(ξ +Ω)

(

hc − h̄
)

. (A21)

Next, we denote by ζ the combination Ω/(ξ +Ω), a quan-
tity which appears in the expression for σ2 and h. Recalling
that p = Φ(ξ ), which is a consequence of expressions (A1)
and (A11), we can see that Ω = φ(ξ )/p. Then, some alge-
braic manipulations show that

ζ :=
Ω

ξ +Ω
=

φ(ξ )/p

ξ +φ(ξ )/p
, (A22)

or, equivalently,

ζ =
φ(ξ )

pξ +φ(ξ )
. (A23)

In terms of ζ we have that

h = h̄+ ζ
(

hc − h̄
)

, (A24)

σ2 = s2 + ζ
(

hc − h̄
)2
. (A25)

Equations (A23), (A24), and (A25) are the expressions antic-
ipated in section II C.
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