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We present an analysis of an extended Rayleigh-Plesset (RP) equation for a three dimensional
cell of a microorganism such as a bacteria or a virus in some liquid, where the cell membrane in
bacteria or the envelope in viruses possess elastic properties. To account for rapid changes in the
shape configuration of such microorganisms, the bubble membrane/envelope must be rigid to resist
large pressures while being flexible to adapt to growth or decay. In this paper, such properties are
embodied in the RP equation by including a pressure bending term that is proportional to the square
of the curvature of the elastic wall. Analytical solutions to this extended equation are obtained.

I. INTRODUCTION

It is well established that the size evolution of unstable, spherical cavitation bubbles in 3-dimensions with surface
tension is governed by the well-known RP equation [1–3]

⇢w
⇣
RRTT +

3

2
RT

2
⌘
= �P � 2�

R
. (1)

where ⇢w is the density of the water, R(T ) is the radius of the bubble, �P = p � P1 is the pressure drop between
the uniform pressure inside the bubble and the external pressure in the liquid at infinity (hydrostatic and sound field
for example), and � is the surface tension of the bubble.
In the simpler form with only the pressure di↵erence in the right hand side, Eq. (1) was first derived by Rayleigh

in 1917 [1], but it was only in 1949 that Plesset developed the full form of the equation and applied it to the problem
of traveling cavitation bubbles [2].

On the other hand, we can extend the RP equation to study the evolution of the cell wall of microorganisms such
as bacteria and viruses, by the inclusion of an additional term that accounts for the bending pressure of the thin
outer shell. However, the e↵ects of mechanical properties of the outer shell in controlling and maintaining the sizes of
microorganisms are not well known. Because the elastic energy per unit area of bending a thin shell is proportional to
the square of the curvature [4], the extended RP equation (ERP) can be modified to include this additional bending
pressure term pb = Y h2/R2 of the thin outer shell of elastic modulus Y , and thickness h coating the cell to read
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Typical fixed values that we will use are ⇢w = 103 Kg/m3, R0 = 10�6 m, P1 = 101325 Pa, h = 10�8 m. The values
for Young’s modulus and surface tension � are allowed to vary in the ranges [1⇥ 107, 5⇥ 108] Pa and [1⇥ 10�4, 2⇥
10�2] N/m.

In this paper, we find analytical solutions of the “bubbles with shell” model as expressed by Eq. (2), and we show
that the bending pressure controls the sizes of bacteria and viruses.

II. INTEGRATING FACTOR AND INTEGRATION VIA WEIERSTRASS EQUATION

To solve (2) we will use two initial conditions R(0) = R0, and RT (0) = 0, and by introducing nondimensional
variables given by R = R0u, and T = Tct, for a vacuous bubble of zero internal pressure p = 0, then (2) becomes

uutt +
3

2
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2 =
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subject to new initial conditions given by u(0) = 1 and ut(0) = 0. The collapse (Rayleigh) time Tc of the vacuous
bubble such as a cell, of 1 µm in radius is given by [5]

Tc =
�( 56 )

�( 43 )

r
⇡

6
R0

r
⇢w
P1

= 0.914681 R0

r
⇢w
P1

= 0.914681⇥ 9.934401⇥ 10�8 sec. = 9.08681⇥ 10�8 sec . (4)

Furthermore, we let Tc
2P1

R0
2⇢w

= ⇠2, where ⇠ = 0.914681 is an universal constant known as the 3-dimensional Rayleigh

factor [6], and make the notation ⇠2

P1
2�
R0

= �, and ⇠2

P1
Y h2

R0
2 = ↵ (also noticing that the quotients �/⇠2 = p�/P1, and

↵/⇠2 = p↵/P1 are pressure quotients with surface pressure p� = 2�/R0 and bending pressure p↵ = Y h2/R0
2), we

write (3) in the form

uutt +
3

2
ut

2 = �⇠2 � �

u
+

↵

u2
. (5)

For these values of ranges of parameters we obtain � 2 [0.0016514, 0.330281], ↵ 2 [0.00825701, 0.412851], surface
pressure p� 2 [2⇥ 102, 4⇥ 104] Pa, and bending pressure p↵ 2 [103, 5⇥ 104] Pa.

By multiplying (5) by the integrating factor 2u2ut, we have the conservation form

d

dt


u3ut

2 +
2⇠2

3
u3 + �u2 � 2↵u

�
= 0 , (6)

so that

ut
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u
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+
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, (7)

where c1 is an integration constant that varies linearly with respect to the surface tension � and Young’s modulus Y .
Using the two initial conditions, this constant is

c1(↵, �) = �2↵+ � +
2⇠2

3
. (8)

For the empty cavity without surface tension or bending pressure, � = 0 and ↵ = 0, and we have c1 = 2⇠2

3 , which
reduces (7) to
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2 =

2⇠2

3

✓
1

u3
� 1

◆
. (9)

The solution of this equation is found by inversion of the integral
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which in parametric form becomes
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Notice that the collapse time is obtained from (10) by setting u = 0 which give the Rayleigh factor ⇠ =
�( 56 )

�( 43 )

r
⇡

6
.

The phase portrait of (9) and the parametric hypergeometric solution for the case � = 0 and ↵ = 0 from (11) are
displayed in Fig. 1.

The contributions of surface tension and bending pressure must be taken into account simultaneously in studying
the deformations of microorganisms since the mechanical equilibrium is determined by he surface tension. Thus,
the ratio of the two constants ↵ and � is a very important dimensionless parameter given by q ⌘ 2↵

� = Y h2

R0�
> 0.

When q < 1 then � > 2↵ so we have the regime where � > Y h2

R0
. This is the regime of high surface tension which is
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FIG. 1: The phase portrait of (9) and the corresponding parametric hypergeometric solution for the case � = 0 and ↵ = 0,
i.e., (Y0,�0) = (0, 0), from (11).

characterized by irreversible deformation and occurs when the stresses approach the elastic limit. This region is the
plastic deformation region. On the other hand, when q > 1 then � < 2↵ and we have the regime where � < Y h2

R0
which

is the region when microorganisms recover their shape after the external stress has been removed. This region is the
elastic deformation region. At the boundary between the two regions, q = 1, there is the critical radius Rc = Y h2

�
which plays an important role in determining the size of the microorganisms. In each of the plastic and elastic regions
analytical solutions will be found next.

The approach to integrate (7) is to transform it into an equation in which the right hand side is a polynomial in u.
Namely, we will use the Sundman transformation dt = u2d⌧ where ⌧ is the new independent variable which gives the
Weierstrass elliptic equation

u⌧
2 = �2⇠2

3
u4 � �u3 + 2↵u2 + c1u ⌘ Q(u). (12)

It is well known [7–9] that the solutions u(⌧) of

u⌧
2 = A4u

4 + 4A3u
3 + 6A2u

2 + 4A1u+A0, (13)
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can be expressed in terms of Weierstrass elliptic functions }(⌧ ; g2, g3), which is a solution to

}⌧
2 = 4}3 � g2}� g3 , (14)

via the transformation

u(⌧) = û+

p
Q(û)}0(⌧ + ⌧0; g2, g3) +

1
2Q

0(û)
h
}(⌧ + ⌧0; g2, g3)� 1

24Q
00(û)

i
+ 1

24Q(û)Q(3)(û)

2
h
}(⌧ + ⌧0; g2, g3)� 1

24Q
00(û)

i2
� 1

48Q(û)Q(4)(û)
, (15)

where û can be taken not necessarily as a root of Q(u), and g2, g3 are elliptic invariants of }(⌧), given by

g2 = A4A0 � 4A3A1 + 3A2
2 =

↵2

3
+

c1�

4
,

g3 = A4A2A0 + 2A3A2A1 �A4A1
2 �A2

3 �A3
2A0 =

1

216

�
�8↵3 + 9c1

2⇠2 � 9c1↵�
�
.

(16)

These invariants are components of the modular discriminant

� = g2
3 � 27g3

2 =
c12

192

�
16↵3⇠2 + 3↵2�2 � 9c1

2⇠4 + 18c1↵⇠
2� + 3c1�

3
�

(17)

and together are used to classify the solutions of (12). In particular, choosing û = 0, which is a root of Q(u) = 0,
then the general solution (15) takes the much simpler form

u(⌧) =
Qu(0)

4}(⌧ + ⌧0; g2, g3)� Quu(0)
6

=
A1

}(⌧ + ⌧0; g2, g3)� A2
2

. (18)

This solution can also be explained by letting u(⌧) = 1
v(⌧) in (13) which gives the Weierstrass equation

v⌧
2 = A4 + 4A3v + 6A2v

2 + 4A1v
3 , (19)

which is

v⌧
2 = �2⇠2

3
� �v + 2↵v2 +

✓
�2↵+ � +

2⇠2

3

◆
v3 . (20)

The standard form of (19) given by (14) can be found for A1 6= 0 by the linear transformation

v(⌧) =
1

A1

✓
}(⌧ ; g2, g3)�

A2

2

◆
(21)

yielding (18). Using the initial conditions together with (8), the constant ⌧0 can be found numerically from the
equation

}(⌧0; g2, g3) =
3� + 2⇠2 � 4↵

12
, (22)

and thus the general solution to (12) in parametric form is

u(⌧) =
3↵� ⇠2 � 3�

2

↵� 6}
h
⌧ + ⌧0;

↵2

3 + �
4

⇣
�2↵+ 2⇠2

3 + �
⌘
, 1
216

⇣
� 8↵3 + 3�(6↵� 2⇠2 � 3�)↵+ ⇠2(�6↵+ 2⇠2 + 3�)2

⌘i

t(⌧) =

Z ⌧

0
u2(⇣)d⇣ .

(23)

For our set of minimum, maximum, extreme zero values, and average values of Young’s modulus and surface tension
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we obtain the following analytic solutions

um(⌧) =
0.135725

}(⌧ + 3.28025; 0.000246862, 0.0102743)� 0.00137617

uM (⌧) =
0.0155851

}(⌧ + 5.28075; 0.0619627,�0.00282496)� 0.0688085

u0(⌧) =
⇡�
�
5
6

�2

36�
�
4
3

�2
}

✓
⌧ + 3.25193; 0,

⇡3�( 5
6 )

6

11664�( 4
3 )

6

◆

ū(⌧) =
0.13944

}(⌧ + 3.15848; 0.0254377, 0.0105037)� 0.0138305
.

(24)

Phase portraits of the elliptic Weierstrass equation (12) for constant c1 and the corresponding solutions of (24) are
displayed in Fig. 2 for the numerical values of the parameters presented in Table I.
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FIG. 2: The phase portrait of (12) which indicates periodic solutions given by (24). c1 = 0.542899 and c1 = 0.0623405
correspond to minimum (Ym,�m) and maximum (YM ,�M ) values, respectively. The two special cases of c1 = 0.557761
correspond to (Y0,�0) = (0, 0), and (Ȳ , �̄). For (Y0,�0) = (0, 0), the hypergeometric solution can be parameterized in terms of
the } elliptic function given by u0(⌧).



6

TABLE I: The numerical values of the parameters used in the phase portraits depicted in Fig. 2.

values for general solution Y [Pa] � [N/m] Rc [m] � ↵ c1 q u

minimum 107 10�4 10�5 0.0016514 0.00825701 0.542899 10 um

maximum 5⇥ 108 2⇥ 10�2 2.5⇥ 10�6 0.330281 0.412851 0.0623405 2.5 uM

special I (extreme) 0 0 undefined 0 0 0.557761 undefined u0

special II (mean) 1.005⇥ 108 1.005⇥ 10�2 10�6 0.165966 0.0082893 0.557761 1 ū

A. Cnoidal solutions

This type of periodic solutions is obtained for the lemniscatic case g3 = 0 which gives ↵ = 1
4 (2⇠

2 + 3�) and is

equivalent to q = 3
2 + ⇠2

� . In this case, c1 = � 1
6 (2⇠

2 + 3�), g2 = 1
48 (2⇠

2 + �)(2⇠2 + 3�), the roots of Q(v) are real and

(19) can be factored as

v⌧
2 = �1

6
(v � 1)

⇥
�4⇠2 + v(2⇠2 + 3�)(v � 2)

⇤
. (25)

These real roots are

e3 = 1� 2⇠2 + �q
4⇠4

3 + 8⇠2�
3 + �2

, e2 = 1 , e1 = 1 +
2⇠2 + �q

4⇠4

3 + 8⇠2�
3 + �2

,

and although the Weierstrass unbounded function given by (14) has poles aligned on the real axis of the ⌧�⌧0 complex
plane, we can choose ⌧0 in such a way to shift these poles a half of period above the real axis, so that the } elliptic
function reduces to the Jacobi elliptic function given by

}(⌧ ; g2, 0) = e3 + (e2 � e3)sn
2[
p
e1 � e3(⌧ + ⌧0);m] = �

p
g2
2

cn2


4
p
g2(⌧ + ⌧0);

1p
2

�
, (26)

with elliptic modulus m =
q

e2�e3
e1�e3

. Thus, the solutions (21) reduces to

v(⌧) = 1� 24

⇠2 + 3�
}(⌧ ; g2, 0) . (27)

For the lemniscatic case, this solution is reduced using the transformation (26) to cnoidal waves, and it becomes

v(⌧) = 1 +
2⇠2 + �q

4⇠4

3 + 8⇠2�
3 + �2

cn2
"

4
p
(2⇠2 + �)(2⇠2 + 3�)

2 4
p
3

(⌧ + ⌧0);
1p
2

#
. (28)

To satisfy the initial condition, ⌧0 is found numerically from

cn

"
4
p

(2⇠2 + �)(2⇠2 + 3�)

2 4
p
3

⌧0;
1p
2

#
= 0 . (29)

Choosing the realistic numerical values Y = 6.57375 ⇥ 108 Pa, � = 1.005 ⇥ 10�2 N/m, and Rc = 6.54104 ⇥ 10�6 m,
one can obtain the values of �, ↵, c1, and q as 0.165966, 0.542795, �0.361864, 6.54104, respectively. The resulting
analytic solution is

u(⌧) =
1

1 + 1.59416 cn2
h
0.537061(⌧ + 3.88405); 1p

2

i . (30)

The plot of this solution together with its phase portrait is presented in Fig. 3 showing that in this case the bubble
does not collapse.
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FIG. 3: The phase portrait from (12) and the corresponding periodic parametric solution in terms of Jacobi’s elliptic function
given by (30).

B. Degenerate cases

We now study the degenerate cases given by � = 0 for which (19) becomes

v⌧
2 =

✓
�2↵+ � +

2⇠2

3

◆
v3 + 2↵v2 � �v � 2⇠2

3
. (31)

In this case the discriminant factors as

� =
(6↵� 2⇠2 � 3�)2(↵� ⇠2 � �)2

�
16↵⇠2 � 4⇠4 � 4⇠2� + 3�2

�

1728
(32)

and the solutions given by (21) simplify since the Weierstrass } function degenerates into trigonometric or hyperbolic
elementary solutions.

i) Trigonometric solutions

There are three possibilities for which � = 0.

In the first case, ↵ = ⇠2 + � which is equivalent to q = 2
⇣
1 + ⇠2

�

⌘
and implies c1 = �

⇣
4⇠2

3 + �
⌘
. Then (31) has a

double root at v = 1, which can be factored as

v⌧
2 = �1

3
(v � 1)2[2⇠2 + (4⇠2 + 3�)v] . (33)

The solution is

v(⌧) = 1� 3(2⇠2 + �)

4⇠2 + 3�
sec2


1

2

p
2⇠2 + � (⌧ + ⌧0)

�
. (34)

However, this case does not satisfy the initial condition v(0) = 1, so it will be disregarded as nonphysical.

Secondly, ↵ = 1
16

⇣
� 3�2

⇠2 + 4⇠2 + 4�
⌘
which is equivalent to q = 1

2 + ⇠2

2� � 3�
8⇠2 , and gives c1 = (2⇠2+3�)2

24⇠2 . Then (31)



8

has a simple root for v = 1, which can be factored as

v⌧
2 =

1

24⇠2
(v � 1)[4⇠2 + (2⇠2 + 3�)v]2 (35)

with solution

v(⌧) = � 4⇠2

2⇠2 + 3�
+

3(2⇠2 + �)

2⇠2 + 3�
sec2

 p
2⇠2 + �

p
2⇠2 + 3�

4
p
2⇠

⌧

!
, (36)

which satisfies the initial condition v(0) = 1. The general solution to (12) in parametric form is

u(⌧) =
1

1 +A tan2(✓⌧)

t(⌧) = � 1

2✓(A� 1)

"
A tan(✓⌧)

1 +A tan2(✓⌧)
+

2✓

A� 1
⌧ +

(A� 3)
p
A

A� 1
tan�1

⇣p
A tan(✓⌧)

⌘#
,

(37)

where A = 1 + 4⇠2

2⇠2+3� , and ✓ =
p

2⇠2+�
p

2⇠2+3�

4
p
2⇠

. Choosing the realistic numerical values Y = 2.96086 ⇥ 108 Pa,

� = 1.005 ⇥ 10�2 N/m, and Rc = 2.94613 ⇥ 10�6 m, we obtain the values of �, ↵, c1, and q as 0.165966, 0.244479,
0.234769, 2.94613, respectively. With these values, one calculates A = 2.54136 and ✓ =0.38621. The corresponding
periodic trigonometric solution (37) and its phase portrait are presented in Fig. 4.

ii) Hyperbolic solutions

This case is found for ↵ = 1
6 (2⇠

2 + 3�), which is equivalent to q = 1+ 2⇠2

3� , and gives c1 = 0. Then (31) is factored as

v⌧
2 =

1

3
(v � 1)

⇥
2⇠2 + (2⇠2 + 3�)v

⇤
, (38)

with solution

v(⌧) =
3�

2(2⇠2 + 3�)
+

(4⇠2 + 3�)

2(2⇠2 + 3�)
cosh

 r
2⇠2 + 3�

3
⌧

!
(39)

which satisfies the initial condition v(0) = 1. The general solution to (12) in parametric form is

u(⌧) =
1

1 + 2B sinh2
⇣

✓̃⌧
2

⌘

t(⌧) =
1

✓̃(2B � 1)

"
B sinh(✓̃⌧)

1 + 2B sinh2
⇣

✓̃⌧
2

⌘ +
2B � 2p
2B � 1

tan�1

 
p
2B � 1 tanh

 
✓̃⌧

2

!!#
,

(40)

where B = 1
2 + ⇠2

2⇠2+3� , and ✓̃ =
q

2⇠2+3�
3 .

Choosing the realistic numerical values Y = 4.3825 ⇥ 108 Pa, � = 1.005 ⇥ 10�2 N/m, and Rc = 4.3607 ⇥ 10�6 m,
one can obtain the values of �, ↵, c1, and q as 0.165966, 0.361864, 0, 4.3607, respectively. Then B = 0.885339, and
✓̃ = 0.850722. For these values, the plot of the hyperbolic solution (40) and its phase portrait are presented in Fig. 4.
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FIG. 4: The phase portraits from (12) and the corresponding periodic trigonometric solution (37) and hyperbolic solution
(40).

III. CONCLUSION

In this paper, parametric solutions of the Rayleigh-Plesset equation extended with a term that takes into account
the bending pressure due to the elasticity of a shell or capsule surrounding a liquid- or vapor-like substance have
been obtained. The general method of Weierstrass elliptic equation using as evolution parameter the Sundman time
has been employed. Particular cases that can be important in applications, such as cnoidal and modular-degenerate
solutions, are also presented. The simpler, but more particular method using the Abel equation has been briefly
described in the appendix. The quotients of the surface and bending pressures and the pressure of the bakground
medium together with the Rayleigh collapse time are the other parameters that characterize the solutions displayed
in this work.

APPENDIX A: INTEGRATION VIA ABEL’S EQUATION

Proceeding as in [10], the solutions to a general second order ODE of type

utt + f2(u)ut + f3(u) + f1(u)ut
2 + f0(u)ut

3 = 0 (A1)

can be obtained via the solutions to Abel’s equation of the first kind (and vice-versa)

dy

du
= f0(u) + f1(u)y + f2(u)y

2 + f3(u)y
3 (A2)

using the substitution

ut = ⌘(u(t)) , (A3)
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which turns (A1) into the Abel equation of the second kind in canonical form

⌘⌘t + f3(u) + f2(u)⌘ + f1(u)⌘
2 + f0(u)⌘

3 = 0 . (A4)

Using the inverse transformation ⌘(u(t)) = 1/y(u(t)) of the dependent variable, (A4) becomes (A2) and viceversa.

In our case, by comparing (A1) with (5), we identify the nonlinear coe�cients to be f0(u) = 0, f1(u) = 3/2u,
f2(u) = 0, and f3(u) = ⇠2/u+ �/u2 � ↵/u3. Therefore Abel’s equation (A2) simplifies to the Bernoulli equation

dy

du
= f1(u)y + f3(u)y

3 . (A5)

By one quadrature, this equation has the solution

y(u) = ± u3/2

q
c1 + 2↵u� �u2 � 2⇠2

3 u3
, (A6)

and using the inverse transformation 1/y(u(t)) = ut together with (A3), one can obtain (7).

[1] Lord Rayleigh, “VIII. On the pressure developed in a liquid during the collapse of a spherical cavity”, Philos. Mag. Ser. 6,
34, 94 (1917).

[2] M.S. Plesset, “The dynamics of cavitation bubbles”, ASME J. Appl. Mech. 16, 228 (1949).
[3] A. Prosperetti, “Bubbles”, Phys. Fluids 16, 1852 (2004).
[4] A. Malmi-Kakkada and D. Thirumalai, “Generalized Rayleigh-Plesset theory for cell size maintenance in viruses and

bacteria”, arXiv:1902.07329 (2019).
[5] S.C. Mancas and H.C. Rosu, “Evolution of spherical cavitation bubbles: Parametric and closed-form solutions”, Phys.

Fluids 28, 022009 (2016).
[6] N. A. Kudryashov and D. I. Sinelshchikov, Analytical solutions for problems of bubble dynamics, Phys. Lett. A 379, 798

(2015).
[7] K. Weierstrass, Mathematische Werke, vol. V (Johnson, New York, 1915).
[8] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis (Cambridge Univesity Press, Cambridge, 1927).
[9] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables

(Courier Dover Publications, New York, 1972).
[10] S.C. Mancas and H.C. Rosu, “Integrable Abel equations and Vein’s Abel equation”, Math. Meth. Appl. Sci. 39, 1376-1387

(2016).




